]> Git Repo - J-u-boot.git/blame - drivers/net/fec_mxc.c
arm: Remove zmx25 board and ARCH_MX25
[J-u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
83d290c5 1// SPDX-License-Identifier: GPL-2.0+
0b23fb36
IY
2/*
3 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <[email protected]>
4 * (C) Copyright 2008,2009 Eric Jarrige <[email protected]>
5 * (C) Copyright 2008 Armadeus Systems nc
6 * (C) Copyright 2007 Pengutronix, Sascha Hauer <[email protected]>
7 * (C) Copyright 2007 Pengutronix, Juergen Beisert <[email protected]>
0b23fb36
IY
8 */
9
10#include <common.h>
1eb69ae4 11#include <cpu_func.h>
60752ca8 12#include <dm.h>
9fb625ce 13#include <env.h>
f7ae49fc 14#include <log.h>
0b23fb36 15#include <malloc.h>
cf92e05c 16#include <memalign.h>
567173a6 17#include <miiphy.h>
0b23fb36 18#include <net.h>
84f64c8b 19#include <netdev.h>
90526e9f 20#include <asm/cache.h>
401d1c4f 21#include <asm/global_data.h>
c05ed00a 22#include <linux/delay.h>
ad8c43cb 23#include <power/regulator.h>
0b23fb36 24
0b23fb36 25#include <asm/io.h>
1221ce45 26#include <linux/errno.h>
e2a66e60 27#include <linux/compiler.h>
0b23fb36 28
567173a6
JT
29#include <asm/arch/clock.h>
30#include <asm/arch/imx-regs.h>
552a848e 31#include <asm/mach-imx/sys_proto.h>
efd0b791
MT
32#include <asm-generic/gpio.h>
33
34#include "fec_mxc.h"
6a895d03 35#include <eth_phy.h>
567173a6 36
0b23fb36
IY
37DECLARE_GLOBAL_DATA_PTR;
38
bc1ce150
MV
39/*
40 * Timeout the transfer after 5 mS. This is usually a bit more, since
41 * the code in the tightloops this timeout is used in adds some overhead.
42 */
43#define FEC_XFER_TIMEOUT 5000
44
db5b7f56
FE
45/*
46 * The standard 32-byte DMA alignment does not work on mx6solox, which requires
47 * 64-byte alignment in the DMA RX FEC buffer.
48 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
49 * satisfies the alignment on other SoCs (32-bytes)
50 */
51#define FEC_DMA_RX_MINALIGN 64
52
0b23fb36
IY
53#ifndef CONFIG_MII
54#error "CONFIG_MII has to be defined!"
55#endif
56
5c1ad3e6
EN
57#ifndef CONFIG_FEC_XCV_TYPE
58#define CONFIG_FEC_XCV_TYPE MII100
392b8502
MV
59#endif
60
be7e87e2
MV
61/*
62 * The i.MX28 operates with packets in big endian. We need to swap them before
63 * sending and after receiving.
64 */
5c1ad3e6
EN
65#ifdef CONFIG_MX28
66#define CONFIG_FEC_MXC_SWAP_PACKET
67#endif
68
69#define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
70
71/* Check various alignment issues at compile time */
72#if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
73#error "ARCH_DMA_MINALIGN must be multiple of 16!"
74#endif
75
76#if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
77 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
78#error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
be7e87e2
MV
79#endif
80
0b23fb36
IY
81#undef DEBUG
82
5c1ad3e6 83#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
84static void swap_packet(uint32_t *packet, int length)
85{
86 int i;
87
88 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
89 packet[i] = __swab32(packet[i]);
90}
91#endif
92
567173a6
JT
93/* MII-interface related functions */
94static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
95 uint8_t regaddr)
0b23fb36 96{
0b23fb36
IY
97 uint32_t reg; /* convenient holder for the PHY register */
98 uint32_t phy; /* convenient holder for the PHY */
99 uint32_t start;
13947f43 100 int val;
0b23fb36
IY
101
102 /*
103 * reading from any PHY's register is done by properly
104 * programming the FEC's MII data register.
105 */
d133b881 106 writel(FEC_IEVENT_MII, &eth->ievent);
567173a6
JT
107 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
108 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
0b23fb36
IY
109
110 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
d133b881 111 phy | reg, &eth->mii_data);
0b23fb36 112
567173a6 113 /* wait for the related interrupt */
a60d1e5b 114 start = get_timer(0);
d133b881 115 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
116 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
117 printf("Read MDIO failed...\n");
118 return -1;
119 }
120 }
121
567173a6 122 /* clear mii interrupt bit */
d133b881 123 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36 124
567173a6 125 /* it's now safe to read the PHY's register */
13947f43 126 val = (unsigned short)readl(&eth->mii_data);
567173a6
JT
127 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
128 regaddr, val);
13947f43 129 return val;
0b23fb36
IY
130}
131
673f6597
PF
132#ifndef imx_get_fecclk
133u32 __weak imx_get_fecclk(void)
134{
135 return 0;
136}
137#endif
138
58ec4d33
AG
139static int fec_get_clk_rate(void *udev, int idx)
140{
58ec4d33
AG
141 struct fec_priv *fec;
142 struct udevice *dev;
143 int ret;
144
673f6597
PF
145 if (IS_ENABLED(CONFIG_IMX8) ||
146 CONFIG_IS_ENABLED(CLK_CCF)) {
147 dev = udev;
148 if (!dev) {
b247fa7b 149 ret = uclass_get_device_by_seq(UCLASS_ETH, idx, &dev);
673f6597
PF
150 if (ret < 0) {
151 debug("Can't get FEC udev: %d\n", ret);
152 return ret;
153 }
58ec4d33 154 }
58ec4d33 155
673f6597
PF
156 fec = dev_get_priv(dev);
157 if (fec)
158 return fec->clk_rate;
58ec4d33 159
673f6597
PF
160 return -EINVAL;
161 } else {
162 return imx_get_fecclk();
163 }
58ec4d33
AG
164}
165
575c5cc0 166static void fec_mii_setspeed(struct ethernet_regs *eth)
4294b248
SB
167{
168 /*
169 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
170 * and do not drop the Preamble.
843a3e58
MR
171 *
172 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
173 * MII_SPEED) register that defines the MDIO output hold time. Earlier
174 * versions are RAZ there, so just ignore the difference and write the
175 * register always.
176 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
177 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
178 * output.
179 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
180 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
181 * holdtime cannot result in a value greater than 3.
4294b248 182 */
58ec4d33
AG
183 u32 pclk;
184 u32 speed;
185 u32 hold;
186 int ret;
187
188 ret = fec_get_clk_rate(NULL, 0);
189 if (ret < 0) {
190 printf("Can't find FEC0 clk rate: %d\n", ret);
191 return;
192 }
193 pclk = ret;
194 speed = DIV_ROUND_UP(pclk, 5000000);
195 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
196
6ba45cc0
MN
197#ifdef FEC_QUIRK_ENET_MAC
198 speed--;
199#endif
843a3e58 200 writel(speed << 1 | hold << 8, &eth->mii_speed);
575c5cc0 201 debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
4294b248 202}
0b23fb36 203
567173a6
JT
204static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
205 uint8_t regaddr, uint16_t data)
13947f43 206{
0b23fb36
IY
207 uint32_t reg; /* convenient holder for the PHY register */
208 uint32_t phy; /* convenient holder for the PHY */
209 uint32_t start;
210
567173a6
JT
211 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
212 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
0b23fb36
IY
213
214 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
d133b881 215 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
0b23fb36 216
567173a6 217 /* wait for the MII interrupt */
a60d1e5b 218 start = get_timer(0);
d133b881 219 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
220 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
221 printf("Write MDIO failed...\n");
222 return -1;
223 }
224 }
225
567173a6 226 /* clear MII interrupt bit */
d133b881 227 writel(FEC_IEVENT_MII, &eth->ievent);
567173a6
JT
228 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
229 regaddr, data);
0b23fb36
IY
230
231 return 0;
232}
233
567173a6
JT
234static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
235 int regaddr)
13947f43 236{
567173a6 237 return fec_mdio_read(bus->priv, phyaddr, regaddr);
13947f43
TK
238}
239
567173a6
JT
240static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
241 int regaddr, u16 data)
13947f43 242{
567173a6 243 return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
13947f43
TK
244}
245
246#ifndef CONFIG_PHYLIB
0b23fb36
IY
247static int miiphy_restart_aneg(struct eth_device *dev)
248{
b774fe9d
SB
249 int ret = 0;
250#if !defined(CONFIG_FEC_MXC_NO_ANEG)
9e27e9dc 251 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 252 struct ethernet_regs *eth = fec->bus->priv;
9e27e9dc 253
0b23fb36
IY
254 /*
255 * Wake up from sleep if necessary
256 * Reset PHY, then delay 300ns
257 */
cb17b92d 258#ifdef CONFIG_MX27
13947f43 259 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
cb17b92d 260#endif
13947f43 261 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
0b23fb36
IY
262 udelay(1000);
263
567173a6 264 /* Set the auto-negotiation advertisement register bits */
13947f43 265 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
567173a6
JT
266 LPA_100FULL | LPA_100HALF | LPA_10FULL |
267 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
13947f43 268 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
567173a6 269 BMCR_ANENABLE | BMCR_ANRESTART);
2e5f4421
MV
270
271 if (fec->mii_postcall)
272 ret = fec->mii_postcall(fec->phy_id);
273
b774fe9d 274#endif
2e5f4421 275 return ret;
0b23fb36
IY
276}
277
0750701a 278#ifndef CONFIG_FEC_FIXED_SPEED
0b23fb36
IY
279static int miiphy_wait_aneg(struct eth_device *dev)
280{
281 uint32_t start;
13947f43 282 int status;
9e27e9dc 283 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 284 struct ethernet_regs *eth = fec->bus->priv;
0b23fb36 285
567173a6 286 /* Wait for AN completion */
a60d1e5b 287 start = get_timer(0);
0b23fb36
IY
288 do {
289 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
290 printf("%s: Autonegotiation timeout\n", dev->name);
291 return -1;
292 }
293
13947f43
TK
294 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
295 if (status < 0) {
296 printf("%s: Autonegotiation failed. status: %d\n",
567173a6 297 dev->name, status);
0b23fb36
IY
298 return -1;
299 }
8ef583a0 300 } while (!(status & BMSR_LSTATUS));
0b23fb36
IY
301
302 return 0;
303}
0750701a 304#endif /* CONFIG_FEC_FIXED_SPEED */
13947f43
TK
305#endif
306
0b23fb36
IY
307static int fec_rx_task_enable(struct fec_priv *fec)
308{
c0b5a3bb 309 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
0b23fb36
IY
310 return 0;
311}
312
313static int fec_rx_task_disable(struct fec_priv *fec)
314{
315 return 0;
316}
317
318static int fec_tx_task_enable(struct fec_priv *fec)
319{
c0b5a3bb 320 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
0b23fb36
IY
321 return 0;
322}
323
324static int fec_tx_task_disable(struct fec_priv *fec)
325{
326 return 0;
327}
328
329/**
330 * Initialize receive task's buffer descriptors
331 * @param[in] fec all we know about the device yet
332 * @param[in] count receive buffer count to be allocated
5c1ad3e6 333 * @param[in] dsize desired size of each receive buffer
0b23fb36
IY
334 * @return 0 on success
335 *
79e5f27b 336 * Init all RX descriptors to default values.
0b23fb36 337 */
79e5f27b 338static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
0b23fb36 339{
5c1ad3e6 340 uint32_t size;
f24e482a 341 ulong data;
5c1ad3e6
EN
342 int i;
343
0b23fb36 344 /*
79e5f27b
MV
345 * Reload the RX descriptors with default values and wipe
346 * the RX buffers.
0b23fb36 347 */
5c1ad3e6
EN
348 size = roundup(dsize, ARCH_DMA_MINALIGN);
349 for (i = 0; i < count; i++) {
f24e482a
YL
350 data = fec->rbd_base[i].data_pointer;
351 memset((void *)data, 0, dsize);
352 flush_dcache_range(data, data + size);
79e5f27b
MV
353
354 fec->rbd_base[i].status = FEC_RBD_EMPTY;
355 fec->rbd_base[i].data_length = 0;
5c1ad3e6
EN
356 }
357
358 /* Mark the last RBD to close the ring. */
79e5f27b 359 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
0b23fb36
IY
360 fec->rbd_index = 0;
361
f24e482a
YL
362 flush_dcache_range((ulong)fec->rbd_base,
363 (ulong)fec->rbd_base + size);
0b23fb36
IY
364}
365
366/**
367 * Initialize transmit task's buffer descriptors
368 * @param[in] fec all we know about the device yet
369 *
370 * Transmit buffers are created externally. We only have to init the BDs here.\n
371 * Note: There is a race condition in the hardware. When only one BD is in
372 * use it must be marked with the WRAP bit to use it for every transmitt.
373 * This bit in combination with the READY bit results into double transmit
374 * of each data buffer. It seems the state machine checks READY earlier then
375 * resetting it after the first transfer.
376 * Using two BDs solves this issue.
377 */
378static void fec_tbd_init(struct fec_priv *fec)
379{
f24e482a 380 ulong addr = (ulong)fec->tbd_base;
5c1ad3e6
EN
381 unsigned size = roundup(2 * sizeof(struct fec_bd),
382 ARCH_DMA_MINALIGN);
79e5f27b
MV
383
384 memset(fec->tbd_base, 0, size);
385 fec->tbd_base[0].status = 0;
386 fec->tbd_base[1].status = FEC_TBD_WRAP;
0b23fb36 387 fec->tbd_index = 0;
79e5f27b 388 flush_dcache_range(addr, addr + size);
0b23fb36
IY
389}
390
391/**
392 * Mark the given read buffer descriptor as free
393 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
567173a6 394 * @param[in] prbd buffer descriptor to mark free again
0b23fb36 395 */
567173a6 396static void fec_rbd_clean(int last, struct fec_bd *prbd)
0b23fb36 397{
5c1ad3e6 398 unsigned short flags = FEC_RBD_EMPTY;
0b23fb36 399 if (last)
5c1ad3e6 400 flags |= FEC_RBD_WRAP;
567173a6
JT
401 writew(flags, &prbd->status);
402 writew(0, &prbd->data_length);
0b23fb36
IY
403}
404
f54183e6 405static int fec_get_hwaddr(int dev_id, unsigned char *mac)
0b23fb36 406{
be252b65 407 imx_get_mac_from_fuse(dev_id, mac);
0adb5b76 408 return !is_valid_ethaddr(mac);
0b23fb36
IY
409}
410
60752ca8
JT
411#ifdef CONFIG_DM_ETH
412static int fecmxc_set_hwaddr(struct udevice *dev)
413#else
4294b248 414static int fec_set_hwaddr(struct eth_device *dev)
60752ca8 415#endif
0b23fb36 416{
60752ca8
JT
417#ifdef CONFIG_DM_ETH
418 struct fec_priv *fec = dev_get_priv(dev);
c69cda25 419 struct eth_pdata *pdata = dev_get_plat(dev);
60752ca8
JT
420 uchar *mac = pdata->enetaddr;
421#else
4294b248 422 uchar *mac = dev->enetaddr;
0b23fb36 423 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 424#endif
0b23fb36
IY
425
426 writel(0, &fec->eth->iaddr1);
427 writel(0, &fec->eth->iaddr2);
428 writel(0, &fec->eth->gaddr1);
429 writel(0, &fec->eth->gaddr2);
430
567173a6 431 /* Set physical address */
0b23fb36 432 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
567173a6 433 &fec->eth->paddr1);
0b23fb36
IY
434 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
435
436 return 0;
437}
438
567173a6 439/* Do initial configuration of the FEC registers */
a5990b26
MV
440static void fec_reg_setup(struct fec_priv *fec)
441{
442 uint32_t rcntrl;
443
567173a6 444 /* Set interrupt mask register */
a5990b26
MV
445 writel(0x00000000, &fec->eth->imask);
446
567173a6 447 /* Clear FEC-Lite interrupt event register(IEVENT) */
a5990b26
MV
448 writel(0xffffffff, &fec->eth->ievent);
449
567173a6 450 /* Set FEC-Lite receive control register(R_CNTRL): */
a5990b26
MV
451
452 /* Start with frame length = 1518, common for all modes. */
453 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
9d2d924a 454 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
455 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
456 if (fec->xcv_type == RGMII)
a5990b26
MV
457 rcntrl |= FEC_RCNTRL_RGMII;
458 else if (fec->xcv_type == RMII)
459 rcntrl |= FEC_RCNTRL_RMII;
a5990b26 460
87550a81
TH
461 if (fec->promisc)
462 rcntrl |= 0x8;
463
a5990b26
MV
464 writel(rcntrl, &fec->eth->r_cntrl);
465}
466
0b23fb36
IY
467/**
468 * Start the FEC engine
469 * @param[in] dev Our device to handle
470 */
60752ca8
JT
471#ifdef CONFIG_DM_ETH
472static int fec_open(struct udevice *dev)
473#else
0b23fb36 474static int fec_open(struct eth_device *edev)
60752ca8 475#endif
0b23fb36 476{
60752ca8
JT
477#ifdef CONFIG_DM_ETH
478 struct fec_priv *fec = dev_get_priv(dev);
479#else
0b23fb36 480 struct fec_priv *fec = (struct fec_priv *)edev->priv;
60752ca8 481#endif
28774cba 482 int speed;
f24e482a 483 ulong addr, size;
5c1ad3e6 484 int i;
0b23fb36
IY
485
486 debug("fec_open: fec_open(dev)\n");
487 /* full-duplex, heartbeat disabled */
488 writel(1 << 2, &fec->eth->x_cntrl);
489 fec->rbd_index = 0;
490
5c1ad3e6
EN
491 /* Invalidate all descriptors */
492 for (i = 0; i < FEC_RBD_NUM - 1; i++)
493 fec_rbd_clean(0, &fec->rbd_base[i]);
494 fec_rbd_clean(1, &fec->rbd_base[i]);
495
496 /* Flush the descriptors into RAM */
497 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
498 ARCH_DMA_MINALIGN);
f24e482a 499 addr = (ulong)fec->rbd_base;
5c1ad3e6
EN
500 flush_dcache_range(addr, addr + size);
501
28774cba 502#ifdef FEC_QUIRK_ENET_MAC
2ef2b950
JL
503 /* Enable ENET HW endian SWAP */
504 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
567173a6 505 &fec->eth->ecntrl);
2ef2b950
JL
506 /* Enable ENET store and forward mode */
507 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
567173a6 508 &fec->eth->x_wmrk);
2ef2b950 509#endif
567173a6 510 /* Enable FEC-Lite controller */
cb17b92d 511 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
567173a6
JT
512 &fec->eth->ecntrl);
513
a1a34fae
PS
514#ifdef FEC_ENET_ENABLE_TXC_DELAY
515 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_TXC_DLY,
516 &fec->eth->ecntrl);
517#endif
518
519#ifdef FEC_ENET_ENABLE_RXC_DELAY
520 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RXC_DLY,
521 &fec->eth->ecntrl);
522#endif
523
8ba59608 524#if defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
740d6ae5 525 udelay(100);
740d6ae5 526
567173a6 527 /* setup the MII gasket for RMII mode */
740d6ae5
JR
528 /* disable the gasket */
529 writew(0, &fec->eth->miigsk_enr);
530
531 /* wait for the gasket to be disabled */
532 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
533 udelay(2);
534
535 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
536 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
537
538 /* re-enable the gasket */
539 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
540
541 /* wait until MII gasket is ready */
542 int max_loops = 10;
543 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
544 if (--max_loops <= 0) {
545 printf("WAIT for MII Gasket ready timed out\n");
546 break;
547 }
548 }
549#endif
0b23fb36 550
13947f43 551#ifdef CONFIG_PHYLIB
4dc27eed 552 {
13947f43 553 /* Start up the PHY */
11af8d65
TT
554 int ret = phy_startup(fec->phydev);
555
556 if (ret) {
557 printf("Could not initialize PHY %s\n",
558 fec->phydev->dev->name);
559 return ret;
560 }
13947f43 561 speed = fec->phydev->speed;
13947f43 562 }
0750701a
HS
563#elif CONFIG_FEC_FIXED_SPEED
564 speed = CONFIG_FEC_FIXED_SPEED;
13947f43 565#else
0b23fb36 566 miiphy_wait_aneg(edev);
28774cba 567 speed = miiphy_speed(edev->name, fec->phy_id);
9e27e9dc 568 miiphy_duplex(edev->name, fec->phy_id);
13947f43 569#endif
0b23fb36 570
28774cba
TK
571#ifdef FEC_QUIRK_ENET_MAC
572 {
573 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
bcb6e902 574 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
28774cba
TK
575 if (speed == _1000BASET)
576 ecr |= FEC_ECNTRL_SPEED;
577 else if (speed != _100BASET)
578 rcr |= FEC_RCNTRL_RMII_10T;
579 writel(ecr, &fec->eth->ecntrl);
580 writel(rcr, &fec->eth->r_cntrl);
581 }
582#endif
583 debug("%s:Speed=%i\n", __func__, speed);
584
567173a6 585 /* Enable SmartDMA receive task */
0b23fb36
IY
586 fec_rx_task_enable(fec);
587
588 udelay(100000);
589 return 0;
590}
591
60752ca8
JT
592#ifdef CONFIG_DM_ETH
593static int fecmxc_init(struct udevice *dev)
594#else
bb5a2cf9 595static int fec_init(struct eth_device *dev, struct bd_info *bd)
60752ca8 596#endif
0b23fb36 597{
60752ca8
JT
598#ifdef CONFIG_DM_ETH
599 struct fec_priv *fec = dev_get_priv(dev);
600#else
0b23fb36 601 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 602#endif
f24e482a
YL
603 u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
604 u8 *i;
605 ulong addr;
0b23fb36 606
e9319f11 607 /* Initialize MAC address */
60752ca8
JT
608#ifdef CONFIG_DM_ETH
609 fecmxc_set_hwaddr(dev);
610#else
e9319f11 611 fec_set_hwaddr(dev);
60752ca8 612#endif
e9319f11 613
567173a6 614 /* Setup transmit descriptors, there are two in total. */
79e5f27b 615 fec_tbd_init(fec);
0b23fb36 616
79e5f27b
MV
617 /* Setup receive descriptors. */
618 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
0b23fb36 619
a5990b26 620 fec_reg_setup(fec);
9eb3770b 621
f41471e6 622 if (fec->xcv_type != SEVENWIRE)
575c5cc0 623 fec_mii_setspeed(fec->bus->priv);
9eb3770b 624
567173a6 625 /* Set Opcode/Pause Duration Register */
0b23fb36
IY
626 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
627 writel(0x2, &fec->eth->x_wmrk);
567173a6
JT
628
629 /* Set multicast address filter */
0b23fb36
IY
630 writel(0x00000000, &fec->eth->gaddr1);
631 writel(0x00000000, &fec->eth->gaddr2);
632
238a53c7 633 /* Do not access reserved register */
06918de4 634 if (!is_mx6ul() && !is_mx6ull() && !is_imx8() && !is_imx8m() && !is_imx8ulp()) {
fbecbaa1
PF
635 /* clear MIB RAM */
636 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
637 writel(0, i);
0b23fb36 638
fbecbaa1
PF
639 /* FIFO receive start register */
640 writel(0x520, &fec->eth->r_fstart);
641 }
0b23fb36
IY
642
643 /* size and address of each buffer */
644 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
f24e482a
YL
645
646 addr = (ulong)fec->tbd_base;
647 writel((uint32_t)addr, &fec->eth->etdsr);
648
649 addr = (ulong)fec->rbd_base;
650 writel((uint32_t)addr, &fec->eth->erdsr);
0b23fb36 651
13947f43 652#ifndef CONFIG_PHYLIB
0b23fb36
IY
653 if (fec->xcv_type != SEVENWIRE)
654 miiphy_restart_aneg(dev);
13947f43 655#endif
0b23fb36
IY
656 fec_open(dev);
657 return 0;
658}
659
660/**
661 * Halt the FEC engine
662 * @param[in] dev Our device to handle
663 */
60752ca8
JT
664#ifdef CONFIG_DM_ETH
665static void fecmxc_halt(struct udevice *dev)
666#else
0b23fb36 667static void fec_halt(struct eth_device *dev)
60752ca8 668#endif
0b23fb36 669{
60752ca8
JT
670#ifdef CONFIG_DM_ETH
671 struct fec_priv *fec = dev_get_priv(dev);
672#else
9e27e9dc 673 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 674#endif
0b23fb36
IY
675 int counter = 0xffff;
676
567173a6 677 /* issue graceful stop command to the FEC transmitter if necessary */
cb17b92d 678 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
567173a6 679 &fec->eth->x_cntrl);
0b23fb36
IY
680
681 debug("eth_halt: wait for stop regs\n");
567173a6 682 /* wait for graceful stop to register */
0b23fb36 683 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
cb17b92d 684 udelay(1);
0b23fb36 685
567173a6 686 /* Disable SmartDMA tasks */
0b23fb36
IY
687 fec_tx_task_disable(fec);
688 fec_rx_task_disable(fec);
689
690 /*
691 * Disable the Ethernet Controller
692 * Note: this will also reset the BD index counter!
693 */
740d6ae5 694 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
567173a6 695 &fec->eth->ecntrl);
0b23fb36
IY
696 fec->rbd_index = 0;
697 fec->tbd_index = 0;
0b23fb36
IY
698 debug("eth_halt: done\n");
699}
700
701/**
702 * Transmit one frame
703 * @param[in] dev Our ethernet device to handle
704 * @param[in] packet Pointer to the data to be transmitted
705 * @param[in] length Data count in bytes
706 * @return 0 on success
707 */
60752ca8
JT
708#ifdef CONFIG_DM_ETH
709static int fecmxc_send(struct udevice *dev, void *packet, int length)
710#else
442dac4c 711static int fec_send(struct eth_device *dev, void *packet, int length)
60752ca8 712#endif
0b23fb36
IY
713{
714 unsigned int status;
f24e482a
YL
715 u32 size;
716 ulong addr, end;
bc1ce150
MV
717 int timeout = FEC_XFER_TIMEOUT;
718 int ret = 0;
0b23fb36
IY
719
720 /*
721 * This routine transmits one frame. This routine only accepts
722 * 6-byte Ethernet addresses.
723 */
60752ca8
JT
724#ifdef CONFIG_DM_ETH
725 struct fec_priv *fec = dev_get_priv(dev);
726#else
0b23fb36 727 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 728#endif
0b23fb36
IY
729
730 /*
731 * Check for valid length of data.
732 */
733 if ((length > 1500) || (length <= 0)) {
4294b248 734 printf("Payload (%d) too large\n", length);
0b23fb36
IY
735 return -1;
736 }
737
738 /*
5c1ad3e6
EN
739 * Setup the transmit buffer. We are always using the first buffer for
740 * transmission, the second will be empty and only used to stop the DMA
741 * engine. We also flush the packet to RAM here to avoid cache trouble.
0b23fb36 742 */
5c1ad3e6 743#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
744 swap_packet((uint32_t *)packet, length);
745#endif
5c1ad3e6 746
f24e482a 747 addr = (ulong)packet;
efe24d2e
MV
748 end = roundup(addr + length, ARCH_DMA_MINALIGN);
749 addr &= ~(ARCH_DMA_MINALIGN - 1);
750 flush_dcache_range(addr, end);
5c1ad3e6 751
0b23fb36 752 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
f24e482a 753 writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
5c1ad3e6 754
0b23fb36
IY
755 /*
756 * update BD's status now
757 * This block:
758 * - is always the last in a chain (means no chain)
759 * - should transmitt the CRC
760 * - might be the last BD in the list, so the address counter should
761 * wrap (-> keep the WRAP flag)
762 */
763 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
764 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
765 writew(status, &fec->tbd_base[fec->tbd_index].status);
766
5c1ad3e6
EN
767 /*
768 * Flush data cache. This code flushes both TX descriptors to RAM.
769 * After this code, the descriptors will be safely in RAM and we
770 * can start DMA.
771 */
772 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
f24e482a 773 addr = (ulong)fec->tbd_base;
5c1ad3e6
EN
774 flush_dcache_range(addr, addr + size);
775
ab94cd49
MV
776 /*
777 * Below we read the DMA descriptor's last four bytes back from the
778 * DRAM. This is important in order to make sure that all WRITE
779 * operations on the bus that were triggered by previous cache FLUSH
780 * have completed.
781 *
782 * Otherwise, on MX28, it is possible to observe a corruption of the
783 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
784 * for the bus structure of MX28. The scenario is as follows:
785 *
786 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
787 * to DRAM due to flush_dcache_range()
788 * 2) ARM core writes the FEC registers via AHB_ARB2
789 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
790 *
791 * Note that 2) does sometimes finish before 1) due to reordering of
792 * WRITE accesses on the AHB bus, therefore triggering 3) before the
793 * DMA descriptor is fully written into DRAM. This results in occasional
794 * corruption of the DMA descriptor.
795 */
796 readl(addr + size - 4);
797
567173a6 798 /* Enable SmartDMA transmit task */
0b23fb36
IY
799 fec_tx_task_enable(fec);
800
801 /*
5c1ad3e6
EN
802 * Wait until frame is sent. On each turn of the wait cycle, we must
803 * invalidate data cache to see what's really in RAM. Also, we need
804 * barrier here.
0b23fb36 805 */
67449098 806 while (--timeout) {
c0b5a3bb 807 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
bc1ce150 808 break;
0b23fb36 809 }
5c1ad3e6 810
f599288d 811 if (!timeout) {
67449098 812 ret = -EINVAL;
f599288d
FE
813 goto out;
814 }
815
816 /*
817 * The TDAR bit is cleared when the descriptors are all out from TX
818 * but on mx6solox we noticed that the READY bit is still not cleared
819 * right after TDAR.
820 * These are two distinct signals, and in IC simulation, we found that
821 * TDAR always gets cleared prior than the READY bit of last BD becomes
822 * cleared.
823 * In mx6solox, we use a later version of FEC IP. It looks like that
824 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
825 * version.
826 *
827 * Fix this by polling the READY bit of BD after the TDAR polling,
828 * which covers the mx6solox case and does not harm the other SoCs.
829 */
830 timeout = FEC_XFER_TIMEOUT;
831 while (--timeout) {
832 invalidate_dcache_range(addr, addr + size);
833 if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
834 FEC_TBD_READY))
835 break;
836 }
67449098 837
f599288d 838 if (!timeout)
67449098
MV
839 ret = -EINVAL;
840
f599288d 841out:
67449098 842 debug("fec_send: status 0x%x index %d ret %i\n",
567173a6
JT
843 readw(&fec->tbd_base[fec->tbd_index].status),
844 fec->tbd_index, ret);
0b23fb36
IY
845 /* for next transmission use the other buffer */
846 if (fec->tbd_index)
847 fec->tbd_index = 0;
848 else
849 fec->tbd_index = 1;
850
bc1ce150 851 return ret;
0b23fb36
IY
852}
853
854/**
855 * Pull one frame from the card
856 * @param[in] dev Our ethernet device to handle
857 * @return Length of packet read
858 */
60752ca8
JT
859#ifdef CONFIG_DM_ETH
860static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
861#else
0b23fb36 862static int fec_recv(struct eth_device *dev)
60752ca8 863#endif
0b23fb36 864{
60752ca8
JT
865#ifdef CONFIG_DM_ETH
866 struct fec_priv *fec = dev_get_priv(dev);
867#else
0b23fb36 868 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 869#endif
0b23fb36
IY
870 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
871 unsigned long ievent;
872 int frame_length, len = 0;
0b23fb36 873 uint16_t bd_status;
f24e482a 874 ulong addr, size, end;
5c1ad3e6 875 int i;
07763ac9
YL
876
877#ifdef CONFIG_DM_ETH
878 *packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE);
879 if (*packetp == 0) {
880 printf("%s: error allocating packetp\n", __func__);
881 return -ENOMEM;
882 }
883#else
fd37f195 884 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
07763ac9 885#endif
0b23fb36 886
567173a6 887 /* Check if any critical events have happened */
0b23fb36
IY
888 ievent = readl(&fec->eth->ievent);
889 writel(ievent, &fec->eth->ievent);
eda959f3 890 debug("fec_recv: ievent 0x%lx\n", ievent);
0b23fb36 891 if (ievent & FEC_IEVENT_BABR) {
60752ca8
JT
892#ifdef CONFIG_DM_ETH
893 fecmxc_halt(dev);
894 fecmxc_init(dev);
895#else
0b23fb36
IY
896 fec_halt(dev);
897 fec_init(dev, fec->bd);
60752ca8 898#endif
0b23fb36
IY
899 printf("some error: 0x%08lx\n", ievent);
900 return 0;
901 }
902 if (ievent & FEC_IEVENT_HBERR) {
903 /* Heartbeat error */
904 writel(0x00000001 | readl(&fec->eth->x_cntrl),
567173a6 905 &fec->eth->x_cntrl);
0b23fb36
IY
906 }
907 if (ievent & FEC_IEVENT_GRA) {
908 /* Graceful stop complete */
909 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
60752ca8
JT
910#ifdef CONFIG_DM_ETH
911 fecmxc_halt(dev);
912#else
0b23fb36 913 fec_halt(dev);
60752ca8 914#endif
0b23fb36 915 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
567173a6 916 &fec->eth->x_cntrl);
60752ca8
JT
917#ifdef CONFIG_DM_ETH
918 fecmxc_init(dev);
919#else
0b23fb36 920 fec_init(dev, fec->bd);
60752ca8 921#endif
0b23fb36
IY
922 }
923 }
924
925 /*
5c1ad3e6
EN
926 * Read the buffer status. Before the status can be read, the data cache
927 * must be invalidated, because the data in RAM might have been changed
928 * by DMA. The descriptors are properly aligned to cachelines so there's
929 * no need to worry they'd overlap.
930 *
931 * WARNING: By invalidating the descriptor here, we also invalidate
932 * the descriptors surrounding this one. Therefore we can NOT change the
933 * contents of this descriptor nor the surrounding ones. The problem is
934 * that in order to mark the descriptor as processed, we need to change
935 * the descriptor. The solution is to mark the whole cache line when all
936 * descriptors in the cache line are processed.
0b23fb36 937 */
f24e482a 938 addr = (ulong)rbd;
5c1ad3e6
EN
939 addr &= ~(ARCH_DMA_MINALIGN - 1);
940 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
941 invalidate_dcache_range(addr, addr + size);
942
0b23fb36
IY
943 bd_status = readw(&rbd->status);
944 debug("fec_recv: status 0x%x\n", bd_status);
945
946 if (!(bd_status & FEC_RBD_EMPTY)) {
947 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
567173a6
JT
948 ((readw(&rbd->data_length) - 4) > 14)) {
949 /* Get buffer address and size */
b189584b 950 addr = readl(&rbd->data_pointer);
0b23fb36 951 frame_length = readw(&rbd->data_length) - 4;
567173a6 952 /* Invalidate data cache over the buffer */
efe24d2e
MV
953 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
954 addr &= ~(ARCH_DMA_MINALIGN - 1);
955 invalidate_dcache_range(addr, end);
5c1ad3e6 956
567173a6 957 /* Fill the buffer and pass it to upper layers */
5c1ad3e6 958#ifdef CONFIG_FEC_MXC_SWAP_PACKET
b189584b 959 swap_packet((uint32_t *)addr, frame_length);
be7e87e2 960#endif
07763ac9
YL
961
962#ifdef CONFIG_DM_ETH
963 memcpy(*packetp, (char *)addr, frame_length);
964#else
b189584b 965 memcpy(buff, (char *)addr, frame_length);
1fd92db8 966 net_process_received_packet(buff, frame_length);
07763ac9 967#endif
0b23fb36
IY
968 len = frame_length;
969 } else {
970 if (bd_status & FEC_RBD_ERR)
f24e482a
YL
971 debug("error frame: 0x%08lx 0x%08x\n",
972 addr, bd_status);
0b23fb36 973 }
5c1ad3e6 974
0b23fb36 975 /*
5c1ad3e6
EN
976 * Free the current buffer, restart the engine and move forward
977 * to the next buffer. Here we check if the whole cacheline of
978 * descriptors was already processed and if so, we mark it free
979 * as whole.
0b23fb36 980 */
5c1ad3e6
EN
981 size = RXDESC_PER_CACHELINE - 1;
982 if ((fec->rbd_index & size) == size) {
983 i = fec->rbd_index - size;
f24e482a 984 addr = (ulong)&fec->rbd_base[i];
5c1ad3e6
EN
985 for (; i <= fec->rbd_index ; i++) {
986 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
987 &fec->rbd_base[i]);
988 }
989 flush_dcache_range(addr,
567173a6 990 addr + ARCH_DMA_MINALIGN);
5c1ad3e6
EN
991 }
992
0b23fb36
IY
993 fec_rx_task_enable(fec);
994 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
995 }
996 debug("fec_recv: stop\n");
997
998 return len;
999}
1000
ef8e3a3b
TK
1001static void fec_set_dev_name(char *dest, int dev_id)
1002{
1003 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
1004}
1005
79e5f27b
MV
1006static int fec_alloc_descs(struct fec_priv *fec)
1007{
1008 unsigned int size;
1009 int i;
1010 uint8_t *data;
f24e482a 1011 ulong addr;
79e5f27b
MV
1012
1013 /* Allocate TX descriptors. */
1014 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
1015 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
1016 if (!fec->tbd_base)
1017 goto err_tx;
1018
1019 /* Allocate RX descriptors. */
1020 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
1021 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
1022 if (!fec->rbd_base)
1023 goto err_rx;
1024
1025 memset(fec->rbd_base, 0, size);
1026
1027 /* Allocate RX buffers. */
1028
1029 /* Maximum RX buffer size. */
db5b7f56 1030 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
79e5f27b 1031 for (i = 0; i < FEC_RBD_NUM; i++) {
db5b7f56 1032 data = memalign(FEC_DMA_RX_MINALIGN, size);
79e5f27b
MV
1033 if (!data) {
1034 printf("%s: error allocating rxbuf %d\n", __func__, i);
1035 goto err_ring;
1036 }
1037
1038 memset(data, 0, size);
1039
f24e482a
YL
1040 addr = (ulong)data;
1041 fec->rbd_base[i].data_pointer = (uint32_t)addr;
79e5f27b
MV
1042 fec->rbd_base[i].status = FEC_RBD_EMPTY;
1043 fec->rbd_base[i].data_length = 0;
1044 /* Flush the buffer to memory. */
f24e482a 1045 flush_dcache_range(addr, addr + size);
79e5f27b
MV
1046 }
1047
1048 /* Mark the last RBD to close the ring. */
1049 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
1050
1051 fec->rbd_index = 0;
1052 fec->tbd_index = 0;
1053
1054 return 0;
1055
1056err_ring:
f24e482a
YL
1057 for (; i >= 0; i--) {
1058 addr = fec->rbd_base[i].data_pointer;
1059 free((void *)addr);
1060 }
79e5f27b
MV
1061 free(fec->rbd_base);
1062err_rx:
1063 free(fec->tbd_base);
1064err_tx:
1065 return -ENOMEM;
1066}
1067
1068static void fec_free_descs(struct fec_priv *fec)
1069{
1070 int i;
f24e482a 1071 ulong addr;
79e5f27b 1072
f24e482a
YL
1073 for (i = 0; i < FEC_RBD_NUM; i++) {
1074 addr = fec->rbd_base[i].data_pointer;
1075 free((void *)addr);
1076 }
79e5f27b
MV
1077 free(fec->rbd_base);
1078 free(fec->tbd_base);
1079}
1080
1bcabd79 1081struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id)
60752ca8 1082{
1bcabd79 1083 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
60752ca8
JT
1084 struct mii_dev *bus;
1085 int ret;
1086
1087 bus = mdio_alloc();
1088 if (!bus) {
1089 printf("mdio_alloc failed\n");
1090 return NULL;
1091 }
1092 bus->read = fec_phy_read;
1093 bus->write = fec_phy_write;
1094 bus->priv = eth;
1095 fec_set_dev_name(bus->name, dev_id);
1096
1097 ret = mdio_register(bus);
1098 if (ret) {
1099 printf("mdio_register failed\n");
1100 free(bus);
1101 return NULL;
1102 }
1103 fec_mii_setspeed(eth);
1104 return bus;
1105}
1106
1107#ifndef CONFIG_DM_ETH
fe428b90 1108#ifdef CONFIG_PHYLIB
b75d8dc5 1109int fec_probe(struct bd_info *bd, int dev_id, uint32_t base_addr,
fe428b90
TK
1110 struct mii_dev *bus, struct phy_device *phydev)
1111#else
bb5a2cf9 1112static int fec_probe(struct bd_info *bd, int dev_id, uint32_t base_addr,
fe428b90
TK
1113 struct mii_dev *bus, int phy_id)
1114#endif
0b23fb36 1115{
0b23fb36 1116 struct eth_device *edev;
9e27e9dc 1117 struct fec_priv *fec;
0b23fb36 1118 unsigned char ethaddr[6];
979a5893 1119 char mac[16];
e382fb48
MV
1120 uint32_t start;
1121 int ret = 0;
0b23fb36
IY
1122
1123 /* create and fill edev struct */
1124 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
1125 if (!edev) {
9e27e9dc 1126 puts("fec_mxc: not enough malloc memory for eth_device\n");
e382fb48
MV
1127 ret = -ENOMEM;
1128 goto err1;
9e27e9dc
MV
1129 }
1130
1131 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
1132 if (!fec) {
1133 puts("fec_mxc: not enough malloc memory for fec_priv\n");
e382fb48
MV
1134 ret = -ENOMEM;
1135 goto err2;
0b23fb36 1136 }
9e27e9dc 1137
de0b9576 1138 memset(edev, 0, sizeof(*edev));
9e27e9dc
MV
1139 memset(fec, 0, sizeof(*fec));
1140
79e5f27b
MV
1141 ret = fec_alloc_descs(fec);
1142 if (ret)
1143 goto err3;
1144
0b23fb36
IY
1145 edev->priv = fec;
1146 edev->init = fec_init;
1147 edev->send = fec_send;
1148 edev->recv = fec_recv;
1149 edev->halt = fec_halt;
fb57ec97 1150 edev->write_hwaddr = fec_set_hwaddr;
0b23fb36 1151
f24e482a 1152 fec->eth = (struct ethernet_regs *)(ulong)base_addr;
0b23fb36
IY
1153 fec->bd = bd;
1154
392b8502 1155 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
0b23fb36
IY
1156
1157 /* Reset chip. */
cb17b92d 1158 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
e382fb48
MV
1159 start = get_timer(0);
1160 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1161 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
3450a859 1162 printf("FEC MXC: Timeout resetting chip\n");
79e5f27b 1163 goto err4;
e382fb48 1164 }
0b23fb36 1165 udelay(10);
e382fb48 1166 }
0b23fb36 1167
a5990b26 1168 fec_reg_setup(fec);
ef8e3a3b
TK
1169 fec_set_dev_name(edev->name, dev_id);
1170 fec->dev_id = (dev_id == -1) ? 0 : dev_id;
fe428b90
TK
1171 fec->bus = bus;
1172 fec_mii_setspeed(bus->priv);
1173#ifdef CONFIG_PHYLIB
1174 fec->phydev = phydev;
1175 phy_connect_dev(phydev, edev);
1176 /* Configure phy */
1177 phy_config(phydev);
1178#else
9e27e9dc 1179 fec->phy_id = phy_id;
fe428b90
TK
1180#endif
1181 eth_register(edev);
979a5893
AD
1182 /* only support one eth device, the index number pointed by dev_id */
1183 edev->index = fec->dev_id;
fe428b90 1184
f01e4e1e
AD
1185 if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) {
1186 debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr);
fe428b90 1187 memcpy(edev->enetaddr, ethaddr, 6);
979a5893
AD
1188 if (fec->dev_id)
1189 sprintf(mac, "eth%daddr", fec->dev_id);
1190 else
1191 strcpy(mac, "ethaddr");
00caae6d 1192 if (!env_get(mac))
fd1e959e 1193 eth_env_set_enetaddr(mac, ethaddr);
fe428b90
TK
1194 }
1195 return ret;
79e5f27b
MV
1196err4:
1197 fec_free_descs(fec);
fe428b90
TK
1198err3:
1199 free(fec);
1200err2:
1201 free(edev);
1202err1:
1203 return ret;
1204}
1205
b75d8dc5
MY
1206int fecmxc_initialize_multi(struct bd_info *bd, int dev_id, int phy_id,
1207 uint32_t addr)
fe428b90
TK
1208{
1209 uint32_t base_mii;
1210 struct mii_dev *bus = NULL;
1211#ifdef CONFIG_PHYLIB
1212 struct phy_device *phydev = NULL;
1213#endif
1214 int ret;
1215
3b26d527
PF
1216 if (CONFIG_IS_ENABLED(IMX_MODULE_FUSE)) {
1217 if (enet_fused((ulong)addr)) {
1218 printf("SoC fuse indicates Ethernet@0x%x is unavailable.\n", addr);
1219 return -ENODEV;
1220 }
1221 }
1222
fbada485 1223#ifdef CONFIG_FEC_MXC_MDIO_BASE
13947f43
TK
1224 /*
1225 * The i.MX28 has two ethernet interfaces, but they are not equal.
1226 * Only the first one can access the MDIO bus.
1227 */
fbada485 1228 base_mii = CONFIG_FEC_MXC_MDIO_BASE;
13947f43 1229#else
fe428b90 1230 base_mii = addr;
13947f43 1231#endif
fe428b90
TK
1232 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1233 bus = fec_get_miibus(base_mii, dev_id);
1234 if (!bus)
1235 return -ENOMEM;
4dc27eed 1236#ifdef CONFIG_PHYLIB
fe428b90 1237 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
4dc27eed 1238 if (!phydev) {
845a57b4 1239 mdio_unregister(bus);
4dc27eed 1240 free(bus);
fe428b90 1241 return -ENOMEM;
4dc27eed 1242 }
fe428b90
TK
1243 ret = fec_probe(bd, dev_id, addr, bus, phydev);
1244#else
1245 ret = fec_probe(bd, dev_id, addr, bus, phy_id);
4dc27eed 1246#endif
fe428b90
TK
1247 if (ret) {
1248#ifdef CONFIG_PHYLIB
1249 free(phydev);
1250#endif
845a57b4 1251 mdio_unregister(bus);
fe428b90
TK
1252 free(bus);
1253 }
e382fb48 1254 return ret;
eef24480 1255}
0b23fb36 1256
eef24480 1257#ifdef CONFIG_FEC_MXC_PHYADDR
b75d8dc5 1258int fecmxc_initialize(struct bd_info *bd)
eef24480
TK
1259{
1260 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1261 IMX_FEC_BASE);
0b23fb36 1262}
eef24480 1263#endif
2e5f4421 1264
13947f43 1265#ifndef CONFIG_PHYLIB
2e5f4421
MV
1266int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1267{
1268 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1269 fec->mii_postcall = cb;
1270 return 0;
1271}
13947f43 1272#endif
60752ca8
JT
1273
1274#else
1275
1ed2570f
JT
1276static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1277{
1278 struct fec_priv *priv = dev_get_priv(dev);
c69cda25 1279 struct eth_pdata *pdata = dev_get_plat(dev);
1ed2570f
JT
1280
1281 return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1282}
1283
87550a81
TH
1284static int fecmxc_set_promisc(struct udevice *dev, bool enable)
1285{
1286 struct fec_priv *priv = dev_get_priv(dev);
1287
1288 priv->promisc = enable;
1289
1290 return 0;
1291}
1292
07763ac9
YL
1293static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length)
1294{
1295 if (packet)
1296 free(packet);
1297
1298 return 0;
1299}
1300
60752ca8
JT
1301static const struct eth_ops fecmxc_ops = {
1302 .start = fecmxc_init,
1303 .send = fecmxc_send,
1304 .recv = fecmxc_recv,
07763ac9 1305 .free_pkt = fecmxc_free_pkt,
60752ca8
JT
1306 .stop = fecmxc_halt,
1307 .write_hwaddr = fecmxc_set_hwaddr,
1ed2570f 1308 .read_rom_hwaddr = fecmxc_read_rom_hwaddr,
87550a81 1309 .set_promisc = fecmxc_set_promisc,
60752ca8
JT
1310};
1311
89b5bd54 1312static int device_get_phy_addr(struct fec_priv *priv, struct udevice *dev)
774ec60b
MW
1313{
1314 struct ofnode_phandle_args phandle_args;
eccd1329 1315 int reg, ret;
774ec60b 1316
eccd1329
SA
1317 ret = dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0,
1318 &phandle_args);
1319 if (ret) {
69c81d65
TH
1320 priv->phy_of_node = ofnode_find_subnode(dev_ofnode(dev),
1321 "fixed-link");
1322 if (ofnode_valid(priv->phy_of_node))
1323 return 0;
1324 debug("Failed to find phy-handle (err = %d)\n", ret);
eccd1329 1325 return ret;
774ec60b
MW
1326 }
1327
eccd1329
SA
1328 if (!ofnode_is_available(phandle_args.node))
1329 return -ENOENT;
89b5bd54 1330
eccd1329 1331 priv->phy_of_node = phandle_args.node;
774ec60b
MW
1332 reg = ofnode_read_u32_default(phandle_args.node, "reg", 0);
1333
1334 return reg;
1335}
1336
60752ca8
JT
1337static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1338{
1339 struct phy_device *phydev;
774ec60b 1340 int addr;
60752ca8 1341
89b5bd54 1342 addr = device_get_phy_addr(priv, dev);
178d4f00 1343#ifdef CONFIG_FEC_MXC_PHYADDR
b882005a 1344 addr = CONFIG_FEC_MXC_PHYADDR;
60752ca8
JT
1345#endif
1346
b882005a 1347 phydev = phy_connect(priv->bus, addr, dev, priv->interface);
60752ca8
JT
1348 if (!phydev)
1349 return -ENODEV;
1350
60752ca8 1351 priv->phydev = phydev;
89b5bd54 1352 priv->phydev->node = priv->phy_of_node;
60752ca8
JT
1353 phy_config(phydev);
1354
1355 return 0;
1356}
1357
bcee8d67 1358#if CONFIG_IS_ENABLED(DM_GPIO)
efd0b791
MT
1359/* FEC GPIO reset */
1360static void fec_gpio_reset(struct fec_priv *priv)
1361{
1362 debug("fec_gpio_reset: fec_gpio_reset(dev)\n");
1363 if (dm_gpio_is_valid(&priv->phy_reset_gpio)) {
1364 dm_gpio_set_value(&priv->phy_reset_gpio, 1);
9b8b9188 1365 mdelay(priv->reset_delay);
efd0b791 1366 dm_gpio_set_value(&priv->phy_reset_gpio, 0);
31d4045d
AC
1367 if (priv->reset_post_delay)
1368 mdelay(priv->reset_post_delay);
efd0b791
MT
1369 }
1370}
1371#endif
1372
60752ca8
JT
1373static int fecmxc_probe(struct udevice *dev)
1374{
cd435919 1375 bool dm_mii_bus = true;
c69cda25 1376 struct eth_pdata *pdata = dev_get_plat(dev);
60752ca8
JT
1377 struct fec_priv *priv = dev_get_priv(dev);
1378 struct mii_dev *bus = NULL;
60752ca8
JT
1379 uint32_t start;
1380 int ret;
1381
3b26d527
PF
1382 if (CONFIG_IS_ENABLED(IMX_MODULE_FUSE)) {
1383 if (enet_fused((ulong)priv->eth)) {
1384 printf("SoC fuse indicates Ethernet@0x%lx is unavailable.\n", (ulong)priv->eth);
1385 return -ENODEV;
1386 }
1387 }
1388
58ec4d33
AG
1389 if (IS_ENABLED(CONFIG_IMX8)) {
1390 ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1391 if (ret < 0) {
1392 debug("Can't get FEC ipg clk: %d\n", ret);
1393 return ret;
1394 }
1395 ret = clk_enable(&priv->ipg_clk);
1396 if (ret < 0) {
1397 debug("Can't enable FEC ipg clk: %d\n", ret);
1398 return ret;
1399 }
1400
673f6597
PF
1401 priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1402 } else if (CONFIG_IS_ENABLED(CLK_CCF)) {
1403 ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1404 if (ret < 0) {
1405 debug("Can't get FEC ipg clk: %d\n", ret);
1406 return ret;
1407 }
1408 ret = clk_enable(&priv->ipg_clk);
1409 if(ret)
1410 return ret;
1411
1412 ret = clk_get_by_name(dev, "ahb", &priv->ahb_clk);
1413 if (ret < 0) {
1414 debug("Can't get FEC ahb clk: %d\n", ret);
1415 return ret;
1416 }
1417 ret = clk_enable(&priv->ahb_clk);
1418 if (ret)
1419 return ret;
1420
1421 ret = clk_get_by_name(dev, "enet_out", &priv->clk_enet_out);
1422 if (!ret) {
1423 ret = clk_enable(&priv->clk_enet_out);
1424 if (ret)
1425 return ret;
1426 }
1427
1428 ret = clk_get_by_name(dev, "enet_clk_ref", &priv->clk_ref);
1429 if (!ret) {
1430 ret = clk_enable(&priv->clk_ref);
1431 if (ret)
1432 return ret;
1433 }
1434
1435 ret = clk_get_by_name(dev, "ptp", &priv->clk_ptp);
1436 if (!ret) {
1437 ret = clk_enable(&priv->clk_ptp);
1438 if (ret)
1439 return ret;
1440 }
1441
58ec4d33
AG
1442 priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1443 }
1444
60752ca8
JT
1445 ret = fec_alloc_descs(priv);
1446 if (ret)
1447 return ret;
1448
ad8c43cb
MF
1449#ifdef CONFIG_DM_REGULATOR
1450 if (priv->phy_supply) {
8f1a5ac7 1451 ret = regulator_set_enable(priv->phy_supply, true);
ad8c43cb
MF
1452 if (ret) {
1453 printf("%s: Error enabling phy supply\n", dev->name);
1454 return ret;
1455 }
1456 }
1457#endif
1458
bcee8d67 1459#if CONFIG_IS_ENABLED(DM_GPIO)
efd0b791
MT
1460 fec_gpio_reset(priv);
1461#endif
60752ca8 1462 /* Reset chip. */
567173a6
JT
1463 writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1464 &priv->eth->ecntrl);
60752ca8
JT
1465 start = get_timer(0);
1466 while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1467 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1468 printf("FEC MXC: Timeout reseting chip\n");
1469 goto err_timeout;
1470 }
1471 udelay(10);
1472 }
1473
1474 fec_reg_setup(priv);
60752ca8 1475
8b85dfc6 1476 priv->dev_id = dev_seq(dev);
6a895d03
YL
1477
1478#ifdef CONFIG_DM_ETH_PHY
1479 bus = eth_phy_get_mdio_bus(dev);
1480#endif
1481
1482 if (!bus) {
cd435919 1483 dm_mii_bus = false;
fbada485 1484#ifdef CONFIG_FEC_MXC_MDIO_BASE
8b85dfc6
SG
1485 bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE,
1486 dev_seq(dev));
fbada485 1487#else
8b85dfc6 1488 bus = fec_get_miibus((ulong)priv->eth, dev_seq(dev));
fbada485 1489#endif
6a895d03 1490 }
306dd7da
LW
1491 if (!bus) {
1492 ret = -ENOMEM;
1493 goto err_mii;
1494 }
1495
6a895d03
YL
1496#ifdef CONFIG_DM_ETH_PHY
1497 eth_phy_set_mdio_bus(dev, bus);
1498#endif
1499
306dd7da 1500 priv->bus = bus;
306dd7da 1501 priv->interface = pdata->phy_interface;
0126c641
MF
1502 switch (priv->interface) {
1503 case PHY_INTERFACE_MODE_MII:
1504 priv->xcv_type = MII100;
1505 break;
1506 case PHY_INTERFACE_MODE_RMII:
1507 priv->xcv_type = RMII;
1508 break;
1509 case PHY_INTERFACE_MODE_RGMII:
1510 case PHY_INTERFACE_MODE_RGMII_ID:
1511 case PHY_INTERFACE_MODE_RGMII_RXID:
1512 case PHY_INTERFACE_MODE_RGMII_TXID:
1513 priv->xcv_type = RGMII;
1514 break;
1515 default:
1516 priv->xcv_type = CONFIG_FEC_XCV_TYPE;
1517 printf("Unsupported interface type %d defaulting to %d\n",
1518 priv->interface, priv->xcv_type);
1519 break;
1520 }
1521
306dd7da
LW
1522 ret = fec_phy_init(priv, dev);
1523 if (ret)
1524 goto err_phy;
1525
60752ca8
JT
1526 return 0;
1527
60752ca8 1528err_phy:
cd435919
SA
1529 if (!dm_mii_bus) {
1530 mdio_unregister(bus);
1531 free(bus);
1532 }
60752ca8 1533err_mii:
2087eac2 1534err_timeout:
60752ca8
JT
1535 fec_free_descs(priv);
1536 return ret;
1537}
1538
1539static int fecmxc_remove(struct udevice *dev)
1540{
1541 struct fec_priv *priv = dev_get_priv(dev);
1542
1543 free(priv->phydev);
1544 fec_free_descs(priv);
1545 mdio_unregister(priv->bus);
1546 mdio_free(priv->bus);
1547
ad8c43cb
MF
1548#ifdef CONFIG_DM_REGULATOR
1549 if (priv->phy_supply)
1550 regulator_set_enable(priv->phy_supply, false);
1551#endif
1552
60752ca8
JT
1553 return 0;
1554}
1555
d1998a9f 1556static int fecmxc_of_to_plat(struct udevice *dev)
60752ca8 1557{
efd0b791 1558 int ret = 0;
c69cda25 1559 struct eth_pdata *pdata = dev_get_plat(dev);
60752ca8
JT
1560 struct fec_priv *priv = dev_get_priv(dev);
1561 const char *phy_mode;
1562
2548493a 1563 pdata->iobase = dev_read_addr(dev);
60752ca8
JT
1564 priv->eth = (struct ethernet_regs *)pdata->iobase;
1565
1566 pdata->phy_interface = -1;
e160f7d4
SG
1567 phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1568 NULL);
60752ca8
JT
1569 if (phy_mode)
1570 pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1571 if (pdata->phy_interface == -1) {
1572 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1573 return -EINVAL;
1574 }
1575
ad8c43cb
MF
1576#ifdef CONFIG_DM_REGULATOR
1577 device_get_supply_regulator(dev, "phy-supply", &priv->phy_supply);
1578#endif
1579
bcee8d67 1580#if CONFIG_IS_ENABLED(DM_GPIO)
efd0b791 1581 ret = gpio_request_by_name(dev, "phy-reset-gpios", 0,
331fcabe
MF
1582 &priv->phy_reset_gpio, GPIOD_IS_OUT);
1583 if (ret < 0)
1584 return 0; /* property is optional, don't return error! */
60752ca8 1585
331fcabe 1586 priv->reset_delay = dev_read_u32_default(dev, "phy-reset-duration", 1);
efd0b791 1587 if (priv->reset_delay > 1000) {
331fcabe
MF
1588 printf("FEC MXC: phy reset duration should be <= 1000ms\n");
1589 /* property value wrong, use default value */
1590 priv->reset_delay = 1;
efd0b791 1591 }
31d4045d
AC
1592
1593 priv->reset_post_delay = dev_read_u32_default(dev,
1594 "phy-reset-post-delay",
1595 0);
1596 if (priv->reset_post_delay > 1000) {
1597 printf("FEC MXC: phy reset post delay should be <= 1000ms\n");
1598 /* property value wrong, use default value */
1599 priv->reset_post_delay = 0;
1600 }
efd0b791
MT
1601#endif
1602
331fcabe 1603 return 0;
60752ca8
JT
1604}
1605
1606static const struct udevice_id fecmxc_ids[] = {
7782f4e4 1607 { .compatible = "fsl,imx28-fec" },
60752ca8 1608 { .compatible = "fsl,imx6q-fec" },
979e0fc8
PF
1609 { .compatible = "fsl,imx6sl-fec" },
1610 { .compatible = "fsl,imx6sx-fec" },
1611 { .compatible = "fsl,imx6ul-fec" },
948239ea 1612 { .compatible = "fsl,imx53-fec" },
58ec4d33 1613 { .compatible = "fsl,imx7d-fec" },
27589e7d 1614 { .compatible = "fsl,mvf600-fec" },
60752ca8
JT
1615 { }
1616};
1617
1618U_BOOT_DRIVER(fecmxc_gem) = {
1619 .name = "fecmxc",
1620 .id = UCLASS_ETH,
1621 .of_match = fecmxc_ids,
d1998a9f 1622 .of_to_plat = fecmxc_of_to_plat,
60752ca8
JT
1623 .probe = fecmxc_probe,
1624 .remove = fecmxc_remove,
1625 .ops = &fecmxc_ops,
41575d8e 1626 .priv_auto = sizeof(struct fec_priv),
caa4daa2 1627 .plat_auto = sizeof(struct eth_pdata),
60752ca8
JT
1628};
1629#endif
This page took 0.749009 seconds and 4 git commands to generate.