]>
Commit | Line | Data |
---|---|---|
a6826fbc WD |
1 | /* |
2 | * This implementation is based on code from uClibc-0.9.30.3 but was | |
3 | * modified and extended for use within U-Boot. | |
4 | * | |
5 | * Copyright (C) 2010 Wolfgang Denk <[email protected]> | |
6 | * | |
7 | * Original license header: | |
8 | * | |
9 | * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc. | |
10 | * This file is part of the GNU C Library. | |
11 | * Contributed by Ulrich Drepper <[email protected]>, 1993. | |
12 | * | |
13 | * The GNU C Library is free software; you can redistribute it and/or | |
14 | * modify it under the terms of the GNU Lesser General Public | |
15 | * License as published by the Free Software Foundation; either | |
16 | * version 2.1 of the License, or (at your option) any later version. | |
17 | * | |
18 | * The GNU C Library is distributed in the hope that it will be useful, | |
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
21 | * Lesser General Public License for more details. | |
22 | * | |
23 | * You should have received a copy of the GNU Lesser General Public | |
24 | * License along with the GNU C Library; if not, write to the Free | |
25 | * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA | |
26 | * 02111-1307 USA. | |
27 | */ | |
28 | ||
29 | #include <errno.h> | |
30 | #include <malloc.h> | |
31 | ||
32 | #ifdef USE_HOSTCC /* HOST build */ | |
33 | # include <string.h> | |
34 | # include <assert.h> | |
4d91a6ec | 35 | # include <ctype.h> |
a6826fbc WD |
36 | |
37 | # ifndef debug | |
38 | # ifdef DEBUG | |
39 | # define debug(fmt,args...) printf(fmt ,##args) | |
40 | # else | |
41 | # define debug(fmt,args...) | |
42 | # endif | |
43 | # endif | |
44 | #else /* U-Boot build */ | |
45 | # include <common.h> | |
46 | # include <linux/string.h> | |
4d91a6ec | 47 | # include <linux/ctype.h> |
a6826fbc WD |
48 | #endif |
49 | ||
fc5fc76b AB |
50 | #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */ |
51 | #define CONFIG_ENV_MIN_ENTRIES 64 | |
52 | #endif | |
ea882baf WD |
53 | #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */ |
54 | #define CONFIG_ENV_MAX_ENTRIES 512 | |
55 | #endif | |
56 | ||
a6826fbc WD |
57 | #include "search.h" |
58 | ||
59 | /* | |
60 | * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986 | |
071bc923 | 61 | * [Knuth] The Art of Computer Programming, part 3 (6.4) |
a6826fbc WD |
62 | */ |
63 | ||
a6826fbc WD |
64 | /* |
65 | * The reentrant version has no static variables to maintain the state. | |
66 | * Instead the interface of all functions is extended to take an argument | |
67 | * which describes the current status. | |
68 | */ | |
69 | typedef struct _ENTRY { | |
c81c1222 | 70 | int used; |
a6826fbc WD |
71 | ENTRY entry; |
72 | } _ENTRY; | |
73 | ||
74 | ||
75 | /* | |
76 | * hcreate() | |
77 | */ | |
78 | ||
79 | /* | |
80 | * For the used double hash method the table size has to be a prime. To | |
81 | * correct the user given table size we need a prime test. This trivial | |
82 | * algorithm is adequate because | |
83 | * a) the code is (most probably) called a few times per program run and | |
84 | * b) the number is small because the table must fit in the core | |
85 | * */ | |
86 | static int isprime(unsigned int number) | |
87 | { | |
88 | /* no even number will be passed */ | |
89 | unsigned int div = 3; | |
90 | ||
91 | while (div * div < number && number % div != 0) | |
92 | div += 2; | |
93 | ||
94 | return number % div != 0; | |
95 | } | |
96 | ||
a6826fbc WD |
97 | /* |
98 | * Before using the hash table we must allocate memory for it. | |
99 | * Test for an existing table are done. We allocate one element | |
100 | * more as the found prime number says. This is done for more effective | |
101 | * indexing as explained in the comment for the hsearch function. | |
102 | * The contents of the table is zeroed, especially the field used | |
103 | * becomes zero. | |
104 | */ | |
2eb1573f | 105 | |
a6826fbc WD |
106 | int hcreate_r(size_t nel, struct hsearch_data *htab) |
107 | { | |
108 | /* Test for correct arguments. */ | |
109 | if (htab == NULL) { | |
110 | __set_errno(EINVAL); | |
111 | return 0; | |
112 | } | |
113 | ||
114 | /* There is still another table active. Return with error. */ | |
115 | if (htab->table != NULL) | |
116 | return 0; | |
117 | ||
118 | /* Change nel to the first prime number not smaller as nel. */ | |
119 | nel |= 1; /* make odd */ | |
120 | while (!isprime(nel)) | |
121 | nel += 2; | |
122 | ||
123 | htab->size = nel; | |
124 | htab->filled = 0; | |
125 | ||
126 | /* allocate memory and zero out */ | |
127 | htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY)); | |
128 | if (htab->table == NULL) | |
129 | return 0; | |
130 | ||
131 | /* everything went alright */ | |
132 | return 1; | |
133 | } | |
134 | ||
135 | ||
136 | /* | |
137 | * hdestroy() | |
138 | */ | |
a6826fbc WD |
139 | |
140 | /* | |
141 | * After using the hash table it has to be destroyed. The used memory can | |
142 | * be freed and the local static variable can be marked as not used. | |
143 | */ | |
2eb1573f | 144 | |
a6826fbc WD |
145 | void hdestroy_r(struct hsearch_data *htab) |
146 | { | |
147 | int i; | |
148 | ||
149 | /* Test for correct arguments. */ | |
150 | if (htab == NULL) { | |
151 | __set_errno(EINVAL); | |
152 | return; | |
153 | } | |
154 | ||
155 | /* free used memory */ | |
156 | for (i = 1; i <= htab->size; ++i) { | |
c81c1222 | 157 | if (htab->table[i].used > 0) { |
a6826fbc WD |
158 | ENTRY *ep = &htab->table[i].entry; |
159 | ||
84b5e802 | 160 | free((void *)ep->key); |
a6826fbc WD |
161 | free(ep->data); |
162 | } | |
163 | } | |
164 | free(htab->table); | |
165 | ||
166 | /* the sign for an existing table is an value != NULL in htable */ | |
167 | htab->table = NULL; | |
168 | } | |
169 | ||
170 | /* | |
171 | * hsearch() | |
172 | */ | |
173 | ||
174 | /* | |
175 | * This is the search function. It uses double hashing with open addressing. | |
176 | * The argument item.key has to be a pointer to an zero terminated, most | |
177 | * probably strings of chars. The function for generating a number of the | |
178 | * strings is simple but fast. It can be replaced by a more complex function | |
179 | * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown. | |
180 | * | |
181 | * We use an trick to speed up the lookup. The table is created by hcreate | |
182 | * with one more element available. This enables us to use the index zero | |
183 | * special. This index will never be used because we store the first hash | |
184 | * index in the field used where zero means not used. Every other value | |
185 | * means used. The used field can be used as a first fast comparison for | |
186 | * equality of the stored and the parameter value. This helps to prevent | |
187 | * unnecessary expensive calls of strcmp. | |
188 | * | |
189 | * This implementation differs from the standard library version of | |
190 | * this function in a number of ways: | |
191 | * | |
192 | * - While the standard version does not make any assumptions about | |
193 | * the type of the stored data objects at all, this implementation | |
194 | * works with NUL terminated strings only. | |
195 | * - Instead of storing just pointers to the original objects, we | |
196 | * create local copies so the caller does not need to care about the | |
197 | * data any more. | |
198 | * - The standard implementation does not provide a way to update an | |
199 | * existing entry. This version will create a new entry or update an | |
200 | * existing one when both "action == ENTER" and "item.data != NULL". | |
201 | * - Instead of returning 1 on success, we return the index into the | |
202 | * internal hash table, which is also guaranteed to be positive. | |
203 | * This allows us direct access to the found hash table slot for | |
204 | * example for functions like hdelete(). | |
205 | */ | |
206 | ||
a000b795 KP |
207 | /* |
208 | * hstrstr_r - return index to entry whose key and/or data contains match | |
209 | */ | |
210 | int hstrstr_r(const char *match, int last_idx, ENTRY ** retval, | |
211 | struct hsearch_data *htab) | |
212 | { | |
213 | unsigned int idx; | |
214 | ||
215 | for (idx = last_idx + 1; idx < htab->size; ++idx) { | |
216 | if (htab->table[idx].used <= 0) | |
217 | continue; | |
218 | if (strstr(htab->table[idx].entry.key, match) || | |
219 | strstr(htab->table[idx].entry.data, match)) { | |
220 | *retval = &htab->table[idx].entry; | |
221 | return idx; | |
222 | } | |
223 | } | |
224 | ||
225 | __set_errno(ESRCH); | |
226 | *retval = NULL; | |
227 | return 0; | |
228 | } | |
229 | ||
560d424b MF |
230 | int hmatch_r(const char *match, int last_idx, ENTRY ** retval, |
231 | struct hsearch_data *htab) | |
232 | { | |
233 | unsigned int idx; | |
234 | size_t key_len = strlen(match); | |
235 | ||
236 | for (idx = last_idx + 1; idx < htab->size; ++idx) { | |
af4d9074 | 237 | if (htab->table[idx].used <= 0) |
560d424b MF |
238 | continue; |
239 | if (!strncmp(match, htab->table[idx].entry.key, key_len)) { | |
240 | *retval = &htab->table[idx].entry; | |
241 | return idx; | |
242 | } | |
243 | } | |
244 | ||
245 | __set_errno(ESRCH); | |
246 | *retval = NULL; | |
247 | return 0; | |
248 | } | |
249 | ||
a6826fbc WD |
250 | int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval, |
251 | struct hsearch_data *htab) | |
252 | { | |
253 | unsigned int hval; | |
254 | unsigned int count; | |
255 | unsigned int len = strlen(item.key); | |
256 | unsigned int idx; | |
c81c1222 | 257 | unsigned int first_deleted = 0; |
a6826fbc WD |
258 | |
259 | /* Compute an value for the given string. Perhaps use a better method. */ | |
260 | hval = len; | |
261 | count = len; | |
262 | while (count-- > 0) { | |
263 | hval <<= 4; | |
264 | hval += item.key[count]; | |
265 | } | |
266 | ||
267 | /* | |
268 | * First hash function: | |
269 | * simply take the modul but prevent zero. | |
270 | */ | |
271 | hval %= htab->size; | |
272 | if (hval == 0) | |
273 | ++hval; | |
274 | ||
275 | /* The first index tried. */ | |
276 | idx = hval; | |
277 | ||
278 | if (htab->table[idx].used) { | |
279 | /* | |
071bc923 | 280 | * Further action might be required according to the |
a6826fbc WD |
281 | * action value. |
282 | */ | |
283 | unsigned hval2; | |
284 | ||
c81c1222 PB |
285 | if (htab->table[idx].used == -1 |
286 | && !first_deleted) | |
287 | first_deleted = idx; | |
288 | ||
a6826fbc WD |
289 | if (htab->table[idx].used == hval |
290 | && strcmp(item.key, htab->table[idx].entry.key) == 0) { | |
291 | /* Overwrite existing value? */ | |
292 | if ((action == ENTER) && (item.data != NULL)) { | |
293 | free(htab->table[idx].entry.data); | |
294 | htab->table[idx].entry.data = | |
295 | strdup(item.data); | |
296 | if (!htab->table[idx].entry.data) { | |
297 | __set_errno(ENOMEM); | |
298 | *retval = NULL; | |
299 | return 0; | |
300 | } | |
301 | } | |
302 | /* return found entry */ | |
303 | *retval = &htab->table[idx].entry; | |
304 | return idx; | |
305 | } | |
306 | ||
307 | /* | |
308 | * Second hash function: | |
309 | * as suggested in [Knuth] | |
310 | */ | |
311 | hval2 = 1 + hval % (htab->size - 2); | |
312 | ||
313 | do { | |
314 | /* | |
071bc923 WD |
315 | * Because SIZE is prime this guarantees to |
316 | * step through all available indices. | |
a6826fbc WD |
317 | */ |
318 | if (idx <= hval2) | |
319 | idx = htab->size + idx - hval2; | |
320 | else | |
321 | idx -= hval2; | |
322 | ||
323 | /* | |
324 | * If we visited all entries leave the loop | |
325 | * unsuccessfully. | |
326 | */ | |
327 | if (idx == hval) | |
328 | break; | |
329 | ||
330 | /* If entry is found use it. */ | |
331 | if ((htab->table[idx].used == hval) | |
332 | && strcmp(item.key, htab->table[idx].entry.key) == 0) { | |
333 | /* Overwrite existing value? */ | |
334 | if ((action == ENTER) && (item.data != NULL)) { | |
335 | free(htab->table[idx].entry.data); | |
336 | htab->table[idx].entry.data = | |
337 | strdup(item.data); | |
338 | if (!htab->table[idx].entry.data) { | |
339 | __set_errno(ENOMEM); | |
340 | *retval = NULL; | |
341 | return 0; | |
342 | } | |
343 | } | |
344 | /* return found entry */ | |
345 | *retval = &htab->table[idx].entry; | |
346 | return idx; | |
347 | } | |
348 | } | |
349 | while (htab->table[idx].used); | |
350 | } | |
351 | ||
352 | /* An empty bucket has been found. */ | |
353 | if (action == ENTER) { | |
354 | /* | |
071bc923 WD |
355 | * If table is full and another entry should be |
356 | * entered return with error. | |
a6826fbc WD |
357 | */ |
358 | if (htab->filled == htab->size) { | |
359 | __set_errno(ENOMEM); | |
360 | *retval = NULL; | |
361 | return 0; | |
362 | } | |
363 | ||
364 | /* | |
365 | * Create new entry; | |
366 | * create copies of item.key and item.data | |
367 | */ | |
c81c1222 PB |
368 | if (first_deleted) |
369 | idx = first_deleted; | |
370 | ||
a6826fbc WD |
371 | htab->table[idx].used = hval; |
372 | htab->table[idx].entry.key = strdup(item.key); | |
373 | htab->table[idx].entry.data = strdup(item.data); | |
374 | if (!htab->table[idx].entry.key || | |
375 | !htab->table[idx].entry.data) { | |
376 | __set_errno(ENOMEM); | |
377 | *retval = NULL; | |
378 | return 0; | |
379 | } | |
380 | ||
381 | ++htab->filled; | |
382 | ||
383 | /* return new entry */ | |
384 | *retval = &htab->table[idx].entry; | |
385 | return 1; | |
386 | } | |
387 | ||
388 | __set_errno(ESRCH); | |
389 | *retval = NULL; | |
390 | return 0; | |
391 | } | |
392 | ||
393 | ||
394 | /* | |
395 | * hdelete() | |
396 | */ | |
397 | ||
398 | /* | |
399 | * The standard implementation of hsearch(3) does not provide any way | |
400 | * to delete any entries from the hash table. We extend the code to | |
401 | * do that. | |
402 | */ | |
403 | ||
a6826fbc WD |
404 | int hdelete_r(const char *key, struct hsearch_data *htab) |
405 | { | |
406 | ENTRY e, *ep; | |
407 | int idx; | |
408 | ||
409 | debug("hdelete: DELETE key \"%s\"\n", key); | |
410 | ||
411 | e.key = (char *)key; | |
412 | ||
413 | if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) { | |
414 | __set_errno(ESRCH); | |
415 | return 0; /* not found */ | |
416 | } | |
417 | ||
418 | /* free used ENTRY */ | |
419 | debug("hdelete: DELETING key \"%s\"\n", key); | |
420 | ||
84b5e802 | 421 | free((void *)ep->key); |
a6826fbc | 422 | free(ep->data); |
c81c1222 | 423 | htab->table[idx].used = -1; |
a6826fbc WD |
424 | |
425 | --htab->filled; | |
426 | ||
427 | return 1; | |
428 | } | |
429 | ||
430 | /* | |
431 | * hexport() | |
432 | */ | |
433 | ||
434 | /* | |
435 | * Export the data stored in the hash table in linearized form. | |
436 | * | |
437 | * Entries are exported as "name=value" strings, separated by an | |
438 | * arbitrary (non-NUL, of course) separator character. This allows to | |
439 | * use this function both when formatting the U-Boot environment for | |
440 | * external storage (using '\0' as separator), but also when using it | |
441 | * for the "printenv" command to print all variables, simply by using | |
442 | * as '\n" as separator. This can also be used for new features like | |
443 | * exporting the environment data as text file, including the option | |
444 | * for later re-import. | |
445 | * | |
446 | * The entries in the result list will be sorted by ascending key | |
447 | * values. | |
448 | * | |
449 | * If the separator character is different from NUL, then any | |
450 | * separator characters and backslash characters in the values will | |
451 | * be escaped by a preceeding backslash in output. This is needed for | |
452 | * example to enable multi-line values, especially when the output | |
453 | * shall later be parsed (for example, for re-import). | |
454 | * | |
455 | * There are several options how the result buffer is handled: | |
456 | * | |
457 | * *resp size | |
458 | * ----------- | |
459 | * NULL 0 A string of sufficient length will be allocated. | |
460 | * NULL >0 A string of the size given will be | |
461 | * allocated. An error will be returned if the size is | |
462 | * not sufficient. Any unused bytes in the string will | |
463 | * be '\0'-padded. | |
464 | * !NULL 0 The user-supplied buffer will be used. No length | |
465 | * checking will be performed, i. e. it is assumed that | |
466 | * the buffer size will always be big enough. DANGEROUS. | |
467 | * !NULL >0 The user-supplied buffer will be used. An error will | |
468 | * be returned if the size is not sufficient. Any unused | |
469 | * bytes in the string will be '\0'-padded. | |
470 | */ | |
471 | ||
a6826fbc WD |
472 | static int cmpkey(const void *p1, const void *p2) |
473 | { | |
474 | ENTRY *e1 = *(ENTRY **) p1; | |
475 | ENTRY *e2 = *(ENTRY **) p2; | |
476 | ||
477 | return (strcmp(e1->key, e2->key)); | |
478 | } | |
479 | ||
480 | ssize_t hexport_r(struct hsearch_data *htab, const char sep, | |
37f2fe74 WD |
481 | char **resp, size_t size, |
482 | int argc, char * const argv[]) | |
a6826fbc WD |
483 | { |
484 | ENTRY *list[htab->size]; | |
485 | char *res, *p; | |
486 | size_t totlen; | |
487 | int i, n; | |
488 | ||
489 | /* Test for correct arguments. */ | |
490 | if ((resp == NULL) || (htab == NULL)) { | |
491 | __set_errno(EINVAL); | |
492 | return (-1); | |
493 | } | |
494 | ||
ff856286 SG |
495 | debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, " |
496 | "size = %zu\n", htab, htab->size, htab->filled, size); | |
a6826fbc WD |
497 | /* |
498 | * Pass 1: | |
499 | * search used entries, | |
500 | * save addresses and compute total length | |
501 | */ | |
502 | for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) { | |
503 | ||
c81c1222 | 504 | if (htab->table[i].used > 0) { |
a6826fbc | 505 | ENTRY *ep = &htab->table[i].entry; |
37f2fe74 WD |
506 | int arg, found = 0; |
507 | ||
508 | for (arg = 0; arg < argc; ++arg) { | |
509 | if (strcmp(argv[arg], ep->key) == 0) { | |
510 | found = 1; | |
511 | break; | |
512 | } | |
513 | } | |
514 | if ((argc > 0) && (found == 0)) | |
515 | continue; | |
a6826fbc WD |
516 | |
517 | list[n++] = ep; | |
518 | ||
519 | totlen += strlen(ep->key) + 2; | |
520 | ||
521 | if (sep == '\0') { | |
522 | totlen += strlen(ep->data); | |
523 | } else { /* check if escapes are needed */ | |
524 | char *s = ep->data; | |
525 | ||
526 | while (*s) { | |
527 | ++totlen; | |
528 | /* add room for needed escape chars */ | |
529 | if ((*s == sep) || (*s == '\\')) | |
530 | ++totlen; | |
531 | ++s; | |
532 | } | |
533 | } | |
534 | totlen += 2; /* for '=' and 'sep' char */ | |
535 | } | |
536 | } | |
537 | ||
538 | #ifdef DEBUG | |
539 | /* Pass 1a: print unsorted list */ | |
540 | printf("Unsorted: n=%d\n", n); | |
541 | for (i = 0; i < n; ++i) { | |
542 | printf("\t%3d: %p ==> %-10s => %s\n", | |
543 | i, list[i], list[i]->key, list[i]->data); | |
544 | } | |
545 | #endif | |
546 | ||
547 | /* Sort list by keys */ | |
548 | qsort(list, n, sizeof(ENTRY *), cmpkey); | |
549 | ||
550 | /* Check if the user supplied buffer size is sufficient */ | |
551 | if (size) { | |
552 | if (size < totlen + 1) { /* provided buffer too small */ | |
ff856286 SG |
553 | printf("Env export buffer too small: %zu, " |
554 | "but need %zu\n", size, totlen + 1); | |
a6826fbc WD |
555 | __set_errno(ENOMEM); |
556 | return (-1); | |
557 | } | |
558 | } else { | |
559 | size = totlen + 1; | |
560 | } | |
561 | ||
562 | /* Check if the user provided a buffer */ | |
563 | if (*resp) { | |
564 | /* yes; clear it */ | |
565 | res = *resp; | |
566 | memset(res, '\0', size); | |
567 | } else { | |
568 | /* no, allocate and clear one */ | |
569 | *resp = res = calloc(1, size); | |
570 | if (res == NULL) { | |
571 | __set_errno(ENOMEM); | |
572 | return (-1); | |
573 | } | |
574 | } | |
575 | /* | |
576 | * Pass 2: | |
577 | * export sorted list of result data | |
578 | */ | |
579 | for (i = 0, p = res; i < n; ++i) { | |
84b5e802 | 580 | const char *s; |
a6826fbc WD |
581 | |
582 | s = list[i]->key; | |
583 | while (*s) | |
584 | *p++ = *s++; | |
585 | *p++ = '='; | |
586 | ||
587 | s = list[i]->data; | |
588 | ||
589 | while (*s) { | |
590 | if ((*s == sep) || (*s == '\\')) | |
591 | *p++ = '\\'; /* escape */ | |
592 | *p++ = *s++; | |
593 | } | |
594 | *p++ = sep; | |
595 | } | |
596 | *p = '\0'; /* terminate result */ | |
597 | ||
598 | return size; | |
599 | } | |
600 | ||
601 | ||
602 | /* | |
603 | * himport() | |
604 | */ | |
605 | ||
606 | /* | |
607 | * Import linearized data into hash table. | |
608 | * | |
609 | * This is the inverse function to hexport(): it takes a linear list | |
610 | * of "name=value" pairs and creates hash table entries from it. | |
611 | * | |
612 | * Entries without "value", i. e. consisting of only "name" or | |
613 | * "name=", will cause this entry to be deleted from the hash table. | |
614 | * | |
615 | * The "flag" argument can be used to control the behaviour: when the | |
616 | * H_NOCLEAR bit is set, then an existing hash table will kept, i. e. | |
617 | * new data will be added to an existing hash table; otherwise, old | |
618 | * data will be discarded and a new hash table will be created. | |
619 | * | |
620 | * The separator character for the "name=value" pairs can be selected, | |
621 | * so we both support importing from externally stored environment | |
622 | * data (separated by NUL characters) and from plain text files | |
623 | * (entries separated by newline characters). | |
624 | * | |
625 | * To allow for nicely formatted text input, leading white space | |
626 | * (sequences of SPACE and TAB chars) is ignored, and entries starting | |
627 | * (after removal of any leading white space) with a '#' character are | |
628 | * considered comments and ignored. | |
629 | * | |
630 | * [NOTE: this means that a variable name cannot start with a '#' | |
631 | * character.] | |
632 | * | |
633 | * When using a non-NUL separator character, backslash is used as | |
634 | * escape character in the value part, allowing for example for | |
635 | * multi-line values. | |
636 | * | |
637 | * In theory, arbitrary separator characters can be used, but only | |
638 | * '\0' and '\n' have really been tested. | |
639 | */ | |
640 | ||
a6826fbc WD |
641 | int himport_r(struct hsearch_data *htab, |
642 | const char *env, size_t size, const char sep, int flag) | |
643 | { | |
644 | char *data, *sp, *dp, *name, *value; | |
645 | ||
646 | /* Test for correct arguments. */ | |
647 | if (htab == NULL) { | |
648 | __set_errno(EINVAL); | |
649 | return 0; | |
650 | } | |
651 | ||
652 | /* we allocate new space to make sure we can write to the array */ | |
653 | if ((data = malloc(size)) == NULL) { | |
ff856286 | 654 | debug("himport_r: can't malloc %zu bytes\n", size); |
a6826fbc WD |
655 | __set_errno(ENOMEM); |
656 | return 0; | |
657 | } | |
658 | memcpy(data, env, size); | |
659 | dp = data; | |
660 | ||
661 | if ((flag & H_NOCLEAR) == 0) { | |
662 | /* Destroy old hash table if one exists */ | |
663 | debug("Destroy Hash Table: %p table = %p\n", htab, | |
664 | htab->table); | |
665 | if (htab->table) | |
666 | hdestroy_r(htab); | |
667 | } | |
668 | ||
669 | /* | |
670 | * Create new hash table (if needed). The computation of the hash | |
671 | * table size is based on heuristics: in a sample of some 70+ | |
672 | * existing systems we found an average size of 39+ bytes per entry | |
673 | * in the environment (for the whole key=value pair). Assuming a | |
ea882baf WD |
674 | * size of 8 per entry (= safety factor of ~5) should provide enough |
675 | * safety margin for any existing environment definitions and still | |
a6826fbc WD |
676 | * allow for more than enough dynamic additions. Note that the |
677 | * "size" argument is supposed to give the maximum enviroment size | |
ea882baf WD |
678 | * (CONFIG_ENV_SIZE). This heuristics will result in |
679 | * unreasonably large numbers (and thus memory footprint) for | |
680 | * big flash environments (>8,000 entries for 64 KB | |
fc5fc76b AB |
681 | * envrionment size), so we clip it to a reasonable value. |
682 | * On the other hand we need to add some more entries for free | |
683 | * space when importing very small buffers. Both boundaries can | |
684 | * be overwritten in the board config file if needed. | |
a6826fbc WD |
685 | */ |
686 | ||
687 | if (!htab->table) { | |
fc5fc76b | 688 | int nent = CONFIG_ENV_MIN_ENTRIES + size / 8; |
ea882baf WD |
689 | |
690 | if (nent > CONFIG_ENV_MAX_ENTRIES) | |
691 | nent = CONFIG_ENV_MAX_ENTRIES; | |
a6826fbc WD |
692 | |
693 | debug("Create Hash Table: N=%d\n", nent); | |
694 | ||
695 | if (hcreate_r(nent, htab) == 0) { | |
696 | free(data); | |
697 | return 0; | |
698 | } | |
699 | } | |
700 | ||
701 | /* Parse environment; allow for '\0' and 'sep' as separators */ | |
702 | do { | |
703 | ENTRY e, *rv; | |
704 | ||
705 | /* skip leading white space */ | |
4d91a6ec | 706 | while (isblank(*dp)) |
a6826fbc WD |
707 | ++dp; |
708 | ||
709 | /* skip comment lines */ | |
710 | if (*dp == '#') { | |
711 | while (*dp && (*dp != sep)) | |
712 | ++dp; | |
713 | ++dp; | |
714 | continue; | |
715 | } | |
716 | ||
717 | /* parse name */ | |
718 | for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp) | |
719 | ; | |
720 | ||
721 | /* deal with "name" and "name=" entries (delete var) */ | |
722 | if (*dp == '\0' || *(dp + 1) == '\0' || | |
723 | *dp == sep || *(dp + 1) == sep) { | |
724 | if (*dp == '=') | |
725 | *dp++ = '\0'; | |
726 | *dp++ = '\0'; /* terminate name */ | |
727 | ||
728 | debug("DELETE CANDIDATE: \"%s\"\n", name); | |
729 | ||
730 | if (hdelete_r(name, htab) == 0) | |
731 | debug("DELETE ERROR ##############################\n"); | |
732 | ||
733 | continue; | |
734 | } | |
735 | *dp++ = '\0'; /* terminate name */ | |
736 | ||
737 | /* parse value; deal with escapes */ | |
738 | for (value = sp = dp; *dp && (*dp != sep); ++dp) { | |
739 | if ((*dp == '\\') && *(dp + 1)) | |
740 | ++dp; | |
741 | *sp++ = *dp; | |
742 | } | |
743 | *sp++ = '\0'; /* terminate value */ | |
744 | ++dp; | |
745 | ||
746 | /* enter into hash table */ | |
747 | e.key = name; | |
748 | e.data = value; | |
749 | ||
750 | hsearch_r(e, ENTER, &rv, htab); | |
751 | if (rv == NULL) { | |
ea882baf WD |
752 | printf("himport_r: can't insert \"%s=%s\" into hash table\n", |
753 | name, value); | |
a6826fbc WD |
754 | return 0; |
755 | } | |
756 | ||
ea882baf WD |
757 | debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n", |
758 | htab, htab->filled, htab->size, | |
759 | rv, name, value); | |
a6826fbc WD |
760 | } while ((dp < data + size) && *dp); /* size check needed for text */ |
761 | /* without '\0' termination */ | |
ea882baf | 762 | debug("INSERT: free(data = %p)\n", data); |
a6826fbc WD |
763 | free(data); |
764 | ||
ea882baf | 765 | debug("INSERT: done\n"); |
a6826fbc WD |
766 | return 1; /* everything OK */ |
767 | } |