]>
Commit | Line | Data |
---|---|---|
42d1f039 | 1 | /* |
97d80fc3 | 2 | * Copyright 2004 Freescale Semiconductor. |
42d1f039 WD |
3 | * (C) Copyright 2003 Motorola Inc. |
4 | * Xianghua Xiao ([email protected]) | |
5 | * | |
6 | * See file CREDITS for list of people who contributed to this | |
7 | * project. | |
8 | * | |
9 | * This program is free software; you can redistribute it and/or | |
10 | * modify it under the terms of the GNU General Public License as | |
11 | * published by the Free Software Foundation; either version 2 of | |
12 | * the License, or (at your option) any later version. | |
13 | * | |
14 | * This program is distributed in the hope that it will be useful, | |
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | * GNU General Public License for more details. | |
18 | * | |
19 | * You should have received a copy of the GNU General Public License | |
20 | * along with this program; if not, write to the Free Software | |
21 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | |
22 | * MA 02111-1307 USA | |
23 | */ | |
24 | ||
25 | #include <common.h> | |
26 | #include <asm/processor.h> | |
27 | #include <i2c.h> | |
28 | #include <spd.h> | |
29 | #include <asm/mmu.h> | |
30 | ||
d9b94f28 JL |
31 | |
32 | #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) | |
33 | extern void dma_init(void); | |
9aea9530 | 34 | extern uint dma_check(void); |
d9b94f28 | 35 | extern int dma_xfer(void *dest, uint count, void *src); |
9aea9530 WD |
36 | #endif |
37 | ||
384cc687 | 38 | #ifdef CONFIG_SPD_EEPROM |
9aea9530 WD |
39 | |
40 | #ifndef CFG_READ_SPD | |
41 | #define CFG_READ_SPD i2c_read | |
42 | #endif | |
43 | ||
d9b94f28 JL |
44 | static unsigned int setup_laws_and_tlbs(unsigned int memsize); |
45 | ||
46 | ||
9aea9530 WD |
47 | /* |
48 | * Convert picoseconds into clock cycles (rounding up if needed). | |
49 | */ | |
50 | ||
51 | int | |
52 | picos_to_clk(int picos) | |
53 | { | |
54 | int clks; | |
55 | ||
56 | clks = picos / (2000000000 / (get_bus_freq(0) / 1000)); | |
57 | if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) { | |
58 | clks++; | |
59 | } | |
60 | ||
61 | return clks; | |
62 | } | |
63 | ||
d9b94f28 JL |
64 | |
65 | /* | |
66 | * Calculate the Density of each Physical Rank. | |
67 | * Returned size is in bytes. | |
68 | * | |
69 | * Study these table from Byte 31 of JEDEC SPD Spec. | |
70 | * | |
71 | * DDR I DDR II | |
72 | * Bit Size Size | |
73 | * --- ----- ------ | |
74 | * 7 high 512MB 512MB | |
75 | * 6 256MB 256MB | |
76 | * 5 128MB 128MB | |
77 | * 4 64MB 16GB | |
78 | * 3 32MB 8GB | |
79 | * 2 16MB 4GB | |
80 | * 1 2GB 2GB | |
81 | * 0 low 1GB 1GB | |
82 | * | |
83 | * Reorder Table to be linear by stripping the bottom | |
84 | * 2 or 5 bits off and shifting them up to the top. | |
85 | */ | |
86 | ||
87 | unsigned int | |
88 | compute_banksize(unsigned int mem_type, unsigned char row_dens) | |
89 | { | |
90 | unsigned int bsize; | |
91 | ||
92 | if (mem_type == SPD_MEMTYPE_DDR) { | |
93 | /* Bottom 2 bits up to the top. */ | |
94 | bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; | |
95 | debug("DDR: DDR I rank density = 0x%08x\n", bsize); | |
96 | } else { | |
97 | /* Bottom 5 bits up to the top. */ | |
98 | bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27; | |
99 | debug("DDR: DDR II rank density = 0x%08x\n", bsize); | |
100 | } | |
101 | return bsize; | |
102 | } | |
103 | ||
104 | ||
105 | /* | |
106 | * Convert a two-nibble BCD value into a cycle time. | |
107 | * While the spec calls for nano-seconds, picos are returned. | |
108 | * | |
109 | * This implements the tables for bytes 9, 23 and 25 for both | |
110 | * DDR I and II. No allowance for distinguishing the invalid | |
111 | * fields absent for DDR I yet present in DDR II is made. | |
112 | * (That is, cycle times of .25, .33, .66 and .75 ns are | |
113 | * allowed for both DDR II and I.) | |
114 | */ | |
115 | ||
9aea9530 | 116 | unsigned int |
d9b94f28 | 117 | convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val) |
9aea9530 | 118 | { |
d9b94f28 JL |
119 | /* |
120 | * Table look up the lower nibble, allow DDR I & II. | |
121 | */ | |
122 | unsigned int tenths_ps[16] = { | |
123 | 0, | |
124 | 100, | |
125 | 200, | |
126 | 300, | |
127 | 400, | |
128 | 500, | |
129 | 600, | |
130 | 700, | |
131 | 800, | |
132 | 900, | |
133 | 250, | |
134 | 330, /* FIXME: Is 333 better/valid? */ | |
135 | 660, /* FIXME: Is 667 better/valid? */ | |
136 | 750, | |
137 | 0, /* undefined */ | |
138 | 0 /* undefined */ | |
139 | }; | |
140 | ||
141 | unsigned int whole_ns = (spd_val & 0xF0) >> 4; | |
142 | unsigned int tenth_ns = spd_val & 0x0F; | |
143 | unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns]; | |
144 | ||
145 | return ps; | |
9aea9530 WD |
146 | } |
147 | ||
d9b94f28 | 148 | |
9aea9530 WD |
149 | long int |
150 | spd_sdram(void) | |
151 | { | |
152 | volatile immap_t *immap = (immap_t *)CFG_IMMR; | |
153 | volatile ccsr_ddr_t *ddr = &immap->im_ddr; | |
d9b94f28 | 154 | volatile ccsr_gur_t *gur = &immap->im_gur; |
9aea9530 | 155 | spd_eeprom_t spd; |
d9b94f28 JL |
156 | unsigned int n_ranks; |
157 | unsigned int rank_density; | |
158 | unsigned int odt_rd_cfg, odt_wr_cfg; | |
159 | unsigned int odt_cfg, mode_odt_enable; | |
160 | unsigned int dqs_cfg; | |
161 | unsigned char twr_clk, twtr_clk, twr_auto_clk; | |
162 | unsigned int tCKmin_ps, tCKmax_ps; | |
163 | unsigned int max_data_rate, effective_data_rate; | |
164 | unsigned int busfreq; | |
165 | unsigned sdram_cfg; | |
9aea9530 | 166 | unsigned int memsize; |
d9b94f28 JL |
167 | unsigned char caslat, caslat_ctrl; |
168 | unsigned int trfc, trfc_clk, trfc_low, trfc_high; | |
169 | unsigned int trcd_clk; | |
170 | unsigned int trtp_clk; | |
171 | unsigned char cke_min_clk; | |
172 | unsigned char add_lat; | |
173 | unsigned char wr_lat; | |
174 | unsigned char wr_data_delay; | |
175 | unsigned char four_act; | |
176 | unsigned char cpo; | |
177 | unsigned char burst_len; | |
178 | unsigned int mode_caslat; | |
179 | unsigned char sdram_type; | |
180 | unsigned char d_init; | |
42d1f039 | 181 | |
d9b94f28 JL |
182 | /* |
183 | * Read SPD information. | |
184 | */ | |
185 | CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) &spd, sizeof(spd)); | |
42d1f039 | 186 | |
d9b94f28 JL |
187 | /* |
188 | * Check for supported memory module types. | |
189 | */ | |
190 | if (spd.mem_type != SPD_MEMTYPE_DDR && | |
191 | spd.mem_type != SPD_MEMTYPE_DDR2) { | |
192 | printf("Unable to locate DDR I or DDR II module.\n" | |
193 | " Fundamental memory type is 0x%0x\n", | |
194 | spd.mem_type); | |
42d1f039 WD |
195 | return 0; |
196 | } | |
197 | ||
d9b94f28 JL |
198 | /* |
199 | * These test gloss over DDR I and II differences in interpretation | |
200 | * of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks | |
201 | * are not supported on DDR I; and not encoded on DDR II. | |
202 | * | |
203 | * Also note that the 8548 controller can support: | |
204 | * 12 <= nrow <= 16 | |
205 | * and | |
206 | * 8 <= ncol <= 11 (still, for DDR) | |
207 | * 6 <= ncol <= 9 (for FCRAM) | |
208 | */ | |
209 | if (spd.nrow_addr < 12 || spd.nrow_addr > 14) { | |
210 | printf("DDR: Unsupported number of Row Addr lines: %d.\n", | |
211 | spd.nrow_addr); | |
212 | return 0; | |
213 | } | |
214 | if (spd.ncol_addr < 8 || spd.ncol_addr > 11) { | |
215 | printf("DDR: Unsupported number of Column Addr lines: %d.\n", | |
216 | spd.ncol_addr); | |
42d1f039 WD |
217 | return 0; |
218 | } | |
219 | ||
d9b94f28 JL |
220 | /* |
221 | * Determine the number of physical banks controlled by | |
222 | * different Chip Select signals. This is not quite the | |
223 | * same as the number of DIMM modules on the board. Feh. | |
224 | */ | |
225 | if (spd.mem_type == SPD_MEMTYPE_DDR) { | |
226 | n_ranks = spd.nrows; | |
227 | } else { | |
228 | n_ranks = (spd.nrows & 0x7) + 1; | |
42d1f039 WD |
229 | } |
230 | ||
d9b94f28 JL |
231 | debug("DDR: number of ranks = %d\n", n_ranks); |
232 | ||
233 | if (n_ranks > 2) { | |
234 | printf("DDR: Only 2 chip selects are supported: %d\n", | |
235 | n_ranks); | |
42d1f039 WD |
236 | return 0; |
237 | } | |
238 | ||
9aea9530 | 239 | /* |
d9b94f28 | 240 | * Adjust DDR II IO voltage biasing. It just makes it work. |
9aea9530 | 241 | */ |
d9b94f28 JL |
242 | if (spd.mem_type == SPD_MEMTYPE_DDR2) { |
243 | gur->ddrioovcr = (0 | |
244 | | 0x80000000 /* Enable */ | |
245 | | 0x10000000 /* VSEL to 1.8V */ | |
246 | ); | |
247 | } | |
9aea9530 WD |
248 | |
249 | /* | |
d9b94f28 | 250 | * Determine the size of each Rank in bytes. |
9aea9530 | 251 | */ |
d9b94f28 JL |
252 | rank_density = compute_banksize(spd.mem_type, spd.row_dens); |
253 | ||
9aea9530 WD |
254 | |
255 | /* | |
d9b94f28 | 256 | * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg |
9aea9530 | 257 | */ |
d9b94f28 | 258 | ddr->cs0_bnds = (rank_density >> 24) - 1; |
42d1f039 | 259 | |
9aea9530 | 260 | /* |
d9b94f28 | 261 | * ODT configuration recommendation from DDR Controller Chapter. |
9aea9530 | 262 | */ |
d9b94f28 JL |
263 | odt_rd_cfg = 0; /* Never assert ODT */ |
264 | odt_wr_cfg = 0; /* Never assert ODT */ | |
265 | if (spd.mem_type == SPD_MEMTYPE_DDR2) { | |
266 | odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */ | |
267 | #if 0 | |
268 | /* FIXME: How to determine the number of dimm modules? */ | |
269 | if (n_dimm_modules == 2) { | |
270 | odt_rd_cfg = 1; /* Assert ODT on reads to CS0 */ | |
271 | } | |
272 | #endif | |
273 | } | |
9aea9530 | 274 | |
d9b94f28 JL |
275 | ddr->cs0_config = ( 1 << 31 |
276 | | (odt_rd_cfg << 20) | |
277 | | (odt_wr_cfg << 16) | |
278 | | (spd.nrow_addr - 12) << 8 | |
279 | | (spd.ncol_addr - 8) ); | |
280 | debug("\n"); | |
281 | debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds); | |
282 | debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config); | |
9aea9530 | 283 | |
d9b94f28 JL |
284 | if (n_ranks == 2) { |
285 | /* | |
286 | * Eg: Bounds: 0x0f00_0000 to 0x1e0000_0000, second 256 Meg | |
287 | */ | |
288 | ddr->cs1_bnds = ( (rank_density >> 8) | |
289 | | ((rank_density >> (24 - 1)) - 1) ); | |
290 | ddr->cs1_config = ( 1<<31 | |
291 | | (odt_rd_cfg << 20) | |
292 | | (odt_wr_cfg << 16) | |
293 | | (spd.nrow_addr - 12) << 8 | |
294 | | (spd.ncol_addr - 8) ); | |
295 | debug("DDR: cs1_bnds = 0x%08x\n", ddr->cs1_bnds); | |
296 | debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config); | |
42d1f039 WD |
297 | } |
298 | ||
d9b94f28 | 299 | |
9aea9530 | 300 | /* |
d9b94f28 JL |
301 | * Find the largest CAS by locating the highest 1 bit |
302 | * in the spd.cas_lat field. Translate it to a DDR | |
303 | * controller field value: | |
304 | * | |
305 | * CAS Lat DDR I DDR II Ctrl | |
306 | * Clocks SPD Bit SPD Bit Value | |
307 | * ------- ------- ------- ----- | |
308 | * 1.0 0 0001 | |
309 | * 1.5 1 0010 | |
310 | * 2.0 2 2 0011 | |
311 | * 2.5 3 0100 | |
312 | * 3.0 4 3 0101 | |
313 | * 3.5 5 0110 | |
314 | * 4.0 4 0111 | |
315 | * 4.5 1000 | |
316 | * 5.0 5 1001 | |
9aea9530 | 317 | */ |
d9b94f28 JL |
318 | caslat = __ilog2(spd.cas_lat); |
319 | if ((spd.mem_type == SPD_MEMTYPE_DDR) | |
320 | && (caslat > 5)) { | |
321 | printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat); | |
322 | return 0; | |
323 | ||
324 | } else if (spd.mem_type == SPD_MEMTYPE_DDR2 | |
325 | && (caslat < 2 || caslat > 5)) { | |
326 | printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n", | |
327 | spd.cas_lat); | |
42d1f039 WD |
328 | return 0; |
329 | } | |
d9b94f28 JL |
330 | debug("DDR: caslat SPD bit is %d\n", caslat); |
331 | ||
332 | /* | |
333 | * Calculate the Maximum Data Rate based on the Minimum Cycle time. | |
334 | * The SPD clk_cycle field (tCKmin) is measured in tenths of | |
335 | * nanoseconds and represented as BCD. | |
336 | */ | |
337 | tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle); | |
338 | debug("DDR: tCKmin = %d ps\n", tCKmin_ps); | |
339 | ||
340 | /* | |
341 | * Double-data rate, scaled 1000 to picoseconds, and back down to MHz. | |
342 | */ | |
343 | max_data_rate = 2 * 1000 * 1000 / tCKmin_ps; | |
344 | debug("DDR: Module max data rate = %d Mhz\n", max_data_rate); | |
345 | ||
42d1f039 | 346 | |
d9b94f28 JL |
347 | /* |
348 | * Adjust the CAS Latency to allow for bus speeds that | |
349 | * are slower than the DDR module. | |
350 | */ | |
351 | busfreq = get_bus_freq(0) / 1000000; /* MHz */ | |
9aea9530 | 352 | |
d9b94f28 JL |
353 | effective_data_rate = max_data_rate; |
354 | if (busfreq < 90) { | |
355 | /* DDR rate out-of-range */ | |
356 | puts("DDR: platform frequency is not fit for DDR rate\n"); | |
357 | return 0; | |
358 | ||
359 | } else if (90 <= busfreq && busfreq < 230 && max_data_rate >= 230) { | |
360 | /* | |
361 | * busfreq 90~230 range, treated as DDR 200. | |
362 | */ | |
363 | effective_data_rate = 200; | |
364 | if (spd.clk_cycle3 == 0xa0) /* 10 ns */ | |
9aea9530 | 365 | caslat -= 2; |
d9b94f28 | 366 | else if (spd.clk_cycle2 == 0xa0) |
9aea9530 | 367 | caslat--; |
d9b94f28 JL |
368 | |
369 | } else if (230 <= busfreq && busfreq < 280 && max_data_rate >= 280) { | |
370 | /* | |
371 | * busfreq 230~280 range, treated as DDR 266. | |
372 | */ | |
373 | effective_data_rate = 266; | |
374 | if (spd.clk_cycle3 == 0x75) /* 7.5 ns */ | |
9aea9530 WD |
375 | caslat -= 2; |
376 | else if (spd.clk_cycle2 == 0x75) | |
377 | caslat--; | |
d9b94f28 JL |
378 | |
379 | } else if (280 <= busfreq && busfreq < 350 && max_data_rate >= 350) { | |
380 | /* | |
381 | * busfreq 280~350 range, treated as DDR 333. | |
382 | */ | |
383 | effective_data_rate = 333; | |
384 | if (spd.clk_cycle3 == 0x60) /* 6.0 ns */ | |
9aea9530 WD |
385 | caslat -= 2; |
386 | else if (spd.clk_cycle2 == 0x60) | |
387 | caslat--; | |
d9b94f28 JL |
388 | |
389 | } else if (350 <= busfreq && busfreq < 460 && max_data_rate >= 460) { | |
390 | /* | |
391 | * busfreq 350~460 range, treated as DDR 400. | |
392 | */ | |
393 | effective_data_rate = 400; | |
394 | if (spd.clk_cycle3 == 0x50) /* 5.0 ns */ | |
395 | caslat -= 2; | |
396 | else if (spd.clk_cycle2 == 0x50) | |
397 | caslat--; | |
398 | ||
399 | } else if (460 <= busfreq && busfreq < 560 && max_data_rate >= 560) { | |
400 | /* | |
401 | * busfreq 460~560 range, treated as DDR 533. | |
402 | */ | |
403 | effective_data_rate = 533; | |
404 | if (spd.clk_cycle3 == 0x3D) /* 3.75 ns */ | |
405 | caslat -= 2; | |
406 | else if (spd.clk_cycle2 == 0x3D) | |
407 | caslat--; | |
408 | ||
409 | } else if (560 <= busfreq && busfreq < 700 && max_data_rate >= 700) { | |
410 | /* | |
411 | * busfreq 560~700 range, treated as DDR 667. | |
412 | */ | |
413 | effective_data_rate = 667; | |
414 | if (spd.clk_cycle3 == 0x30) /* 3.0 ns */ | |
415 | caslat -= 2; | |
416 | else if (spd.clk_cycle2 == 0x30) | |
417 | caslat--; | |
418 | ||
419 | } else if (700 <= busfreq) { | |
420 | /* | |
421 | * DDR rate out-of-range | |
422 | */ | |
423 | printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n", | |
424 | busfreq, max_data_rate); | |
42d1f039 WD |
425 | return 0; |
426 | } | |
427 | ||
d9b94f28 | 428 | |
9aea9530 | 429 | /* |
d9b94f28 JL |
430 | * Convert caslat clocks to DDR controller value. |
431 | * Force caslat_ctrl to be DDR Controller field-sized. | |
432 | */ | |
433 | if (spd.mem_type == SPD_MEMTYPE_DDR) { | |
434 | caslat_ctrl = (caslat + 1) & 0x07; | |
435 | } else { | |
436 | caslat_ctrl = (2 * caslat - 1) & 0x0f; | |
437 | } | |
438 | ||
439 | debug("DDR: effective data rate is %d MHz\n", effective_data_rate); | |
440 | debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n", | |
441 | caslat, caslat_ctrl); | |
442 | ||
443 | /* | |
444 | * Timing Config 0. | |
445 | * Avoid writing for DDR I. The new PQ38 DDR controller | |
446 | * dreams up non-zero default values to be backwards compatible. | |
9aea9530 | 447 | */ |
d9b94f28 JL |
448 | if (spd.mem_type == SPD_MEMTYPE_DDR2) { |
449 | unsigned char taxpd_clk = 8; /* By the book. */ | |
450 | unsigned char tmrd_clk = 2; /* By the book. */ | |
451 | unsigned char act_pd_exit = 2; /* Empirical? */ | |
452 | unsigned char pre_pd_exit = 6; /* Empirical? */ | |
453 | ||
454 | ddr->timing_cfg_0 = (0 | |
455 | | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */ | |
456 | | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */ | |
457 | | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */ | |
458 | | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */ | |
459 | ); | |
460 | #if 0 | |
461 | ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */ | |
462 | #endif | |
463 | debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0); | |
464 | ||
465 | } else { | |
466 | #if 0 | |
467 | /* | |
468 | * Force extra cycles with 0xaa bits. | |
469 | * Incidentally supply the dreamt-up backwards compat value! | |
470 | */ | |
471 | ddr->timing_cfg_0 = 0x00110105; /* backwards compat value */ | |
472 | ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */ | |
473 | debug("DDR: HACK timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0); | |
474 | #endif | |
475 | } | |
476 | ||
477 | ||
478 | /* | |
479 | * Some Timing Config 1 values now. | |
480 | * Sneak Extended Refresh Recovery in here too. | |
481 | */ | |
482 | ||
483 | /* | |
484 | * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD, | |
485 | * use conservative value. | |
486 | * For DDR II, they are bytes 36 and 37, in quarter nanos. | |
487 | */ | |
488 | ||
489 | if (spd.mem_type == SPD_MEMTYPE_DDR) { | |
490 | twr_clk = 3; /* Clocks */ | |
491 | twtr_clk = 1; /* Clocks */ | |
492 | } else { | |
493 | twr_clk = picos_to_clk(spd.twr * 250); | |
494 | twtr_clk = picos_to_clk(spd.twtr * 250); | |
495 | } | |
496 | ||
497 | /* | |
498 | * Calculate Trfc, in picos. | |
499 | * DDR I: Byte 42 straight up in ns. | |
500 | * DDR II: Byte 40 and 42 swizzled some, in ns. | |
501 | */ | |
502 | if (spd.mem_type == SPD_MEMTYPE_DDR) { | |
503 | trfc = spd.trfc * 1000; /* up to ps */ | |
504 | } else { | |
505 | unsigned int byte40_table_ps[8] = { | |
506 | 0, | |
507 | 250, | |
508 | 330, | |
509 | 500, | |
510 | 660, | |
511 | 750, | |
512 | 0, | |
513 | 0 | |
514 | }; | |
515 | ||
516 | trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000 | |
517 | + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7]; | |
518 | } | |
519 | trfc_clk = picos_to_clk(trfc); | |
520 | ||
521 | /* | |
522 | * Trcd, Byte 29, from quarter nanos to ps and clocks. | |
523 | */ | |
524 | trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7; | |
525 | ||
526 | /* | |
527 | * Convert trfc_clk to DDR controller fields. DDR I should | |
528 | * fit in the REFREC field (16-19) of TIMING_CFG_1, but the | |
529 | * 8548 controller has an extended REFREC field of three bits. | |
530 | * The controller automatically adds 8 clocks to this value, | |
531 | * so preadjust it down 8 first before splitting it up. | |
532 | */ | |
533 | trfc_low = (trfc_clk - 8) & 0xf; | |
534 | trfc_high = ((trfc_clk - 8) >> 4) & 0x3; | |
535 | ||
536 | /* | |
537 | * Sneak in some Extended Refresh Recovery. | |
538 | */ | |
539 | ddr->ext_refrec = (trfc_high << 16); | |
540 | debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec); | |
541 | ||
9aea9530 | 542 | ddr->timing_cfg_1 = |
d9b94f28 JL |
543 | (0 |
544 | | ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */ | |
545 | | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */ | |
546 | | (trcd_clk << 20) /* ACTTORW */ | |
547 | | (caslat_ctrl << 16) /* CASLAT */ | |
548 | | (trfc_low << 12) /* REFEC */ | |
549 | | ((twr_clk & 0x07) << 8) /* WRRREC */ | |
550 | | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */ | |
551 | | ((twtr_clk & 0x07) << 0) /* WRTORD */ | |
552 | ); | |
97d80fc3 | 553 | |
d9b94f28 | 554 | debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1); |
42d1f039 | 555 | |
9aea9530 WD |
556 | |
557 | /* | |
d9b94f28 JL |
558 | * Timing_Config_2 |
559 | * Was: 0x00000800; | |
9aea9530 WD |
560 | */ |
561 | ||
d9b94f28 JL |
562 | /* |
563 | * Additive Latency | |
564 | * For DDR I, 0. | |
565 | * For DDR II, with ODT enabled, use "a value" less than ACTTORW, | |
566 | * which comes from Trcd, and also note that: | |
567 | * add_lat + caslat must be >= 4 | |
568 | */ | |
569 | add_lat = 0; | |
570 | if (spd.mem_type == SPD_MEMTYPE_DDR2 | |
571 | && (odt_wr_cfg || odt_rd_cfg) | |
572 | && (caslat < 4)) { | |
573 | add_lat = 4 - caslat; | |
574 | if (add_lat > trcd_clk) { | |
575 | add_lat = trcd_clk - 1; | |
576 | } | |
42d1f039 | 577 | } |
42d1f039 | 578 | |
d9b94f28 JL |
579 | /* |
580 | * Write Data Delay | |
581 | * Historically 0x2 == 4/8 clock delay. | |
582 | * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266. | |
583 | */ | |
584 | wr_data_delay = 3; | |
585 | ||
586 | /* | |
587 | * Write Latency | |
588 | * Read to Precharge | |
589 | * Minimum CKE Pulse Width. | |
590 | * Four Activate Window | |
591 | */ | |
592 | if (spd.mem_type == SPD_MEMTYPE_DDR) { | |
593 | /* | |
594 | * This is a lie. It should really be 1, but if it is | |
595 | * set to 1, bits overlap into the old controller's | |
596 | * otherwise unused ACSM field. If we leave it 0, then | |
597 | * the HW will magically treat it as 1 for DDR 1. Oh Yea. | |
598 | */ | |
599 | wr_lat = 0; | |
600 | ||
601 | trtp_clk = 2; /* By the book. */ | |
602 | cke_min_clk = 1; /* By the book. */ | |
603 | four_act = 1; /* By the book. */ | |
604 | ||
605 | } else { | |
606 | wr_lat = caslat - 1; | |
607 | ||
608 | /* Convert SPD value from quarter nanos to picos. */ | |
609 | trtp_clk = picos_to_clk(spd.trtp * 250); | |
610 | ||
611 | cke_min_clk = 3; /* By the book. */ | |
612 | four_act = picos_to_clk(37500); /* By the book. 1k pages? */ | |
613 | } | |
614 | ||
615 | /* | |
616 | * Empirically set ~MCAS-to-preamble override for DDR 2. | |
617 | * Your milage will vary. | |
618 | */ | |
619 | cpo = 0; | |
620 | if (spd.mem_type == SPD_MEMTYPE_DDR2) { | |
621 | if (effective_data_rate == 266 || effective_data_rate == 333) { | |
622 | cpo = 0x7; /* READ_LAT + 5/4 */ | |
623 | } else if (effective_data_rate == 400) { | |
624 | cpo = 0x9; /* READ_LAT + 7/4 */ | |
625 | } else { | |
626 | /* Pure speculation */ | |
627 | cpo = 0xb; | |
628 | } | |
629 | } | |
630 | ||
631 | ddr->timing_cfg_2 = (0 | |
632 | | ((add_lat & 0x7) << 28) /* ADD_LAT */ | |
de1d0a69 | 633 | | ((cpo & 0x1f) << 23) /* CPO */ |
d9b94f28 JL |
634 | | ((wr_lat & 0x7) << 19) /* WR_LAT */ |
635 | | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */ | |
636 | | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */ | |
637 | | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */ | |
638 | | ((four_act & 0x1f) << 0) /* FOUR_ACT */ | |
639 | ); | |
640 | ||
641 | debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2); | |
642 | ||
643 | ||
644 | /* | |
645 | * Determine the Mode Register Set. | |
646 | * | |
647 | * This is nominally part specific, but it appears to be | |
648 | * consistent for all DDR I devices, and for all DDR II devices. | |
649 | * | |
650 | * caslat must be programmed | |
651 | * burst length is always 4 | |
652 | * burst type is sequential | |
653 | * | |
654 | * For DDR I: | |
655 | * operating mode is "normal" | |
656 | * | |
657 | * For DDR II: | |
658 | * other stuff | |
659 | */ | |
660 | ||
661 | mode_caslat = 0; | |
662 | ||
663 | /* | |
664 | * Table lookup from DDR I or II Device Operation Specs. | |
665 | */ | |
666 | if (spd.mem_type == SPD_MEMTYPE_DDR) { | |
667 | if (1 <= caslat && caslat <= 4) { | |
668 | unsigned char mode_caslat_table[4] = { | |
669 | 0x5, /* 1.5 clocks */ | |
670 | 0x2, /* 2.0 clocks */ | |
671 | 0x6, /* 2.5 clocks */ | |
672 | 0x3 /* 3.0 clocks */ | |
673 | }; | |
674 | mode_caslat = mode_caslat_table[caslat - 1]; | |
675 | } else { | |
676 | puts("DDR I: Only CAS Latencies of 1.5, 2.0, " | |
677 | "2.5 and 3.0 clocks are supported.\n"); | |
678 | return 0; | |
679 | } | |
680 | ||
681 | } else { | |
682 | if (2 <= caslat && caslat <= 5) { | |
683 | mode_caslat = caslat; | |
684 | } else { | |
685 | puts("DDR II: Only CAS Latencies of 2.0, 3.0, " | |
686 | "4.0 and 5.0 clocks are supported.\n"); | |
687 | return 0; | |
688 | } | |
689 | } | |
690 | ||
691 | /* | |
692 | * Encoded Burst Lenght of 4. | |
693 | */ | |
694 | burst_len = 2; /* Fiat. */ | |
695 | ||
696 | if (spd.mem_type == SPD_MEMTYPE_DDR) { | |
697 | twr_auto_clk = 0; /* Historical */ | |
698 | } else { | |
699 | /* | |
700 | * Determine tCK max in picos. Grab tWR and convert to picos. | |
701 | * Auto-precharge write recovery is: | |
702 | * WR = roundup(tWR_ns/tCKmax_ns). | |
703 | * | |
704 | * Ponder: Is twr_auto_clk different than twr_clk? | |
705 | */ | |
706 | tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax); | |
707 | twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps; | |
708 | } | |
709 | ||
710 | ||
711 | /* | |
712 | * Mode Reg in bits 16 ~ 31, | |
713 | * Extended Mode Reg 1 in bits 0 ~ 15. | |
714 | */ | |
715 | mode_odt_enable = 0x0; /* Default disabled */ | |
716 | if (odt_wr_cfg || odt_rd_cfg) { | |
717 | /* | |
718 | * Bits 6 and 2 in Extended MRS(1) | |
719 | * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules. | |
720 | * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module. | |
721 | */ | |
722 | mode_odt_enable = 0x40; /* 150 Ohm */ | |
42d1f039 WD |
723 | } |
724 | ||
d9b94f28 JL |
725 | ddr->sdram_mode = |
726 | (0 | |
727 | | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */ | |
728 | | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */ | |
729 | | (twr_auto_clk << 9) /* Write Recovery Autopre */ | |
730 | | (mode_caslat << 4) /* caslat */ | |
731 | | (burst_len << 0) /* Burst length */ | |
732 | ); | |
733 | ||
734 | debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode); | |
735 | ||
736 | ||
737 | /* | |
738 | * Clear EMRS2 and EMRS3. | |
739 | */ | |
740 | ddr->sdram_mode_2 = 0; | |
741 | debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2); | |
742 | ||
743 | ||
9aea9530 | 744 | /* |
d9b94f28 JL |
745 | * Determine Refresh Rate. Ignore self refresh bit on DDR I. |
746 | * Table from SPD Spec, Byte 12, converted to picoseconds and | |
747 | * filled in with "default" normal values. | |
9aea9530 | 748 | */ |
d9b94f28 JL |
749 | { |
750 | unsigned int refresh_clk; | |
751 | unsigned int refresh_time_ns[8] = { | |
752 | 15625000, /* 0 Normal 1.00x */ | |
753 | 3900000, /* 1 Reduced .25x */ | |
754 | 7800000, /* 2 Extended .50x */ | |
755 | 31300000, /* 3 Extended 2.00x */ | |
756 | 62500000, /* 4 Extended 4.00x */ | |
757 | 125000000, /* 5 Extended 8.00x */ | |
758 | 15625000, /* 6 Normal 1.00x filler */ | |
759 | 15625000, /* 7 Normal 1.00x filler */ | |
760 | }; | |
761 | ||
762 | refresh_clk = picos_to_clk(refresh_time_ns[spd.refresh & 0x7]); | |
763 | ||
764 | /* | |
765 | * Set BSTOPRE to 0x100 for page mode | |
766 | * If auto-charge is used, set BSTOPRE = 0 | |
767 | */ | |
768 | ddr->sdram_interval = | |
769 | (0 | |
770 | | (refresh_clk & 0x3fff) << 16 | |
771 | | 0x100 | |
772 | ); | |
773 | debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval); | |
774 | } | |
42d1f039 | 775 | |
9aea9530 WD |
776 | /* |
777 | * Is this an ECC DDR chip? | |
d9b94f28 | 778 | * But don't mess with it if the DDR controller will init mem. |
9aea9530 | 779 | */ |
d9b94f28 | 780 | #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) |
9aea9530 | 781 | if (spd.config == 0x02) { |
42d1f039 WD |
782 | ddr->err_disable = 0x0000000d; |
783 | ddr->err_sbe = 0x00ff0000; | |
784 | } | |
d9b94f28 JL |
785 | debug("DDR: err_disable = 0x%08x\n", ddr->err_disable); |
786 | debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe); | |
42d1f039 | 787 | #endif |
42d1f039 | 788 | |
d9b94f28 | 789 | asm("sync;isync;msync"); |
42d1f039 WD |
790 | udelay(500); |
791 | ||
d9b94f28 JL |
792 | /* |
793 | * SDRAM Cfg 2 | |
794 | */ | |
795 | ||
796 | /* | |
797 | * When ODT is enabled, Chap 9 suggests asserting ODT to | |
798 | * internal IOs only during reads. | |
799 | */ | |
800 | odt_cfg = 0; | |
801 | if (odt_rd_cfg | odt_wr_cfg) { | |
802 | odt_cfg = 0x2; /* ODT to IOs during reads */ | |
803 | } | |
804 | ||
805 | /* | |
806 | * Try to use differential DQS with DDR II. | |
97d80fc3 | 807 | */ |
d9b94f28 JL |
808 | if (spd.mem_type == SPD_MEMTYPE_DDR) { |
809 | dqs_cfg = 0; /* No Differential DQS for DDR I */ | |
810 | } else { | |
811 | dqs_cfg = 0x1; /* Differential DQS for DDR II */ | |
812 | } | |
813 | ||
814 | #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) | |
815 | /* | |
816 | * Use the DDR controller to auto initialize memory. | |
817 | */ | |
818 | d_init = 1; | |
819 | ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE; | |
820 | debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init); | |
821 | #else | |
822 | /* | |
823 | * Memory will be initialized via DMA, or not at all. | |
824 | */ | |
de1d0a69 | 825 | d_init = 0; |
d9b94f28 JL |
826 | #endif |
827 | ||
828 | ddr->sdram_cfg_2 = (0 | |
829 | | (dqs_cfg << 26) /* Differential DQS */ | |
830 | | (odt_cfg << 21) /* ODT */ | |
831 | | (d_init << 4) /* D_INIT auto init DDR */ | |
832 | ); | |
833 | ||
834 | debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2); | |
835 | ||
836 | ||
837 | #ifdef MPC85xx_DDR_SDRAM_CLK_CNTL | |
838 | { | |
839 | unsigned char clk_adjust; | |
840 | ||
841 | /* | |
842 | * Setup the clock control. | |
843 | * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1 | |
844 | * SDRAM_CLK_CNTL[5-7] = Clock Adjust | |
845 | * 0110 3/4 cycle late | |
846 | * 0111 7/8 cycle late | |
847 | */ | |
848 | if (spd.mem_type == SPD_MEMTYPE_DDR) { | |
849 | clk_adjust = 0x6; | |
850 | } else { | |
851 | clk_adjust = 0x7; | |
852 | } | |
853 | ||
854 | ddr->sdram_clk_cntl = (0 | |
855 | | 0x80000000 | |
856 | | (clk_adjust << 23) | |
857 | ); | |
858 | debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl); | |
859 | } | |
97d80fc3 WD |
860 | #endif |
861 | ||
9aea9530 | 862 | /* |
d9b94f28 JL |
863 | * Figure out the settings for the sdram_cfg register. |
864 | * Build up the entire register in 'sdram_cfg' before writing | |
865 | * since the write into the register will actually enable the | |
866 | * memory controller; all settings must be done before enabling. | |
97d80fc3 WD |
867 | * |
868 | * sdram_cfg[0] = 1 (ddr sdram logic enable) | |
869 | * sdram_cfg[1] = 1 (self-refresh-enable) | |
d9b94f28 JL |
870 | * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM) |
871 | * 010 DDR 1 SDRAM | |
872 | * 011 DDR 2 SDRAM | |
97d80fc3 | 873 | */ |
d9b94f28 JL |
874 | sdram_type = (spd.mem_type == SPD_MEMTYPE_DDR) ? 2 : 3; |
875 | sdram_cfg = (0 | |
876 | | (1 << 31) /* Enable */ | |
877 | | (1 << 30) /* Self refresh */ | |
878 | | (sdram_type << 24) /* SDRAM type */ | |
879 | ); | |
97d80fc3 | 880 | |
9aea9530 WD |
881 | /* |
882 | * sdram_cfg[3] = RD_EN - registered DIMM enable | |
97d80fc3 WD |
883 | * A value of 0x26 indicates micron registered DIMMS (micron.com) |
884 | */ | |
d9b94f28 JL |
885 | if (spd.mem_type == SPD_MEMTYPE_DDR && spd.mod_attr == 0x26) { |
886 | sdram_cfg |= 0x10000000; /* RD_EN */ | |
97d80fc3 WD |
887 | } |
888 | ||
42d1f039 | 889 | #if defined(CONFIG_DDR_ECC) |
9aea9530 WD |
890 | /* |
891 | * If the user wanted ECC (enabled via sdram_cfg[2]) | |
892 | */ | |
97d80fc3 | 893 | if (spd.config == 0x02) { |
d9b94f28 | 894 | sdram_cfg |= 0x20000000; /* ECC_EN */ |
97d80fc3 WD |
895 | } |
896 | #endif | |
897 | ||
97d80fc3 WD |
898 | /* |
899 | * REV1 uses 1T timing. | |
900 | * REV2 may use 1T or 2T as configured by the user. | |
901 | */ | |
902 | { | |
903 | uint pvr = get_pvr(); | |
904 | ||
905 | if (pvr != PVR_85xx_REV1) { | |
906 | #if defined(CONFIG_DDR_2T_TIMING) | |
907 | /* | |
908 | * Enable 2T timing by setting sdram_cfg[16]. | |
909 | */ | |
d9b94f28 | 910 | sdram_cfg |= 0x8000; /* 2T_EN */ |
42d1f039 | 911 | #endif |
97d80fc3 WD |
912 | } |
913 | } | |
914 | ||
d9b94f28 JL |
915 | /* |
916 | * 200 painful micro-seconds must elapse between | |
917 | * the DDR clock setup and the DDR config enable. | |
918 | */ | |
919 | udelay(200); | |
920 | ||
921 | /* | |
922 | * Go! | |
923 | */ | |
924 | ddr->sdram_cfg = sdram_cfg; | |
97d80fc3 | 925 | |
42d1f039 | 926 | asm("sync;isync;msync"); |
42d1f039 WD |
927 | udelay(500); |
928 | ||
d9b94f28 JL |
929 | debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg); |
930 | ||
931 | ||
932 | #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) | |
933 | /* | |
934 | * Poll until memory is initialized. | |
935 | * 512 Meg at 400 might hit this 200 times or so. | |
936 | */ | |
937 | while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) { | |
938 | udelay(1000); | |
939 | } | |
940 | #endif | |
941 | ||
942 | ||
943 | /* | |
944 | * Figure out memory size in Megabytes. | |
945 | */ | |
946 | memsize = n_ranks * rank_density / 0x100000; | |
947 | ||
948 | /* | |
949 | * Establish Local Access Window and TLB mappings for DDR memory. | |
950 | */ | |
951 | memsize = setup_laws_and_tlbs(memsize); | |
952 | if (memsize == 0) { | |
953 | return 0; | |
954 | } | |
42d1f039 | 955 | |
9aea9530 | 956 | return memsize * 1024 * 1024; |
42d1f039 | 957 | } |
d9b94f28 JL |
958 | |
959 | ||
960 | /* | |
961 | * Setup Local Access Window and TLB1 mappings for the requested | |
962 | * amount of memory. Returns the amount of memory actually mapped | |
963 | * (usually the original request size), or 0 on error. | |
964 | */ | |
965 | ||
966 | static unsigned int | |
967 | setup_laws_and_tlbs(unsigned int memsize) | |
968 | { | |
969 | volatile immap_t *immap = (immap_t *)CFG_IMMR; | |
970 | volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm; | |
971 | unsigned int tlb_size; | |
972 | unsigned int law_size; | |
973 | unsigned int ram_tlb_index; | |
974 | unsigned int ram_tlb_address; | |
975 | ||
976 | /* | |
977 | * Determine size of each TLB1 entry. | |
978 | */ | |
979 | switch (memsize) { | |
980 | case 16: | |
981 | case 32: | |
982 | tlb_size = BOOKE_PAGESZ_16M; | |
983 | break; | |
984 | case 64: | |
985 | case 128: | |
986 | tlb_size = BOOKE_PAGESZ_64M; | |
987 | break; | |
988 | case 256: | |
989 | case 512: | |
990 | case 1024: | |
991 | case 2048: | |
992 | tlb_size = BOOKE_PAGESZ_256M; | |
993 | break; | |
994 | default: | |
995 | puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G are supported.\n"); | |
996 | ||
997 | /* | |
998 | * The memory was not able to be mapped. | |
999 | */ | |
1000 | return 0; | |
1001 | break; | |
1002 | } | |
1003 | ||
1004 | /* | |
1005 | * Configure DDR TLB1 entries. | |
1006 | * Starting at TLB1 8, use no more than 8 TLB1 entries. | |
1007 | */ | |
1008 | ram_tlb_index = 8; | |
1009 | ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE; | |
1010 | while (ram_tlb_address < (memsize * 1024 * 1024) | |
1011 | && ram_tlb_index < 16) { | |
1012 | mtspr(MAS0, TLB1_MAS0(1, ram_tlb_index, 0)); | |
1013 | mtspr(MAS1, TLB1_MAS1(1, 1, 0, 0, tlb_size)); | |
1014 | mtspr(MAS2, TLB1_MAS2(E500_TLB_EPN(ram_tlb_address), | |
1015 | 0, 0, 0, 0, 0, 0, 0, 0)); | |
1016 | mtspr(MAS3, TLB1_MAS3(E500_TLB_RPN(ram_tlb_address), | |
1017 | 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)); | |
1018 | asm volatile("isync;msync;tlbwe;isync"); | |
1019 | ||
1020 | debug("DDR: MAS0=0x%08x\n", TLB1_MAS0(1, ram_tlb_index, 0)); | |
1021 | debug("DDR: MAS1=0x%08x\n", TLB1_MAS1(1, 1, 0, 0, tlb_size)); | |
1022 | debug("DDR: MAS2=0x%08x\n", | |
1023 | TLB1_MAS2(E500_TLB_EPN(ram_tlb_address), | |
1024 | 0, 0, 0, 0, 0, 0, 0, 0)); | |
1025 | debug("DDR: MAS3=0x%08x\n", | |
1026 | TLB1_MAS3(E500_TLB_RPN(ram_tlb_address), | |
1027 | 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)); | |
1028 | ||
1029 | ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2)); | |
1030 | ram_tlb_index++; | |
1031 | } | |
1032 | ||
1033 | ||
1034 | /* | |
1035 | * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord. | |
1036 | */ | |
1037 | law_size = 19 + __ilog2(memsize); | |
1038 | ||
1039 | /* | |
1040 | * Set up LAWBAR for all of DDR. | |
1041 | */ | |
1042 | ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff); | |
1043 | ecm->lawar1 = (LAWAR_EN | |
1044 | | LAWAR_TRGT_IF_DDR | |
1045 | | (LAWAR_SIZE & law_size)); | |
1046 | debug("DDR: LAWBAR1=0x%08x\n", ecm->lawbar1); | |
1047 | debug("DDR: LARAR1=0x%08x\n", ecm->lawar1); | |
1048 | ||
1049 | /* | |
1050 | * Confirm that the requested amount of memory was mapped. | |
1051 | */ | |
1052 | return memsize; | |
1053 | } | |
1054 | ||
42d1f039 | 1055 | #endif /* CONFIG_SPD_EEPROM */ |
9aea9530 WD |
1056 | |
1057 | ||
d9b94f28 JL |
1058 | #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) |
1059 | ||
9aea9530 WD |
1060 | /* |
1061 | * Initialize all of memory for ECC, then enable errors. | |
1062 | */ | |
d9b94f28 | 1063 | |
9aea9530 WD |
1064 | void |
1065 | ddr_enable_ecc(unsigned int dram_size) | |
1066 | { | |
1067 | uint *p = 0; | |
1068 | uint i = 0; | |
1069 | volatile immap_t *immap = (immap_t *)CFG_IMMR; | |
1070 | volatile ccsr_ddr_t *ddr= &immap->im_ddr; | |
1071 | ||
1072 | dma_init(); | |
1073 | ||
1074 | for (*p = 0; p < (uint *)(8 * 1024); p++) { | |
1075 | if (((unsigned int)p & 0x1f) == 0) { | |
1076 | ppcDcbz((unsigned long) p); | |
1077 | } | |
d9b94f28 | 1078 | *p = (unsigned int)CONFIG_MEM_INIT_VALUE; |
9aea9530 WD |
1079 | if (((unsigned int)p & 0x1c) == 0x1c) { |
1080 | ppcDcbf((unsigned long) p); | |
1081 | } | |
1082 | } | |
1083 | ||
1084 | /* 8K */ | |
1085 | dma_xfer((uint *)0x2000, 0x2000, (uint *)0); | |
1086 | /* 16K */ | |
1087 | dma_xfer((uint *)0x4000, 0x4000, (uint *)0); | |
1088 | /* 32K */ | |
1089 | dma_xfer((uint *)0x8000, 0x8000, (uint *)0); | |
1090 | /* 64K */ | |
1091 | dma_xfer((uint *)0x10000, 0x10000, (uint *)0); | |
1092 | /* 128k */ | |
1093 | dma_xfer((uint *)0x20000, 0x20000, (uint *)0); | |
1094 | /* 256k */ | |
1095 | dma_xfer((uint *)0x40000, 0x40000, (uint *)0); | |
1096 | /* 512k */ | |
1097 | dma_xfer((uint *)0x80000, 0x80000, (uint *)0); | |
1098 | /* 1M */ | |
1099 | dma_xfer((uint *)0x100000, 0x100000, (uint *)0); | |
1100 | /* 2M */ | |
1101 | dma_xfer((uint *)0x200000, 0x200000, (uint *)0); | |
1102 | /* 4M */ | |
1103 | dma_xfer((uint *)0x400000, 0x400000, (uint *)0); | |
1104 | ||
1105 | for (i = 1; i < dram_size / 0x800000; i++) { | |
1106 | dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0); | |
1107 | } | |
1108 | ||
1109 | /* | |
1110 | * Enable errors for ECC. | |
1111 | */ | |
d9b94f28 | 1112 | debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable); |
9aea9530 WD |
1113 | ddr->err_disable = 0x00000000; |
1114 | asm("sync;isync;msync"); | |
d9b94f28 | 1115 | debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable); |
9aea9530 | 1116 | } |
d9b94f28 JL |
1117 | |
1118 | #endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */ |