]>
Commit | Line | Data |
---|---|---|
e9a128d8 LW |
1 | /* trees.c -- output deflated data using Huffman coding |
2 | * Copyright (C) 1995-2010 Jean-loup Gailly | |
3 | * detect_data_type() function provided freely by Cosmin Truta, 2006 | |
4 | * For conditions of distribution and use, see copyright notice in zlib.h | |
5 | */ | |
6 | ||
7 | /* | |
8 | * ALGORITHM | |
9 | * | |
cc3860f6 HS |
10 | * The "deflation" process uses several Huffman trees. The more |
11 | * common source values are represented by shorter bit sequences. | |
e9a128d8 | 12 | * |
cc3860f6 HS |
13 | * Each code tree is stored in a compressed form which is itself |
14 | * a Huffman encoding of the lengths of all the code strings (in | |
15 | * ascending order by source values). The actual code strings are | |
16 | * reconstructed from the lengths in the inflate process, as | |
17 | * described in the deflate specification. | |
e9a128d8 LW |
18 | * |
19 | * REFERENCES | |
20 | * | |
cc3860f6 HS |
21 | * Deutsch, P. |
22 | * RFC 1951, DEFLATE Compressed Data Format Specification version 1.3 | |
23 | * https://tools.ietf.org/html/rfc1951, 1996 | |
e9a128d8 | 24 | * |
cc3860f6 HS |
25 | * Storer, James A. |
26 | * Data Compression: Methods and Theory, pp. 49-50. | |
27 | * Computer Science Press, 1988. ISBN 0-7167-8156-5. | |
e9a128d8 | 28 | * |
cc3860f6 HS |
29 | * Sedgewick, R. |
30 | * Algorithms, p290. | |
31 | * Addison-Wesley, 1983. ISBN 0-201-06672-6. | |
e9a128d8 LW |
32 | */ |
33 | ||
34 | /* @(#) $Id$ */ | |
35 | ||
36 | /* #define GEN_TREES_H */ | |
37 | ||
38 | #include "deflate.h" | |
39 | ||
40 | #ifdef DEBUG | |
834427d4 | 41 | # include <linux/ctype.h> |
e9a128d8 LW |
42 | #endif |
43 | ||
44 | /* =========================================================================== | |
45 | * Constants | |
46 | */ | |
47 | ||
48 | #define MAX_BL_BITS 7 | |
49 | /* Bit length codes must not exceed MAX_BL_BITS bits */ | |
50 | ||
51 | #define END_BLOCK 256 | |
52 | /* end of block literal code */ | |
53 | ||
54 | #define REP_3_6 16 | |
55 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ | |
56 | ||
57 | #define REPZ_3_10 17 | |
58 | /* repeat a zero length 3-10 times (3 bits of repeat count) */ | |
59 | ||
60 | #define REPZ_11_138 18 | |
61 | /* repeat a zero length 11-138 times (7 bits of repeat count) */ | |
62 | ||
63 | local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ | |
64 | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; | |
65 | ||
66 | local const int extra_dbits[D_CODES] /* extra bits for each distance code */ | |
67 | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; | |
68 | ||
69 | local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ | |
70 | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; | |
71 | ||
72 | local const uch bl_order[BL_CODES] | |
73 | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; | |
74 | /* The lengths of the bit length codes are sent in order of decreasing | |
75 | * probability, to avoid transmitting the lengths for unused bit length codes. | |
76 | */ | |
77 | ||
78 | #define Buf_size (8 * 2*sizeof(char)) | |
79 | /* Number of bits used within bi_buf. (bi_buf might be implemented on | |
80 | * more than 16 bits on some systems.) | |
81 | */ | |
82 | ||
83 | /* =========================================================================== | |
84 | * Local data. These are initialized only once. | |
85 | */ | |
86 | ||
87 | #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ | |
88 | ||
89 | #if defined(GEN_TREES_H) || !defined(STDC) | |
90 | /* non ANSI compilers may not accept trees.h */ | |
91 | ||
92 | local ct_data static_ltree[L_CODES+2]; | |
93 | /* The static literal tree. Since the bit lengths are imposed, there is no | |
94 | * need for the L_CODES extra codes used during heap construction. However | |
95 | * The codes 286 and 287 are needed to build a canonical tree (see _tr_init | |
96 | * below). | |
97 | */ | |
98 | ||
99 | local ct_data static_dtree[D_CODES]; | |
100 | /* The static distance tree. (Actually a trivial tree since all codes use | |
101 | * 5 bits.) | |
102 | */ | |
103 | ||
104 | uch _dist_code[DIST_CODE_LEN]; | |
105 | /* Distance codes. The first 256 values correspond to the distances | |
106 | * 3 .. 258, the last 256 values correspond to the top 8 bits of | |
107 | * the 15 bit distances. | |
108 | */ | |
109 | ||
110 | uch _length_code[MAX_MATCH-MIN_MATCH+1]; | |
111 | /* length code for each normalized match length (0 == MIN_MATCH) */ | |
112 | ||
113 | local int base_length[LENGTH_CODES]; | |
114 | /* First normalized length for each code (0 = MIN_MATCH) */ | |
115 | ||
116 | local int base_dist[D_CODES]; | |
117 | /* First normalized distance for each code (0 = distance of 1) */ | |
118 | ||
119 | #else | |
120 | # include "trees.h" | |
121 | #endif /* GEN_TREES_H */ | |
122 | ||
123 | struct static_tree_desc_s { | |
124 | const ct_data *static_tree; /* static tree or NULL */ | |
125 | const intf *extra_bits; /* extra bits for each code or NULL */ | |
126 | int extra_base; /* base index for extra_bits */ | |
127 | int elems; /* max number of elements in the tree */ | |
128 | int max_length; /* max bit length for the codes */ | |
129 | }; | |
130 | ||
131 | local static_tree_desc static_l_desc = | |
132 | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; | |
133 | ||
134 | local static_tree_desc static_d_desc = | |
135 | {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; | |
136 | ||
137 | local static_tree_desc static_bl_desc = | |
138 | {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; | |
139 | ||
140 | /* =========================================================================== | |
141 | * Local (static) routines in this file. | |
142 | */ | |
143 | ||
144 | local void tr_static_init OF((void)); | |
145 | local void init_block OF((deflate_state *s)); | |
146 | local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); | |
147 | local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); | |
148 | local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); | |
149 | local void build_tree OF((deflate_state *s, tree_desc *desc)); | |
150 | local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); | |
151 | local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); | |
152 | local int build_bl_tree OF((deflate_state *s)); | |
153 | local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, | |
154 | int blcodes)); | |
155 | local void compress_block OF((deflate_state *s, ct_data *ltree, | |
156 | ct_data *dtree)); | |
157 | local int detect_data_type OF((deflate_state *s)); | |
158 | local unsigned bi_reverse OF((unsigned value, int length)); | |
159 | local void bi_windup OF((deflate_state *s)); | |
160 | local void bi_flush OF((deflate_state *s)); | |
161 | local void copy_block OF((deflate_state *s, charf *buf, unsigned len, | |
162 | int header)); | |
163 | ||
164 | #ifdef GEN_TREES_H | |
165 | local void gen_trees_header OF((void)); | |
166 | #endif | |
167 | ||
168 | #ifndef DEBUG | |
169 | # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) | |
170 | /* Send a code of the given tree. c and tree must not have side effects */ | |
171 | ||
172 | #else /* DEBUG */ | |
173 | # define send_code(s, c, tree) \ | |
174 | { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ | |
175 | send_bits(s, tree[c].Code, tree[c].Len); } | |
176 | #endif | |
177 | ||
178 | /* =========================================================================== | |
179 | * Output a short LSB first on the stream. | |
180 | * IN assertion: there is enough room in pendingBuf. | |
181 | */ | |
182 | #define put_short(s, w) { \ | |
183 | put_byte(s, (uch)((w) & 0xff)); \ | |
184 | put_byte(s, (uch)((ush)(w) >> 8)); \ | |
185 | } | |
186 | ||
187 | /* =========================================================================== | |
188 | * Send a value on a given number of bits. | |
189 | * IN assertion: length <= 16 and value fits in length bits. | |
190 | */ | |
191 | #ifdef DEBUG | |
192 | local void send_bits OF((deflate_state *s, int value, int length)); | |
193 | ||
194 | local void send_bits(s, value, length) | |
195 | deflate_state *s; | |
196 | int value; /* value to send */ | |
197 | int length; /* number of bits */ | |
198 | { | |
199 | Tracevv((stderr," l %2d v %4x ", length, value)); | |
200 | Assert(length > 0 && length <= 15, "invalid length"); | |
201 | s->bits_sent += (ulg)length; | |
202 | ||
203 | /* If not enough room in bi_buf, use (valid) bits from bi_buf and | |
204 | * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) | |
205 | * unused bits in value. | |
206 | */ | |
207 | if (s->bi_valid > (int)Buf_size - length) { | |
208 | s->bi_buf |= (ush)value << s->bi_valid; | |
209 | put_short(s, s->bi_buf); | |
210 | s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); | |
211 | s->bi_valid += length - Buf_size; | |
212 | } else { | |
213 | s->bi_buf |= (ush)value << s->bi_valid; | |
214 | s->bi_valid += length; | |
215 | } | |
216 | } | |
217 | #else /* !DEBUG */ | |
218 | ||
219 | #define send_bits(s, value, length) \ | |
220 | { int len = length;\ | |
221 | if (s->bi_valid > (int)Buf_size - len) {\ | |
222 | int val = value;\ | |
223 | s->bi_buf |= (ush)val << s->bi_valid;\ | |
224 | put_short(s, s->bi_buf);\ | |
225 | s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ | |
226 | s->bi_valid += len - Buf_size;\ | |
227 | } else {\ | |
228 | s->bi_buf |= (ush)(value) << s->bi_valid;\ | |
229 | s->bi_valid += len;\ | |
230 | }\ | |
231 | } | |
232 | #endif /* DEBUG */ | |
233 | ||
234 | ||
235 | /* the arguments must not have side effects */ | |
236 | ||
237 | /* =========================================================================== | |
238 | * Initialize the various 'constant' tables. | |
239 | */ | |
240 | local void tr_static_init() | |
241 | { | |
242 | #if defined(GEN_TREES_H) || !defined(STDC) | |
243 | static int static_init_done = 0; | |
244 | int n; /* iterates over tree elements */ | |
245 | int bits; /* bit counter */ | |
246 | int length; /* length value */ | |
247 | int code; /* code value */ | |
248 | int dist; /* distance index */ | |
249 | ush bl_count[MAX_BITS+1]; | |
250 | /* number of codes at each bit length for an optimal tree */ | |
251 | ||
252 | if (static_init_done) return; | |
253 | ||
254 | /* For some embedded targets, global variables are not initialized: */ | |
255 | #ifdef NO_INIT_GLOBAL_POINTERS | |
256 | static_l_desc.static_tree = static_ltree; | |
257 | static_l_desc.extra_bits = extra_lbits; | |
258 | static_d_desc.static_tree = static_dtree; | |
259 | static_d_desc.extra_bits = extra_dbits; | |
260 | static_bl_desc.extra_bits = extra_blbits; | |
261 | #endif | |
262 | ||
263 | /* Initialize the mapping length (0..255) -> length code (0..28) */ | |
264 | length = 0; | |
265 | for (code = 0; code < LENGTH_CODES-1; code++) { | |
266 | base_length[code] = length; | |
267 | for (n = 0; n < (1<<extra_lbits[code]); n++) { | |
268 | _length_code[length++] = (uch)code; | |
269 | } | |
270 | } | |
271 | Assert (length == 256, "tr_static_init: length != 256"); | |
272 | /* Note that the length 255 (match length 258) can be represented | |
273 | * in two different ways: code 284 + 5 bits or code 285, so we | |
274 | * overwrite length_code[255] to use the best encoding: | |
275 | */ | |
276 | _length_code[length-1] = (uch)code; | |
277 | ||
278 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | |
279 | dist = 0; | |
280 | for (code = 0 ; code < 16; code++) { | |
281 | base_dist[code] = dist; | |
282 | for (n = 0; n < (1<<extra_dbits[code]); n++) { | |
283 | _dist_code[dist++] = (uch)code; | |
284 | } | |
285 | } | |
286 | Assert (dist == 256, "tr_static_init: dist != 256"); | |
287 | dist >>= 7; /* from now on, all distances are divided by 128 */ | |
288 | for ( ; code < D_CODES; code++) { | |
289 | base_dist[code] = dist << 7; | |
290 | for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { | |
291 | _dist_code[256 + dist++] = (uch)code; | |
292 | } | |
293 | } | |
294 | Assert (dist == 256, "tr_static_init: 256+dist != 512"); | |
295 | ||
296 | /* Construct the codes of the static literal tree */ | |
297 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; | |
298 | n = 0; | |
299 | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; | |
300 | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; | |
301 | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; | |
302 | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; | |
303 | /* Codes 286 and 287 do not exist, but we must include them in the | |
304 | * tree construction to get a canonical Huffman tree (longest code | |
305 | * all ones) | |
306 | */ | |
307 | gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); | |
308 | ||
309 | /* The static distance tree is trivial: */ | |
310 | for (n = 0; n < D_CODES; n++) { | |
311 | static_dtree[n].Len = 5; | |
312 | static_dtree[n].Code = bi_reverse((unsigned)n, 5); | |
313 | } | |
314 | static_init_done = 1; | |
315 | ||
316 | # ifdef GEN_TREES_H | |
317 | gen_trees_header(); | |
318 | # endif | |
319 | #endif /* defined(GEN_TREES_H) || !defined(STDC) */ | |
320 | } | |
321 | ||
322 | /* =========================================================================== | |
323 | * Genererate the file trees.h describing the static trees. | |
324 | */ | |
325 | #ifdef GEN_TREES_H | |
326 | # ifndef DEBUG | |
327 | # include <stdio.h> | |
328 | # endif | |
329 | ||
330 | # define SEPARATOR(i, last, width) \ | |
331 | ((i) == (last)? "\n};\n\n" : \ | |
332 | ((i) % (width) == (width)-1 ? ",\n" : ", ")) | |
333 | ||
334 | void gen_trees_header() | |
335 | { | |
336 | FILE *header = fopen("trees.h", "w"); | |
337 | int i; | |
338 | ||
339 | Assert (header != NULL, "Can't open trees.h"); | |
340 | fprintf(header, | |
341 | "/* header created automatically with -DGEN_TREES_H */\n\n"); | |
342 | ||
343 | fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); | |
344 | for (i = 0; i < L_CODES+2; i++) { | |
345 | fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, | |
346 | static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); | |
347 | } | |
348 | ||
349 | fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); | |
350 | for (i = 0; i < D_CODES; i++) { | |
351 | fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, | |
352 | static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); | |
353 | } | |
354 | ||
355 | fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); | |
356 | for (i = 0; i < DIST_CODE_LEN; i++) { | |
357 | fprintf(header, "%2u%s", _dist_code[i], | |
358 | SEPARATOR(i, DIST_CODE_LEN-1, 20)); | |
359 | } | |
360 | ||
361 | fprintf(header, | |
362 | "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); | |
363 | for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { | |
364 | fprintf(header, "%2u%s", _length_code[i], | |
365 | SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); | |
366 | } | |
367 | ||
368 | fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); | |
369 | for (i = 0; i < LENGTH_CODES; i++) { | |
370 | fprintf(header, "%1u%s", base_length[i], | |
371 | SEPARATOR(i, LENGTH_CODES-1, 20)); | |
372 | } | |
373 | ||
374 | fprintf(header, "local const int base_dist[D_CODES] = {\n"); | |
375 | for (i = 0; i < D_CODES; i++) { | |
376 | fprintf(header, "%5u%s", base_dist[i], | |
377 | SEPARATOR(i, D_CODES-1, 10)); | |
378 | } | |
379 | ||
380 | fclose(header); | |
381 | } | |
382 | #endif /* GEN_TREES_H */ | |
383 | ||
384 | /* =========================================================================== | |
385 | * Initialize the tree data structures for a new zlib stream. | |
386 | */ | |
387 | void ZLIB_INTERNAL _tr_init(s) | |
388 | deflate_state *s; | |
389 | { | |
390 | tr_static_init(); | |
391 | ||
392 | s->l_desc.dyn_tree = s->dyn_ltree; | |
393 | s->l_desc.stat_desc = &static_l_desc; | |
394 | ||
395 | s->d_desc.dyn_tree = s->dyn_dtree; | |
396 | s->d_desc.stat_desc = &static_d_desc; | |
397 | ||
398 | s->bl_desc.dyn_tree = s->bl_tree; | |
399 | s->bl_desc.stat_desc = &static_bl_desc; | |
400 | ||
401 | s->bi_buf = 0; | |
402 | s->bi_valid = 0; | |
403 | s->last_eob_len = 8; /* enough lookahead for inflate */ | |
404 | #ifdef DEBUG | |
405 | s->compressed_len = 0L; | |
406 | s->bits_sent = 0L; | |
407 | #endif | |
408 | ||
409 | /* Initialize the first block of the first file: */ | |
410 | init_block(s); | |
411 | } | |
412 | ||
413 | /* =========================================================================== | |
414 | * Initialize a new block. | |
415 | */ | |
416 | local void init_block(s) | |
417 | deflate_state *s; | |
418 | { | |
419 | int n; /* iterates over tree elements */ | |
420 | ||
421 | /* Initialize the trees. */ | |
422 | for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; | |
423 | for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; | |
424 | for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; | |
425 | ||
426 | s->dyn_ltree[END_BLOCK].Freq = 1; | |
427 | s->opt_len = s->static_len = 0L; | |
2e2e784d | 428 | s->sym_next = s->matches = 0; |
e9a128d8 LW |
429 | } |
430 | ||
431 | #define SMALLEST 1 | |
432 | /* Index within the heap array of least frequent node in the Huffman tree */ | |
433 | ||
434 | ||
435 | /* =========================================================================== | |
436 | * Remove the smallest element from the heap and recreate the heap with | |
437 | * one less element. Updates heap and heap_len. | |
438 | */ | |
439 | #define pqremove(s, tree, top) \ | |
440 | {\ | |
441 | top = s->heap[SMALLEST]; \ | |
442 | s->heap[SMALLEST] = s->heap[s->heap_len--]; \ | |
443 | pqdownheap(s, tree, SMALLEST); \ | |
444 | } | |
445 | ||
446 | /* =========================================================================== | |
447 | * Compares to subtrees, using the tree depth as tie breaker when | |
448 | * the subtrees have equal frequency. This minimizes the worst case length. | |
449 | */ | |
450 | #define smaller(tree, n, m, depth) \ | |
451 | (tree[n].Freq < tree[m].Freq || \ | |
452 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) | |
453 | ||
454 | /* =========================================================================== | |
455 | * Restore the heap property by moving down the tree starting at node k, | |
456 | * exchanging a node with the smallest of its two sons if necessary, stopping | |
457 | * when the heap property is re-established (each father smaller than its | |
458 | * two sons). | |
459 | */ | |
460 | local void pqdownheap(s, tree, k) | |
461 | deflate_state *s; | |
462 | ct_data *tree; /* the tree to restore */ | |
463 | int k; /* node to move down */ | |
464 | { | |
465 | int v = s->heap[k]; | |
466 | int j = k << 1; /* left son of k */ | |
467 | while (j <= s->heap_len) { | |
468 | /* Set j to the smallest of the two sons: */ | |
469 | if (j < s->heap_len && | |
470 | smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { | |
471 | j++; | |
472 | } | |
473 | /* Exit if v is smaller than both sons */ | |
474 | if (smaller(tree, v, s->heap[j], s->depth)) break; | |
475 | ||
476 | /* Exchange v with the smallest son */ | |
477 | s->heap[k] = s->heap[j]; k = j; | |
478 | ||
479 | /* And continue down the tree, setting j to the left son of k */ | |
480 | j <<= 1; | |
481 | } | |
482 | s->heap[k] = v; | |
483 | } | |
484 | ||
485 | /* =========================================================================== | |
486 | * Compute the optimal bit lengths for a tree and update the total bit length | |
487 | * for the current block. | |
488 | * IN assertion: the fields freq and dad are set, heap[heap_max] and | |
489 | * above are the tree nodes sorted by increasing frequency. | |
490 | * OUT assertions: the field len is set to the optimal bit length, the | |
491 | * array bl_count contains the frequencies for each bit length. | |
492 | * The length opt_len is updated; static_len is also updated if stree is | |
493 | * not null. | |
494 | */ | |
495 | local void gen_bitlen(s, desc) | |
496 | deflate_state *s; | |
497 | tree_desc *desc; /* the tree descriptor */ | |
498 | { | |
499 | ct_data *tree = desc->dyn_tree; | |
500 | int max_code = desc->max_code; | |
501 | const ct_data *stree = desc->stat_desc->static_tree; | |
502 | const intf *extra = desc->stat_desc->extra_bits; | |
503 | int base = desc->stat_desc->extra_base; | |
504 | int max_length = desc->stat_desc->max_length; | |
505 | int h; /* heap index */ | |
506 | int n, m; /* iterate over the tree elements */ | |
507 | int bits; /* bit length */ | |
508 | int xbits; /* extra bits */ | |
509 | ush f; /* frequency */ | |
510 | int overflow = 0; /* number of elements with bit length too large */ | |
511 | ||
512 | for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; | |
513 | ||
514 | /* In a first pass, compute the optimal bit lengths (which may | |
515 | * overflow in the case of the bit length tree). | |
516 | */ | |
517 | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ | |
518 | ||
519 | for (h = s->heap_max+1; h < HEAP_SIZE; h++) { | |
520 | n = s->heap[h]; | |
521 | bits = tree[tree[n].Dad].Len + 1; | |
522 | if (bits > max_length) bits = max_length, overflow++; | |
523 | tree[n].Len = (ush)bits; | |
524 | /* We overwrite tree[n].Dad which is no longer needed */ | |
525 | ||
526 | if (n > max_code) continue; /* not a leaf node */ | |
527 | ||
528 | s->bl_count[bits]++; | |
529 | xbits = 0; | |
530 | if (n >= base) xbits = extra[n-base]; | |
531 | f = tree[n].Freq; | |
532 | s->opt_len += (ulg)f * (bits + xbits); | |
533 | if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); | |
534 | } | |
535 | if (overflow == 0) return; | |
536 | ||
537 | Trace((stderr,"\nbit length overflow\n")); | |
538 | /* This happens for example on obj2 and pic of the Calgary corpus */ | |
539 | ||
540 | /* Find the first bit length which could increase: */ | |
541 | do { | |
542 | bits = max_length-1; | |
543 | while (s->bl_count[bits] == 0) bits--; | |
544 | s->bl_count[bits]--; /* move one leaf down the tree */ | |
545 | s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ | |
546 | s->bl_count[max_length]--; | |
547 | /* The brother of the overflow item also moves one step up, | |
548 | * but this does not affect bl_count[max_length] | |
549 | */ | |
550 | overflow -= 2; | |
551 | } while (overflow > 0); | |
552 | ||
553 | /* Now recompute all bit lengths, scanning in increasing frequency. | |
554 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | |
555 | * lengths instead of fixing only the wrong ones. This idea is taken | |
556 | * from 'ar' written by Haruhiko Okumura.) | |
557 | */ | |
558 | for (bits = max_length; bits != 0; bits--) { | |
559 | n = s->bl_count[bits]; | |
560 | while (n != 0) { | |
561 | m = s->heap[--h]; | |
562 | if (m > max_code) continue; | |
563 | if ((unsigned) tree[m].Len != (unsigned) bits) { | |
564 | Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | |
565 | s->opt_len += ((long)bits - (long)tree[m].Len) | |
566 | *(long)tree[m].Freq; | |
567 | tree[m].Len = (ush)bits; | |
568 | } | |
569 | n--; | |
570 | } | |
571 | } | |
572 | } | |
573 | ||
574 | /* =========================================================================== | |
575 | * Generate the codes for a given tree and bit counts (which need not be | |
576 | * optimal). | |
577 | * IN assertion: the array bl_count contains the bit length statistics for | |
578 | * the given tree and the field len is set for all tree elements. | |
579 | * OUT assertion: the field code is set for all tree elements of non | |
580 | * zero code length. | |
581 | */ | |
582 | local void gen_codes (tree, max_code, bl_count) | |
583 | ct_data *tree; /* the tree to decorate */ | |
584 | int max_code; /* largest code with non zero frequency */ | |
585 | ushf *bl_count; /* number of codes at each bit length */ | |
586 | { | |
587 | ush next_code[MAX_BITS+1]; /* next code value for each bit length */ | |
588 | ush code = 0; /* running code value */ | |
589 | int bits; /* bit index */ | |
590 | int n; /* code index */ | |
591 | ||
592 | /* The distribution counts are first used to generate the code values | |
593 | * without bit reversal. | |
594 | */ | |
595 | for (bits = 1; bits <= MAX_BITS; bits++) { | |
596 | next_code[bits] = code = (code + bl_count[bits-1]) << 1; | |
597 | } | |
598 | /* Check that the bit counts in bl_count are consistent. The last code | |
599 | * must be all ones. | |
600 | */ | |
601 | Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | |
602 | "inconsistent bit counts"); | |
603 | Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | |
604 | ||
605 | for (n = 0; n <= max_code; n++) { | |
606 | int len = tree[n].Len; | |
607 | if (len == 0) continue; | |
608 | /* Now reverse the bits */ | |
609 | tree[n].Code = bi_reverse(next_code[len]++, len); | |
610 | ||
611 | Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | |
612 | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | |
613 | } | |
614 | } | |
615 | ||
616 | /* =========================================================================== | |
617 | * Construct one Huffman tree and assigns the code bit strings and lengths. | |
618 | * Update the total bit length for the current block. | |
619 | * IN assertion: the field freq is set for all tree elements. | |
620 | * OUT assertions: the fields len and code are set to the optimal bit length | |
621 | * and corresponding code. The length opt_len is updated; static_len is | |
622 | * also updated if stree is not null. The field max_code is set. | |
623 | */ | |
624 | local void build_tree(s, desc) | |
625 | deflate_state *s; | |
626 | tree_desc *desc; /* the tree descriptor */ | |
627 | { | |
628 | ct_data *tree = desc->dyn_tree; | |
629 | const ct_data *stree = desc->stat_desc->static_tree; | |
630 | int elems = desc->stat_desc->elems; | |
631 | int n, m; /* iterate over heap elements */ | |
632 | int max_code = -1; /* largest code with non zero frequency */ | |
633 | int node; /* new node being created */ | |
634 | ||
635 | /* Construct the initial heap, with least frequent element in | |
636 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | |
637 | * heap[0] is not used. | |
638 | */ | |
639 | s->heap_len = 0, s->heap_max = HEAP_SIZE; | |
640 | ||
641 | for (n = 0; n < elems; n++) { | |
642 | if (tree[n].Freq != 0) { | |
643 | s->heap[++(s->heap_len)] = max_code = n; | |
644 | s->depth[n] = 0; | |
645 | } else { | |
646 | tree[n].Len = 0; | |
647 | } | |
648 | } | |
649 | ||
650 | /* The pkzip format requires that at least one distance code exists, | |
651 | * and that at least one bit should be sent even if there is only one | |
652 | * possible code. So to avoid special checks later on we force at least | |
653 | * two codes of non zero frequency. | |
654 | */ | |
655 | while (s->heap_len < 2) { | |
656 | node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); | |
657 | tree[node].Freq = 1; | |
658 | s->depth[node] = 0; | |
659 | s->opt_len--; if (stree) s->static_len -= stree[node].Len; | |
660 | /* node is 0 or 1 so it does not have extra bits */ | |
661 | } | |
662 | desc->max_code = max_code; | |
663 | ||
664 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | |
665 | * establish sub-heaps of increasing lengths: | |
666 | */ | |
667 | for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); | |
668 | ||
669 | /* Construct the Huffman tree by repeatedly combining the least two | |
670 | * frequent nodes. | |
671 | */ | |
672 | node = elems; /* next internal node of the tree */ | |
673 | do { | |
674 | pqremove(s, tree, n); /* n = node of least frequency */ | |
675 | m = s->heap[SMALLEST]; /* m = node of next least frequency */ | |
676 | ||
677 | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ | |
678 | s->heap[--(s->heap_max)] = m; | |
679 | ||
680 | /* Create a new node father of n and m */ | |
681 | tree[node].Freq = tree[n].Freq + tree[m].Freq; | |
682 | s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? | |
683 | s->depth[n] : s->depth[m]) + 1); | |
684 | tree[n].Dad = tree[m].Dad = (ush)node; | |
685 | #ifdef DUMP_BL_TREE | |
686 | if (tree == s->bl_tree) { | |
687 | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", | |
688 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); | |
689 | } | |
690 | #endif | |
691 | /* and insert the new node in the heap */ | |
692 | s->heap[SMALLEST] = node++; | |
693 | pqdownheap(s, tree, SMALLEST); | |
694 | ||
695 | } while (s->heap_len >= 2); | |
696 | ||
697 | s->heap[--(s->heap_max)] = s->heap[SMALLEST]; | |
698 | ||
699 | /* At this point, the fields freq and dad are set. We can now | |
700 | * generate the bit lengths. | |
701 | */ | |
702 | gen_bitlen(s, (tree_desc *)desc); | |
703 | ||
704 | /* The field len is now set, we can generate the bit codes */ | |
705 | gen_codes ((ct_data *)tree, max_code, s->bl_count); | |
706 | } | |
707 | ||
708 | /* =========================================================================== | |
709 | * Scan a literal or distance tree to determine the frequencies of the codes | |
710 | * in the bit length tree. | |
711 | */ | |
712 | local void scan_tree (s, tree, max_code) | |
713 | deflate_state *s; | |
714 | ct_data *tree; /* the tree to be scanned */ | |
715 | int max_code; /* and its largest code of non zero frequency */ | |
716 | { | |
717 | int n; /* iterates over all tree elements */ | |
718 | int prevlen = -1; /* last emitted length */ | |
719 | int curlen; /* length of current code */ | |
720 | int nextlen = tree[0].Len; /* length of next code */ | |
721 | int count = 0; /* repeat count of the current code */ | |
722 | int max_count = 7; /* max repeat count */ | |
723 | int min_count = 4; /* min repeat count */ | |
724 | ||
725 | if (nextlen == 0) max_count = 138, min_count = 3; | |
726 | tree[max_code+1].Len = (ush)0xffff; /* guard */ | |
727 | ||
728 | for (n = 0; n <= max_code; n++) { | |
729 | curlen = nextlen; nextlen = tree[n+1].Len; | |
730 | if (++count < max_count && curlen == nextlen) { | |
731 | continue; | |
732 | } else if (count < min_count) { | |
733 | s->bl_tree[curlen].Freq += count; | |
734 | } else if (curlen != 0) { | |
735 | if (curlen != prevlen) s->bl_tree[curlen].Freq++; | |
736 | s->bl_tree[REP_3_6].Freq++; | |
737 | } else if (count <= 10) { | |
738 | s->bl_tree[REPZ_3_10].Freq++; | |
739 | } else { | |
740 | s->bl_tree[REPZ_11_138].Freq++; | |
741 | } | |
742 | count = 0; prevlen = curlen; | |
743 | if (nextlen == 0) { | |
744 | max_count = 138, min_count = 3; | |
745 | } else if (curlen == nextlen) { | |
746 | max_count = 6, min_count = 3; | |
747 | } else { | |
748 | max_count = 7, min_count = 4; | |
749 | } | |
750 | } | |
751 | } | |
752 | ||
753 | /* =========================================================================== | |
754 | * Send a literal or distance tree in compressed form, using the codes in | |
755 | * bl_tree. | |
756 | */ | |
757 | local void send_tree (s, tree, max_code) | |
758 | deflate_state *s; | |
759 | ct_data *tree; /* the tree to be scanned */ | |
760 | int max_code; /* and its largest code of non zero frequency */ | |
761 | { | |
762 | int n; /* iterates over all tree elements */ | |
763 | int prevlen = -1; /* last emitted length */ | |
764 | int curlen; /* length of current code */ | |
765 | int nextlen = tree[0].Len; /* length of next code */ | |
766 | int count = 0; /* repeat count of the current code */ | |
767 | int max_count = 7; /* max repeat count */ | |
768 | int min_count = 4; /* min repeat count */ | |
769 | ||
770 | /* tree[max_code+1].Len = -1; */ /* guard already set */ | |
771 | if (nextlen == 0) max_count = 138, min_count = 3; | |
772 | ||
773 | for (n = 0; n <= max_code; n++) { | |
774 | curlen = nextlen; nextlen = tree[n+1].Len; | |
775 | if (++count < max_count && curlen == nextlen) { | |
776 | continue; | |
777 | } else if (count < min_count) { | |
778 | do { send_code(s, curlen, s->bl_tree); } while (--count != 0); | |
779 | ||
780 | } else if (curlen != 0) { | |
781 | if (curlen != prevlen) { | |
782 | send_code(s, curlen, s->bl_tree); count--; | |
783 | } | |
784 | Assert(count >= 3 && count <= 6, " 3_6?"); | |
785 | send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); | |
786 | ||
787 | } else if (count <= 10) { | |
788 | send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); | |
789 | ||
790 | } else { | |
791 | send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); | |
792 | } | |
793 | count = 0; prevlen = curlen; | |
794 | if (nextlen == 0) { | |
795 | max_count = 138, min_count = 3; | |
796 | } else if (curlen == nextlen) { | |
797 | max_count = 6, min_count = 3; | |
798 | } else { | |
799 | max_count = 7, min_count = 4; | |
800 | } | |
801 | } | |
802 | } | |
803 | ||
804 | /* =========================================================================== | |
805 | * Construct the Huffman tree for the bit lengths and return the index in | |
806 | * bl_order of the last bit length code to send. | |
807 | */ | |
808 | local int build_bl_tree(s) | |
809 | deflate_state *s; | |
810 | { | |
811 | int max_blindex; /* index of last bit length code of non zero freq */ | |
812 | ||
813 | /* Determine the bit length frequencies for literal and distance trees */ | |
814 | scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); | |
815 | scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); | |
816 | ||
817 | /* Build the bit length tree: */ | |
818 | build_tree(s, (tree_desc *)(&(s->bl_desc))); | |
819 | /* opt_len now includes the length of the tree representations, except | |
820 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | |
821 | */ | |
822 | ||
823 | /* Determine the number of bit length codes to send. The pkzip format | |
824 | * requires that at least 4 bit length codes be sent. (appnote.txt says | |
825 | * 3 but the actual value used is 4.) | |
826 | */ | |
827 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | |
828 | if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; | |
829 | } | |
830 | /* Update opt_len to include the bit length tree and counts */ | |
831 | s->opt_len += 3*(max_blindex+1) + 5+5+4; | |
832 | Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | |
833 | s->opt_len, s->static_len)); | |
834 | ||
835 | return max_blindex; | |
836 | } | |
837 | ||
838 | /* =========================================================================== | |
839 | * Send the header for a block using dynamic Huffman trees: the counts, the | |
840 | * lengths of the bit length codes, the literal tree and the distance tree. | |
841 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | |
842 | */ | |
843 | local void send_all_trees(s, lcodes, dcodes, blcodes) | |
844 | deflate_state *s; | |
845 | int lcodes, dcodes, blcodes; /* number of codes for each tree */ | |
846 | { | |
847 | int rank; /* index in bl_order */ | |
848 | ||
849 | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | |
850 | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | |
851 | "too many codes"); | |
852 | Tracev((stderr, "\nbl counts: ")); | |
853 | send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ | |
854 | send_bits(s, dcodes-1, 5); | |
855 | send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ | |
856 | for (rank = 0; rank < blcodes; rank++) { | |
857 | Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | |
858 | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); | |
859 | } | |
860 | Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | |
861 | ||
862 | send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ | |
863 | Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | |
864 | ||
865 | send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ | |
866 | Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | |
867 | } | |
868 | ||
869 | /* =========================================================================== | |
870 | * Send a stored block | |
871 | */ | |
872 | void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) | |
873 | deflate_state *s; | |
874 | charf *buf; /* input block */ | |
875 | ulg stored_len; /* length of input block */ | |
876 | int last; /* one if this is the last block for a file */ | |
877 | { | |
878 | send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ | |
879 | #ifdef DEBUG | |
880 | s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; | |
881 | s->compressed_len += (stored_len + 4) << 3; | |
882 | #endif | |
883 | copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ | |
884 | } | |
885 | ||
886 | /* =========================================================================== | |
887 | * Send one empty static block to give enough lookahead for inflate. | |
888 | * This takes 10 bits, of which 7 may remain in the bit buffer. | |
889 | * The current inflate code requires 9 bits of lookahead. If the | |
890 | * last two codes for the previous block (real code plus EOB) were coded | |
891 | * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode | |
892 | * the last real code. In this case we send two empty static blocks instead | |
893 | * of one. (There are no problems if the previous block is stored or fixed.) | |
894 | * To simplify the code, we assume the worst case of last real code encoded | |
895 | * on one bit only. | |
896 | */ | |
897 | void ZLIB_INTERNAL _tr_align(s) | |
898 | deflate_state *s; | |
899 | { | |
900 | send_bits(s, STATIC_TREES<<1, 3); | |
901 | send_code(s, END_BLOCK, static_ltree); | |
902 | #ifdef DEBUG | |
903 | s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ | |
904 | #endif | |
905 | bi_flush(s); | |
906 | /* Of the 10 bits for the empty block, we have already sent | |
907 | * (10 - bi_valid) bits. The lookahead for the last real code (before | |
908 | * the EOB of the previous block) was thus at least one plus the length | |
909 | * of the EOB plus what we have just sent of the empty static block. | |
910 | */ | |
911 | if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { | |
912 | send_bits(s, STATIC_TREES<<1, 3); | |
913 | send_code(s, END_BLOCK, static_ltree); | |
914 | #ifdef DEBUG | |
915 | s->compressed_len += 10L; | |
916 | #endif | |
917 | bi_flush(s); | |
918 | } | |
919 | s->last_eob_len = 7; | |
920 | } | |
921 | ||
922 | /* =========================================================================== | |
923 | * Determine the best encoding for the current block: dynamic trees, static | |
924 | * trees or store, and output the encoded block to the zip file. | |
925 | */ | |
926 | void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) | |
927 | deflate_state *s; | |
928 | charf *buf; /* input block, or NULL if too old */ | |
929 | ulg stored_len; /* length of input block */ | |
930 | int last; /* one if this is the last block for a file */ | |
931 | { | |
932 | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | |
933 | int max_blindex = 0; /* index of last bit length code of non zero freq */ | |
934 | ||
935 | /* Build the Huffman trees unless a stored block is forced */ | |
936 | if (s->level > 0) { | |
937 | ||
938 | /* Check if the file is binary or text */ | |
939 | if (s->strm->data_type == Z_UNKNOWN) | |
940 | s->strm->data_type = detect_data_type(s); | |
941 | ||
942 | /* Construct the literal and distance trees */ | |
943 | build_tree(s, (tree_desc *)(&(s->l_desc))); | |
944 | Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | |
945 | s->static_len)); | |
946 | ||
947 | build_tree(s, (tree_desc *)(&(s->d_desc))); | |
948 | Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | |
949 | s->static_len)); | |
950 | /* At this point, opt_len and static_len are the total bit lengths of | |
951 | * the compressed block data, excluding the tree representations. | |
952 | */ | |
953 | ||
954 | /* Build the bit length tree for the above two trees, and get the index | |
955 | * in bl_order of the last bit length code to send. | |
956 | */ | |
957 | max_blindex = build_bl_tree(s); | |
958 | ||
959 | /* Determine the best encoding. Compute the block lengths in bytes. */ | |
960 | opt_lenb = (s->opt_len+3+7)>>3; | |
961 | static_lenb = (s->static_len+3+7)>>3; | |
962 | ||
963 | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | |
964 | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | |
2e2e784d | 965 | s->sym_next / 3)); |
e9a128d8 LW |
966 | |
967 | if (static_lenb <= opt_lenb) opt_lenb = static_lenb; | |
968 | ||
969 | } else { | |
970 | Assert(buf != (char*)0, "lost buf"); | |
971 | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ | |
972 | } | |
973 | ||
974 | #ifdef FORCE_STORED | |
975 | if (buf != (char*)0) { /* force stored block */ | |
976 | #else | |
977 | if (stored_len+4 <= opt_lenb && buf != (char*)0) { | |
978 | /* 4: two words for the lengths */ | |
979 | #endif | |
980 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | |
981 | * Otherwise we can't have processed more than WSIZE input bytes since | |
982 | * the last block flush, because compression would have been | |
983 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | |
984 | * transform a block into a stored block. | |
985 | */ | |
986 | _tr_stored_block(s, buf, stored_len, last); | |
987 | ||
988 | #ifdef FORCE_STATIC | |
989 | } else if (static_lenb >= 0) { /* force static trees */ | |
990 | #else | |
991 | } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { | |
992 | #endif | |
993 | send_bits(s, (STATIC_TREES<<1)+last, 3); | |
994 | compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); | |
995 | #ifdef DEBUG | |
996 | s->compressed_len += 3 + s->static_len; | |
997 | #endif | |
998 | } else { | |
999 | send_bits(s, (DYN_TREES<<1)+last, 3); | |
1000 | send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, | |
1001 | max_blindex+1); | |
1002 | compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); | |
1003 | #ifdef DEBUG | |
1004 | s->compressed_len += 3 + s->opt_len; | |
1005 | #endif | |
1006 | } | |
1007 | Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | |
1008 | /* The above check is made mod 2^32, for files larger than 512 MB | |
1009 | * and uLong implemented on 32 bits. | |
1010 | */ | |
1011 | init_block(s); | |
1012 | ||
1013 | if (last) { | |
1014 | bi_windup(s); | |
1015 | #ifdef DEBUG | |
1016 | s->compressed_len += 7; /* align on byte boundary */ | |
1017 | #endif | |
1018 | } | |
1019 | Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, | |
1020 | s->compressed_len-7*last)); | |
1021 | } | |
1022 | ||
1023 | /* =========================================================================== | |
1024 | * Save the match info and tally the frequency counts. Return true if | |
1025 | * the current block must be flushed. | |
1026 | */ | |
1027 | int ZLIB_INTERNAL _tr_tally (s, dist, lc) | |
1028 | deflate_state *s; | |
1029 | unsigned dist; /* distance of matched string */ | |
1030 | unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ | |
1031 | { | |
2e2e784d TR |
1032 | s->sym_buf[s->sym_next++] = dist; |
1033 | s->sym_buf[s->sym_next++] = dist >> 8; | |
1034 | s->sym_buf[s->sym_next++] = lc; | |
e9a128d8 LW |
1035 | if (dist == 0) { |
1036 | /* lc is the unmatched char */ | |
1037 | s->dyn_ltree[lc].Freq++; | |
1038 | } else { | |
1039 | s->matches++; | |
1040 | /* Here, lc is the match length - MIN_MATCH */ | |
1041 | dist--; /* dist = match distance - 1 */ | |
1042 | Assert((ush)dist < (ush)MAX_DIST(s) && | |
1043 | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | |
1044 | (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); | |
1045 | ||
1046 | s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; | |
1047 | s->dyn_dtree[d_code(dist)].Freq++; | |
1048 | } | |
2e2e784d | 1049 | return (s->sym_next == s->sym_end); |
e9a128d8 LW |
1050 | } |
1051 | ||
1052 | /* =========================================================================== | |
1053 | * Send the block data compressed using the given Huffman trees | |
1054 | */ | |
1055 | local void compress_block(s, ltree, dtree) | |
1056 | deflate_state *s; | |
1057 | ct_data *ltree; /* literal tree */ | |
1058 | ct_data *dtree; /* distance tree */ | |
1059 | { | |
1060 | unsigned dist; /* distance of matched string */ | |
1061 | int lc; /* match length or unmatched char (if dist == 0) */ | |
2e2e784d | 1062 | unsigned sx = 0; /* running index in sym_buf */ |
e9a128d8 LW |
1063 | unsigned code; /* the code to send */ |
1064 | int extra; /* number of extra bits to send */ | |
1065 | ||
2e2e784d TR |
1066 | if (s->sym_next != 0) do { |
1067 | dist = s->sym_buf[sx++] & 0xff; | |
1068 | dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8; | |
1069 | lc = s->sym_buf[sx++]; | |
e9a128d8 LW |
1070 | if (dist == 0) { |
1071 | send_code(s, lc, ltree); /* send a literal byte */ | |
1072 | Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | |
1073 | } else { | |
1074 | /* Here, lc is the match length - MIN_MATCH */ | |
1075 | code = _length_code[lc]; | |
1076 | send_code(s, code+LITERALS+1, ltree); /* send the length code */ | |
1077 | extra = extra_lbits[code]; | |
1078 | if (extra != 0) { | |
1079 | lc -= base_length[code]; | |
1080 | send_bits(s, lc, extra); /* send the extra length bits */ | |
1081 | } | |
1082 | dist--; /* dist is now the match distance - 1 */ | |
1083 | code = d_code(dist); | |
1084 | Assert (code < D_CODES, "bad d_code"); | |
1085 | ||
1086 | send_code(s, code, dtree); /* send the distance code */ | |
1087 | extra = extra_dbits[code]; | |
1088 | if (extra != 0) { | |
1089 | dist -= base_dist[code]; | |
1090 | send_bits(s, dist, extra); /* send the extra distance bits */ | |
1091 | } | |
1092 | } /* literal or match pair ? */ | |
1093 | ||
2e2e784d TR |
1094 | /* Check that the overlay between pending_buf and sym_buf is ok: */ |
1095 | Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow"); | |
e9a128d8 | 1096 | |
2e2e784d | 1097 | } while (sx < s->sym_next); |
e9a128d8 LW |
1098 | |
1099 | send_code(s, END_BLOCK, ltree); | |
1100 | s->last_eob_len = ltree[END_BLOCK].Len; | |
1101 | } | |
1102 | ||
1103 | /* =========================================================================== | |
1104 | * Check if the data type is TEXT or BINARY, using the following algorithm: | |
1105 | * - TEXT if the two conditions below are satisfied: | |
1106 | * a) There are no non-portable control characters belonging to the | |
1107 | * "black list" (0..6, 14..25, 28..31). | |
1108 | * b) There is at least one printable character belonging to the | |
1109 | * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). | |
1110 | * - BINARY otherwise. | |
1111 | * - The following partially-portable control characters form a | |
1112 | * "gray list" that is ignored in this detection algorithm: | |
1113 | * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). | |
1114 | * IN assertion: the fields Freq of dyn_ltree are set. | |
1115 | */ | |
1116 | local int detect_data_type(s) | |
1117 | deflate_state *s; | |
1118 | { | |
1119 | /* black_mask is the bit mask of black-listed bytes | |
1120 | * set bits 0..6, 14..25, and 28..31 | |
1121 | * 0xf3ffc07f = binary 11110011111111111100000001111111 | |
1122 | */ | |
1123 | unsigned long black_mask = 0xf3ffc07fUL; | |
1124 | int n; | |
1125 | ||
1126 | /* Check for non-textual ("black-listed") bytes. */ | |
1127 | for (n = 0; n <= 31; n++, black_mask >>= 1) | |
1128 | if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) | |
1129 | return Z_BINARY; | |
1130 | ||
1131 | /* Check for textual ("white-listed") bytes. */ | |
1132 | if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 | |
1133 | || s->dyn_ltree[13].Freq != 0) | |
1134 | return Z_TEXT; | |
1135 | for (n = 32; n < LITERALS; n++) | |
1136 | if (s->dyn_ltree[n].Freq != 0) | |
1137 | return Z_TEXT; | |
1138 | ||
1139 | /* There are no "black-listed" or "white-listed" bytes: | |
1140 | * this stream either is empty or has tolerated ("gray-listed") bytes only. | |
1141 | */ | |
1142 | return Z_BINARY; | |
1143 | } | |
1144 | ||
1145 | /* =========================================================================== | |
1146 | * Reverse the first len bits of a code, using straightforward code (a faster | |
1147 | * method would use a table) | |
1148 | * IN assertion: 1 <= len <= 15 | |
1149 | */ | |
7a32b98d LW |
1150 | local unsigned bi_reverse(value, len) |
1151 | unsigned value; /* the value to invert */ | |
e9a128d8 LW |
1152 | int len; /* its bit length */ |
1153 | { | |
1154 | register unsigned res = 0; | |
1155 | do { | |
7a32b98d LW |
1156 | res |= value & 1; |
1157 | value >>= 1, res <<= 1; | |
e9a128d8 LW |
1158 | } while (--len > 0); |
1159 | return res >> 1; | |
1160 | } | |
1161 | ||
1162 | /* =========================================================================== | |
1163 | * Flush the bit buffer, keeping at most 7 bits in it. | |
1164 | */ | |
1165 | local void bi_flush(s) | |
1166 | deflate_state *s; | |
1167 | { | |
1168 | if (s->bi_valid == 16) { | |
1169 | put_short(s, s->bi_buf); | |
1170 | s->bi_buf = 0; | |
1171 | s->bi_valid = 0; | |
1172 | } else if (s->bi_valid >= 8) { | |
1173 | put_byte(s, (Byte)s->bi_buf); | |
1174 | s->bi_buf >>= 8; | |
1175 | s->bi_valid -= 8; | |
1176 | } | |
1177 | } | |
1178 | ||
1179 | /* =========================================================================== | |
1180 | * Flush the bit buffer and align the output on a byte boundary | |
1181 | */ | |
1182 | local void bi_windup(s) | |
1183 | deflate_state *s; | |
1184 | { | |
1185 | if (s->bi_valid > 8) { | |
1186 | put_short(s, s->bi_buf); | |
1187 | } else if (s->bi_valid > 0) { | |
1188 | put_byte(s, (Byte)s->bi_buf); | |
1189 | } | |
1190 | s->bi_buf = 0; | |
1191 | s->bi_valid = 0; | |
1192 | #ifdef DEBUG | |
1193 | s->bits_sent = (s->bits_sent+7) & ~7; | |
1194 | #endif | |
1195 | } | |
1196 | ||
1197 | /* =========================================================================== | |
1198 | * Copy a stored block, storing first the length and its | |
1199 | * one's complement if requested. | |
1200 | */ | |
1201 | local void copy_block(s, buf, len, header) | |
1202 | deflate_state *s; | |
1203 | charf *buf; /* the input data */ | |
1204 | unsigned len; /* its length */ | |
1205 | int header; /* true if block header must be written */ | |
1206 | { | |
1207 | bi_windup(s); /* align on byte boundary */ | |
1208 | s->last_eob_len = 8; /* enough lookahead for inflate */ | |
1209 | ||
1210 | if (header) { | |
1211 | put_short(s, (ush)len); | |
1212 | put_short(s, (ush)~len); | |
1213 | #ifdef DEBUG | |
1214 | s->bits_sent += 2*16; | |
1215 | #endif | |
1216 | } | |
1217 | #ifdef DEBUG | |
1218 | s->bits_sent += (ulg)len<<3; | |
1219 | #endif | |
1220 | while (len--) { | |
1221 | put_byte(s, *buf++); | |
1222 | } | |
1223 | } |