]> Git Repo - J-u-boot.git/blame - drivers/usb/host/xhci-mem.c
rockchip: block: simplify rkmtd driver
[J-u-boot.git] / drivers / usb / host / xhci-mem.c
CommitLineData
83d290c5 1// SPDX-License-Identifier: GPL-2.0+
5853e133
VG
2/*
3 * USB HOST XHCI Controller stack
4 *
5 * Based on xHCI host controller driver in linux-kernel
6 * by Sarah Sharp.
7 *
8 * Copyright (C) 2008 Intel Corp.
9 * Author: Sarah Sharp
10 *
11 * Copyright (C) 2013 Samsung Electronics Co.Ltd
12 * Authors: Vivek Gautam <[email protected]>
13 * Vikas Sajjan <[email protected]>
5853e133
VG
14 */
15
1eb69ae4 16#include <cpu_func.h>
a5762fe0 17#include <dm.h>
f7ae49fc 18#include <log.h>
5853e133
VG
19#include <asm/byteorder.h>
20#include <usb.h>
21#include <malloc.h>
22#include <asm/cache.h>
eb41d8a1 23#include <linux/bug.h>
5d97dff0 24#include <linux/errno.h>
5853e133 25
1708a123 26#include <usb/xhci.h>
5853e133
VG
27
28#define CACHELINE_SIZE CONFIG_SYS_CACHELINE_SIZE
29/**
30 * flushes the address passed till the length
31 *
32 * @param addr pointer to memory region to be flushed
33 * @param len the length of the cache line to be flushed
185f812c 34 * Return: none
5853e133 35 */
421a5a0c 36void xhci_flush_cache(uintptr_t addr, u32 len)
5853e133
VG
37{
38 BUG_ON((void *)addr == NULL || len == 0);
39
40 flush_dcache_range(addr & ~(CACHELINE_SIZE - 1),
41 ALIGN(addr + len, CACHELINE_SIZE));
42}
43
44/**
45 * invalidates the address passed till the length
46 *
47 * @param addr pointer to memory region to be invalidates
48 * @param len the length of the cache line to be invalidated
185f812c 49 * Return: none
5853e133 50 */
421a5a0c 51void xhci_inval_cache(uintptr_t addr, u32 len)
5853e133
VG
52{
53 BUG_ON((void *)addr == NULL || len == 0);
54
55 invalidate_dcache_range(addr & ~(CACHELINE_SIZE - 1),
56 ALIGN(addr + len, CACHELINE_SIZE));
57}
58
5853e133
VG
59/**
60 * frees the "segment" pointer passed
61 *
62 * @param ptr pointer to "segement" to be freed
185f812c 63 * Return: none
5853e133 64 */
ba1efb3d 65static void xhci_segment_free(struct xhci_ctrl *ctrl, struct xhci_segment *seg)
5853e133 66{
ba1efb3d 67 xhci_dma_unmap(ctrl, seg->dma, SEGMENT_SIZE);
5853e133
VG
68 free(seg->trbs);
69 seg->trbs = NULL;
70
71 free(seg);
72}
73
74/**
75 * frees the "ring" pointer passed
76 *
77 * @param ptr pointer to "ring" to be freed
185f812c 78 * Return: none
5853e133 79 */
ba1efb3d 80static void xhci_ring_free(struct xhci_ctrl *ctrl, struct xhci_ring *ring)
5853e133
VG
81{
82 struct xhci_segment *seg;
83 struct xhci_segment *first_seg;
84
85 BUG_ON(!ring);
86
87 first_seg = ring->first_seg;
88 seg = first_seg->next;
89 while (seg != first_seg) {
90 struct xhci_segment *next = seg->next;
ba1efb3d 91 xhci_segment_free(ctrl, seg);
5853e133
VG
92 seg = next;
93 }
ba1efb3d 94 xhci_segment_free(ctrl, first_seg);
5853e133
VG
95
96 free(ring);
97}
98
209b98de
BM
99/**
100 * Free the scratchpad buffer array and scratchpad buffers
101 *
102 * @ctrl host controller data structure
185f812c 103 * Return: none
209b98de
BM
104 */
105static void xhci_scratchpad_free(struct xhci_ctrl *ctrl)
106{
ba1efb3d
MK
107 struct xhci_hccr *hccr = ctrl->hccr;
108 int num_sp;
109
209b98de
BM
110 if (!ctrl->scratchpad)
111 return;
112
ba1efb3d
MK
113 num_sp = HCS_MAX_SCRATCHPAD(xhci_readl(&hccr->cr_hcsparams2));
114 xhci_dma_unmap(ctrl, ctrl->scratchpad->sp_array[0],
115 num_sp * ctrl->page_size);
116 xhci_dma_unmap(ctrl, ctrl->dcbaa->dev_context_ptrs[0],
117 num_sp * sizeof(u64));
209b98de
BM
118 ctrl->dcbaa->dev_context_ptrs[0] = 0;
119
ba1efb3d 120 free(ctrl->scratchpad->scratchpad);
209b98de
BM
121 free(ctrl->scratchpad->sp_array);
122 free(ctrl->scratchpad);
123 ctrl->scratchpad = NULL;
124}
125
5853e133
VG
126/**
127 * frees the "xhci_container_ctx" pointer passed
128 *
129 * @param ptr pointer to "xhci_container_ctx" to be freed
185f812c 130 * Return: none
5853e133 131 */
ba1efb3d
MK
132static void xhci_free_container_ctx(struct xhci_ctrl *ctrl,
133 struct xhci_container_ctx *ctx)
5853e133 134{
ba1efb3d 135 xhci_dma_unmap(ctrl, ctx->dma, ctx->size);
5853e133
VG
136 free(ctx->bytes);
137 free(ctx);
138}
139
140/**
141 * frees the virtual devices for "xhci_ctrl" pointer passed
142 *
143 * @param ptr pointer to "xhci_ctrl" whose virtual devices are to be freed
185f812c 144 * Return: none
5853e133
VG
145 */
146static void xhci_free_virt_devices(struct xhci_ctrl *ctrl)
147{
148 int i;
149 int slot_id;
150 struct xhci_virt_device *virt_dev;
151
152 /*
153 * refactored here to loop through all virt_dev
154 * Slot ID 0 is reserved
155 */
156 for (slot_id = 0; slot_id < MAX_HC_SLOTS; slot_id++) {
157 virt_dev = ctrl->devs[slot_id];
158 if (!virt_dev)
159 continue;
160
161 ctrl->dcbaa->dev_context_ptrs[slot_id] = 0;
162
163 for (i = 0; i < 31; ++i)
164 if (virt_dev->eps[i].ring)
ba1efb3d 165 xhci_ring_free(ctrl, virt_dev->eps[i].ring);
5853e133
VG
166
167 if (virt_dev->in_ctx)
ba1efb3d 168 xhci_free_container_ctx(ctrl, virt_dev->in_ctx);
5853e133 169 if (virt_dev->out_ctx)
ba1efb3d 170 xhci_free_container_ctx(ctrl, virt_dev->out_ctx);
5853e133
VG
171
172 free(virt_dev);
173 /* make sure we are pointing to NULL */
174 ctrl->devs[slot_id] = NULL;
175 }
176}
177
178/**
179 * frees all the memory allocated
180 *
181 * @param ptr pointer to "xhci_ctrl" to be cleaned up
185f812c 182 * Return: none
5853e133
VG
183 */
184void xhci_cleanup(struct xhci_ctrl *ctrl)
185{
ba1efb3d
MK
186 xhci_ring_free(ctrl, ctrl->event_ring);
187 xhci_ring_free(ctrl, ctrl->cmd_ring);
209b98de 188 xhci_scratchpad_free(ctrl);
5853e133 189 xhci_free_virt_devices(ctrl);
ba1efb3d
MK
190 xhci_dma_unmap(ctrl, ctrl->erst.erst_dma_addr,
191 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS);
5853e133 192 free(ctrl->erst.entries);
ba1efb3d
MK
193 xhci_dma_unmap(ctrl, ctrl->dcbaa->dma,
194 sizeof(struct xhci_device_context_array));
5853e133
VG
195 free(ctrl->dcbaa);
196 memset(ctrl, '\0', sizeof(struct xhci_ctrl));
197}
198
199/**
200 * Malloc the aligned memory
201 *
202 * @param size size of memory to be allocated
185f812c 203 * Return: allocates the memory and returns the aligned pointer
5853e133
VG
204 */
205static void *xhci_malloc(unsigned int size)
206{
207 void *ptr;
208 size_t cacheline_size = max(XHCI_ALIGNMENT, CACHELINE_SIZE);
209
210 ptr = memalign(cacheline_size, ALIGN(size, cacheline_size));
211 BUG_ON(!ptr);
212 memset(ptr, '\0', size);
213
421a5a0c 214 xhci_flush_cache((uintptr_t)ptr, size);
5853e133
VG
215
216 return ptr;
217}
218
219/**
220 * Make the prev segment point to the next segment.
221 * Change the last TRB in the prev segment to be a Link TRB which points to the
222 * address of the next segment. The caller needs to set any Link TRB
223 * related flags, such as End TRB, Toggle Cycle, and no snoop.
224 *
225 * @param prev pointer to the previous segment
226 * @param next pointer to the next segment
227 * @param link_trbs flag to indicate whether to link the trbs or NOT
185f812c 228 * Return: none
5853e133 229 */
1a474559
NSJ
230static void xhci_link_segments(struct xhci_ctrl *ctrl, struct xhci_segment *prev,
231 struct xhci_segment *next, bool link_trbs)
5853e133
VG
232{
233 u32 val;
5853e133
VG
234
235 if (!prev || !next)
236 return;
237 prev->next = next;
238 if (link_trbs) {
543eb12e 239 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
ba1efb3d 240 cpu_to_le64(next->dma);
5853e133
VG
241
242 /*
243 * Set the last TRB in the segment to
244 * have a TRB type ID of Link TRB
245 */
246 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
247 val &= ~TRB_TYPE_BITMASK;
a826d76f 248 val |= TRB_TYPE(TRB_LINK);
5853e133
VG
249 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
250 }
251}
252
253/**
254 * Initialises the Ring's enqueue,dequeue,enq_seg pointers
255 *
256 * @param ring pointer to the RING to be intialised
185f812c 257 * Return: none
5853e133
VG
258 */
259static void xhci_initialize_ring_info(struct xhci_ring *ring)
260{
261 /*
262 * The ring is empty, so the enqueue pointer == dequeue pointer
263 */
264 ring->enqueue = ring->first_seg->trbs;
265 ring->enq_seg = ring->first_seg;
266 ring->dequeue = ring->enqueue;
267 ring->deq_seg = ring->first_seg;
268
269 /*
270 * The ring is initialized to 0. The producer must write 1 to the
271 * cycle bit to handover ownership of the TRB, so PCS = 1.
272 * The consumer must compare CCS to the cycle bit to
273 * check ownership, so CCS = 1.
274 */
275 ring->cycle_state = 1;
276}
277
278/**
279 * Allocates a generic ring segment from the ring pool, sets the dma address,
280 * initializes the segment to zero, and sets the private next pointer to NULL.
281 * Section 4.11.1.1:
282 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
283 *
284 * @param none
185f812c 285 * Return: pointer to the newly allocated SEGMENT
5853e133 286 */
ba1efb3d 287static struct xhci_segment *xhci_segment_alloc(struct xhci_ctrl *ctrl)
5853e133
VG
288{
289 struct xhci_segment *seg;
290
3fade886 291 seg = malloc(sizeof(struct xhci_segment));
5853e133
VG
292 BUG_ON(!seg);
293
3fade886 294 seg->trbs = xhci_malloc(SEGMENT_SIZE);
ba1efb3d 295 seg->dma = xhci_dma_map(ctrl, seg->trbs, SEGMENT_SIZE);
5853e133
VG
296
297 seg->next = NULL;
298
299 return seg;
300}
301
302/**
303 * Create a new ring with zero or more segments.
304 * TODO: current code only uses one-time-allocated single-segment rings
305 * of 1KB anyway, so we might as well get rid of all the segment and
306 * linking code (and maybe increase the size a bit, e.g. 4KB).
307 *
308 *
309 * Link each segment together into a ring.
310 * Set the end flag and the cycle toggle bit on the last segment.
311 * See section 4.9.2 and figures 15 and 16 of XHCI spec rev1.0.
312 *
313 * @param num_segs number of segments in the ring
314 * @param link_trbs flag to indicate whether to link the trbs or NOT
185f812c 315 * Return: pointer to the newly created RING
5853e133 316 */
1a474559
NSJ
317struct xhci_ring *xhci_ring_alloc(struct xhci_ctrl *ctrl, unsigned int num_segs,
318 bool link_trbs)
5853e133
VG
319{
320 struct xhci_ring *ring;
321 struct xhci_segment *prev;
322
3fade886 323 ring = malloc(sizeof(struct xhci_ring));
5853e133
VG
324 BUG_ON(!ring);
325
326 if (num_segs == 0)
327 return ring;
328
ba1efb3d 329 ring->first_seg = xhci_segment_alloc(ctrl);
5853e133
VG
330 BUG_ON(!ring->first_seg);
331
332 num_segs--;
333
334 prev = ring->first_seg;
335 while (num_segs > 0) {
336 struct xhci_segment *next;
337
ba1efb3d 338 next = xhci_segment_alloc(ctrl);
5853e133
VG
339 BUG_ON(!next);
340
1a474559 341 xhci_link_segments(ctrl, prev, next, link_trbs);
5853e133
VG
342
343 prev = next;
344 num_segs--;
345 }
1a474559 346 xhci_link_segments(ctrl, prev, ring->first_seg, link_trbs);
5853e133
VG
347 if (link_trbs) {
348 /* See section 4.9.2.1 and 6.4.4.1 */
349 prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
350 cpu_to_le32(LINK_TOGGLE);
351 }
352 xhci_initialize_ring_info(ring);
353
354 return ring;
355}
356
209b98de
BM
357/**
358 * Set up the scratchpad buffer array and scratchpad buffers
359 *
360 * @ctrl host controller data structure
185f812c 361 * Return: -ENOMEM if buffer allocation fails, 0 on success
209b98de
BM
362 */
363static int xhci_scratchpad_alloc(struct xhci_ctrl *ctrl)
364{
365 struct xhci_hccr *hccr = ctrl->hccr;
366 struct xhci_hcor *hcor = ctrl->hcor;
367 struct xhci_scratchpad *scratchpad;
1a474559 368 uint64_t val_64;
209b98de
BM
369 int num_sp;
370 uint32_t page_size;
371 void *buf;
372 int i;
373
374 num_sp = HCS_MAX_SCRATCHPAD(xhci_readl(&hccr->cr_hcsparams2));
375 if (!num_sp)
376 return 0;
377
378 scratchpad = malloc(sizeof(*scratchpad));
379 if (!scratchpad)
380 goto fail_sp;
381 ctrl->scratchpad = scratchpad;
382
383 scratchpad->sp_array = xhci_malloc(num_sp * sizeof(u64));
384 if (!scratchpad->sp_array)
385 goto fail_sp2;
1a474559 386
ba1efb3d
MK
387 val_64 = xhci_dma_map(ctrl, scratchpad->sp_array,
388 num_sp * sizeof(u64));
1a474559 389 ctrl->dcbaa->dev_context_ptrs[0] = cpu_to_le64(val_64);
209b98de 390
8c6cc71b
YL
391 xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[0],
392 sizeof(ctrl->dcbaa->dev_context_ptrs[0]));
393
209b98de
BM
394 page_size = xhci_readl(&hcor->or_pagesize) & 0xffff;
395 for (i = 0; i < 16; i++) {
396 if ((0x1 & page_size) != 0)
397 break;
398 page_size = page_size >> 1;
399 }
400 BUG_ON(i == 16);
401
ba1efb3d
MK
402 ctrl->page_size = 1 << (i + 12);
403 buf = memalign(ctrl->page_size, num_sp * ctrl->page_size);
209b98de
BM
404 if (!buf)
405 goto fail_sp3;
ba1efb3d
MK
406 memset(buf, '\0', num_sp * ctrl->page_size);
407 xhci_flush_cache((uintptr_t)buf, num_sp * ctrl->page_size);
209b98de 408
ba1efb3d
MK
409 scratchpad->scratchpad = buf;
410 val_64 = xhci_dma_map(ctrl, buf, num_sp * ctrl->page_size);
209b98de 411 for (i = 0; i < num_sp; i++) {
1a474559 412 scratchpad->sp_array[i] = cpu_to_le64(val_64);
ba1efb3d 413 val_64 += ctrl->page_size;
209b98de
BM
414 }
415
61293f51
SN
416 xhci_flush_cache((uintptr_t)scratchpad->sp_array,
417 sizeof(u64) * num_sp);
418
209b98de
BM
419 return 0;
420
421fail_sp3:
422 free(scratchpad->sp_array);
423
424fail_sp2:
425 free(scratchpad);
426 ctrl->scratchpad = NULL;
427
428fail_sp:
429 return -ENOMEM;
430}
431
5853e133
VG
432/**
433 * Allocates the Container context
434 *
435 * @param ctrl Host controller data structure
436 * @param type type of XHCI Container Context
185f812c 437 * Return: NULL if failed else pointer to the context on success
5853e133
VG
438 */
439static struct xhci_container_ctx
440 *xhci_alloc_container_ctx(struct xhci_ctrl *ctrl, int type)
441{
442 struct xhci_container_ctx *ctx;
443
3fade886 444 ctx = malloc(sizeof(struct xhci_container_ctx));
5853e133
VG
445 BUG_ON(!ctx);
446
447 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
448 ctx->type = type;
449 ctx->size = (MAX_EP_CTX_NUM + 1) *
cf868772 450 CTX_SIZE(xhci_readl(&ctrl->hccr->cr_hccparams));
5853e133 451 if (type == XHCI_CTX_TYPE_INPUT)
cf868772 452 ctx->size += CTX_SIZE(xhci_readl(&ctrl->hccr->cr_hccparams));
5853e133 453
3fade886 454 ctx->bytes = xhci_malloc(ctx->size);
ba1efb3d 455 ctx->dma = xhci_dma_map(ctrl, ctx->bytes, ctx->size);
5853e133
VG
456
457 return ctx;
458}
459
460/**
461 * Allocating virtual device
462 *
463 * @param udev pointer to USB deivce structure
185f812c 464 * Return: 0 on success else -1 on failure
5853e133 465 */
7e0c5ee8 466int xhci_alloc_virt_device(struct xhci_ctrl *ctrl, unsigned int slot_id)
5853e133
VG
467{
468 u64 byte_64 = 0;
5853e133 469 struct xhci_virt_device *virt_dev;
5853e133
VG
470
471 /* Slot ID 0 is reserved */
472 if (ctrl->devs[slot_id]) {
473 printf("Virt dev for slot[%d] already allocated\n", slot_id);
474 return -EEXIST;
475 }
476
3fade886 477 ctrl->devs[slot_id] = malloc(sizeof(struct xhci_virt_device));
5853e133
VG
478
479 if (!ctrl->devs[slot_id]) {
480 puts("Failed to allocate virtual device\n");
481 return -ENOMEM;
482 }
483
484 memset(ctrl->devs[slot_id], 0, sizeof(struct xhci_virt_device));
485 virt_dev = ctrl->devs[slot_id];
486
487 /* Allocate the (output) device context that will be used in the HC. */
488 virt_dev->out_ctx = xhci_alloc_container_ctx(ctrl,
489 XHCI_CTX_TYPE_DEVICE);
490 if (!virt_dev->out_ctx) {
491 puts("Failed to allocate out context for virt dev\n");
492 return -ENOMEM;
493 }
494
495 /* Allocate the (input) device context for address device command */
496 virt_dev->in_ctx = xhci_alloc_container_ctx(ctrl,
497 XHCI_CTX_TYPE_INPUT);
498 if (!virt_dev->in_ctx) {
499 puts("Failed to allocate in context for virt dev\n");
500 return -ENOMEM;
501 }
502
503 /* Allocate endpoint 0 ring */
1a474559 504 virt_dev->eps[0].ring = xhci_ring_alloc(ctrl, 1, true);
5853e133 505
ba1efb3d 506 byte_64 = virt_dev->out_ctx->dma;
5853e133
VG
507
508 /* Point to output device context in dcbaa. */
543eb12e 509 ctrl->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(byte_64);
5853e133 510
421a5a0c
ST
511 xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[slot_id],
512 sizeof(__le64));
5853e133
VG
513 return 0;
514}
515
516/**
517 * Allocates the necessary data structures
518 * for XHCI host controller
519 *
520 * @param ctrl Host controller data structure
521 * @param hccr pointer to HOST Controller Control Registers
522 * @param hcor pointer to HOST Controller Operational Registers
185f812c 523 * Return: 0 if successful else -1 on failure
5853e133
VG
524 */
525int xhci_mem_init(struct xhci_ctrl *ctrl, struct xhci_hccr *hccr,
526 struct xhci_hcor *hcor)
527{
528 uint64_t val_64;
529 uint64_t trb_64;
530 uint32_t val;
b5152a65 531 uint64_t deq;
5853e133
VG
532 int i;
533 struct xhci_segment *seg;
534
535 /* DCBAA initialization */
3fade886 536 ctrl->dcbaa = xhci_malloc(sizeof(struct xhci_device_context_array));
5853e133
VG
537 if (ctrl->dcbaa == NULL) {
538 puts("unable to allocate DCBA\n");
539 return -ENOMEM;
540 }
541
ba1efb3d
MK
542 ctrl->dcbaa->dma = xhci_dma_map(ctrl, ctrl->dcbaa,
543 sizeof(struct xhci_device_context_array));
5853e133 544 /* Set the pointer in DCBAA register */
ba1efb3d 545 xhci_writeq(&hcor->or_dcbaap, ctrl->dcbaa->dma);
5853e133
VG
546
547 /* Command ring control pointer register initialization */
1a474559 548 ctrl->cmd_ring = xhci_ring_alloc(ctrl, 1, true);
5853e133
VG
549
550 /* Set the address in the Command Ring Control register */
ba1efb3d 551 trb_64 = ctrl->cmd_ring->first_seg->dma;
5853e133
VG
552 val_64 = xhci_readq(&hcor->or_crcr);
553 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
554 (trb_64 & (u64) ~CMD_RING_RSVD_BITS) |
555 ctrl->cmd_ring->cycle_state;
556 xhci_writeq(&hcor->or_crcr, val_64);
557
558 /* write the address of db register */
559 val = xhci_readl(&hccr->cr_dboff);
560 val &= DBOFF_MASK;
561 ctrl->dba = (struct xhci_doorbell_array *)((char *)hccr + val);
562
563 /* write the address of runtime register */
564 val = xhci_readl(&hccr->cr_rtsoff);
565 val &= RTSOFF_MASK;
566 ctrl->run_regs = (struct xhci_run_regs *)((char *)hccr + val);
567
568 /* writting the address of ir_set structure */
569 ctrl->ir_set = &ctrl->run_regs->ir_set[0];
570
571 /* Event ring does not maintain link TRB */
1a474559 572 ctrl->event_ring = xhci_ring_alloc(ctrl, ERST_NUM_SEGS, false);
3fade886
HS
573 ctrl->erst.entries = xhci_malloc(sizeof(struct xhci_erst_entry) *
574 ERST_NUM_SEGS);
ba1efb3d
MK
575 ctrl->erst.erst_dma_addr = xhci_dma_map(ctrl, ctrl->erst.entries,
576 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS);
5853e133
VG
577
578 ctrl->erst.num_entries = ERST_NUM_SEGS;
579
580 for (val = 0, seg = ctrl->event_ring->first_seg;
581 val < ERST_NUM_SEGS;
582 val++) {
5853e133 583 struct xhci_erst_entry *entry = &ctrl->erst.entries[val];
ba1efb3d 584 trb_64 = seg->dma;
61a1acb5 585 entry->seg_addr = cpu_to_le64(trb_64);
5853e133
VG
586 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
587 entry->rsvd = 0;
588 seg = seg->next;
589 }
421a5a0c
ST
590 xhci_flush_cache((uintptr_t)ctrl->erst.entries,
591 ERST_NUM_SEGS * sizeof(struct xhci_erst_entry));
5853e133 592
ba1efb3d
MK
593 deq = xhci_trb_virt_to_dma(ctrl->event_ring->deq_seg,
594 ctrl->event_ring->dequeue);
5853e133
VG
595
596 /* Update HC event ring dequeue pointer */
597 xhci_writeq(&ctrl->ir_set->erst_dequeue,
598 (u64)deq & (u64)~ERST_PTR_MASK);
599
600 /* set ERST count with the number of entries in the segment table */
601 val = xhci_readl(&ctrl->ir_set->erst_size);
602 val &= ERST_SIZE_MASK;
603 val |= ERST_NUM_SEGS;
604 xhci_writel(&ctrl->ir_set->erst_size, val);
605
606 /* this is the event ring segment table pointer */
607 val_64 = xhci_readq(&ctrl->ir_set->erst_base);
608 val_64 &= ERST_PTR_MASK;
ba1efb3d 609 val_64 |= ctrl->erst.erst_dma_addr & ~ERST_PTR_MASK;
5853e133
VG
610
611 xhci_writeq(&ctrl->ir_set->erst_base, val_64);
612
209b98de
BM
613 /* set up the scratchpad buffer array and scratchpad buffers */
614 xhci_scratchpad_alloc(ctrl);
615
5853e133
VG
616 /* initializing the virtual devices to NULL */
617 for (i = 0; i < MAX_HC_SLOTS; ++i)
618 ctrl->devs[i] = NULL;
619
620 /*
621 * Just Zero'ing this register completely,
622 * or some spurious Device Notification Events
623 * might screw things here.
624 */
625 xhci_writel(&hcor->or_dnctrl, 0x0);
626
627 return 0;
628}
629
630/**
631 * Give the input control context for the passed container context
632 *
633 * @param ctx pointer to the context
185f812c 634 * Return: pointer to the Input control context data
5853e133
VG
635 */
636struct xhci_input_control_ctx
637 *xhci_get_input_control_ctx(struct xhci_container_ctx *ctx)
638{
639 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
640 return (struct xhci_input_control_ctx *)ctx->bytes;
641}
642
643/**
644 * Give the slot context for the passed container context
645 *
646 * @param ctrl Host controller data structure
647 * @param ctx pointer to the context
185f812c 648 * Return: pointer to the slot control context data
5853e133
VG
649 */
650struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_ctrl *ctrl,
651 struct xhci_container_ctx *ctx)
652{
653 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
654 return (struct xhci_slot_ctx *)ctx->bytes;
655
656 return (struct xhci_slot_ctx *)
cf868772 657 (ctx->bytes + CTX_SIZE(xhci_readl(&ctrl->hccr->cr_hccparams)));
5853e133
VG
658}
659
660/**
661 * Gets the EP context from based on the ep_index
662 *
663 * @param ctrl Host controller data structure
664 * @param ctx context container
665 * @param ep_index index of the endpoint
185f812c 666 * Return: pointer to the End point context
5853e133
VG
667 */
668struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_ctrl *ctrl,
669 struct xhci_container_ctx *ctx,
670 unsigned int ep_index)
671{
672 /* increment ep index by offset of start of ep ctx array */
673 ep_index++;
674 if (ctx->type == XHCI_CTX_TYPE_INPUT)
675 ep_index++;
676
677 return (struct xhci_ep_ctx *)
678 (ctx->bytes +
cf868772 679 (ep_index * CTX_SIZE(xhci_readl(&ctrl->hccr->cr_hccparams))));
5853e133
VG
680}
681
682/**
683 * Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
684 * Useful when you want to change one particular aspect of the endpoint
685 * and then issue a configure endpoint command.
686 *
687 * @param ctrl Host controller data structure
688 * @param in_ctx contains the input context
689 * @param out_ctx contains the input context
690 * @param ep_index index of the end point
185f812c 691 * Return: none
5853e133
VG
692 */
693void xhci_endpoint_copy(struct xhci_ctrl *ctrl,
694 struct xhci_container_ctx *in_ctx,
695 struct xhci_container_ctx *out_ctx,
696 unsigned int ep_index)
697{
698 struct xhci_ep_ctx *out_ep_ctx;
699 struct xhci_ep_ctx *in_ep_ctx;
700
701 out_ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
702 in_ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
703
704 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
705 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
706 in_ep_ctx->deq = out_ep_ctx->deq;
707 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
708}
709
710/**
711 * Copy output xhci_slot_ctx to the input xhci_slot_ctx.
712 * Useful when you want to change one particular aspect of the endpoint
713 * and then issue a configure endpoint command.
714 * Only the context entries field matters, but
715 * we'll copy the whole thing anyway.
716 *
717 * @param ctrl Host controller data structure
718 * @param in_ctx contains the inpout context
719 * @param out_ctx contains the inpout context
185f812c 720 * Return: none
5853e133
VG
721 */
722void xhci_slot_copy(struct xhci_ctrl *ctrl, struct xhci_container_ctx *in_ctx,
723 struct xhci_container_ctx *out_ctx)
724{
725 struct xhci_slot_ctx *in_slot_ctx;
726 struct xhci_slot_ctx *out_slot_ctx;
727
728 in_slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
729 out_slot_ctx = xhci_get_slot_ctx(ctrl, out_ctx);
730
731 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
732 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
733 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
734 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
735}
736
737/**
738 * Setup an xHCI virtual device for a Set Address command
739 *
740 * @param udev pointer to the Device Data Structure
185f812c 741 * Return: returns negative value on failure else 0 on success
5853e133 742 */
daec4691
BM
743void xhci_setup_addressable_virt_dev(struct xhci_ctrl *ctrl,
744 struct usb_device *udev, int hop_portnr)
5853e133 745{
5853e133
VG
746 struct xhci_virt_device *virt_dev;
747 struct xhci_ep_ctx *ep0_ctx;
748 struct xhci_slot_ctx *slot_ctx;
749 u32 port_num = 0;
750 u64 trb_64 = 0;
daec4691
BM
751 int slot_id = udev->slot_id;
752 int speed = udev->speed;
493b8dd0 753 int route = 0;
fd09c205 754#if CONFIG_IS_ENABLED(DM_USB)
493b8dd0
BM
755 struct usb_device *dev = udev;
756 struct usb_hub_device *hub;
757#endif
5853e133 758
5dd75e3b 759 virt_dev = ctrl->devs[slot_id];
5853e133
VG
760
761 BUG_ON(!virt_dev);
762
763 /* Extract the EP0 and Slot Ctrl */
764 ep0_ctx = xhci_get_ep_ctx(ctrl, virt_dev->in_ctx, 0);
765 slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->in_ctx);
766
767 /* Only the control endpoint is valid - one endpoint context */
493b8dd0
BM
768 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
769
fd09c205 770#if CONFIG_IS_ENABLED(DM_USB)
493b8dd0
BM
771 /* Calculate the route string for this device */
772 port_num = dev->portnr;
773 while (!usb_hub_is_root_hub(dev->dev)) {
774 hub = dev_get_uclass_priv(dev->dev);
775 /*
776 * Each hub in the topology is expected to have no more than
777 * 15 ports in order for the route string of a device to be
778 * unique. SuperSpeed hubs are restricted to only having 15
779 * ports, but FS/LS/HS hubs are not. The xHCI specification
780 * says that if the port number the device is greater than 15,
781 * that portion of the route string shall be set to 15.
782 */
783 if (port_num > 15)
784 port_num = 15;
785 route |= port_num << (hub->hub_depth * 4);
786 dev = dev_get_parent_priv(dev->dev);
787 port_num = dev->portnr;
788 dev = dev_get_parent_priv(dev->dev->parent);
789 }
790
791 debug("route string %x\n", route);
792#endif
543eb12e 793 slot_ctx->dev_info |= cpu_to_le32(route);
5853e133 794
5dd75e3b 795 switch (speed) {
5853e133
VG
796 case USB_SPEED_SUPER:
797 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
798 break;
799 case USB_SPEED_HIGH:
800 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
801 break;
802 case USB_SPEED_FULL:
803 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
804 break;
805 case USB_SPEED_LOW:
806 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
807 break;
808 default:
809 /* Speed was set earlier, this shouldn't happen. */
810 BUG();
811 }
812
fd09c205 813#if CONFIG_IS_ENABLED(DM_USB)
78e30987
BM
814 /* Set up TT fields to support FS/LS devices */
815 if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) {
8a0e6d83
BM
816 struct udevice *parent = udev->dev;
817
818 dev = udev;
819 do {
820 port_num = dev->portnr;
821 dev = dev_get_parent_priv(parent);
822 if (usb_hub_is_root_hub(dev->dev))
823 break;
824 parent = dev->dev->parent;
825 } while (dev->speed != USB_SPEED_HIGH);
826
827 if (!usb_hub_is_root_hub(dev->dev)) {
828 hub = dev_get_uclass_priv(dev->dev);
78e30987
BM
829 if (hub->tt.multi)
830 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
8a0e6d83 831 slot_ctx->tt_info |= cpu_to_le32(TT_PORT(port_num));
78e30987
BM
832 slot_ctx->tt_info |= cpu_to_le32(TT_SLOT(dev->slot_id));
833 }
834 }
835#endif
836
5dd75e3b 837 port_num = hop_portnr;
5853e133
VG
838 debug("port_num = %d\n", port_num);
839
840 slot_ctx->dev_info2 |=
841 cpu_to_le32(((port_num & ROOT_HUB_PORT_MASK) <<
842 ROOT_HUB_PORT_SHIFT));
843
844 /* Step 4 - ring already allocated */
845 /* Step 5 */
23a54ccf 846 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
5dd75e3b 847 debug("SPEED = %d\n", speed);
5853e133 848
5dd75e3b 849 switch (speed) {
5853e133 850 case USB_SPEED_SUPER:
23a54ccf 851 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
5853e133
VG
852 debug("Setting Packet size = 512bytes\n");
853 break;
854 case USB_SPEED_HIGH:
855 /* USB core guesses at a 64-byte max packet first for FS devices */
856 case USB_SPEED_FULL:
23a54ccf 857 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
5853e133
VG
858 debug("Setting Packet size = 64bytes\n");
859 break;
860 case USB_SPEED_LOW:
23a54ccf 861 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
5853e133
VG
862 debug("Setting Packet size = 8bytes\n");
863 break;
864 default:
865 /* New speed? */
866 BUG();
867 }
868
869 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
23a54ccf 870 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
5853e133 871
ba1efb3d 872 trb_64 = virt_dev->eps[0].ring->first_seg->dma;
5853e133
VG
873 ep0_ctx->deq = cpu_to_le64(trb_64 | virt_dev->eps[0].ring->cycle_state);
874
fae35857
BM
875 /*
876 * xHCI spec 6.2.3:
877 * software shall set 'Average TRB Length' to 8 for control endpoints.
878 */
879 ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(8));
880
5853e133
VG
881 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
882
421a5a0c
ST
883 xhci_flush_cache((uintptr_t)ep0_ctx, sizeof(struct xhci_ep_ctx));
884 xhci_flush_cache((uintptr_t)slot_ctx, sizeof(struct xhci_slot_ctx));
5853e133 885}
This page took 0.597083 seconds and 4 git commands to generate.