]>
Commit | Line | Data |
---|---|---|
83d290c5 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
e165b1d3 KI |
2 | /* |
3 | * Enhanced Direct Memory Access (EDMA3) Controller | |
4 | * | |
5 | * (C) Copyright 2014 | |
6 | * Texas Instruments Incorporated, <www.ti.com> | |
7 | * | |
8 | * Author: Ivan Khoronzhuk <[email protected]> | |
e165b1d3 KI |
9 | */ |
10 | ||
90526e9f | 11 | #include <asm/cache.h> |
e165b1d3 KI |
12 | #include <asm/io.h> |
13 | #include <common.h> | |
9d922450 | 14 | #include <dm.h> |
10b4dc52 | 15 | #include <dma-uclass.h> |
1218e5c5 | 16 | #include <asm/omap_common.h> |
e165b1d3 KI |
17 | #include <asm/ti-common/ti-edma3.h> |
18 | ||
19 | #define EDMA3_SL_BASE(slot) (0x4000 + ((slot) << 5)) | |
20 | #define EDMA3_SL_MAX_NUM 512 | |
21 | #define EDMA3_SLOPT_FIFO_WIDTH_MASK (0x7 << 8) | |
22 | ||
23 | #define EDMA3_QCHMAP(ch) 0x0200 + ((ch) << 2) | |
24 | #define EDMA3_CHMAP_PARSET_MASK 0x1ff | |
25 | #define EDMA3_CHMAP_PARSET_SHIFT 0x5 | |
26 | #define EDMA3_CHMAP_TRIGWORD_SHIFT 0x2 | |
27 | ||
28 | #define EDMA3_QEMCR 0x314 | |
29 | #define EDMA3_IPR 0x1068 | |
30 | #define EDMA3_IPRH 0x106c | |
31 | #define EDMA3_ICR 0x1070 | |
32 | #define EDMA3_ICRH 0x1074 | |
33 | #define EDMA3_QEECR 0x1088 | |
34 | #define EDMA3_QEESR 0x108c | |
35 | #define EDMA3_QSECR 0x1094 | |
36 | ||
72b7af5a TK |
37 | #define EDMA_FILL_BUFFER_SIZE 512 |
38 | ||
1218e5c5 M |
39 | struct ti_edma3_priv { |
40 | u32 base; | |
41 | }; | |
42 | ||
72b7af5a TK |
43 | static u8 edma_fill_buffer[EDMA_FILL_BUFFER_SIZE] __aligned(ARCH_DMA_MINALIGN); |
44 | ||
e165b1d3 KI |
45 | /** |
46 | * qedma3_start - start qdma on a channel | |
47 | * @base: base address of edma | |
48 | * @cfg: pinter to struct edma3_channel_config where you can set | |
49 | * the slot number to associate with, the chnum, which corresponds | |
50 | * your quick channel number 0-7, complete code - transfer complete code | |
51 | * and trigger slot word - which has to correspond to the word number in | |
52 | * edma3_slot_layout struct for generating event. | |
53 | * | |
54 | */ | |
55 | void qedma3_start(u32 base, struct edma3_channel_config *cfg) | |
56 | { | |
57 | u32 qchmap; | |
58 | ||
59 | /* Clear the pending int bit */ | |
60 | if (cfg->complete_code < 32) | |
61 | __raw_writel(1 << cfg->complete_code, base + EDMA3_ICR); | |
62 | else | |
63 | __raw_writel(1 << cfg->complete_code, base + EDMA3_ICRH); | |
64 | ||
65 | /* Map parameter set and trigger word 7 to quick channel */ | |
66 | qchmap = ((EDMA3_CHMAP_PARSET_MASK & cfg->slot) | |
67 | << EDMA3_CHMAP_PARSET_SHIFT) | | |
68 | (cfg->trigger_slot_word << EDMA3_CHMAP_TRIGWORD_SHIFT); | |
69 | ||
70 | __raw_writel(qchmap, base + EDMA3_QCHMAP(cfg->chnum)); | |
71 | ||
72 | /* Clear missed event if set*/ | |
73 | __raw_writel(1 << cfg->chnum, base + EDMA3_QSECR); | |
74 | __raw_writel(1 << cfg->chnum, base + EDMA3_QEMCR); | |
75 | ||
76 | /* Enable qdma channel event */ | |
77 | __raw_writel(1 << cfg->chnum, base + EDMA3_QEESR); | |
78 | } | |
79 | ||
80 | /** | |
81 | * edma3_set_dest - set initial DMA destination address in parameter RAM slot | |
82 | * @base: base address of edma | |
83 | * @slot: parameter RAM slot being configured | |
84 | * @dst: physical address of destination (memory, controller FIFO, etc) | |
85 | * @addressMode: INCR, except in very rare cases | |
86 | * @width: ignored unless @addressMode is FIFO, else specifies the | |
87 | * width to use when addressing the fifo (e.g. W8BIT, W32BIT) | |
88 | * | |
89 | * Note that the destination address is modified during the DMA transfer | |
90 | * according to edma3_set_dest_index(). | |
91 | */ | |
92 | void edma3_set_dest(u32 base, int slot, u32 dst, enum edma3_address_mode mode, | |
93 | enum edma3_fifo_width width) | |
94 | { | |
95 | u32 opt; | |
96 | struct edma3_slot_layout *rg; | |
97 | ||
98 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
99 | ||
100 | opt = __raw_readl(&rg->opt); | |
101 | if (mode == FIFO) | |
102 | opt = (opt & EDMA3_SLOPT_FIFO_WIDTH_MASK) | | |
103 | (EDMA3_SLOPT_DST_ADDR_CONST_MODE | | |
104 | EDMA3_SLOPT_FIFO_WIDTH_SET(width)); | |
105 | else | |
106 | opt &= ~EDMA3_SLOPT_DST_ADDR_CONST_MODE; | |
107 | ||
108 | __raw_writel(opt, &rg->opt); | |
109 | __raw_writel(dst, &rg->dst); | |
110 | } | |
111 | ||
112 | /** | |
113 | * edma3_set_dest_index - configure DMA destination address indexing | |
114 | * @base: base address of edma | |
115 | * @slot: parameter RAM slot being configured | |
116 | * @bidx: byte offset between destination arrays in a frame | |
117 | * @cidx: byte offset between destination frames in a block | |
118 | * | |
119 | * Offsets are specified to support either contiguous or discontiguous | |
120 | * memory transfers, or repeated access to a hardware register, as needed. | |
121 | * When accessing hardware registers, both offsets are normally zero. | |
122 | */ | |
123 | void edma3_set_dest_index(u32 base, unsigned slot, int bidx, int cidx) | |
124 | { | |
125 | u32 src_dst_bidx; | |
126 | u32 src_dst_cidx; | |
127 | struct edma3_slot_layout *rg; | |
128 | ||
129 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
130 | ||
131 | src_dst_bidx = __raw_readl(&rg->src_dst_bidx); | |
132 | src_dst_cidx = __raw_readl(&rg->src_dst_cidx); | |
133 | ||
134 | __raw_writel((src_dst_bidx & 0x0000ffff) | (bidx << 16), | |
135 | &rg->src_dst_bidx); | |
136 | __raw_writel((src_dst_cidx & 0x0000ffff) | (cidx << 16), | |
137 | &rg->src_dst_cidx); | |
138 | } | |
139 | ||
140 | /** | |
141 | * edma3_set_dest_addr - set destination address for slot only | |
142 | */ | |
143 | void edma3_set_dest_addr(u32 base, int slot, u32 dst) | |
144 | { | |
145 | struct edma3_slot_layout *rg; | |
146 | ||
147 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
148 | __raw_writel(dst, &rg->dst); | |
149 | } | |
150 | ||
151 | /** | |
152 | * edma3_set_src - set initial DMA source address in parameter RAM slot | |
153 | * @base: base address of edma | |
154 | * @slot: parameter RAM slot being configured | |
155 | * @src_port: physical address of source (memory, controller FIFO, etc) | |
156 | * @mode: INCR, except in very rare cases | |
157 | * @width: ignored unless @addressMode is FIFO, else specifies the | |
158 | * width to use when addressing the fifo (e.g. W8BIT, W32BIT) | |
159 | * | |
160 | * Note that the source address is modified during the DMA transfer | |
161 | * according to edma3_set_src_index(). | |
162 | */ | |
163 | void edma3_set_src(u32 base, int slot, u32 src, enum edma3_address_mode mode, | |
164 | enum edma3_fifo_width width) | |
165 | { | |
166 | u32 opt; | |
167 | struct edma3_slot_layout *rg; | |
168 | ||
169 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
170 | ||
171 | opt = __raw_readl(&rg->opt); | |
172 | if (mode == FIFO) | |
173 | opt = (opt & EDMA3_SLOPT_FIFO_WIDTH_MASK) | | |
174 | (EDMA3_SLOPT_DST_ADDR_CONST_MODE | | |
175 | EDMA3_SLOPT_FIFO_WIDTH_SET(width)); | |
176 | else | |
177 | opt &= ~EDMA3_SLOPT_DST_ADDR_CONST_MODE; | |
178 | ||
179 | __raw_writel(opt, &rg->opt); | |
180 | __raw_writel(src, &rg->src); | |
181 | } | |
182 | ||
183 | /** | |
184 | * edma3_set_src_index - configure DMA source address indexing | |
185 | * @base: base address of edma | |
186 | * @slot: parameter RAM slot being configured | |
187 | * @bidx: byte offset between source arrays in a frame | |
188 | * @cidx: byte offset between source frames in a block | |
189 | * | |
190 | * Offsets are specified to support either contiguous or discontiguous | |
191 | * memory transfers, or repeated access to a hardware register, as needed. | |
192 | * When accessing hardware registers, both offsets are normally zero. | |
193 | */ | |
194 | void edma3_set_src_index(u32 base, unsigned slot, int bidx, int cidx) | |
195 | { | |
196 | u32 src_dst_bidx; | |
197 | u32 src_dst_cidx; | |
198 | struct edma3_slot_layout *rg; | |
199 | ||
200 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
201 | ||
202 | src_dst_bidx = __raw_readl(&rg->src_dst_bidx); | |
203 | src_dst_cidx = __raw_readl(&rg->src_dst_cidx); | |
204 | ||
205 | __raw_writel((src_dst_bidx & 0xffff0000) | bidx, | |
206 | &rg->src_dst_bidx); | |
207 | __raw_writel((src_dst_cidx & 0xffff0000) | cidx, | |
208 | &rg->src_dst_cidx); | |
209 | } | |
210 | ||
211 | /** | |
212 | * edma3_set_src_addr - set source address for slot only | |
213 | */ | |
214 | void edma3_set_src_addr(u32 base, int slot, u32 src) | |
215 | { | |
216 | struct edma3_slot_layout *rg; | |
217 | ||
218 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
219 | __raw_writel(src, &rg->src); | |
220 | } | |
221 | ||
222 | /** | |
223 | * edma3_set_transfer_params - configure DMA transfer parameters | |
224 | * @base: base address of edma | |
225 | * @slot: parameter RAM slot being configured | |
226 | * @acnt: how many bytes per array (at least one) | |
227 | * @bcnt: how many arrays per frame (at least one) | |
228 | * @ccnt: how many frames per block (at least one) | |
229 | * @bcnt_rld: used only for A-Synchronized transfers; this specifies | |
230 | * the value to reload into bcnt when it decrements to zero | |
231 | * @sync_mode: ASYNC or ABSYNC | |
232 | * | |
233 | * See the EDMA3 documentation to understand how to configure and link | |
234 | * transfers using the fields in PaRAM slots. If you are not doing it | |
235 | * all at once with edma3_write_slot(), you will use this routine | |
236 | * plus two calls each for source and destination, setting the initial | |
237 | * address and saying how to index that address. | |
238 | * | |
239 | * An example of an A-Synchronized transfer is a serial link using a | |
240 | * single word shift register. In that case, @acnt would be equal to | |
241 | * that word size; the serial controller issues a DMA synchronization | |
242 | * event to transfer each word, and memory access by the DMA transfer | |
243 | * controller will be word-at-a-time. | |
244 | * | |
245 | * An example of an AB-Synchronized transfer is a device using a FIFO. | |
246 | * In that case, @acnt equals the FIFO width and @bcnt equals its depth. | |
247 | * The controller with the FIFO issues DMA synchronization events when | |
248 | * the FIFO threshold is reached, and the DMA transfer controller will | |
249 | * transfer one frame to (or from) the FIFO. It will probably use | |
250 | * efficient burst modes to access memory. | |
251 | */ | |
252 | void edma3_set_transfer_params(u32 base, int slot, int acnt, | |
253 | int bcnt, int ccnt, u16 bcnt_rld, | |
254 | enum edma3_sync_dimension sync_mode) | |
255 | { | |
256 | u32 opt; | |
257 | u32 link_bcntrld; | |
258 | struct edma3_slot_layout *rg; | |
259 | ||
260 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
261 | ||
262 | link_bcntrld = __raw_readl(&rg->link_bcntrld); | |
263 | ||
264 | __raw_writel((bcnt_rld << 16) | (0x0000ffff & link_bcntrld), | |
265 | &rg->link_bcntrld); | |
266 | ||
267 | opt = __raw_readl(&rg->opt); | |
268 | if (sync_mode == ASYNC) | |
269 | __raw_writel(opt & ~EDMA3_SLOPT_AB_SYNC, &rg->opt); | |
270 | else | |
271 | __raw_writel(opt | EDMA3_SLOPT_AB_SYNC, &rg->opt); | |
272 | ||
273 | /* Set the acount, bcount, ccount registers */ | |
274 | __raw_writel((bcnt << 16) | (acnt & 0xffff), &rg->a_b_cnt); | |
275 | __raw_writel(0xffff & ccnt, &rg->ccnt); | |
276 | } | |
277 | ||
278 | /** | |
279 | * edma3_write_slot - write parameter RAM data for slot | |
280 | * @base: base address of edma | |
281 | * @slot: number of parameter RAM slot being modified | |
282 | * @param: data to be written into parameter RAM slot | |
283 | * | |
284 | * Use this to assign all parameters of a transfer at once. This | |
285 | * allows more efficient setup of transfers than issuing multiple | |
286 | * calls to set up those parameters in small pieces, and provides | |
287 | * complete control over all transfer options. | |
288 | */ | |
289 | void edma3_write_slot(u32 base, int slot, struct edma3_slot_layout *param) | |
290 | { | |
291 | int i; | |
292 | u32 *p = (u32 *)param; | |
293 | u32 *addr = (u32 *)(base + EDMA3_SL_BASE(slot)); | |
294 | ||
295 | for (i = 0; i < sizeof(struct edma3_slot_layout)/4; i += 4) | |
296 | __raw_writel(*p++, addr++); | |
297 | } | |
298 | ||
299 | /** | |
300 | * edma3_read_slot - read parameter RAM data from slot | |
301 | * @base: base address of edma | |
302 | * @slot: number of parameter RAM slot being copied | |
303 | * @param: where to store copy of parameter RAM data | |
304 | * | |
305 | * Use this to read data from a parameter RAM slot, perhaps to | |
306 | * save them as a template for later reuse. | |
307 | */ | |
308 | void edma3_read_slot(u32 base, int slot, struct edma3_slot_layout *param) | |
309 | { | |
310 | int i; | |
311 | u32 *p = (u32 *)param; | |
312 | u32 *addr = (u32 *)(base + EDMA3_SL_BASE(slot)); | |
313 | ||
314 | for (i = 0; i < sizeof(struct edma3_slot_layout)/4; i += 4) | |
315 | *p++ = __raw_readl(addr++); | |
316 | } | |
317 | ||
318 | void edma3_slot_configure(u32 base, int slot, struct edma3_slot_config *cfg) | |
319 | { | |
320 | struct edma3_slot_layout *rg; | |
321 | ||
322 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
323 | ||
324 | __raw_writel(cfg->opt, &rg->opt); | |
325 | __raw_writel(cfg->src, &rg->src); | |
326 | __raw_writel((cfg->bcnt << 16) | (cfg->acnt & 0xffff), &rg->a_b_cnt); | |
327 | __raw_writel(cfg->dst, &rg->dst); | |
328 | __raw_writel((cfg->dst_bidx << 16) | | |
329 | (cfg->src_bidx & 0xffff), &rg->src_dst_bidx); | |
330 | __raw_writel((cfg->bcntrld << 16) | | |
331 | (cfg->link & 0xffff), &rg->link_bcntrld); | |
332 | __raw_writel((cfg->dst_cidx << 16) | | |
333 | (cfg->src_cidx & 0xffff), &rg->src_dst_cidx); | |
334 | __raw_writel(0xffff & cfg->ccnt, &rg->ccnt); | |
335 | } | |
336 | ||
337 | /** | |
338 | * edma3_check_for_transfer - check if transfer coplete by checking | |
339 | * interrupt pending bit. Clear interrupt pending bit if complete. | |
340 | * @base: base address of edma | |
341 | * @cfg: pinter to struct edma3_channel_config which was passed | |
342 | * to qedma3_start when you started qdma channel | |
343 | * | |
344 | * Return 0 if complete, 1 if not. | |
345 | */ | |
346 | int edma3_check_for_transfer(u32 base, struct edma3_channel_config *cfg) | |
347 | { | |
348 | u32 inum; | |
349 | u32 ipr_base; | |
350 | u32 icr_base; | |
351 | ||
352 | if (cfg->complete_code < 32) { | |
353 | ipr_base = base + EDMA3_IPR; | |
354 | icr_base = base + EDMA3_ICR; | |
355 | inum = 1 << cfg->complete_code; | |
356 | } else { | |
357 | ipr_base = base + EDMA3_IPRH; | |
358 | icr_base = base + EDMA3_ICRH; | |
359 | inum = 1 << (cfg->complete_code - 32); | |
360 | } | |
361 | ||
362 | /* check complete interrupt */ | |
363 | if (!(__raw_readl(ipr_base) & inum)) | |
364 | return 1; | |
365 | ||
366 | /* clean up the pending int bit */ | |
367 | __raw_writel(inum, icr_base); | |
368 | ||
369 | return 0; | |
370 | } | |
371 | ||
372 | /** | |
373 | * qedma3_stop - stops dma on the channel passed | |
374 | * @base: base address of edma | |
375 | * @cfg: pinter to struct edma3_channel_config which was passed | |
376 | * to qedma3_start when you started qdma channel | |
377 | */ | |
378 | void qedma3_stop(u32 base, struct edma3_channel_config *cfg) | |
379 | { | |
380 | /* Disable qdma channel event */ | |
381 | __raw_writel(1 << cfg->chnum, base + EDMA3_QEECR); | |
382 | ||
383 | /* clean up the interrupt indication */ | |
384 | if (cfg->complete_code < 32) | |
385 | __raw_writel(1 << cfg->complete_code, base + EDMA3_ICR); | |
386 | else | |
387 | __raw_writel(1 << cfg->complete_code, base + EDMA3_ICRH); | |
388 | ||
389 | /* Clear missed event if set*/ | |
390 | __raw_writel(1 << cfg->chnum, base + EDMA3_QSECR); | |
391 | __raw_writel(1 << cfg->chnum, base + EDMA3_QEMCR); | |
392 | ||
393 | /* Clear the channel map */ | |
394 | __raw_writel(0, base + EDMA3_QCHMAP(cfg->chnum)); | |
395 | } | |
664ab2c9 | 396 | |
1218e5c5 | 397 | void __edma3_transfer(unsigned long edma3_base_addr, unsigned int edma_slot_num, |
72b7af5a | 398 | void *dst, void *src, size_t len, size_t s_len) |
664ab2c9 V |
399 | { |
400 | struct edma3_slot_config slot; | |
401 | struct edma3_channel_config edma_channel; | |
402 | int b_cnt_value = 1; | |
403 | int rem_bytes = 0; | |
404 | int a_cnt_value = len; | |
405 | unsigned int addr = (unsigned int) (dst); | |
406 | unsigned int max_acnt = 0x7FFFU; | |
407 | ||
72b7af5a TK |
408 | if (len > s_len) { |
409 | b_cnt_value = (len / s_len); | |
410 | rem_bytes = (len % s_len); | |
411 | a_cnt_value = s_len; | |
412 | } else if (len > max_acnt) { | |
664ab2c9 V |
413 | b_cnt_value = (len / max_acnt); |
414 | rem_bytes = (len % max_acnt); | |
415 | a_cnt_value = max_acnt; | |
416 | } | |
417 | ||
418 | slot.opt = 0; | |
419 | slot.src = ((unsigned int) src); | |
420 | slot.acnt = a_cnt_value; | |
421 | slot.bcnt = b_cnt_value; | |
422 | slot.ccnt = 1; | |
72b7af5a TK |
423 | if (len == s_len) |
424 | slot.src_bidx = a_cnt_value; | |
425 | else | |
426 | slot.src_bidx = 0; | |
664ab2c9 V |
427 | slot.dst_bidx = a_cnt_value; |
428 | slot.src_cidx = 0; | |
429 | slot.dst_cidx = 0; | |
430 | slot.link = EDMA3_PARSET_NULL_LINK; | |
431 | slot.bcntrld = 0; | |
432 | slot.opt = EDMA3_SLOPT_TRANS_COMP_INT_ENB | | |
433 | EDMA3_SLOPT_COMP_CODE(0) | | |
434 | EDMA3_SLOPT_STATIC | EDMA3_SLOPT_AB_SYNC; | |
435 | ||
436 | edma3_slot_configure(edma3_base_addr, edma_slot_num, &slot); | |
437 | edma_channel.slot = edma_slot_num; | |
438 | edma_channel.chnum = 0; | |
439 | edma_channel.complete_code = 0; | |
440 | /* set event trigger to dst update */ | |
441 | edma_channel.trigger_slot_word = EDMA3_TWORD(dst); | |
442 | ||
443 | qedma3_start(edma3_base_addr, &edma_channel); | |
444 | edma3_set_dest_addr(edma3_base_addr, edma_channel.slot, addr); | |
445 | ||
446 | while (edma3_check_for_transfer(edma3_base_addr, &edma_channel)) | |
447 | ; | |
448 | qedma3_stop(edma3_base_addr, &edma_channel); | |
449 | ||
450 | if (rem_bytes != 0) { | |
451 | slot.opt = 0; | |
72b7af5a TK |
452 | if (len == s_len) |
453 | slot.src = | |
454 | (b_cnt_value * max_acnt) + ((unsigned int) src); | |
455 | else | |
456 | slot.src = (unsigned int) src; | |
664ab2c9 V |
457 | slot.acnt = rem_bytes; |
458 | slot.bcnt = 1; | |
459 | slot.ccnt = 1; | |
460 | slot.src_bidx = rem_bytes; | |
461 | slot.dst_bidx = rem_bytes; | |
462 | slot.src_cidx = 0; | |
463 | slot.dst_cidx = 0; | |
464 | slot.link = EDMA3_PARSET_NULL_LINK; | |
465 | slot.bcntrld = 0; | |
466 | slot.opt = EDMA3_SLOPT_TRANS_COMP_INT_ENB | | |
467 | EDMA3_SLOPT_COMP_CODE(0) | | |
468 | EDMA3_SLOPT_STATIC | EDMA3_SLOPT_AB_SYNC; | |
469 | edma3_slot_configure(edma3_base_addr, edma_slot_num, &slot); | |
470 | edma_channel.slot = edma_slot_num; | |
471 | edma_channel.chnum = 0; | |
472 | edma_channel.complete_code = 0; | |
473 | /* set event trigger to dst update */ | |
474 | edma_channel.trigger_slot_word = EDMA3_TWORD(dst); | |
475 | ||
476 | qedma3_start(edma3_base_addr, &edma_channel); | |
477 | edma3_set_dest_addr(edma3_base_addr, edma_channel.slot, addr + | |
478 | (max_acnt * b_cnt_value)); | |
479 | while (edma3_check_for_transfer(edma3_base_addr, &edma_channel)) | |
480 | ; | |
481 | qedma3_stop(edma3_base_addr, &edma_channel); | |
482 | } | |
483 | } | |
1218e5c5 | 484 | |
72b7af5a TK |
485 | void __edma3_fill(unsigned long edma3_base_addr, unsigned int edma_slot_num, |
486 | void *dst, u8 val, size_t len) | |
487 | { | |
488 | int xfer_len; | |
489 | int max_xfer = EDMA_FILL_BUFFER_SIZE * 65535; | |
490 | ||
491 | memset((void *)edma_fill_buffer, val, sizeof(edma_fill_buffer)); | |
492 | ||
493 | while (len) { | |
494 | xfer_len = len; | |
495 | if (xfer_len > max_xfer) | |
496 | xfer_len = max_xfer; | |
497 | ||
498 | __edma3_transfer(edma3_base_addr, edma_slot_num, dst, | |
499 | edma_fill_buffer, xfer_len, | |
500 | EDMA_FILL_BUFFER_SIZE); | |
501 | len -= xfer_len; | |
502 | dst += xfer_len; | |
503 | } | |
504 | } | |
505 | ||
1218e5c5 M |
506 | #ifndef CONFIG_DMA |
507 | ||
508 | void edma3_transfer(unsigned long edma3_base_addr, unsigned int edma_slot_num, | |
509 | void *dst, void *src, size_t len) | |
510 | { | |
72b7af5a TK |
511 | __edma3_transfer(edma3_base_addr, edma_slot_num, dst, src, len, len); |
512 | } | |
513 | ||
514 | void edma3_fill(unsigned long edma3_base_addr, unsigned int edma_slot_num, | |
515 | void *dst, u8 val, size_t len) | |
516 | { | |
517 | __edma3_fill(edma3_base_addr, edma_slot_num, dst, val, len); | |
1218e5c5 M |
518 | } |
519 | ||
520 | #else | |
521 | ||
522 | static int ti_edma3_transfer(struct udevice *dev, int direction, void *dst, | |
523 | void *src, size_t len) | |
524 | { | |
525 | struct ti_edma3_priv *priv = dev_get_priv(dev); | |
526 | ||
527 | /* enable edma3 clocks */ | |
528 | enable_edma3_clocks(); | |
529 | ||
530 | switch (direction) { | |
531 | case DMA_MEM_TO_MEM: | |
72b7af5a | 532 | __edma3_transfer(priv->base, 1, dst, src, len, len); |
1218e5c5 M |
533 | break; |
534 | default: | |
9b643e31 | 535 | pr_err("Transfer type not implemented in DMA driver\n"); |
1218e5c5 M |
536 | break; |
537 | } | |
538 | ||
539 | /* disable edma3 clocks */ | |
540 | disable_edma3_clocks(); | |
541 | ||
542 | return 0; | |
543 | } | |
544 | ||
545 | static int ti_edma3_ofdata_to_platdata(struct udevice *dev) | |
546 | { | |
547 | struct ti_edma3_priv *priv = dev_get_priv(dev); | |
548 | ||
a821c4af | 549 | priv->base = devfdt_get_addr(dev); |
1218e5c5 M |
550 | |
551 | return 0; | |
552 | } | |
553 | ||
554 | static int ti_edma3_probe(struct udevice *dev) | |
555 | { | |
556 | struct dma_dev_priv *uc_priv = dev_get_uclass_priv(dev); | |
557 | ||
558 | uc_priv->supported = DMA_SUPPORTS_MEM_TO_MEM; | |
559 | ||
560 | return 0; | |
561 | } | |
562 | ||
563 | static const struct dma_ops ti_edma3_ops = { | |
564 | .transfer = ti_edma3_transfer, | |
565 | }; | |
566 | ||
567 | static const struct udevice_id ti_edma3_ids[] = { | |
568 | { .compatible = "ti,edma3" }, | |
569 | { } | |
570 | }; | |
571 | ||
572 | U_BOOT_DRIVER(ti_edma3) = { | |
573 | .name = "ti_edma3", | |
574 | .id = UCLASS_DMA, | |
575 | .of_match = ti_edma3_ids, | |
576 | .ops = &ti_edma3_ops, | |
577 | .ofdata_to_platdata = ti_edma3_ofdata_to_platdata, | |
578 | .probe = ti_edma3_probe, | |
579 | .priv_auto_alloc_size = sizeof(struct ti_edma3_priv), | |
580 | }; | |
581 | #endif /* CONFIG_DMA */ |