]> Git Repo - J-u-boot.git/blame - drivers/mtd/nand/omap_gpmc.c
mtd: nand: omap: add CONFIG_SYS_NAND_BUSWIDTH_16BIT to indicate NAND device bus-width
[J-u-boot.git] / drivers / mtd / nand / omap_gpmc.c
CommitLineData
12201a13
DB
1/*
2 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3 * Rohit Choraria <[email protected]>
4 *
1a459660 5 * SPDX-License-Identifier: GPL-2.0+
12201a13
DB
6 */
7
8#include <common.h>
9#include <asm/io.h>
10#include <asm/errno.h>
11#include <asm/arch/mem.h>
6aff0509 12#include <linux/mtd/omap_gpmc.h>
12201a13 13#include <linux/mtd/nand_ecc.h>
4a093006 14#include <linux/bch.h>
f7dad8f1 15#include <linux/compiler.h>
12201a13 16#include <nand.h>
2eda892f 17#include <linux/mtd/omap_elm.h>
d016dc42 18
19#define BADBLOCK_MARKER_LENGTH 2
20#define SECTOR_BYTES 512
f5f1f614 21#define ECCCLEAR (0x1 << 8)
22#define ECCRESULTREG1 (0x1 << 0)
6e562b11 23/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
24#define BCH4_BIT_PAD 4
25
71a7f956 26#ifdef CONFIG_BCH
27static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
28 0x97, 0x79, 0xe5, 0x24, 0xb5};
29#endif
12201a13 30static uint8_t cs;
d016dc42 31static __maybe_unused struct nand_ecclayout omap_ecclayout;
12201a13
DB
32
33/*
34 * omap_nand_hwcontrol - Set the address pointers corretly for the
35 * following address/data/command operation
36 */
37static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
38 uint32_t ctrl)
39{
40 register struct nand_chip *this = mtd->priv;
41
42 /*
43 * Point the IO_ADDR to DATA and ADDRESS registers instead
44 * of chip address
45 */
46 switch (ctrl) {
47 case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
89411352 48 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
12201a13
DB
49 break;
50 case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
89411352 51 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
12201a13
DB
52 break;
53 case NAND_CTRL_CHANGE | NAND_NCE:
89411352 54 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
12201a13
DB
55 break;
56 }
57
58 if (cmd != NAND_CMD_NONE)
59 writeb(cmd, this->IO_ADDR_W);
60}
61
12c2f1ee
SS
62#ifdef CONFIG_SPL_BUILD
63/* Check wait pin as dev ready indicator */
64int omap_spl_dev_ready(struct mtd_info *mtd)
65{
66 return gpmc_cfg->status & (1 << 8);
67}
68#endif
69
12201a13
DB
70
71/*
72 * gen_true_ecc - This function will generate true ECC value, which
73 * can be used when correcting data read from NAND flash memory core
74 *
75 * @ecc_buf: buffer to store ecc code
76 *
77 * @return: re-formatted ECC value
78 */
79static uint32_t gen_true_ecc(uint8_t *ecc_buf)
80{
81 return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
82 ((ecc_buf[2] & 0x0F) << 8);
83}
84
85/*
86 * omap_correct_data - Compares the ecc read from nand spare area with ECC
87 * registers values and corrects one bit error if it has occured
88 * Further details can be had from OMAP TRM and the following selected links:
89 * http://en.wikipedia.org/wiki/Hamming_code
90 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
91 *
92 * @mtd: MTD device structure
93 * @dat: page data
94 * @read_ecc: ecc read from nand flash
95 * @calc_ecc: ecc read from ECC registers
96 *
97 * @return 0 if data is OK or corrected, else returns -1
98 */
f7dad8f1 99static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
12201a13
DB
100 uint8_t *read_ecc, uint8_t *calc_ecc)
101{
102 uint32_t orig_ecc, new_ecc, res, hm;
103 uint16_t parity_bits, byte;
104 uint8_t bit;
105
106 /* Regenerate the orginal ECC */
107 orig_ecc = gen_true_ecc(read_ecc);
108 new_ecc = gen_true_ecc(calc_ecc);
109 /* Get the XOR of real ecc */
110 res = orig_ecc ^ new_ecc;
111 if (res) {
112 /* Get the hamming width */
113 hm = hweight32(res);
114 /* Single bit errors can be corrected! */
115 if (hm == 12) {
116 /* Correctable data! */
117 parity_bits = res >> 16;
118 bit = (parity_bits & 0x7);
119 byte = (parity_bits >> 3) & 0x1FF;
120 /* Flip the bit to correct */
121 dat[byte] ^= (0x1 << bit);
122 } else if (hm == 1) {
123 printf("Error: Ecc is wrong\n");
124 /* ECC itself is corrupted */
125 return 2;
126 } else {
127 /*
128 * hm distance != parity pairs OR one, could mean 2 bit
129 * error OR potentially be on a blank page..
130 * orig_ecc: contains spare area data from nand flash.
131 * new_ecc: generated ecc while reading data area.
132 * Note: if the ecc = 0, all data bits from which it was
133 * generated are 0xFF.
134 * The 3 byte(24 bits) ecc is generated per 512byte
135 * chunk of a page. If orig_ecc(from spare area)
136 * is 0xFF && new_ecc(computed now from data area)=0x0,
137 * this means that data area is 0xFF and spare area is
138 * 0xFF. A sure sign of a erased page!
139 */
140 if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
141 return 0;
142 printf("Error: Bad compare! failed\n");
143 /* detected 2 bit error */
144 return -1;
145 }
146 }
147 return 0;
148}
149
c3754e9c 150/*
9233279f 151 * Driver configurations
c3754e9c 152 */
9233279f 153struct omap_nand_info {
4a093006 154 struct bch_control *control;
d016dc42 155 enum omap_ecc ecc_scheme;
c3754e9c
MA
156};
157
4a093006
AB
158/*
159 * This can be a single instance cause all current users have only one NAND
160 * with nearly the same setup (BCH8, some with ELM and others with sw BCH
161 * library).
162 * When some users with other BCH strength will exists this have to change!
163 */
9233279f 164static __maybe_unused struct omap_nand_info omap_nand_info = {
4a093006 165 .control = NULL
c3754e9c
MA
166};
167
6e562b11 168/*
169 * omap_reverse_list - re-orders list elements in reverse order [internal]
170 * @list: pointer to start of list
171 * @length: length of list
172*/
173void omap_reverse_list(u8 *list, unsigned int length)
174{
175 unsigned int i, j;
176 unsigned int half_length = length / 2;
177 u8 tmp;
178 for (i = 0, j = length - 1; i < half_length; i++, j--) {
179 tmp = list[i];
180 list[i] = list[j];
181 list[j] = tmp;
182 }
183}
184
4a093006 185/*
f5f1f614 186 * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
4a093006
AB
187 * @mtd: MTD device structure
188 * @mode: Read/Write mode
189 */
190__maybe_unused
f5f1f614 191static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
4a093006 192{
f5f1f614 193 struct nand_chip *nand = mtd->priv;
9233279f 194 struct omap_nand_info *info = nand->priv;
f5f1f614 195 unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
196 unsigned int ecc_algo = 0;
197 unsigned int bch_type = 0;
198 unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
199 u32 ecc_size_config_val = 0;
200 u32 ecc_config_val = 0;
201
202 /* configure GPMC for specific ecc-scheme */
9233279f 203 switch (info->ecc_scheme) {
f5f1f614 204 case OMAP_ECC_HAM1_CODE_SW:
205 return;
206 case OMAP_ECC_HAM1_CODE_HW:
207 ecc_algo = 0x0;
208 bch_type = 0x0;
209 bch_wrapmode = 0x00;
210 eccsize0 = 0xFF;
211 eccsize1 = 0xFF;
212 break;
213 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
214 case OMAP_ECC_BCH8_CODE_HW:
215 ecc_algo = 0x1;
216 bch_type = 0x1;
217 if (mode == NAND_ECC_WRITE) {
218 bch_wrapmode = 0x01;
219 eccsize0 = 0; /* extra bits in nibbles per sector */
220 eccsize1 = 28; /* OOB bits in nibbles per sector */
221 } else {
222 bch_wrapmode = 0x01;
223 eccsize0 = 26; /* ECC bits in nibbles per sector */
224 eccsize1 = 2; /* non-ECC bits in nibbles per sector */
5d7a49b9 225 }
f5f1f614 226 break;
227 default:
228 return;
d016dc42 229 }
f5f1f614 230 /* Clear ecc and enable bits */
231 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
232 /* Configure ecc size for BCH */
233 ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
234 writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
235
236 /* Configure device details for BCH engine */
237 ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */
238 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
239 (bch_wrapmode << 8) | /* wrap mode */
240 (dev_width << 7) | /* bus width */
241 (0x0 << 4) | /* number of sectors */
242 (cs << 1) | /* ECC CS */
243 (0x1)); /* enable ECC */
244 writel(ecc_config_val, &gpmc_cfg->ecc_config);
4a093006
AB
245}
246
247/*
71a7f956 248 * omap_calculate_ecc - Read ECC result
249 * @mtd: MTD structure
250 * @dat: unused
251 * @ecc_code: ecc_code buffer
252 * Using noninverted ECC can be considered ugly since writing a blank
253 * page ie. padding will clear the ECC bytes. This is no problem as
254 * long nobody is trying to write data on the seemingly unused page.
255 * Reading an erased page will produce an ECC mismatch between
256 * generated and read ECC bytes that has to be dealt with separately.
257 * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
258 * is used, the result of read will be 0x0 while the ECC offsets of the
259 * spare area will be 0xFF which will result in an ECC mismatch.
c3754e9c 260 */
71a7f956 261static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
c3754e9c
MA
262 uint8_t *ecc_code)
263{
71a7f956 264 struct nand_chip *chip = mtd->priv;
9233279f 265 struct omap_nand_info *info = chip->priv;
71a7f956 266 uint32_t *ptr, val = 0;
c3754e9c
MA
267 int8_t i = 0, j;
268
9233279f 269 switch (info->ecc_scheme) {
71a7f956 270 case OMAP_ECC_HAM1_CODE_HW:
271 val = readl(&gpmc_cfg->ecc1_result);
272 ecc_code[0] = val & 0xFF;
273 ecc_code[1] = (val >> 16) & 0xFF;
274 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
275 break;
276#ifdef CONFIG_BCH
277 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
278#endif
279 case OMAP_ECC_BCH8_CODE_HW:
c3754e9c 280 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
71a7f956 281 val = readl(ptr);
282 ecc_code[i++] = (val >> 0) & 0xFF;
c3754e9c
MA
283 ptr--;
284 for (j = 0; j < 3; j++) {
71a7f956 285 val = readl(ptr);
286 ecc_code[i++] = (val >> 24) & 0xFF;
287 ecc_code[i++] = (val >> 16) & 0xFF;
288 ecc_code[i++] = (val >> 8) & 0xFF;
289 ecc_code[i++] = (val >> 0) & 0xFF;
c3754e9c
MA
290 ptr--;
291 }
71a7f956 292 break;
293 default:
294 return -EINVAL;
295 }
296 /* ECC scheme specific syndrome customizations */
9233279f 297 switch (info->ecc_scheme) {
71a7f956 298 case OMAP_ECC_HAM1_CODE_HW:
299 break;
300#ifdef CONFIG_BCH
301 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
302
303 for (i = 0; i < chip->ecc.bytes; i++)
304 *(ecc_code + i) = *(ecc_code + i) ^
305 bch8_polynomial[i];
306 break;
307#endif
308 case OMAP_ECC_BCH8_CODE_HW:
309 ecc_code[chip->ecc.bytes - 1] = 0x00;
310 break;
311 default:
312 return -EINVAL;
c3754e9c 313 }
71a7f956 314 return 0;
c3754e9c
MA
315}
316
71a7f956 317#ifdef CONFIG_NAND_OMAP_ELM
c3754e9c
MA
318/*
319 * omap_correct_data_bch - Compares the ecc read from nand spare area
320 * with ECC registers values and corrects one bit error if it has occured
321 *
322 * @mtd: MTD device structure
323 * @dat: page data
324 * @read_ecc: ecc read from nand flash (ignored)
325 * @calc_ecc: ecc read from ECC registers
326 *
327 * @return 0 if data is OK or corrected, else returns -1
328 */
329static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
330 uint8_t *read_ecc, uint8_t *calc_ecc)
331{
332 struct nand_chip *chip = mtd->priv;
9233279f 333 struct omap_nand_info *info = chip->priv;
a09431da 334 struct nand_ecc_ctrl *ecc = &chip->ecc;
6e562b11 335 uint32_t error_count = 0, error_max;
c3754e9c 336 uint32_t error_loc[8];
d21e77ff 337 enum bch_level bch_type;
6e562b11 338 uint32_t i, ecc_flag = 0;
339 uint8_t count, err = 0;
340 uint32_t byte_pos, bit_pos;
341
342 /* check calculated ecc */
a09431da 343 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
6e562b11 344 if (calc_ecc[i] != 0x00)
345 ecc_flag = 1;
346 }
347 if (!ecc_flag)
348 return 0;
c3754e9c 349
6e562b11 350 /* check for whether its a erased-page */
c3754e9c 351 ecc_flag = 0;
a09431da 352 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
c3754e9c
MA
353 if (read_ecc[i] != 0xff)
354 ecc_flag = 1;
6e562b11 355 }
c3754e9c
MA
356 if (!ecc_flag)
357 return 0;
358
c3754e9c
MA
359 /*
360 * while reading ECC result we read it in big endian.
361 * Hence while loading to ELM we have rotate to get the right endian.
362 */
9233279f 363 switch (info->ecc_scheme) {
6e562b11 364 case OMAP_ECC_BCH8_CODE_HW:
d21e77ff 365 bch_type = BCH_8_BIT;
a09431da 366 omap_reverse_list(calc_ecc, ecc->bytes - 1);
6e562b11 367 break;
368 default:
369 return -EINVAL;
370 }
c3754e9c 371 /* use elm module to check for errors */
d21e77ff 372 elm_config(bch_type);
3f990dc8 373 err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
374 if (err)
375 return err;
376
c3754e9c 377 /* correct bch error */
6e562b11 378 for (count = 0; count < error_count; count++) {
9233279f 379 switch (info->ecc_scheme) {
d21e77ff 380 case OMAP_ECC_BCH8_CODE_HW:
6e562b11 381 /* 14th byte in ECC is reserved to match ROM layout */
a09431da 382 error_max = SECTOR_BYTES + (ecc->bytes - 1);
6e562b11 383 break;
384 default:
385 return -EINVAL;
386 }
387 byte_pos = error_max - (error_loc[count] / 8) - 1;
388 bit_pos = error_loc[count] % 8;
389 if (byte_pos < SECTOR_BYTES) {
390 dat[byte_pos] ^= 1 << bit_pos;
391 printf("nand: bit-flip corrected @data=%d\n", byte_pos);
392 } else if (byte_pos < error_max) {
97eeae1a 393 read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
6e562b11 394 printf("nand: bit-flip corrected @oob=%d\n", byte_pos -
395 SECTOR_BYTES);
396 } else {
397 err = -EBADMSG;
398 printf("nand: error: invalid bit-flip location\n");
399 }
400 }
401 return (err) ? err : error_count;
c3754e9c 402}
c3754e9c
MA
403
404/**
405 * omap_read_page_bch - hardware ecc based page read function
406 * @mtd: mtd info structure
407 * @chip: nand chip info structure
408 * @buf: buffer to store read data
dfe64e2c 409 * @oob_required: caller expects OOB data read to chip->oob_poi
c3754e9c
MA
410 * @page: page number to read
411 *
412 */
413static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
dfe64e2c 414 uint8_t *buf, int oob_required, int page)
c3754e9c
MA
415{
416 int i, eccsize = chip->ecc.size;
417 int eccbytes = chip->ecc.bytes;
418 int eccsteps = chip->ecc.steps;
419 uint8_t *p = buf;
420 uint8_t *ecc_calc = chip->buffers->ecccalc;
421 uint8_t *ecc_code = chip->buffers->ecccode;
422 uint32_t *eccpos = chip->ecc.layout->eccpos;
423 uint8_t *oob = chip->oob_poi;
424 uint32_t data_pos;
425 uint32_t oob_pos;
426
427 data_pos = 0;
428 /* oob area start */
429 oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
430 oob += chip->ecc.layout->eccpos[0];
431
432 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
433 oob += eccbytes) {
434 chip->ecc.hwctl(mtd, NAND_ECC_READ);
435 /* read data */
436 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page);
437 chip->read_buf(mtd, p, eccsize);
438
439 /* read respective ecc from oob area */
440 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page);
441 chip->read_buf(mtd, oob, eccbytes);
442 /* read syndrome */
443 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
444
445 data_pos += eccsize;
446 oob_pos += eccbytes;
447 }
448
449 for (i = 0; i < chip->ecc.total; i++)
450 ecc_code[i] = chip->oob_poi[eccpos[i]];
451
452 eccsteps = chip->ecc.steps;
453 p = buf;
454
455 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
456 int stat;
457
458 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
459 if (stat < 0)
460 mtd->ecc_stats.failed++;
461 else
462 mtd->ecc_stats.corrected += stat;
463 }
464 return 0;
465}
d016dc42 466#endif /* CONFIG_NAND_OMAP_ELM */
c3754e9c 467
4a093006
AB
468/*
469 * OMAP3 BCH8 support (with BCH library)
470 */
d016dc42 471#ifdef CONFIG_BCH
4a093006 472/**
d016dc42 473 * omap_correct_data_bch_sw - Decode received data and correct errors
4a093006
AB
474 * @mtd: MTD device structure
475 * @data: page data
476 * @read_ecc: ecc read from nand flash
477 * @calc_ecc: ecc read from HW ECC registers
478 */
d016dc42 479static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
4a093006
AB
480 u_char *read_ecc, u_char *calc_ecc)
481{
482 int i, count;
483 /* cannot correct more than 8 errors */
484 unsigned int errloc[8];
485 struct nand_chip *chip = mtd->priv;
9233279f 486 struct omap_nand_info *info = chip->priv;
4a093006 487
9233279f 488 count = decode_bch(info->control, NULL, 512, read_ecc, calc_ecc,
489 NULL, errloc);
4a093006
AB
490 if (count > 0) {
491 /* correct errors */
492 for (i = 0; i < count; i++) {
493 /* correct data only, not ecc bytes */
494 if (errloc[i] < 8*512)
495 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
496 printf("corrected bitflip %u\n", errloc[i]);
497#ifdef DEBUG
498 puts("read_ecc: ");
499 /*
500 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
501 * here!
502 */
503 for (i = 0; i < 13; i++)
504 printf("%02x ", read_ecc[i]);
505 puts("\n");
506 puts("calc_ecc: ");
507 for (i = 0; i < 13; i++)
508 printf("%02x ", calc_ecc[i]);
509 puts("\n");
510#endif
511 }
512 } else if (count < 0) {
513 puts("ecc unrecoverable error\n");
514 }
515 return count;
516}
517
518/**
519 * omap_free_bch - Release BCH ecc resources
520 * @mtd: MTD device structure
521 */
522static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
523{
524 struct nand_chip *chip = mtd->priv;
9233279f 525 struct omap_nand_info *info = chip->priv;
4a093006 526
9233279f 527 if (info->control) {
528 free_bch(info->control);
529 info->control = NULL;
4a093006
AB
530 }
531}
d016dc42 532#endif /* CONFIG_BCH */
533
534/**
535 * omap_select_ecc_scheme - configures driver for particular ecc-scheme
536 * @nand: NAND chip device structure
537 * @ecc_scheme: ecc scheme to configure
538 * @pagesize: number of main-area bytes per page of NAND device
539 * @oobsize: number of OOB/spare bytes per page of NAND device
540 */
541static int omap_select_ecc_scheme(struct nand_chip *nand,
542 enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
9233279f 543 struct omap_nand_info *info = nand->priv;
eb237a15 544 struct nand_ecclayout *ecclayout = &omap_ecclayout;
d016dc42 545 int eccsteps = pagesize / SECTOR_BYTES;
546 int i;
547
548 switch (ecc_scheme) {
549 case OMAP_ECC_HAM1_CODE_SW:
550 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
551 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
552 * initialized in nand_scan_tail(), so just set ecc.mode */
9233279f 553 info->control = NULL;
d016dc42 554 nand->ecc.mode = NAND_ECC_SOFT;
555 nand->ecc.layout = NULL;
2528460c 556 nand->ecc.size = 0;
d016dc42 557 break;
558
559 case OMAP_ECC_HAM1_CODE_HW:
560 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
561 /* check ecc-scheme requirements before updating ecc info */
562 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
563 printf("nand: error: insufficient OOB: require=%d\n", (
564 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
565 return -EINVAL;
566 }
9233279f 567 info->control = NULL;
d016dc42 568 /* populate ecc specific fields */
fcd05245 569 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
d016dc42 570 nand->ecc.mode = NAND_ECC_HW;
571 nand->ecc.strength = 1;
572 nand->ecc.size = SECTOR_BYTES;
573 nand->ecc.bytes = 3;
574 nand->ecc.hwctl = omap_enable_hwecc;
575 nand->ecc.correct = omap_correct_data;
576 nand->ecc.calculate = omap_calculate_ecc;
577 /* define ecc-layout */
578 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
69cc97f8 579 for (i = 0; i < ecclayout->eccbytes; i++) {
580 if (nand->options & NAND_BUSWIDTH_16)
581 ecclayout->eccpos[i] = i + 2;
582 else
583 ecclayout->eccpos[i] = i + 1;
584 }
d016dc42 585 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
586 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
587 BADBLOCK_MARKER_LENGTH;
d016dc42 588 break;
589
590 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
591#ifdef CONFIG_BCH
592 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
593 /* check ecc-scheme requirements before updating ecc info */
594 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
595 printf("nand: error: insufficient OOB: require=%d\n", (
596 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
597 return -EINVAL;
598 }
599 /* check if BCH S/W library can be used for error detection */
9233279f 600 info->control = init_bch(13, 8, 0x201b);
601 if (!info->control) {
d016dc42 602 printf("nand: error: could not init_bch()\n");
603 return -ENODEV;
604 }
d016dc42 605 /* populate ecc specific fields */
fcd05245 606 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
d016dc42 607 nand->ecc.mode = NAND_ECC_HW;
608 nand->ecc.strength = 8;
609 nand->ecc.size = SECTOR_BYTES;
610 nand->ecc.bytes = 13;
f5f1f614 611 nand->ecc.hwctl = omap_enable_hwecc;
d016dc42 612 nand->ecc.correct = omap_correct_data_bch_sw;
71a7f956 613 nand->ecc.calculate = omap_calculate_ecc;
d016dc42 614 /* define ecc-layout */
615 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
616 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
617 for (i = 1; i < ecclayout->eccbytes; i++) {
618 if (i % nand->ecc.bytes)
619 ecclayout->eccpos[i] =
620 ecclayout->eccpos[i - 1] + 1;
621 else
622 ecclayout->eccpos[i] =
623 ecclayout->eccpos[i - 1] + 2;
624 }
625 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
626 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
627 BADBLOCK_MARKER_LENGTH;
d016dc42 628 break;
629#else
630 printf("nand: error: CONFIG_BCH required for ECC\n");
631 return -EINVAL;
632#endif
633
634 case OMAP_ECC_BCH8_CODE_HW:
635#ifdef CONFIG_NAND_OMAP_ELM
636 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
637 /* check ecc-scheme requirements before updating ecc info */
638 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
639 printf("nand: error: insufficient OOB: require=%d\n", (
640 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
641 return -EINVAL;
642 }
643 /* intialize ELM for ECC error detection */
644 elm_init();
9233279f 645 info->control = NULL;
d016dc42 646 /* populate ecc specific fields */
fcd05245 647 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
d016dc42 648 nand->ecc.mode = NAND_ECC_HW;
649 nand->ecc.strength = 8;
650 nand->ecc.size = SECTOR_BYTES;
651 nand->ecc.bytes = 14;
f5f1f614 652 nand->ecc.hwctl = omap_enable_hwecc;
d016dc42 653 nand->ecc.correct = omap_correct_data_bch;
71a7f956 654 nand->ecc.calculate = omap_calculate_ecc;
d016dc42 655 nand->ecc.read_page = omap_read_page_bch;
656 /* define ecc-layout */
657 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
658 for (i = 0; i < ecclayout->eccbytes; i++)
659 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
660 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
661 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
662 BADBLOCK_MARKER_LENGTH;
d016dc42 663 break;
664#else
665 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
666 return -EINVAL;
667#endif
668
669 default:
670 debug("nand: error: ecc scheme not enabled or supported\n");
671 return -EINVAL;
672 }
eb237a15
NK
673
674 /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
675 if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
676 nand->ecc.layout = ecclayout;
677
9233279f 678 info->ecc_scheme = ecc_scheme;
d016dc42 679 return 0;
680}
4a093006 681
12c2f1ee 682#ifndef CONFIG_SPL_BUILD
12201a13 683/*
da634ae3
AB
684 * omap_nand_switch_ecc - switch the ECC operation between different engines
685 * (h/w and s/w) and different algorithms (hamming and BCHx)
12201a13 686 *
da634ae3
AB
687 * @hardware - true if one of the HW engines should be used
688 * @eccstrength - the number of bits that could be corrected
689 * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
12201a13 690 */
d016dc42 691int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
12201a13
DB
692{
693 struct nand_chip *nand;
694 struct mtd_info *mtd;
d016dc42 695 int err = 0;
12201a13
DB
696
697 if (nand_curr_device < 0 ||
698 nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
699 !nand_info[nand_curr_device].name) {
d016dc42 700 printf("nand: error: no NAND devices found\n");
701 return -ENODEV;
12201a13
DB
702 }
703
704 mtd = &nand_info[nand_curr_device];
705 nand = mtd->priv;
12201a13 706 nand->options |= NAND_OWN_BUFFERS;
13fbde6e 707 nand->options &= ~NAND_SUBPAGE_READ;
12201a13 708 /* Setup the ecc configurations again */
da634ae3
AB
709 if (hardware) {
710 if (eccstrength == 1) {
d016dc42 711 err = omap_select_ecc_scheme(nand,
712 OMAP_ECC_HAM1_CODE_HW,
713 mtd->writesize, mtd->oobsize);
714 } else if (eccstrength == 8) {
715 err = omap_select_ecc_scheme(nand,
716 OMAP_ECC_BCH8_CODE_HW,
717 mtd->writesize, mtd->oobsize);
718 } else {
719 printf("nand: error: unsupported ECC scheme\n");
720 return -EINVAL;
da634ae3 721 }
12201a13 722 } else {
d016dc42 723 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
724 mtd->writesize, mtd->oobsize);
12201a13
DB
725 }
726
727 /* Update NAND handling after ECC mode switch */
d016dc42 728 if (!err)
729 err = nand_scan_tail(mtd);
730 return err;
12201a13 731}
12c2f1ee 732#endif /* CONFIG_SPL_BUILD */
12201a13
DB
733
734/*
735 * Board-specific NAND initialization. The following members of the
736 * argument are board-specific:
737 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
738 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
739 * - cmd_ctrl: hardwarespecific function for accesing control-lines
740 * - waitfunc: hardwarespecific function for accesing device ready/busy line
741 * - ecc.hwctl: function to enable (reset) hardware ecc generator
742 * - ecc.mode: mode of ecc, see defines
743 * - chip_delay: chip dependent delay for transfering data from array to
744 * read regs (tR)
745 * - options: various chip options. They can partly be set to inform
746 * nand_scan about special functionality. See the defines for further
747 * explanation
748 */
749int board_nand_init(struct nand_chip *nand)
750{
751 int32_t gpmc_config = 0;
752 cs = 0;
d016dc42 753 int err = 0;
12201a13
DB
754 /*
755 * xloader/Uboot's gpmc configuration would have configured GPMC for
756 * nand type of memory. The following logic scans and latches on to the
757 * first CS with NAND type memory.
758 * TBD: need to make this logic generic to handle multiple CS NAND
759 * devices.
760 */
761 while (cs < GPMC_MAX_CS) {
12201a13 762 /* Check if NAND type is set */
89411352 763 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
12201a13
DB
764 /* Found it!! */
765 break;
766 }
767 cs++;
768 }
769 if (cs >= GPMC_MAX_CS) {
d016dc42 770 printf("nand: error: Unable to find NAND settings in "
12201a13
DB
771 "GPMC Configuration - quitting\n");
772 return -ENODEV;
773 }
774
89411352 775 gpmc_config = readl(&gpmc_cfg->config);
12201a13
DB
776 /* Disable Write protect */
777 gpmc_config |= 0x10;
89411352 778 writel(gpmc_config, &gpmc_cfg->config);
12201a13 779
89411352
DB
780 nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
781 nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
9233279f 782 nand->priv = &omap_nand_info;
d016dc42 783 nand->cmd_ctrl = omap_nand_hwcontrol;
784 nand->options |= NAND_NO_PADDING | NAND_CACHEPRG;
12201a13 785 nand->chip_delay = 100;
d016dc42 786 nand->ecc.layout = &omap_ecclayout;
787
b80a6603 788 /* configure driver and controller based on NAND device bus-width */
789 gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
790#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
791 nand->options |= NAND_BUSWIDTH_16;
792 writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
793#else
794 nand->options &= ~NAND_BUSWIDTH_16;
795 writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
796#endif
d016dc42 797 /* select ECC scheme */
3f719069 798#if defined(CONFIG_NAND_OMAP_ECCSCHEME)
799 err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
d016dc42 800 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
3f719069 801#else
802 /* pagesize and oobsize are not required to configure sw ecc-scheme */
d016dc42 803 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
804 0, 0);
c3754e9c 805#endif
d016dc42 806 if (err)
807 return err;
12c2f1ee 808
ff62fb4c 809#ifdef CONFIG_SPL_BUILD
12c2f1ee
SS
810 if (nand->options & NAND_BUSWIDTH_16)
811 nand->read_buf = nand_read_buf16;
812 else
813 nand->read_buf = nand_read_buf;
814 nand->dev_ready = omap_spl_dev_ready;
815#endif
12201a13
DB
816
817 return 0;
818}
This page took 0.268348 seconds and 4 git commands to generate.