]>
Commit | Line | Data |
---|---|---|
05c7606a SG |
1 | // SPDX-License-Identifier: GPL-2.0 |
2 | /* | |
3 | * Copyright (C) 2018 Marvell International Ltd. | |
4 | */ | |
5 | ||
6 | #include <dm.h> | |
7 | #include <dm/device-internal.h> | |
8 | #include <dm/devres.h> | |
9 | #include <dm/of_access.h> | |
10 | #include <malloc.h> | |
11 | #include <memalign.h> | |
12 | #include <nand.h> | |
13 | #include <pci.h> | |
14 | #include <time.h> | |
15 | #include <linux/bitfield.h> | |
16 | #include <linux/ctype.h> | |
17 | #include <linux/dma-mapping.h> | |
18 | #include <linux/delay.h> | |
19 | #include <linux/errno.h> | |
20 | #include <linux/err.h> | |
21 | #include <linux/ioport.h> | |
22 | #include <linux/libfdt.h> | |
23 | #include <linux/mtd/mtd.h> | |
24 | #include <linux/mtd/nand_bch.h> | |
25 | #include <linux/mtd/nand_ecc.h> | |
1cefed1e | 26 | #include <linux/mtd/rawnand.h> |
401d1c4f | 27 | #include <asm/global_data.h> |
05c7606a SG |
28 | #include <asm/io.h> |
29 | #include <asm/types.h> | |
30 | #include <asm/dma-mapping.h> | |
31 | #include <asm/arch/clock.h> | |
32 | #include "octeontx_bch.h" | |
33 | ||
34 | #ifdef DEBUG | |
35 | # undef CONFIG_LOGLEVEL | |
36 | # define CONFIG_LOGLEVEL 8 | |
37 | #endif | |
38 | ||
39 | /* | |
40 | * The NDF_CMD queue takes commands between 16 - 128 bit. | |
41 | * All commands must be 16 bit aligned and are little endian. | |
42 | * WAIT_STATUS commands must be 64 bit aligned. | |
43 | * Commands are selected by the 4 bit opcode. | |
44 | * | |
45 | * Available Commands: | |
46 | * | |
47 | * 16 Bit: | |
48 | * NOP | |
49 | * WAIT | |
50 | * BUS_ACQ, BUS_REL | |
51 | * CHIP_EN, CHIP_DIS | |
52 | * | |
53 | * 32 Bit: | |
54 | * CLE_CMD | |
55 | * RD_CMD, RD_EDO_CMD | |
56 | * WR_CMD | |
57 | * | |
58 | * 64 Bit: | |
59 | * SET_TM_PAR | |
60 | * | |
61 | * 96 Bit: | |
62 | * ALE_CMD | |
63 | * | |
64 | * 128 Bit: | |
65 | * WAIT_STATUS, WAIT_STATUS_ALE | |
66 | */ | |
67 | ||
68 | /* NDF Register offsets */ | |
69 | #define NDF_CMD 0x0 | |
70 | #define NDF_MISC 0x8 | |
71 | #define NDF_ECC_CNT 0x10 | |
72 | #define NDF_DRBELL 0x30 | |
73 | #define NDF_ST_REG 0x38 /* status */ | |
74 | #define NDF_INT 0x40 | |
75 | #define NDF_INT_W1S 0x48 | |
76 | #define NDF_DMA_CFG 0x50 | |
77 | #define NDF_DMA_ADR 0x58 | |
78 | #define NDF_INT_ENA_W1C 0x60 | |
79 | #define NDF_INT_ENA_W1S 0x68 | |
80 | ||
81 | /* NDF command opcodes */ | |
82 | #define NDF_OP_NOP 0x0 | |
83 | #define NDF_OP_SET_TM_PAR 0x1 | |
84 | #define NDF_OP_WAIT 0x2 | |
85 | #define NDF_OP_CHIP_EN_DIS 0x3 | |
86 | #define NDF_OP_CLE_CMD 0x4 | |
87 | #define NDF_OP_ALE_CMD 0x5 | |
88 | #define NDF_OP_WR_CMD 0x8 | |
89 | #define NDF_OP_RD_CMD 0x9 | |
90 | #define NDF_OP_RD_EDO_CMD 0xa | |
91 | #define NDF_OP_WAIT_STATUS 0xb /* same opcode for WAIT_STATUS_ALE */ | |
92 | #define NDF_OP_BUS_ACQ_REL 0xf | |
93 | ||
94 | #define NDF_BUS_ACQUIRE 1 | |
95 | #define NDF_BUS_RELEASE 0 | |
96 | ||
97 | #define DBGX_EDSCR(X) (0x87A008000088 + (X) * 0x80000) | |
98 | ||
99 | struct ndf_nop_cmd { | |
100 | u16 opcode: 4; | |
101 | u16 nop: 12; | |
102 | }; | |
103 | ||
104 | struct ndf_wait_cmd { | |
105 | u16 opcode:4; | |
106 | u16 r_b:1; /* wait for one cycle or PBUS_WAIT deassert */ | |
107 | u16:3; | |
108 | u16 wlen:3; /* timing parameter select */ | |
109 | u16:5; | |
110 | }; | |
111 | ||
112 | struct ndf_bus_cmd { | |
113 | u16 opcode:4; | |
114 | u16 direction:4; /* 1 = acquire, 0 = release */ | |
115 | u16:8; | |
116 | }; | |
117 | ||
118 | struct ndf_chip_cmd { | |
119 | u16 opcode:4; | |
120 | u16 chip:3; /* select chip, 0 = disable */ | |
121 | u16 enable:1; /* 1 = enable, 0 = disable */ | |
122 | u16 bus_width:2; /* 10 = 16 bit, 01 = 8 bit */ | |
123 | u16:6; | |
124 | }; | |
125 | ||
126 | struct ndf_cle_cmd { | |
127 | u32 opcode:4; | |
128 | u32:4; | |
129 | u32 cmd_data:8; /* command sent to the PBUS AD pins */ | |
130 | u32 clen1:3; /* time between PBUS CLE and WE asserts */ | |
131 | u32 clen2:3; /* time WE remains asserted */ | |
132 | u32 clen3:3; /* time between WE deassert and CLE */ | |
133 | u32:7; | |
134 | }; | |
135 | ||
136 | /* RD_EDO_CMD uses the same layout as RD_CMD */ | |
137 | struct ndf_rd_cmd { | |
138 | u32 opcode:4; | |
139 | u32 data:16; /* data bytes */ | |
140 | u32 rlen1:3; | |
141 | u32 rlen2:3; | |
142 | u32 rlen3:3; | |
143 | u32 rlen4:3; | |
144 | }; | |
145 | ||
146 | struct ndf_wr_cmd { | |
147 | u32 opcode:4; | |
148 | u32 data:16; /* data bytes */ | |
149 | u32:4; | |
150 | u32 wlen1:3; | |
151 | u32 wlen2:3; | |
152 | u32:3; | |
153 | }; | |
154 | ||
155 | struct ndf_set_tm_par_cmd { | |
156 | u64 opcode:4; | |
157 | u64 tim_mult:4; /* multiplier for the seven parameters */ | |
158 | u64 tm_par1:8; /* --> Following are the 7 timing parameters that */ | |
159 | u64 tm_par2:8; /* specify the number of coprocessor cycles. */ | |
160 | u64 tm_par3:8; /* A value of zero means one cycle. */ | |
161 | u64 tm_par4:8; /* All values are scaled by tim_mult */ | |
162 | u64 tm_par5:8; /* using tim_par * (2 ^ tim_mult). */ | |
163 | u64 tm_par6:8; | |
164 | u64 tm_par7:8; | |
165 | }; | |
166 | ||
167 | struct ndf_ale_cmd { | |
168 | u32 opcode:4; | |
169 | u32:4; | |
170 | u32 adr_byte_num:4; /* number of address bytes to be sent */ | |
171 | u32:4; | |
172 | u32 alen1:3; | |
173 | u32 alen2:3; | |
174 | u32 alen3:3; | |
175 | u32 alen4:3; | |
176 | u32:4; | |
177 | u8 adr_byt1; | |
178 | u8 adr_byt2; | |
179 | u8 adr_byt3; | |
180 | u8 adr_byt4; | |
181 | u8 adr_byt5; | |
182 | u8 adr_byt6; | |
183 | u8 adr_byt7; | |
184 | u8 adr_byt8; | |
185 | }; | |
186 | ||
187 | struct ndf_wait_status_cmd { | |
188 | u32 opcode:4; | |
189 | u32:4; | |
190 | u32 data:8; /** data */ | |
191 | u32 clen1:3; | |
192 | u32 clen2:3; | |
193 | u32 clen3:3; | |
194 | u32:8; | |
195 | /** set to 5 to select WAIT_STATUS_ALE command */ | |
196 | u32 ale_ind:8; | |
197 | /** ALE only: number of address bytes to be sent */ | |
198 | u32 adr_byte_num:4; | |
199 | u32:4; | |
200 | u32 alen1:3; /* ALE only */ | |
201 | u32 alen2:3; /* ALE only */ | |
202 | u32 alen3:3; /* ALE only */ | |
203 | u32 alen4:3; /* ALE only */ | |
204 | u32:4; | |
205 | u8 adr_byt[4]; /* ALE only */ | |
206 | u32 nine:4; /* set to 9 */ | |
207 | u32 and_mask:8; | |
208 | u32 comp_byte:8; | |
209 | u32 rlen1:3; | |
210 | u32 rlen2:3; | |
211 | u32 rlen3:3; | |
212 | u32 rlen4:3; | |
213 | }; | |
214 | ||
215 | union ndf_cmd { | |
216 | u64 val[2]; | |
217 | union { | |
218 | struct ndf_nop_cmd nop; | |
219 | struct ndf_wait_cmd wait; | |
220 | struct ndf_bus_cmd bus_acq_rel; | |
221 | struct ndf_chip_cmd chip_en_dis; | |
222 | struct ndf_cle_cmd cle_cmd; | |
223 | struct ndf_rd_cmd rd_cmd; | |
224 | struct ndf_wr_cmd wr_cmd; | |
225 | struct ndf_set_tm_par_cmd set_tm_par; | |
226 | struct ndf_ale_cmd ale_cmd; | |
227 | struct ndf_wait_status_cmd wait_status; | |
228 | } u; | |
229 | }; | |
230 | ||
231 | /** Disable multi-bit error hangs */ | |
232 | #define NDF_MISC_MB_DIS BIT_ULL(27) | |
233 | /** High watermark for NBR FIFO or load/store operations */ | |
234 | #define NDF_MISC_NBR_HWM GENMASK_ULL(26, 24) | |
235 | /** Wait input filter count */ | |
236 | #define NDF_MISC_WAIT_CNT GENMASK_ULL(23, 18) | |
237 | /** Unfilled NFD_CMD queue bytes */ | |
238 | #define NDF_MISC_FR_BYTE GENMASK_ULL(17, 7) | |
239 | /** Set by HW when it reads the last 8 bytes of NDF_CMD */ | |
240 | #define NDF_MISC_RD_DONE BIT_ULL(6) | |
241 | /** Set by HW when it reads. SW read of NDF_CMD clears it */ | |
242 | #define NDF_MISC_RD_VAL BIT_ULL(5) | |
243 | /** Let HW read NDF_CMD queue. Cleared on SW NDF_CMD write */ | |
244 | #define NDF_MISC_RD_CMD BIT_ULL(4) | |
245 | /** Boot disable */ | |
246 | #define NDF_MISC_BT_DIS BIT_ULL(2) | |
247 | /** Stop command execution after completing command queue */ | |
248 | #define NDF_MISC_EX_DIS BIT_ULL(1) | |
249 | /** Reset fifo */ | |
250 | #define NDF_MISC_RST_FF BIT_ULL(0) | |
251 | ||
252 | /** DMA engine enable */ | |
253 | #define NDF_DMA_CFG_EN BIT_ULL(63) | |
254 | /** Read or write */ | |
255 | #define NDF_DMA_CFG_RW BIT_ULL(62) | |
256 | /** Terminates DMA and clears enable bit */ | |
257 | #define NDF_DMA_CFG_CLR BIT_ULL(61) | |
258 | /** 32-bit swap enable */ | |
259 | #define NDF_DMA_CFG_SWAP32 BIT_ULL(59) | |
260 | /** 16-bit swap enable */ | |
261 | #define NDF_DMA_CFG_SWAP16 BIT_ULL(58) | |
262 | /** 8-bit swap enable */ | |
263 | #define NDF_DMA_CFG_SWAP8 BIT_ULL(57) | |
264 | /** Endian mode */ | |
265 | #define NDF_DMA_CFG_CMD_BE BIT_ULL(56) | |
266 | /** Number of 64 bit transfers */ | |
267 | #define NDF_DMA_CFG_SIZE GENMASK_ULL(55, 36) | |
268 | ||
269 | /** Command execution status idle */ | |
270 | #define NDF_ST_REG_EXE_IDLE BIT_ULL(15) | |
271 | /** Command execution SM states */ | |
272 | #define NDF_ST_REG_EXE_SM GENMASK_ULL(14, 11) | |
273 | /** DMA and load SM states */ | |
274 | #define NDF_ST_REG_BT_SM GENMASK_ULL(10, 7) | |
275 | /** Queue read-back SM bad state */ | |
276 | #define NDF_ST_REG_RD_FF_BAD BIT_ULL(6) | |
277 | /** Queue read-back SM states */ | |
278 | #define NDF_ST_REG_RD_FF GENMASK_ULL(5, 4) | |
279 | /** Main SM is in a bad state */ | |
280 | #define NDF_ST_REG_MAIN_BAD BIT_ULL(3) | |
281 | /** Main SM states */ | |
282 | #define NDF_ST_REG_MAIN_SM GENMASK_ULL(2, 0) | |
283 | ||
284 | #define MAX_NAND_NAME_LEN 64 | |
285 | #if (defined(NAND_MAX_PAGESIZE) && (NAND_MAX_PAGESIZE > 4096)) || \ | |
286 | !defined(NAND_MAX_PAGESIZE) | |
287 | # undef NAND_MAX_PAGESIZE | |
288 | # define NAND_MAX_PAGESIZE 4096 | |
289 | #endif | |
290 | #if (defined(NAND_MAX_OOBSIZE) && (NAND_MAX_OOBSIZE > 256)) || \ | |
291 | !defined(NAND_MAX_OOBSIZE) | |
292 | # undef NAND_MAX_OOBSIZE | |
293 | # define NAND_MAX_OOBSIZE 256 | |
294 | #endif | |
295 | ||
296 | #define OCTEONTX_NAND_DRIVER_NAME "octeontx_nand" | |
297 | ||
298 | #define NDF_TIMEOUT 1000 /** Timeout in ms */ | |
299 | #define USEC_PER_SEC 1000000 /** Linux compatibility */ | |
300 | #ifndef NAND_MAX_CHIPS | |
301 | # define NAND_MAX_CHIPS 8 /** Linux compatibility */ | |
302 | #endif | |
303 | ||
304 | struct octeontx_nand_chip { | |
305 | struct list_head node; | |
306 | struct nand_chip nand; | |
307 | struct ndf_set_tm_par_cmd timings; | |
308 | int cs; | |
309 | int selected_page; | |
310 | int iface_mode; | |
311 | int row_bytes; | |
312 | int col_bytes; | |
313 | bool oob_only; | |
314 | bool iface_set; | |
315 | }; | |
316 | ||
317 | struct octeontx_nand_buf { | |
318 | u8 *dmabuf; | |
319 | dma_addr_t dmaaddr; | |
320 | int dmabuflen; | |
321 | int data_len; | |
322 | int data_index; | |
323 | }; | |
324 | ||
325 | /** NAND flash controller (NDF) related information */ | |
326 | struct octeontx_nfc { | |
327 | struct nand_hw_control controller; | |
328 | struct udevice *dev; | |
329 | void __iomem *base; | |
330 | struct list_head chips; | |
331 | int selected_chip; /* Currently selected NAND chip number */ | |
332 | ||
333 | /* | |
334 | * Status is separate from octeontx_nand_buf because | |
335 | * it can be used in parallel and during init. | |
336 | */ | |
337 | u8 *stat; | |
338 | dma_addr_t stat_addr; | |
339 | bool use_status; | |
340 | ||
341 | struct octeontx_nand_buf buf; | |
342 | union bch_resp *bch_resp; | |
343 | dma_addr_t bch_rhandle; | |
344 | ||
345 | /* BCH of all-0xff, so erased pages read as error-free */ | |
346 | unsigned char *eccmask; | |
347 | }; | |
348 | ||
349 | /* settable timings - 0..7 select timing of alen1..4/clen1..3/etc */ | |
350 | enum tm_idx { | |
351 | t0, /* fixed at 4<<mult cycles */ | |
352 | t1, t2, t3, t4, t5, t6, t7, /* settable per ONFI-timing mode */ | |
353 | }; | |
354 | ||
355 | struct octeontx_probe_device { | |
356 | struct list_head list; | |
357 | struct udevice *dev; | |
358 | }; | |
359 | ||
360 | static struct bch_vf *bch_vf; | |
361 | /** Deferred devices due to BCH not being ready */ | |
362 | LIST_HEAD(octeontx_pci_nand_deferred_devices); | |
363 | ||
364 | /** default parameters used for probing chips */ | |
365 | #define MAX_ONFI_MODE 5 | |
366 | ||
367 | static int default_onfi_timing; | |
368 | static int slew_ns = 2; /* default timing padding */ | |
369 | static int def_ecc_size = 512; /* 1024 best for sw_bch, <= 4095 for hw_bch */ | |
370 | static int default_width = 1; /* 8 bit */ | |
371 | static int default_page_size = 2048; | |
372 | static struct ndf_set_tm_par_cmd default_timing_parms; | |
373 | ||
374 | /** Port from Linux */ | |
375 | #define readq_poll_timeout(addr, val, cond, delay_us, timeout_us) \ | |
376 | ({ \ | |
377 | ulong __start = get_timer(0); \ | |
378 | void *__addr = (addr); \ | |
379 | const ulong __timeout_ms = timeout_us / 1000; \ | |
380 | do { \ | |
381 | (val) = readq(__addr); \ | |
382 | if (cond) \ | |
383 | break; \ | |
384 | if (timeout_us && get_timer(__start) > __timeout_ms) { \ | |
385 | (val) = readq(__addr); \ | |
386 | break; \ | |
387 | } \ | |
388 | if (delay_us) \ | |
389 | udelay(delay_us); \ | |
390 | } while (1); \ | |
391 | (cond) ? 0 : -ETIMEDOUT; \ | |
392 | }) | |
393 | ||
394 | /** Ported from Linux 4.9.0 include/linux/of.h for compatibility */ | |
395 | static inline int of_get_child_count(const ofnode node) | |
396 | { | |
397 | return fdtdec_get_child_count(gd->fdt_blob, ofnode_to_offset(node)); | |
398 | } | |
399 | ||
400 | /** | |
401 | * Linux compatibility from Linux 4.9.0 drivers/mtd/nand/nand_base.c | |
402 | */ | |
403 | static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, | |
404 | struct mtd_oob_region *oobregion) | |
405 | { | |
406 | struct nand_chip *chip = mtd_to_nand(mtd); | |
407 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
408 | ||
409 | if (section || !ecc->total) | |
410 | return -ERANGE; | |
411 | ||
412 | oobregion->length = ecc->total; | |
413 | oobregion->offset = mtd->oobsize - oobregion->length; | |
414 | ||
415 | return 0; | |
416 | } | |
417 | ||
418 | /** | |
419 | * Linux compatibility from Linux 4.9.0 drivers/mtd/nand/nand_base.c | |
420 | */ | |
421 | static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, | |
422 | struct mtd_oob_region *oobregion) | |
423 | { | |
424 | struct nand_chip *chip = mtd_to_nand(mtd); | |
425 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
426 | ||
427 | if (section) | |
428 | return -ERANGE; | |
429 | ||
430 | oobregion->length = mtd->oobsize - ecc->total - 2; | |
431 | oobregion->offset = 2; | |
432 | ||
433 | return 0; | |
434 | } | |
435 | ||
436 | static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { | |
437 | .ecc = nand_ooblayout_ecc_lp, | |
438 | .rfree = nand_ooblayout_free_lp, | |
439 | }; | |
440 | ||
441 | static inline struct octeontx_nand_chip *to_otx_nand(struct nand_chip *nand) | |
442 | { | |
443 | return container_of(nand, struct octeontx_nand_chip, nand); | |
444 | } | |
445 | ||
446 | static inline struct octeontx_nfc *to_otx_nfc(struct nand_hw_control *ctrl) | |
447 | { | |
448 | return container_of(ctrl, struct octeontx_nfc, controller); | |
449 | } | |
450 | ||
451 | static int octeontx_nand_calc_ecc_layout(struct nand_chip *nand) | |
452 | { | |
453 | struct nand_ecclayout *layout = nand->ecc.layout; | |
454 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); | |
455 | struct mtd_info *mtd = &nand->mtd; | |
456 | int oobsize = mtd->oobsize; | |
457 | int i; | |
458 | bool layout_alloc = false; | |
459 | ||
460 | if (!layout) { | |
461 | layout = devm_kzalloc(tn->dev, sizeof(*layout), GFP_KERNEL); | |
462 | if (!layout) | |
463 | return -ENOMEM; | |
464 | nand->ecc.layout = layout; | |
465 | layout_alloc = true; | |
466 | } | |
467 | layout->eccbytes = nand->ecc.steps * nand->ecc.bytes; | |
468 | /* Reserve 2 bytes for bad block marker */ | |
469 | if (layout->eccbytes + 2 > oobsize) { | |
470 | pr_err("No suitable oob scheme available for oobsize %d eccbytes %u\n", | |
471 | oobsize, layout->eccbytes); | |
472 | goto fail; | |
473 | } | |
474 | /* put ecc bytes at oob tail */ | |
475 | for (i = 0; i < layout->eccbytes; i++) | |
476 | layout->eccpos[i] = oobsize - layout->eccbytes + i; | |
477 | layout->oobfree[0].offset = 2; | |
478 | layout->oobfree[0].length = oobsize - 2 - layout->eccbytes; | |
479 | nand->ecc.layout = layout; | |
480 | return 0; | |
481 | ||
482 | fail: | |
483 | if (layout_alloc) | |
484 | kfree(layout); | |
485 | return -1; | |
486 | } | |
487 | ||
488 | /* | |
489 | * Read a single byte from the temporary buffer. Used after READID | |
490 | * to get the NAND information and for STATUS. | |
491 | */ | |
492 | static u8 octeontx_nand_read_byte(struct mtd_info *mtd) | |
493 | { | |
494 | struct nand_chip *nand = mtd_to_nand(mtd); | |
495 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); | |
496 | ||
497 | if (tn->use_status) { | |
498 | tn->use_status = false; | |
499 | return *tn->stat; | |
500 | } | |
501 | ||
502 | if (tn->buf.data_index < tn->buf.data_len) | |
503 | return tn->buf.dmabuf[tn->buf.data_index++]; | |
504 | ||
505 | dev_err(tn->dev, "No data to read, idx: 0x%x, len: 0x%x\n", | |
506 | tn->buf.data_index, tn->buf.data_len); | |
507 | ||
508 | return 0xff; | |
509 | } | |
510 | ||
511 | /* | |
512 | * Read a number of pending bytes from the temporary buffer. Used | |
513 | * to get page and OOB data. | |
514 | */ | |
515 | static void octeontx_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len) | |
516 | { | |
517 | struct nand_chip *nand = mtd_to_nand(mtd); | |
518 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); | |
519 | ||
520 | if (len > tn->buf.data_len - tn->buf.data_index) { | |
521 | dev_err(tn->dev, "Not enough data for read of %d bytes\n", len); | |
522 | return; | |
523 | } | |
524 | ||
525 | memcpy(buf, tn->buf.dmabuf + tn->buf.data_index, len); | |
526 | tn->buf.data_index += len; | |
527 | } | |
528 | ||
529 | static void octeontx_nand_write_buf(struct mtd_info *mtd, | |
530 | const u8 *buf, int len) | |
531 | { | |
532 | struct nand_chip *nand = mtd_to_nand(mtd); | |
533 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); | |
534 | ||
535 | memcpy(tn->buf.dmabuf + tn->buf.data_len, buf, len); | |
536 | tn->buf.data_len += len; | |
537 | } | |
538 | ||
539 | /* Overwrite default function to avoid sync abort on chip = -1. */ | |
540 | static void octeontx_nand_select_chip(struct mtd_info *mtd, int chip) | |
541 | { | |
542 | } | |
543 | ||
544 | static inline int timing_to_cycle(u32 psec, unsigned long clock) | |
545 | { | |
546 | unsigned int ns; | |
547 | int ticks; | |
548 | ||
549 | ns = DIV_ROUND_UP(psec, 1000); | |
550 | ns += slew_ns; | |
551 | ||
552 | /* no rounding needed since clock is multiple of 1MHz */ | |
553 | clock /= 1000000; | |
554 | ns *= clock; | |
555 | ||
556 | ticks = DIV_ROUND_UP(ns, 1000); | |
557 | ||
558 | /* actual delay is (tm_parX+1)<<tim_mult */ | |
559 | if (ticks) | |
560 | ticks--; | |
561 | ||
562 | return ticks; | |
563 | } | |
564 | ||
565 | static void set_timings(struct octeontx_nand_chip *chip, | |
566 | struct ndf_set_tm_par_cmd *tp, | |
567 | const struct nand_sdr_timings *timings, | |
568 | unsigned long sclk) | |
569 | { | |
570 | /* scaled coprocessor-cycle values */ | |
571 | u32 s_wh, s_cls, s_clh, s_rp, s_wb, s_wc; | |
572 | ||
573 | tp->tim_mult = 0; | |
574 | s_wh = timing_to_cycle(timings->tWH_min, sclk); | |
575 | s_cls = timing_to_cycle(timings->tCLS_min, sclk); | |
576 | s_clh = timing_to_cycle(timings->tCLH_min, sclk); | |
577 | s_rp = timing_to_cycle(timings->tRP_min, sclk); | |
578 | s_wb = timing_to_cycle(timings->tWB_max, sclk); | |
579 | s_wc = timing_to_cycle(timings->tWC_min, sclk); | |
580 | ||
581 | tp->tm_par1 = s_wh; | |
582 | tp->tm_par2 = s_clh; | |
583 | tp->tm_par3 = s_rp + 1; | |
584 | tp->tm_par4 = s_cls - s_wh; | |
585 | tp->tm_par5 = s_wc - s_wh + 1; | |
586 | tp->tm_par6 = s_wb; | |
587 | tp->tm_par7 = 0; | |
588 | tp->tim_mult++; /* overcompensate for bad math */ | |
589 | ||
590 | /* TODO: comment parameter re-use */ | |
591 | ||
592 | pr_debug("%s: tim_par: mult: %d p1: %d p2: %d p3: %d\n", | |
593 | __func__, tp->tim_mult, tp->tm_par1, tp->tm_par2, tp->tm_par3); | |
594 | pr_debug(" p4: %d p5: %d p6: %d p7: %d\n", | |
595 | tp->tm_par4, tp->tm_par5, tp->tm_par6, tp->tm_par7); | |
596 | } | |
597 | ||
598 | static int set_default_timings(struct octeontx_nfc *tn, | |
599 | const struct nand_sdr_timings *timings) | |
600 | { | |
601 | unsigned long sclk = octeontx_get_io_clock(); | |
602 | ||
603 | set_timings(NULL, &default_timing_parms, timings, sclk); | |
604 | return 0; | |
605 | } | |
606 | ||
607 | static int octeontx_nfc_chip_set_timings(struct octeontx_nand_chip *chip, | |
608 | const struct nand_sdr_timings *timings) | |
609 | { | |
610 | /*struct octeontx_nfc *tn = to_otx_nfc(chip->nand.controller);*/ | |
611 | unsigned long sclk = octeontx_get_io_clock(); | |
612 | ||
613 | set_timings(chip, &chip->timings, timings, sclk); | |
614 | return 0; | |
615 | } | |
616 | ||
617 | /* How many bytes are free in the NFD_CMD queue? */ | |
618 | static int ndf_cmd_queue_free(struct octeontx_nfc *tn) | |
619 | { | |
620 | u64 ndf_misc; | |
621 | ||
622 | ndf_misc = readq(tn->base + NDF_MISC); | |
623 | return FIELD_GET(NDF_MISC_FR_BYTE, ndf_misc); | |
624 | } | |
625 | ||
626 | /* Submit a command to the NAND command queue. */ | |
627 | static int ndf_submit(struct octeontx_nfc *tn, union ndf_cmd *cmd) | |
628 | { | |
629 | int opcode = cmd->val[0] & 0xf; | |
630 | ||
631 | switch (opcode) { | |
632 | /* All these commands fit in one 64bit word */ | |
633 | case NDF_OP_NOP: | |
634 | case NDF_OP_SET_TM_PAR: | |
635 | case NDF_OP_WAIT: | |
636 | case NDF_OP_CHIP_EN_DIS: | |
637 | case NDF_OP_CLE_CMD: | |
638 | case NDF_OP_WR_CMD: | |
639 | case NDF_OP_RD_CMD: | |
640 | case NDF_OP_RD_EDO_CMD: | |
641 | case NDF_OP_BUS_ACQ_REL: | |
642 | if (ndf_cmd_queue_free(tn) < 8) | |
643 | goto full; | |
644 | writeq(cmd->val[0], tn->base + NDF_CMD); | |
645 | break; | |
646 | case NDF_OP_ALE_CMD: | |
647 | /* ALE commands take either one or two 64bit words */ | |
648 | if (cmd->u.ale_cmd.adr_byte_num < 5) { | |
649 | if (ndf_cmd_queue_free(tn) < 8) | |
650 | goto full; | |
651 | writeq(cmd->val[0], tn->base + NDF_CMD); | |
652 | } else { | |
653 | if (ndf_cmd_queue_free(tn) < 16) | |
654 | goto full; | |
655 | writeq(cmd->val[0], tn->base + NDF_CMD); | |
656 | writeq(cmd->val[1], tn->base + NDF_CMD); | |
657 | } | |
658 | break; | |
659 | case NDF_OP_WAIT_STATUS: /* Wait status commands take two 64bit words */ | |
660 | if (ndf_cmd_queue_free(tn) < 16) | |
661 | goto full; | |
662 | writeq(cmd->val[0], tn->base + NDF_CMD); | |
663 | writeq(cmd->val[1], tn->base + NDF_CMD); | |
664 | break; | |
665 | default: | |
666 | dev_err(tn->dev, "%s: unknown command: %u\n", __func__, opcode); | |
667 | return -EINVAL; | |
668 | } | |
669 | return 0; | |
670 | ||
671 | full: | |
672 | dev_err(tn->dev, "%s: no space left in command queue\n", __func__); | |
673 | return -ENOMEM; | |
674 | } | |
675 | ||
676 | /** | |
677 | * Wait for the ready/busy signal. First wait for busy to be valid, | |
678 | * then wait for busy to de-assert. | |
679 | */ | |
680 | static int ndf_build_wait_busy(struct octeontx_nfc *tn) | |
681 | { | |
682 | union ndf_cmd cmd; | |
683 | ||
684 | memset(&cmd, 0, sizeof(cmd)); | |
685 | cmd.u.wait.opcode = NDF_OP_WAIT; | |
686 | cmd.u.wait.r_b = 1; | |
687 | cmd.u.wait.wlen = t6; | |
688 | ||
689 | if (ndf_submit(tn, &cmd)) | |
690 | return -ENOMEM; | |
691 | return 0; | |
692 | } | |
693 | ||
694 | static bool ndf_dma_done(struct octeontx_nfc *tn) | |
695 | { | |
696 | u64 dma_cfg; | |
697 | ||
698 | /* Enable bit should be clear after a transfer */ | |
699 | dma_cfg = readq(tn->base + NDF_DMA_CFG); | |
700 | if (!(dma_cfg & NDF_DMA_CFG_EN)) | |
701 | return true; | |
702 | ||
703 | return false; | |
704 | } | |
705 | ||
706 | static int ndf_wait(struct octeontx_nfc *tn) | |
707 | { | |
708 | ulong start = get_timer(0); | |
709 | bool done; | |
710 | ||
711 | while (!(done = ndf_dma_done(tn)) && get_timer(start) < NDF_TIMEOUT) | |
712 | ; | |
713 | ||
714 | if (!done) { | |
715 | dev_err(tn->dev, "%s: timeout error\n", __func__); | |
716 | return -ETIMEDOUT; | |
717 | } | |
718 | return 0; | |
719 | } | |
720 | ||
721 | static int ndf_wait_idle(struct octeontx_nfc *tn) | |
722 | { | |
723 | u64 val; | |
724 | u64 dval = 0; | |
725 | int rc; | |
726 | int pause = 100; | |
727 | u64 tot_us = USEC_PER_SEC / 10; | |
728 | ||
729 | rc = readq_poll_timeout(tn->base + NDF_ST_REG, | |
730 | val, val & NDF_ST_REG_EXE_IDLE, pause, tot_us); | |
731 | if (!rc) | |
732 | rc = readq_poll_timeout(tn->base + NDF_DMA_CFG, | |
733 | dval, !(dval & NDF_DMA_CFG_EN), | |
734 | pause, tot_us); | |
735 | ||
736 | return rc; | |
737 | } | |
738 | ||
739 | /** Issue set timing parameters */ | |
740 | static int ndf_queue_cmd_timing(struct octeontx_nfc *tn, | |
741 | struct ndf_set_tm_par_cmd *timings) | |
742 | { | |
743 | union ndf_cmd cmd; | |
744 | ||
745 | memset(&cmd, 0, sizeof(cmd)); | |
746 | cmd.u.set_tm_par.opcode = NDF_OP_SET_TM_PAR; | |
747 | cmd.u.set_tm_par.tim_mult = timings->tim_mult; | |
748 | cmd.u.set_tm_par.tm_par1 = timings->tm_par1; | |
749 | cmd.u.set_tm_par.tm_par2 = timings->tm_par2; | |
750 | cmd.u.set_tm_par.tm_par3 = timings->tm_par3; | |
751 | cmd.u.set_tm_par.tm_par4 = timings->tm_par4; | |
752 | cmd.u.set_tm_par.tm_par5 = timings->tm_par5; | |
753 | cmd.u.set_tm_par.tm_par6 = timings->tm_par6; | |
754 | cmd.u.set_tm_par.tm_par7 = timings->tm_par7; | |
755 | return ndf_submit(tn, &cmd); | |
756 | } | |
757 | ||
758 | /** Issue bus acquire or release */ | |
759 | static int ndf_queue_cmd_bus(struct octeontx_nfc *tn, int direction) | |
760 | { | |
761 | union ndf_cmd cmd; | |
762 | ||
763 | memset(&cmd, 0, sizeof(cmd)); | |
764 | cmd.u.bus_acq_rel.opcode = NDF_OP_BUS_ACQ_REL; | |
765 | cmd.u.bus_acq_rel.direction = direction; | |
766 | return ndf_submit(tn, &cmd); | |
767 | } | |
768 | ||
769 | /* Issue chip select or deselect */ | |
770 | static int ndf_queue_cmd_chip(struct octeontx_nfc *tn, int enable, int chip, | |
771 | int width) | |
772 | { | |
773 | union ndf_cmd cmd; | |
774 | ||
775 | memset(&cmd, 0, sizeof(cmd)); | |
776 | cmd.u.chip_en_dis.opcode = NDF_OP_CHIP_EN_DIS; | |
777 | cmd.u.chip_en_dis.chip = chip; | |
778 | cmd.u.chip_en_dis.enable = enable; | |
779 | cmd.u.chip_en_dis.bus_width = width; | |
780 | return ndf_submit(tn, &cmd); | |
781 | } | |
782 | ||
783 | static int ndf_queue_cmd_wait(struct octeontx_nfc *tn, int t_delay) | |
784 | { | |
785 | union ndf_cmd cmd; | |
786 | ||
787 | memset(&cmd, 0, sizeof(cmd)); | |
788 | cmd.u.wait.opcode = NDF_OP_WAIT; | |
789 | cmd.u.wait.wlen = t_delay; | |
790 | return ndf_submit(tn, &cmd); | |
791 | } | |
792 | ||
793 | static int ndf_queue_cmd_cle(struct octeontx_nfc *tn, int command) | |
794 | { | |
795 | union ndf_cmd cmd; | |
796 | ||
797 | memset(&cmd, 0, sizeof(cmd)); | |
798 | cmd.u.cle_cmd.opcode = NDF_OP_CLE_CMD; | |
799 | cmd.u.cle_cmd.cmd_data = command; | |
800 | cmd.u.cle_cmd.clen1 = t4; | |
801 | cmd.u.cle_cmd.clen2 = t1; | |
802 | cmd.u.cle_cmd.clen3 = t2; | |
803 | return ndf_submit(tn, &cmd); | |
804 | } | |
805 | ||
806 | static int ndf_queue_cmd_ale(struct octeontx_nfc *tn, int addr_bytes, | |
807 | struct nand_chip *nand, u64 page, | |
808 | u32 col, int page_size) | |
809 | { | |
810 | struct octeontx_nand_chip *octeontx_nand = (nand) ? | |
811 | to_otx_nand(nand) : NULL; | |
812 | union ndf_cmd cmd; | |
813 | ||
814 | memset(&cmd, 0, sizeof(cmd)); | |
815 | cmd.u.ale_cmd.opcode = NDF_OP_ALE_CMD; | |
816 | cmd.u.ale_cmd.adr_byte_num = addr_bytes; | |
817 | ||
818 | /* set column bit for OOB area, assume OOB follows page */ | |
819 | if (octeontx_nand && octeontx_nand->oob_only) | |
820 | col += page_size; | |
821 | ||
822 | /* page is u64 for this generality, even if cmdfunc() passes int */ | |
823 | switch (addr_bytes) { | |
824 | /* 4-8 bytes: page, then 2-byte col */ | |
825 | case 8: | |
826 | cmd.u.ale_cmd.adr_byt8 = (page >> 40) & 0xff; | |
827 | fallthrough; | |
828 | case 7: | |
829 | cmd.u.ale_cmd.adr_byt7 = (page >> 32) & 0xff; | |
830 | fallthrough; | |
831 | case 6: | |
832 | cmd.u.ale_cmd.adr_byt6 = (page >> 24) & 0xff; | |
833 | fallthrough; | |
834 | case 5: | |
835 | cmd.u.ale_cmd.adr_byt5 = (page >> 16) & 0xff; | |
836 | fallthrough; | |
837 | case 4: | |
838 | cmd.u.ale_cmd.adr_byt4 = (page >> 8) & 0xff; | |
839 | cmd.u.ale_cmd.adr_byt3 = page & 0xff; | |
840 | cmd.u.ale_cmd.adr_byt2 = (col >> 8) & 0xff; | |
841 | cmd.u.ale_cmd.adr_byt1 = col & 0xff; | |
842 | break; | |
843 | /* 1-3 bytes: just the page address */ | |
844 | case 3: | |
845 | cmd.u.ale_cmd.adr_byt3 = (page >> 16) & 0xff; | |
846 | fallthrough; | |
847 | case 2: | |
848 | cmd.u.ale_cmd.adr_byt2 = (page >> 8) & 0xff; | |
849 | fallthrough; | |
850 | case 1: | |
851 | cmd.u.ale_cmd.adr_byt1 = page & 0xff; | |
852 | break; | |
853 | default: | |
854 | break; | |
855 | } | |
856 | ||
857 | cmd.u.ale_cmd.alen1 = t3; | |
858 | cmd.u.ale_cmd.alen2 = t1; | |
859 | cmd.u.ale_cmd.alen3 = t5; | |
860 | cmd.u.ale_cmd.alen4 = t2; | |
861 | return ndf_submit(tn, &cmd); | |
862 | } | |
863 | ||
864 | static int ndf_queue_cmd_write(struct octeontx_nfc *tn, int len) | |
865 | { | |
866 | union ndf_cmd cmd; | |
867 | ||
868 | memset(&cmd, 0, sizeof(cmd)); | |
869 | cmd.u.wr_cmd.opcode = NDF_OP_WR_CMD; | |
870 | cmd.u.wr_cmd.data = len; | |
871 | cmd.u.wr_cmd.wlen1 = t3; | |
872 | cmd.u.wr_cmd.wlen2 = t1; | |
873 | return ndf_submit(tn, &cmd); | |
874 | } | |
875 | ||
876 | static int ndf_build_pre_cmd(struct octeontx_nfc *tn, int cmd1, | |
877 | int addr_bytes, u64 page, u32 col, int cmd2) | |
878 | { | |
879 | struct nand_chip *nand = tn->controller.active; | |
880 | struct octeontx_nand_chip *octeontx_nand; | |
881 | struct ndf_set_tm_par_cmd *timings; | |
882 | int width, page_size, rc; | |
883 | ||
884 | /* Also called before chip probing is finished */ | |
885 | if (!nand) { | |
886 | timings = &default_timing_parms; | |
887 | page_size = default_page_size; | |
888 | width = default_width; | |
889 | } else { | |
890 | octeontx_nand = to_otx_nand(nand); | |
891 | timings = &octeontx_nand->timings; | |
892 | page_size = nand->mtd.writesize; | |
893 | if (nand->options & NAND_BUSWIDTH_16) | |
894 | width = 2; | |
895 | else | |
896 | width = 1; | |
897 | } | |
898 | rc = ndf_queue_cmd_timing(tn, timings); | |
899 | if (rc) | |
900 | return rc; | |
901 | ||
902 | rc = ndf_queue_cmd_bus(tn, NDF_BUS_ACQUIRE); | |
903 | if (rc) | |
904 | return rc; | |
905 | ||
906 | rc = ndf_queue_cmd_chip(tn, 1, tn->selected_chip, width); | |
907 | if (rc) | |
908 | return rc; | |
909 | ||
910 | rc = ndf_queue_cmd_wait(tn, t1); | |
911 | if (rc) | |
912 | return rc; | |
913 | ||
914 | rc = ndf_queue_cmd_cle(tn, cmd1); | |
915 | if (rc) | |
916 | return rc; | |
917 | ||
918 | if (addr_bytes) { | |
919 | rc = ndf_build_wait_busy(tn); | |
920 | if (rc) | |
921 | return rc; | |
922 | ||
923 | rc = ndf_queue_cmd_ale(tn, addr_bytes, nand, | |
924 | page, col, page_size); | |
925 | if (rc) | |
926 | return rc; | |
927 | } | |
928 | ||
929 | /* CLE 2 */ | |
930 | if (cmd2) { | |
931 | rc = ndf_build_wait_busy(tn); | |
932 | if (rc) | |
933 | return rc; | |
934 | ||
935 | rc = ndf_queue_cmd_cle(tn, cmd2); | |
936 | if (rc) | |
937 | return rc; | |
938 | } | |
939 | return 0; | |
940 | } | |
941 | ||
942 | static int ndf_build_post_cmd(struct octeontx_nfc *tn, int hold_time) | |
943 | { | |
944 | int rc; | |
945 | ||
946 | /* Deselect chip */ | |
947 | rc = ndf_queue_cmd_chip(tn, 0, 0, 0); | |
948 | if (rc) | |
949 | return rc; | |
950 | ||
951 | rc = ndf_queue_cmd_wait(tn, t2); | |
952 | if (rc) | |
953 | return rc; | |
954 | ||
955 | /* Release bus */ | |
956 | rc = ndf_queue_cmd_bus(tn, 0); | |
957 | if (rc) | |
958 | return rc; | |
959 | ||
960 | rc = ndf_queue_cmd_wait(tn, hold_time); | |
961 | if (rc) | |
962 | return rc; | |
963 | ||
964 | /* | |
965 | * Last action is ringing the doorbell with number of bus | |
966 | * acquire-releases cycles (currently 1). | |
967 | */ | |
968 | writeq(1, tn->base + NDF_DRBELL); | |
969 | return 0; | |
970 | } | |
971 | ||
972 | /* Setup the NAND DMA engine for a transfer. */ | |
973 | static void ndf_setup_dma(struct octeontx_nfc *tn, int is_write, | |
974 | dma_addr_t bus_addr, int len) | |
975 | { | |
976 | u64 dma_cfg; | |
977 | ||
978 | dma_cfg = FIELD_PREP(NDF_DMA_CFG_RW, is_write) | | |
979 | FIELD_PREP(NDF_DMA_CFG_SIZE, (len >> 3) - 1); | |
980 | dma_cfg |= NDF_DMA_CFG_EN; | |
981 | writeq(bus_addr, tn->base + NDF_DMA_ADR); | |
982 | writeq(dma_cfg, tn->base + NDF_DMA_CFG); | |
983 | } | |
984 | ||
985 | static int octeontx_nand_reset(struct octeontx_nfc *tn) | |
986 | { | |
987 | int rc; | |
988 | ||
989 | rc = ndf_build_pre_cmd(tn, NAND_CMD_RESET, 0, 0, 0, 0); | |
990 | if (rc) | |
991 | return rc; | |
992 | ||
993 | rc = ndf_build_wait_busy(tn); | |
994 | if (rc) | |
995 | return rc; | |
996 | ||
997 | rc = ndf_build_post_cmd(tn, t2); | |
998 | if (rc) | |
999 | return rc; | |
1000 | ||
1001 | return 0; | |
1002 | } | |
1003 | ||
1004 | static int ndf_read(struct octeontx_nfc *tn, int cmd1, int addr_bytes, | |
1005 | u64 page, u32 col, int cmd2, int len) | |
1006 | { | |
1007 | dma_addr_t bus_addr = tn->use_status ? tn->stat_addr : tn->buf.dmaaddr; | |
1008 | struct nand_chip *nand = tn->controller.active; | |
1009 | int timing_mode, bytes, rc; | |
1010 | union ndf_cmd cmd; | |
1011 | u64 start, end; | |
1012 | ||
1013 | pr_debug("%s(%p, 0x%x, 0x%x, 0x%llx, 0x%x, 0x%x, 0x%x)\n", __func__, | |
1014 | tn, cmd1, addr_bytes, page, col, cmd2, len); | |
1015 | if (!nand) | |
1016 | timing_mode = default_onfi_timing; | |
1017 | else | |
1018 | timing_mode = nand->onfi_timing_mode_default; | |
1019 | ||
1020 | /* Build the command and address cycles */ | |
1021 | rc = ndf_build_pre_cmd(tn, cmd1, addr_bytes, page, col, cmd2); | |
1022 | if (rc) { | |
1023 | dev_err(tn->dev, "Build pre command failed\n"); | |
1024 | return rc; | |
1025 | } | |
1026 | ||
1027 | /* This waits for some time, then waits for busy to be de-asserted. */ | |
1028 | rc = ndf_build_wait_busy(tn); | |
1029 | if (rc) { | |
1030 | dev_err(tn->dev, "Wait timeout\n"); | |
1031 | return rc; | |
1032 | } | |
1033 | ||
1034 | memset(&cmd, 0, sizeof(cmd)); | |
1035 | ||
1036 | if (timing_mode < 4) | |
1037 | cmd.u.rd_cmd.opcode = NDF_OP_RD_CMD; | |
1038 | else | |
1039 | cmd.u.rd_cmd.opcode = NDF_OP_RD_EDO_CMD; | |
1040 | ||
1041 | cmd.u.rd_cmd.data = len; | |
1042 | cmd.u.rd_cmd.rlen1 = t7; | |
1043 | cmd.u.rd_cmd.rlen2 = t3; | |
1044 | cmd.u.rd_cmd.rlen3 = t1; | |
1045 | cmd.u.rd_cmd.rlen4 = t7; | |
1046 | rc = ndf_submit(tn, &cmd); | |
1047 | if (rc) { | |
1048 | dev_err(tn->dev, "Error submitting command\n"); | |
1049 | return rc; | |
1050 | } | |
1051 | ||
1052 | start = (u64)bus_addr; | |
1053 | ndf_setup_dma(tn, 0, bus_addr, len); | |
1054 | ||
1055 | rc = ndf_build_post_cmd(tn, t2); | |
1056 | if (rc) { | |
1057 | dev_err(tn->dev, "Build post command failed\n"); | |
1058 | return rc; | |
1059 | } | |
1060 | ||
1061 | /* Wait for the DMA to complete */ | |
1062 | rc = ndf_wait(tn); | |
1063 | if (rc) { | |
1064 | dev_err(tn->dev, "DMA timed out\n"); | |
1065 | return rc; | |
1066 | } | |
1067 | ||
1068 | end = readq(tn->base + NDF_DMA_ADR); | |
1069 | bytes = end - start; | |
1070 | ||
1071 | /* Make sure NDF is really done */ | |
1072 | rc = ndf_wait_idle(tn); | |
1073 | if (rc) { | |
1074 | dev_err(tn->dev, "poll idle failed\n"); | |
1075 | return rc; | |
1076 | } | |
1077 | ||
1078 | pr_debug("%s: Read %d bytes\n", __func__, bytes); | |
1079 | return bytes; | |
1080 | } | |
1081 | ||
1082 | static int octeontx_nand_get_features(struct mtd_info *mtd, | |
1083 | struct nand_chip *chip, int feature_addr, | |
1084 | u8 *subfeature_para) | |
1085 | { | |
1086 | struct nand_chip *nand = chip; | |
1087 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); | |
1088 | int len = 8; | |
1089 | int rc; | |
1090 | ||
1091 | pr_debug("%s: feature addr: 0x%x\n", __func__, feature_addr); | |
1092 | memset(tn->buf.dmabuf, 0xff, len); | |
1093 | tn->buf.data_index = 0; | |
1094 | tn->buf.data_len = 0; | |
1095 | rc = ndf_read(tn, NAND_CMD_GET_FEATURES, 1, feature_addr, 0, 0, len); | |
1096 | if (rc) | |
1097 | return rc; | |
1098 | ||
1099 | memcpy(subfeature_para, tn->buf.dmabuf, ONFI_SUBFEATURE_PARAM_LEN); | |
1100 | ||
1101 | return 0; | |
1102 | } | |
1103 | ||
1104 | static int octeontx_nand_set_features(struct mtd_info *mtd, | |
1105 | struct nand_chip *chip, int feature_addr, | |
1106 | u8 *subfeature_para) | |
1107 | { | |
1108 | struct nand_chip *nand = chip; | |
1109 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); | |
1110 | const int len = ONFI_SUBFEATURE_PARAM_LEN; | |
1111 | int rc; | |
1112 | ||
1113 | rc = ndf_build_pre_cmd(tn, NAND_CMD_SET_FEATURES, | |
1114 | 1, feature_addr, 0, 0); | |
1115 | if (rc) | |
1116 | return rc; | |
1117 | ||
1118 | memcpy(tn->buf.dmabuf, subfeature_para, len); | |
1119 | memset(tn->buf.dmabuf + len, 0, 8 - len); | |
1120 | ||
1121 | ndf_setup_dma(tn, 1, tn->buf.dmaaddr, 8); | |
1122 | ||
1123 | rc = ndf_queue_cmd_write(tn, 8); | |
1124 | if (rc) | |
1125 | return rc; | |
1126 | ||
1127 | rc = ndf_build_wait_busy(tn); | |
1128 | if (rc) | |
1129 | return rc; | |
1130 | ||
1131 | rc = ndf_build_post_cmd(tn, t2); | |
1132 | if (rc) | |
1133 | return rc; | |
1134 | ||
1135 | return 0; | |
1136 | } | |
1137 | ||
1138 | /* | |
1139 | * Read a page from NAND. If the buffer has room, the out of band | |
1140 | * data will be included. | |
1141 | */ | |
1142 | static int ndf_page_read(struct octeontx_nfc *tn, u64 page, int col, int len) | |
1143 | { | |
1144 | debug("%s(%p, 0x%llx, 0x%x, 0x%x) active: %p\n", __func__, | |
1145 | tn, page, col, len, tn->controller.active); | |
1146 | struct nand_chip *nand = tn->controller.active; | |
1147 | struct octeontx_nand_chip *chip = to_otx_nand(nand); | |
1148 | int addr_bytes = chip->row_bytes + chip->col_bytes; | |
1149 | ||
1150 | memset(tn->buf.dmabuf, 0xff, len); | |
1151 | return ndf_read(tn, NAND_CMD_READ0, addr_bytes, | |
1152 | page, col, NAND_CMD_READSTART, len); | |
1153 | } | |
1154 | ||
1155 | /* Erase a NAND block */ | |
1156 | static int ndf_block_erase(struct octeontx_nfc *tn, u64 page_addr) | |
1157 | { | |
1158 | struct nand_chip *nand = tn->controller.active; | |
1159 | struct octeontx_nand_chip *chip = to_otx_nand(nand); | |
1160 | int addr_bytes = chip->row_bytes; | |
1161 | int rc; | |
1162 | ||
1163 | rc = ndf_build_pre_cmd(tn, NAND_CMD_ERASE1, addr_bytes, | |
1164 | page_addr, 0, NAND_CMD_ERASE2); | |
1165 | if (rc) | |
1166 | return rc; | |
1167 | ||
1168 | /* Wait for R_B to signal erase is complete */ | |
1169 | rc = ndf_build_wait_busy(tn); | |
1170 | if (rc) | |
1171 | return rc; | |
1172 | ||
1173 | rc = ndf_build_post_cmd(tn, t2); | |
1174 | if (rc) | |
1175 | return rc; | |
1176 | ||
1177 | /* Wait until the command queue is idle */ | |
1178 | return ndf_wait_idle(tn); | |
1179 | } | |
1180 | ||
1181 | /* | |
1182 | * Write a page (or less) to NAND. | |
1183 | */ | |
1184 | static int ndf_page_write(struct octeontx_nfc *tn, int page) | |
1185 | { | |
1186 | int len, rc; | |
1187 | struct nand_chip *nand = tn->controller.active; | |
1188 | struct octeontx_nand_chip *chip = to_otx_nand(nand); | |
1189 | int addr_bytes = chip->row_bytes + chip->col_bytes; | |
1190 | ||
1191 | len = tn->buf.data_len - tn->buf.data_index; | |
1192 | chip->oob_only = (tn->buf.data_index >= nand->mtd.writesize); | |
1193 | WARN_ON_ONCE(len & 0x7); | |
1194 | ||
1195 | ndf_setup_dma(tn, 1, tn->buf.dmaaddr + tn->buf.data_index, len); | |
1196 | rc = ndf_build_pre_cmd(tn, NAND_CMD_SEQIN, addr_bytes, page, 0, 0); | |
1197 | if (rc) | |
1198 | return rc; | |
1199 | ||
1200 | rc = ndf_queue_cmd_write(tn, len); | |
1201 | if (rc) | |
1202 | return rc; | |
1203 | ||
1204 | rc = ndf_queue_cmd_cle(tn, NAND_CMD_PAGEPROG); | |
1205 | if (rc) | |
1206 | return rc; | |
1207 | ||
1208 | /* Wait for R_B to signal program is complete */ | |
1209 | rc = ndf_build_wait_busy(tn); | |
1210 | if (rc) | |
1211 | return rc; | |
1212 | ||
1213 | rc = ndf_build_post_cmd(tn, t2); | |
1214 | if (rc) | |
1215 | return rc; | |
1216 | ||
1217 | /* Wait for the DMA to complete */ | |
1218 | rc = ndf_wait(tn); | |
1219 | if (rc) | |
1220 | return rc; | |
1221 | ||
1222 | /* Data transfer is done but NDF is not, it is waiting for R/B# */ | |
1223 | return ndf_wait_idle(tn); | |
1224 | } | |
1225 | ||
1226 | static void octeontx_nand_cmdfunc(struct mtd_info *mtd, unsigned int command, | |
1227 | int column, int page_addr) | |
1228 | { | |
1229 | struct nand_chip *nand = mtd_to_nand(mtd); | |
1230 | struct octeontx_nand_chip *octeontx_nand = to_otx_nand(nand); | |
1231 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); | |
1232 | int rc; | |
1233 | ||
1234 | tn->selected_chip = octeontx_nand->cs; | |
1235 | if (tn->selected_chip < 0 || tn->selected_chip >= NAND_MAX_CHIPS) { | |
1236 | dev_err(tn->dev, "invalid chip select\n"); | |
1237 | return; | |
1238 | } | |
1239 | ||
1240 | tn->use_status = false; | |
1241 | ||
1242 | pr_debug("%s(%p, 0x%x, 0x%x, 0x%x) cs: %d\n", __func__, mtd, command, | |
1243 | column, page_addr, tn->selected_chip); | |
1244 | switch (command) { | |
1245 | case NAND_CMD_READID: | |
1246 | tn->buf.data_index = 0; | |
1247 | octeontx_nand->oob_only = false; | |
1248 | rc = ndf_read(tn, command, 1, column, 0, 0, 8); | |
1249 | if (rc < 0) | |
1250 | dev_err(tn->dev, "READID failed with %d\n", rc); | |
1251 | else | |
1252 | tn->buf.data_len = rc; | |
1253 | break; | |
1254 | ||
1255 | case NAND_CMD_READOOB: | |
1256 | octeontx_nand->oob_only = true; | |
1257 | tn->buf.data_index = 0; | |
1258 | tn->buf.data_len = 0; | |
1259 | rc = ndf_page_read(tn, page_addr, column, mtd->oobsize); | |
1260 | if (rc < mtd->oobsize) | |
1261 | dev_err(tn->dev, "READOOB failed with %d\n", | |
1262 | tn->buf.data_len); | |
1263 | else | |
1264 | tn->buf.data_len = rc; | |
1265 | break; | |
1266 | ||
1267 | case NAND_CMD_READ0: | |
1268 | octeontx_nand->oob_only = false; | |
1269 | tn->buf.data_index = 0; | |
1270 | tn->buf.data_len = 0; | |
1271 | rc = ndf_page_read(tn, page_addr, column, | |
1272 | mtd->writesize + mtd->oobsize); | |
1273 | ||
1274 | if (rc < mtd->writesize + mtd->oobsize) | |
1275 | dev_err(tn->dev, "READ0 failed with %d\n", rc); | |
1276 | else | |
1277 | tn->buf.data_len = rc; | |
1278 | break; | |
1279 | ||
1280 | case NAND_CMD_STATUS: | |
1281 | /* used in oob/not states */ | |
1282 | tn->use_status = true; | |
1283 | rc = ndf_read(tn, command, 0, 0, 0, 0, 8); | |
1284 | if (rc < 0) | |
1285 | dev_err(tn->dev, "STATUS failed with %d\n", rc); | |
1286 | break; | |
1287 | ||
1288 | case NAND_CMD_RESET: | |
1289 | /* used in oob/not states */ | |
1290 | rc = octeontx_nand_reset(tn); | |
1291 | if (rc < 0) | |
1292 | dev_err(tn->dev, "RESET failed with %d\n", rc); | |
1293 | break; | |
1294 | ||
1295 | case NAND_CMD_PARAM: | |
1296 | octeontx_nand->oob_only = false; | |
1297 | tn->buf.data_index = 0; | |
1298 | rc = ndf_read(tn, command, 1, 0, 0, 0, | |
1299 | min(tn->buf.dmabuflen, 3 * 512)); | |
1300 | if (rc < 0) | |
1301 | dev_err(tn->dev, "PARAM failed with %d\n", rc); | |
1302 | else | |
1303 | tn->buf.data_len = rc; | |
1304 | break; | |
1305 | ||
1306 | case NAND_CMD_RNDOUT: | |
1307 | tn->buf.data_index = column; | |
1308 | break; | |
1309 | ||
1310 | case NAND_CMD_ERASE1: | |
1311 | if (ndf_block_erase(tn, page_addr)) | |
1312 | dev_err(tn->dev, "ERASE1 failed\n"); | |
1313 | break; | |
1314 | ||
1315 | case NAND_CMD_ERASE2: | |
1316 | /* We do all erase processing in the first command, so ignore | |
1317 | * this one. | |
1318 | */ | |
1319 | break; | |
1320 | ||
1321 | case NAND_CMD_SEQIN: | |
1322 | octeontx_nand->oob_only = (column >= mtd->writesize); | |
1323 | tn->buf.data_index = column; | |
1324 | tn->buf.data_len = column; | |
1325 | ||
1326 | octeontx_nand->selected_page = page_addr; | |
1327 | break; | |
1328 | ||
1329 | case NAND_CMD_PAGEPROG: | |
1330 | rc = ndf_page_write(tn, octeontx_nand->selected_page); | |
1331 | if (rc) | |
1332 | dev_err(tn->dev, "PAGEPROG failed with %d\n", rc); | |
1333 | break; | |
1334 | ||
1335 | case NAND_CMD_SET_FEATURES: | |
1336 | octeontx_nand->oob_only = false; | |
1337 | /* assume tn->buf.data_len == 4 of data has been set there */ | |
1338 | rc = octeontx_nand_set_features(mtd, nand, | |
1339 | page_addr, tn->buf.dmabuf); | |
1340 | if (rc) | |
1341 | dev_err(tn->dev, "SET_FEATURES failed with %d\n", rc); | |
1342 | break; | |
1343 | ||
1344 | case NAND_CMD_GET_FEATURES: | |
1345 | octeontx_nand->oob_only = false; | |
1346 | rc = octeontx_nand_get_features(mtd, nand, | |
1347 | page_addr, tn->buf.dmabuf); | |
1348 | if (!rc) { | |
1349 | tn->buf.data_index = 0; | |
1350 | tn->buf.data_len = 4; | |
1351 | } else { | |
1352 | dev_err(tn->dev, "GET_FEATURES failed with %d\n", rc); | |
1353 | } | |
1354 | break; | |
1355 | ||
1356 | default: | |
1357 | WARN_ON_ONCE(1); | |
1358 | dev_err(tn->dev, "unhandled nand cmd: %x\n", command); | |
1359 | } | |
1360 | } | |
1361 | ||
1362 | static int octeontx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) | |
1363 | { | |
1364 | struct octeontx_nfc *tn = to_otx_nfc(chip->controller); | |
1365 | int ret; | |
1366 | ||
1367 | ret = ndf_wait_idle(tn); | |
1368 | return (ret < 0) ? -EIO : 0; | |
1369 | } | |
1370 | ||
1371 | /* check compatibility with ONFI timing mode#N, and optionally apply */ | |
1372 | /* TODO: Implement chipnr support? */ | |
1373 | static int octeontx_nand_setup_dat_intf(struct mtd_info *mtd, int chipnr, | |
1374 | const struct nand_data_interface *conf) | |
1375 | { | |
1376 | static const bool check_only; | |
1377 | struct nand_chip *nand = mtd_to_nand(mtd); | |
1378 | struct octeontx_nand_chip *chip = to_otx_nand(nand); | |
1379 | static u64 t_wc_n[MAX_ONFI_MODE + 2]; /* cache a mode signature */ | |
1380 | int mode; /* deduced mode number, for reporting and restricting */ | |
1381 | int rc; | |
1382 | ||
1383 | /* | |
1384 | * Cache timing modes for reporting, and reducing needless change. | |
1385 | * | |
1386 | * Challenge: caller does not pass ONFI mode#, but reporting the mode | |
1387 | * and restricting to a maximum, or a list, are useful for diagnosing | |
1388 | * new hardware. So use tWC_min, distinct and monotonic across modes, | |
1389 | * to discover the requested/accepted mode number | |
1390 | */ | |
1391 | for (mode = MAX_ONFI_MODE; mode >= 0 && !t_wc_n[0]; mode--) { | |
1392 | const struct nand_sdr_timings *t; | |
1393 | ||
1394 | t = onfi_async_timing_mode_to_sdr_timings(mode); | |
1395 | if (!t) | |
1396 | continue; | |
1397 | t_wc_n[mode] = t->tWC_min; | |
1398 | } | |
1399 | ||
1400 | if (!conf) { | |
1401 | rc = -EINVAL; | |
1402 | } else if (check_only) { | |
1403 | rc = 0; | |
1404 | } else if (nand->data_interface && | |
1405 | chip->iface_set && chip->iface_mode == mode) { | |
1406 | /* | |
1407 | * Cases: | |
1408 | * - called from nand_reset, which clears DDR timing | |
1409 | * mode back to SDR. BUT if we're already in SDR, | |
1410 | * timing mode persists over resets. | |
1411 | * While mtd/nand layer only supports SDR, | |
1412 | * this is always safe. And this driver only supports SDR. | |
1413 | * | |
1414 | * - called from post-power-event nand_reset (maybe | |
1415 | * NFC+flash power down, or system hibernate. | |
1416 | * Address this when CONFIG_PM support added | |
1417 | */ | |
1418 | rc = 0; | |
1419 | } else { | |
1420 | rc = octeontx_nfc_chip_set_timings(chip, &conf->timings.sdr); | |
1421 | if (!rc) { | |
1422 | chip->iface_mode = mode; | |
1423 | chip->iface_set = true; | |
1424 | } | |
1425 | } | |
1426 | return rc; | |
1427 | } | |
1428 | ||
1429 | static void octeontx_bch_reset(void) | |
1430 | { | |
1431 | } | |
1432 | ||
1433 | /* | |
1434 | * Given a page, calculate the ECC code | |
1435 | * | |
1436 | * chip: Pointer to NAND chip data structure | |
1437 | * buf: Buffer to calculate ECC on | |
1438 | * code: Buffer to hold ECC data | |
1439 | * | |
1440 | * Return 0 on success or -1 on failure | |
1441 | */ | |
1442 | static int octeontx_nand_bch_calculate_ecc_internal(struct mtd_info *mtd, | |
1443 | dma_addr_t ihandle, | |
1444 | u8 *code) | |
1445 | { | |
1446 | struct nand_chip *nand = mtd_to_nand(mtd); | |
1447 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); | |
1448 | int rc; | |
1449 | int i; | |
1450 | static u8 *ecc_buffer; | |
1451 | static int ecc_size; | |
1452 | static unsigned long ecc_handle; | |
1453 | union bch_resp *r = tn->bch_resp; | |
1454 | ||
1455 | if (!ecc_buffer || ecc_size < nand->ecc.size) { | |
1456 | ecc_size = nand->ecc.size; | |
1457 | ecc_buffer = dma_alloc_coherent(ecc_size, | |
1458 | (unsigned long *)&ecc_handle); | |
1459 | } | |
1460 | ||
1461 | memset(ecc_buffer, 0, nand->ecc.bytes); | |
1462 | ||
1463 | r->u16 = 0; | |
1464 | __iowmb(); /* flush done=0 before making request */ | |
1465 | ||
1466 | rc = octeontx_bch_encode(bch_vf, ihandle, nand->ecc.size, | |
1467 | nand->ecc.strength, | |
1468 | (dma_addr_t)ecc_handle, tn->bch_rhandle); | |
1469 | ||
1470 | if (!rc) { | |
1471 | octeontx_bch_wait(bch_vf, r, tn->bch_rhandle); | |
1472 | } else { | |
1473 | dev_err(tn->dev, "octeontx_bch_encode failed\n"); | |
1474 | return -1; | |
1475 | } | |
1476 | ||
1477 | if (!r->s.done || r->s.uncorrectable) { | |
1478 | dev_err(tn->dev, | |
1479 | "%s timeout, done:%d uncorr:%d corr:%d erased:%d\n", | |
1480 | __func__, r->s.done, r->s.uncorrectable, | |
1481 | r->s.num_errors, r->s.erased); | |
1482 | octeontx_bch_reset(); | |
1483 | return -1; | |
1484 | } | |
1485 | ||
1486 | memcpy(code, ecc_buffer, nand->ecc.bytes); | |
1487 | ||
1488 | for (i = 0; i < nand->ecc.bytes; i++) | |
1489 | code[i] ^= tn->eccmask[i]; | |
1490 | ||
1491 | return tn->bch_resp->s.num_errors; | |
1492 | } | |
1493 | ||
1494 | /* | |
1495 | * Given a page, calculate the ECC code | |
1496 | * | |
1497 | * mtd: MTD block structure | |
1498 | * dat: raw data (unused) | |
1499 | * ecc_code: buffer for ECC | |
1500 | */ | |
1501 | static int octeontx_nand_bch_calculate(struct mtd_info *mtd, | |
1502 | const u8 *dat, u8 *ecc_code) | |
1503 | { | |
1504 | struct nand_chip *nand = mtd_to_nand(mtd); | |
1505 | dma_addr_t handle = dma_map_single((u8 *)dat, | |
1506 | nand->ecc.size, DMA_TO_DEVICE); | |
1507 | int ret; | |
1508 | ||
1509 | ret = octeontx_nand_bch_calculate_ecc_internal(mtd, handle, | |
1510 | (void *)ecc_code); | |
1511 | ||
1512 | return ret; | |
1513 | } | |
1514 | ||
1515 | /* | |
1516 | * Detect and correct multi-bit ECC for a page | |
1517 | * | |
1518 | * mtd: MTD block structure | |
1519 | * dat: raw data read from the chip | |
1520 | * read_ecc: ECC from the chip (unused) | |
1521 | * isnull: unused | |
1522 | * | |
1523 | * Returns number of bits corrected or -1 if unrecoverable | |
1524 | */ | |
1525 | static int octeontx_nand_bch_correct(struct mtd_info *mtd, u_char *dat, | |
1526 | u_char *read_ecc, u_char *isnull) | |
1527 | { | |
1528 | struct nand_chip *nand = mtd_to_nand(mtd); | |
1529 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); | |
1530 | int i = nand->ecc.size + nand->ecc.bytes; | |
1531 | static u8 *data_buffer; | |
1532 | static dma_addr_t ihandle; | |
1533 | static int buffer_size; | |
1534 | dma_addr_t ohandle; | |
1535 | union bch_resp *r = tn->bch_resp; | |
1536 | int rc; | |
1537 | ||
1538 | if (i > buffer_size) { | |
1539 | if (buffer_size) | |
1540 | free(data_buffer); | |
1541 | data_buffer = dma_alloc_coherent(i, | |
1542 | (unsigned long *)&ihandle); | |
1543 | if (!data_buffer) { | |
1544 | dev_err(tn->dev, | |
1545 | "%s: Could not allocate %d bytes for buffer\n", | |
1546 | __func__, i); | |
1547 | goto error; | |
1548 | } | |
1549 | buffer_size = i; | |
1550 | } | |
1551 | ||
1552 | memcpy(data_buffer, dat, nand->ecc.size); | |
1553 | memcpy(data_buffer + nand->ecc.size, read_ecc, nand->ecc.bytes); | |
1554 | ||
1555 | for (i = 0; i < nand->ecc.bytes; i++) | |
1556 | data_buffer[nand->ecc.size + i] ^= tn->eccmask[i]; | |
1557 | ||
1558 | r->u16 = 0; | |
1559 | __iowmb(); /* flush done=0 before making request */ | |
1560 | ||
1561 | ohandle = dma_map_single(dat, nand->ecc.size, DMA_FROM_DEVICE); | |
1562 | rc = octeontx_bch_decode(bch_vf, ihandle, nand->ecc.size, | |
1563 | nand->ecc.strength, ohandle, tn->bch_rhandle); | |
1564 | ||
1565 | if (!rc) | |
1566 | octeontx_bch_wait(bch_vf, r, tn->bch_rhandle); | |
1567 | ||
1568 | if (rc) { | |
1569 | dev_err(tn->dev, "octeontx_bch_decode failed\n"); | |
1570 | goto error; | |
1571 | } | |
1572 | ||
1573 | if (!r->s.done) { | |
1574 | dev_err(tn->dev, "Error: BCH engine timeout\n"); | |
1575 | octeontx_bch_reset(); | |
1576 | goto error; | |
1577 | } | |
1578 | ||
1579 | if (r->s.erased) { | |
1580 | debug("Info: BCH block is erased\n"); | |
1581 | return 0; | |
1582 | } | |
1583 | ||
1584 | if (r->s.uncorrectable) { | |
1585 | debug("Cannot correct NAND block, response: 0x%x\n", | |
1586 | r->u16); | |
1587 | goto error; | |
1588 | } | |
1589 | ||
1590 | return r->s.num_errors; | |
1591 | ||
1592 | error: | |
1593 | debug("Error performing bch correction\n"); | |
1594 | return -1; | |
1595 | } | |
1596 | ||
1597 | void octeontx_nand_bch_hwctl(struct mtd_info *mtd, int mode) | |
1598 | { | |
1599 | /* Do nothing. */ | |
1600 | } | |
1601 | ||
1602 | static int octeontx_nand_hw_bch_read_page(struct mtd_info *mtd, | |
1603 | struct nand_chip *chip, u8 *buf, | |
1604 | int oob_required, int page) | |
1605 | { | |
1606 | struct nand_chip *nand = mtd_to_nand(mtd); | |
1607 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); | |
1608 | int i, eccsize = chip->ecc.size, ret; | |
1609 | int eccbytes = chip->ecc.bytes; | |
1610 | int eccsteps = chip->ecc.steps; | |
1611 | u8 *p; | |
1612 | u8 *ecc_code = chip->buffers->ecccode; | |
1613 | unsigned int max_bitflips = 0; | |
1614 | ||
1615 | /* chip->read_buf() insists on sequential order, we do OOB first */ | |
1616 | memcpy(chip->oob_poi, tn->buf.dmabuf + mtd->writesize, mtd->oobsize); | |
1617 | ||
1618 | /* Use private buffer as input for ECC correction */ | |
1619 | p = tn->buf.dmabuf; | |
1620 | ||
1621 | ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, | |
1622 | chip->ecc.total); | |
1623 | if (ret) | |
1624 | return ret; | |
1625 | ||
1626 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | |
1627 | int stat; | |
1628 | ||
1629 | debug("Correcting block offset %lx, ecc offset %x\n", | |
1630 | p - buf, i); | |
1631 | stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); | |
1632 | ||
1633 | if (stat < 0) { | |
1634 | mtd->ecc_stats.failed++; | |
1635 | debug("Cannot correct NAND page %d\n", page); | |
1636 | } else { | |
1637 | mtd->ecc_stats.corrected += stat; | |
1638 | max_bitflips = max_t(unsigned int, max_bitflips, stat); | |
1639 | } | |
1640 | } | |
1641 | ||
1642 | /* Copy corrected data to caller's buffer now */ | |
1643 | memcpy(buf, tn->buf.dmabuf, mtd->writesize); | |
1644 | ||
1645 | return max_bitflips; | |
1646 | } | |
1647 | ||
1648 | static int octeontx_nand_hw_bch_write_page(struct mtd_info *mtd, | |
1649 | struct nand_chip *chip, | |
1650 | const u8 *buf, int oob_required, | |
1651 | int page) | |
1652 | { | |
1653 | struct octeontx_nfc *tn = to_otx_nfc(chip->controller); | |
1654 | int i, eccsize = chip->ecc.size, ret; | |
1655 | int eccbytes = chip->ecc.bytes; | |
1656 | int eccsteps = chip->ecc.steps; | |
1657 | const u8 *p; | |
1658 | u8 *ecc_calc = chip->buffers->ecccalc; | |
1659 | ||
1660 | debug("%s(buf?%p, oob%d p%x)\n", | |
1661 | __func__, buf, oob_required, page); | |
1662 | for (i = 0; i < chip->ecc.total; i++) | |
1663 | ecc_calc[i] = 0xFF; | |
1664 | ||
1665 | /* Copy the page data from caller's buffers to private buffer */ | |
1666 | chip->write_buf(mtd, buf, mtd->writesize); | |
1667 | /* Use private date as source for ECC calculation */ | |
1668 | p = tn->buf.dmabuf; | |
1669 | ||
1670 | /* Hardware ECC calculation */ | |
1671 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | |
1672 | int ret; | |
1673 | ||
1674 | ret = chip->ecc.calculate(mtd, p, &ecc_calc[i]); | |
1675 | ||
1676 | if (ret < 0) | |
1677 | debug("calculate(mtd, p?%p, &ecc_calc[%d]?%p) returned %d\n", | |
1678 | p, i, &ecc_calc[i], ret); | |
1679 | ||
1680 | debug("block offset %lx, ecc offset %x\n", p - buf, i); | |
1681 | } | |
1682 | ||
1683 | ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, | |
1684 | chip->ecc.total); | |
1685 | if (ret) | |
1686 | return ret; | |
1687 | ||
1688 | /* Store resulting OOB into private buffer, will be sent to HW */ | |
1689 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | |
1690 | ||
1691 | return 0; | |
1692 | } | |
1693 | ||
1694 | /** | |
1695 | * nand_write_page_raw - [INTERN] raw page write function | |
1696 | * @mtd: mtd info structure | |
1697 | * @chip: nand chip info structure | |
1698 | * @buf: data buffer | |
1699 | * @oob_required: must write chip->oob_poi to OOB | |
1700 | * @page: page number to write | |
1701 | * | |
1702 | * Not for syndrome calculating ECC controllers, which use a special oob layout. | |
1703 | */ | |
1704 | static int octeontx_nand_write_page_raw(struct mtd_info *mtd, | |
1705 | struct nand_chip *chip, | |
1706 | const u8 *buf, int oob_required, | |
1707 | int page) | |
1708 | { | |
1709 | chip->write_buf(mtd, buf, mtd->writesize); | |
1710 | if (oob_required) | |
1711 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | |
1712 | ||
1713 | return 0; | |
1714 | } | |
1715 | ||
1716 | /** | |
1717 | * octeontx_nand_write_oob_std - [REPLACEABLE] the most common OOB data write | |
1718 | * function | |
1719 | * @mtd: mtd info structure | |
1720 | * @chip: nand chip info structure | |
1721 | * @page: page number to write | |
1722 | */ | |
1723 | static int octeontx_nand_write_oob_std(struct mtd_info *mtd, | |
1724 | struct nand_chip *chip, | |
1725 | int page) | |
1726 | { | |
1727 | int status = 0; | |
1728 | const u8 *buf = chip->oob_poi; | |
1729 | int length = mtd->oobsize; | |
1730 | ||
1731 | chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); | |
1732 | chip->write_buf(mtd, buf, length); | |
1733 | /* Send command to program the OOB data */ | |
1734 | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | |
1735 | ||
1736 | status = chip->waitfunc(mtd, chip); | |
1737 | ||
1738 | return status & NAND_STATUS_FAIL ? -EIO : 0; | |
1739 | } | |
1740 | ||
1741 | /** | |
1742 | * octeontx_nand_read_page_raw - [INTERN] read raw page data without ecc | |
1743 | * @mtd: mtd info structure | |
1744 | * @chip: nand chip info structure | |
1745 | * @buf: buffer to store read data | |
1746 | * @oob_required: caller requires OOB data read to chip->oob_poi | |
1747 | * @page: page number to read | |
1748 | * | |
1749 | * Not for syndrome calculating ECC controllers, which use a special oob layout. | |
1750 | */ | |
1751 | static int octeontx_nand_read_page_raw(struct mtd_info *mtd, | |
1752 | struct nand_chip *chip, | |
1753 | u8 *buf, int oob_required, int page) | |
1754 | { | |
1755 | chip->read_buf(mtd, buf, mtd->writesize); | |
1756 | if (oob_required) | |
1757 | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | |
1758 | return 0; | |
1759 | } | |
1760 | ||
1761 | static int octeontx_nand_read_oob_std(struct mtd_info *mtd, | |
1762 | struct nand_chip *chip, | |
1763 | int page) | |
1764 | ||
1765 | { | |
1766 | chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); | |
1767 | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | |
1768 | return 0; | |
1769 | } | |
1770 | ||
1771 | static int octeontx_nand_calc_bch_ecc_strength(struct nand_chip *nand) | |
1772 | { | |
1773 | struct mtd_info *mtd = nand_to_mtd(nand); | |
1774 | struct nand_ecc_ctrl *ecc = &nand->ecc; | |
1775 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); | |
1776 | int nsteps = mtd->writesize / ecc->size; | |
1777 | int oobchunk = mtd->oobsize / nsteps; | |
1778 | ||
1779 | /* ecc->strength determines ecc_level and OOB's ecc_bytes. */ | |
1780 | const u8 strengths[] = {4, 8, 16, 24, 32, 40, 48, 56, 60, 64}; | |
1781 | /* first set the desired ecc_level to match strengths[] */ | |
1782 | int index = ARRAY_SIZE(strengths) - 1; | |
1783 | int need; | |
1784 | ||
1785 | while (index > 0 && !(ecc->options & NAND_ECC_MAXIMIZE) && | |
1786 | strengths[index - 1] >= ecc->strength) | |
1787 | index--; | |
1788 | ||
1789 | do { | |
1790 | need = DIV_ROUND_UP(15 * strengths[index], 8); | |
1791 | if (need <= oobchunk - 2) | |
1792 | break; | |
1793 | } while (index > 0); | |
1794 | ||
1795 | debug("%s: steps ds: %d, strength ds: %d\n", __func__, | |
1796 | nand->ecc_step_ds, nand->ecc_strength_ds); | |
1797 | ecc->strength = strengths[index]; | |
1798 | ecc->bytes = need; | |
1799 | debug("%s: strength: %d, bytes: %d\n", __func__, ecc->strength, | |
1800 | ecc->bytes); | |
1801 | ||
1802 | if (!tn->eccmask) | |
1803 | tn->eccmask = devm_kzalloc(tn->dev, ecc->bytes, GFP_KERNEL); | |
1804 | if (!tn->eccmask) | |
1805 | return -ENOMEM; | |
1806 | ||
1807 | return 0; | |
1808 | } | |
1809 | ||
1810 | /* sample the BCH signature of an erased (all 0xff) page, | |
1811 | * to XOR into all page traffic, so erased pages have no ECC errors | |
1812 | */ | |
1813 | static int octeontx_bch_save_empty_eccmask(struct nand_chip *nand) | |
1814 | { | |
1815 | struct mtd_info *mtd = nand_to_mtd(nand); | |
1816 | struct octeontx_nfc *tn = to_otx_nfc(nand->controller); | |
1817 | unsigned int eccsize = nand->ecc.size; | |
1818 | unsigned int eccbytes = nand->ecc.bytes; | |
1819 | u8 erased_ecc[eccbytes]; | |
1820 | unsigned long erased_handle; | |
1821 | unsigned char *erased_page = dma_alloc_coherent(eccsize, | |
1822 | &erased_handle); | |
1823 | int i; | |
1824 | int rc = 0; | |
1825 | ||
1826 | if (!erased_page) | |
1827 | return -ENOMEM; | |
1828 | ||
1829 | memset(erased_page, 0xff, eccsize); | |
1830 | memset(erased_ecc, 0, eccbytes); | |
1831 | ||
1832 | rc = octeontx_nand_bch_calculate_ecc_internal(mtd, | |
1833 | (dma_addr_t)erased_handle, | |
1834 | erased_ecc); | |
1835 | ||
1836 | free(erased_page); | |
1837 | ||
1838 | for (i = 0; i < eccbytes; i++) | |
1839 | tn->eccmask[i] = erased_ecc[i] ^ 0xff; | |
1840 | ||
1841 | return rc; | |
1842 | } | |
1843 | ||
1844 | static void octeontx_nfc_chip_sizing(struct nand_chip *nand) | |
1845 | { | |
1846 | struct octeontx_nand_chip *chip = to_otx_nand(nand); | |
1847 | struct mtd_info *mtd = nand_to_mtd(nand); | |
1848 | struct nand_ecc_ctrl *ecc = &nand->ecc; | |
1849 | ||
1850 | chip->row_bytes = nand->onfi_params.addr_cycles & 0xf; | |
1851 | chip->col_bytes = nand->onfi_params.addr_cycles >> 4; | |
1852 | debug("%s(%p) row bytes: %d, col bytes: %d, ecc mode: %d\n", | |
1853 | __func__, nand, chip->row_bytes, chip->col_bytes, ecc->mode); | |
1854 | ||
1855 | /* | |
1856 | * HW_BCH using OcteonTX BCH engine, or SOFT_BCH laid out in | |
1857 | * HW_BCH-compatible fashion, depending on devtree advice | |
1858 | * and kernel config. | |
1859 | * BCH/NFC hardware capable of subpage ops, not implemented. | |
1860 | */ | |
1861 | mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); | |
1862 | nand->options |= NAND_NO_SUBPAGE_WRITE; | |
1863 | debug("%s: start steps: %d, size: %d, bytes: %d\n", | |
1864 | __func__, ecc->steps, ecc->size, ecc->bytes); | |
1865 | debug("%s: step ds: %d, strength ds: %d\n", __func__, | |
1866 | nand->ecc_step_ds, nand->ecc_strength_ds); | |
1867 | ||
1868 | if (ecc->mode != NAND_ECC_NONE) { | |
1869 | int nsteps = ecc->steps ? ecc->steps : 1; | |
1870 | ||
1871 | if (ecc->size && ecc->size != mtd->writesize) | |
1872 | nsteps = mtd->writesize / ecc->size; | |
1873 | else if (mtd->writesize > def_ecc_size && | |
1874 | !(mtd->writesize & (def_ecc_size - 1))) | |
1875 | nsteps = mtd->writesize / def_ecc_size; | |
1876 | ecc->steps = nsteps; | |
1877 | ecc->size = mtd->writesize / nsteps; | |
1878 | ecc->bytes = mtd->oobsize / nsteps; | |
1879 | ||
1880 | if (nand->ecc_strength_ds) | |
1881 | ecc->strength = nand->ecc_strength_ds; | |
1882 | if (nand->ecc_step_ds) | |
1883 | ecc->size = nand->ecc_step_ds; | |
1884 | /* | |
1885 | * no subpage ops, but set subpage-shift to match ecc->steps | |
1886 | * so mtd_nandbiterrs tests appropriate boundaries | |
1887 | */ | |
1888 | if (!mtd->subpage_sft && !(ecc->steps & (ecc->steps - 1))) | |
1889 | mtd->subpage_sft = fls(ecc->steps) - 1; | |
1890 | ||
1891 | if (IS_ENABLED(CONFIG_NAND_OCTEONTX_HW_ECC)) { | |
1892 | debug("%s: ecc mode: %d\n", __func__, ecc->mode); | |
1893 | if (ecc->mode != NAND_ECC_SOFT && | |
1894 | !octeontx_nand_calc_bch_ecc_strength(nand)) { | |
1895 | struct octeontx_nfc *tn = | |
1896 | to_otx_nfc(nand->controller); | |
1897 | ||
1898 | debug("Using hardware BCH engine support\n"); | |
1899 | ecc->mode = NAND_ECC_HW_SYNDROME; | |
1900 | ecc->read_page = octeontx_nand_hw_bch_read_page; | |
1901 | ecc->write_page = | |
1902 | octeontx_nand_hw_bch_write_page; | |
1903 | ecc->read_page_raw = | |
1904 | octeontx_nand_read_page_raw; | |
1905 | ecc->write_page_raw = | |
1906 | octeontx_nand_write_page_raw; | |
1907 | ecc->read_oob = octeontx_nand_read_oob_std; | |
1908 | ecc->write_oob = octeontx_nand_write_oob_std; | |
1909 | ||
1910 | ecc->calculate = octeontx_nand_bch_calculate; | |
1911 | ecc->correct = octeontx_nand_bch_correct; | |
1912 | ecc->hwctl = octeontx_nand_bch_hwctl; | |
1913 | ||
1914 | debug("NAND chip %d using hw_bch\n", | |
1915 | tn->selected_chip); | |
1916 | debug(" %d bytes ECC per %d byte block\n", | |
1917 | ecc->bytes, ecc->size); | |
1918 | debug(" for %d bits of correction per block.", | |
1919 | ecc->strength); | |
1920 | octeontx_nand_calc_ecc_layout(nand); | |
1921 | octeontx_bch_save_empty_eccmask(nand); | |
1922 | } | |
1923 | } | |
1924 | } | |
1925 | } | |
1926 | ||
1927 | static int octeontx_nfc_chip_init(struct octeontx_nfc *tn, struct udevice *dev, | |
1928 | ofnode node) | |
1929 | { | |
1930 | struct octeontx_nand_chip *chip; | |
1931 | struct nand_chip *nand; | |
1932 | struct mtd_info *mtd; | |
1933 | int ret; | |
1934 | ||
1935 | chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL); | |
1936 | if (!chip) | |
1937 | return -ENOMEM; | |
1938 | ||
1939 | debug("%s: Getting chip select\n", __func__); | |
1940 | ret = ofnode_read_s32(node, "reg", &chip->cs); | |
1941 | if (ret) { | |
1942 | dev_err(dev, "could not retrieve reg property: %d\n", ret); | |
1943 | return ret; | |
1944 | } | |
1945 | ||
1946 | if (chip->cs >= NAND_MAX_CHIPS) { | |
1947 | dev_err(dev, "invalid reg value: %u (max CS = 7)\n", chip->cs); | |
1948 | return -EINVAL; | |
1949 | } | |
1950 | debug("%s: chip select: %d\n", __func__, chip->cs); | |
1951 | nand = &chip->nand; | |
1952 | nand->controller = &tn->controller; | |
1953 | if (!tn->controller.active) | |
1954 | tn->controller.active = nand; | |
1955 | ||
1956 | debug("%s: Setting flash node\n", __func__); | |
1957 | nand_set_flash_node(nand, node); | |
1958 | ||
1959 | nand->options = 0; | |
1960 | nand->select_chip = octeontx_nand_select_chip; | |
1961 | nand->cmdfunc = octeontx_nand_cmdfunc; | |
1962 | nand->waitfunc = octeontx_nand_waitfunc; | |
1963 | nand->read_byte = octeontx_nand_read_byte; | |
1964 | nand->read_buf = octeontx_nand_read_buf; | |
1965 | nand->write_buf = octeontx_nand_write_buf; | |
1966 | nand->onfi_set_features = octeontx_nand_set_features; | |
1967 | nand->onfi_get_features = octeontx_nand_get_features; | |
1968 | nand->setup_data_interface = octeontx_nand_setup_dat_intf; | |
1969 | ||
1970 | mtd = nand_to_mtd(nand); | |
1971 | debug("%s: mtd: %p\n", __func__, mtd); | |
1972 | mtd->dev->parent = dev; | |
1973 | ||
1974 | debug("%s: NDF_MISC: 0x%llx\n", __func__, | |
1975 | readq(tn->base + NDF_MISC)); | |
1976 | ||
1977 | /* TODO: support more then 1 chip */ | |
1978 | debug("%s: Scanning identification\n", __func__); | |
1979 | ret = nand_scan_ident(mtd, 1, NULL); | |
1980 | if (ret) | |
1981 | return ret; | |
1982 | ||
1983 | debug("%s: Sizing chip\n", __func__); | |
1984 | octeontx_nfc_chip_sizing(nand); | |
1985 | ||
1986 | debug("%s: Scanning tail\n", __func__); | |
1987 | ret = nand_scan_tail(mtd); | |
1988 | if (ret) { | |
1989 | dev_err(dev, "nand_scan_tail failed: %d\n", ret); | |
1990 | return ret; | |
1991 | } | |
1992 | ||
1993 | debug("%s: Registering mtd\n", __func__); | |
1994 | ret = nand_register(0, mtd); | |
1995 | ||
1996 | debug("%s: Adding tail\n", __func__); | |
1997 | list_add_tail(&chip->node, &tn->chips); | |
1998 | return 0; | |
1999 | } | |
2000 | ||
2001 | static int octeontx_nfc_chips_init(struct octeontx_nfc *tn) | |
2002 | { | |
2003 | struct udevice *dev = tn->dev; | |
f10643cf | 2004 | ofnode node = dev_ofnode(dev); |
05c7606a SG |
2005 | ofnode nand_node; |
2006 | int nr_chips = of_get_child_count(node); | |
2007 | int ret; | |
2008 | ||
2009 | debug("%s: node: %s\n", __func__, ofnode_get_name(node)); | |
2010 | debug("%s: %d chips\n", __func__, nr_chips); | |
2011 | if (nr_chips > NAND_MAX_CHIPS) { | |
2012 | dev_err(dev, "too many NAND chips: %d\n", nr_chips); | |
2013 | return -EINVAL; | |
2014 | } | |
2015 | ||
2016 | if (!nr_chips) { | |
2017 | debug("no DT NAND chips found\n"); | |
2018 | return -ENODEV; | |
2019 | } | |
2020 | ||
2021 | pr_info("%s: scanning %d chips DTs\n", __func__, nr_chips); | |
2022 | ||
2023 | ofnode_for_each_subnode(nand_node, node) { | |
2024 | debug("%s: Calling octeontx_nfc_chip_init(%p, %s, %ld)\n", | |
2025 | __func__, tn, dev->name, nand_node.of_offset); | |
2026 | ret = octeontx_nfc_chip_init(tn, dev, nand_node); | |
2027 | if (ret) | |
2028 | return ret; | |
2029 | } | |
2030 | return 0; | |
2031 | } | |
2032 | ||
2033 | /* Reset NFC and initialize registers. */ | |
2034 | static int octeontx_nfc_init(struct octeontx_nfc *tn) | |
2035 | { | |
2036 | const struct nand_sdr_timings *timings; | |
2037 | u64 ndf_misc; | |
2038 | int rc; | |
2039 | ||
2040 | /* Initialize values and reset the fifo */ | |
2041 | ndf_misc = readq(tn->base + NDF_MISC); | |
2042 | ||
2043 | ndf_misc &= ~NDF_MISC_EX_DIS; | |
2044 | ndf_misc |= (NDF_MISC_BT_DIS | NDF_MISC_RST_FF); | |
2045 | writeq(ndf_misc, tn->base + NDF_MISC); | |
2046 | debug("%s: NDF_MISC: 0x%llx\n", __func__, readq(tn->base + NDF_MISC)); | |
2047 | ||
2048 | /* Bring the fifo out of reset */ | |
2049 | ndf_misc &= ~(NDF_MISC_RST_FF); | |
2050 | ||
2051 | /* Maximum of co-processor cycles for glitch filtering */ | |
2052 | ndf_misc |= FIELD_PREP(NDF_MISC_WAIT_CNT, 0x3f); | |
2053 | ||
2054 | writeq(ndf_misc, tn->base + NDF_MISC); | |
2055 | ||
2056 | /* Set timing parameters to onfi mode 0 for probing */ | |
2057 | timings = onfi_async_timing_mode_to_sdr_timings(0); | |
2058 | if (IS_ERR(timings)) | |
2059 | return PTR_ERR(timings); | |
2060 | rc = set_default_timings(tn, timings); | |
2061 | if (rc) | |
2062 | return rc; | |
2063 | ||
2064 | return 0; | |
2065 | } | |
2066 | ||
2067 | static int octeontx_pci_nand_probe(struct udevice *dev) | |
2068 | { | |
2069 | struct octeontx_nfc *tn = dev_get_priv(dev); | |
2070 | int ret; | |
2071 | static bool probe_done; | |
2072 | ||
2073 | debug("%s(%s) tn: %p\n", __func__, dev->name, tn); | |
2074 | if (probe_done) | |
2075 | return 0; | |
2076 | ||
2077 | if (IS_ENABLED(CONFIG_NAND_OCTEONTX_HW_ECC)) { | |
2078 | bch_vf = octeontx_bch_getv(); | |
2079 | if (!bch_vf) { | |
2080 | struct octeontx_probe_device *probe_dev; | |
2081 | ||
2082 | debug("%s: bch not yet initialized\n", __func__); | |
2083 | probe_dev = calloc(sizeof(*probe_dev), 1); | |
2084 | if (!probe_dev) { | |
2085 | printf("%s: Out of memory\n", __func__); | |
2086 | return -ENOMEM; | |
2087 | } | |
2088 | probe_dev->dev = dev; | |
2089 | INIT_LIST_HEAD(&probe_dev->list); | |
2090 | list_add_tail(&probe_dev->list, | |
2091 | &octeontx_pci_nand_deferred_devices); | |
2092 | debug("%s: Defering probe until after BCH initialization\n", | |
2093 | __func__); | |
2094 | return 0; | |
2095 | } | |
2096 | } | |
2097 | ||
2098 | tn->dev = dev; | |
2099 | INIT_LIST_HEAD(&tn->chips); | |
2100 | ||
2101 | tn->base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, PCI_REGION_MEM); | |
2102 | if (!tn->base) { | |
2103 | ret = -EINVAL; | |
2104 | goto release; | |
2105 | } | |
2106 | debug("%s: bar at %p\n", __func__, tn->base); | |
2107 | tn->buf.dmabuflen = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE; | |
2108 | tn->buf.dmabuf = dma_alloc_coherent(tn->buf.dmabuflen, | |
2109 | (unsigned long *)&tn->buf.dmaaddr); | |
2110 | if (!tn->buf.dmabuf) { | |
2111 | ret = -ENOMEM; | |
2112 | debug("%s: Could not allocate DMA buffer\n", __func__); | |
2113 | goto unclk; | |
2114 | } | |
2115 | ||
2116 | /* one hw-bch response, for one outstanding transaction */ | |
2117 | tn->bch_resp = dma_alloc_coherent(sizeof(*tn->bch_resp), | |
2118 | (unsigned long *)&tn->bch_rhandle); | |
2119 | ||
2120 | tn->stat = dma_alloc_coherent(8, (unsigned long *)&tn->stat_addr); | |
2121 | if (!tn->stat || !tn->bch_resp) { | |
2122 | debug("%s: Could not allocate bch status or response\n", | |
2123 | __func__); | |
2124 | ret = -ENOMEM; | |
2125 | goto unclk; | |
2126 | } | |
2127 | ||
2128 | debug("%s: Calling octeontx_nfc_init()\n", __func__); | |
2129 | octeontx_nfc_init(tn); | |
2130 | debug("%s: Initializing chips\n", __func__); | |
2131 | ret = octeontx_nfc_chips_init(tn); | |
2132 | debug("%s: init chips ret: %d\n", __func__, ret); | |
2133 | if (ret) { | |
2134 | if (ret != -ENODEV) | |
2135 | dev_err(dev, "failed to init nand chips\n"); | |
2136 | goto unclk; | |
2137 | } | |
2138 | dev_info(dev, "probed\n"); | |
2139 | return 0; | |
2140 | ||
2141 | unclk: | |
2142 | release: | |
2143 | return ret; | |
2144 | } | |
2145 | ||
2146 | int octeontx_pci_nand_disable(struct udevice *dev) | |
2147 | { | |
2148 | struct octeontx_nfc *tn = dev_get_priv(dev); | |
2149 | u64 dma_cfg; | |
2150 | u64 ndf_misc; | |
2151 | ||
2152 | debug("%s: Disabling NAND device %s\n", __func__, dev->name); | |
2153 | dma_cfg = readq(tn->base + NDF_DMA_CFG); | |
2154 | dma_cfg &= ~NDF_DMA_CFG_EN; | |
2155 | dma_cfg |= NDF_DMA_CFG_CLR; | |
2156 | writeq(dma_cfg, tn->base + NDF_DMA_CFG); | |
2157 | ||
2158 | /* Disable execution and put FIFO in reset mode */ | |
2159 | ndf_misc = readq(tn->base + NDF_MISC); | |
2160 | ndf_misc |= NDF_MISC_EX_DIS | NDF_MISC_RST_FF; | |
2161 | writeq(ndf_misc, tn->base + NDF_MISC); | |
2162 | ndf_misc &= ~NDF_MISC_RST_FF; | |
2163 | writeq(ndf_misc, tn->base + NDF_MISC); | |
2164 | #ifdef DEBUG | |
2165 | printf("%s: NDF_MISC: 0x%llx\n", __func__, readq(tn->base + NDF_MISC)); | |
2166 | #endif | |
2167 | /* Clear any interrupts and enable bits */ | |
2168 | writeq(~0ull, tn->base + NDF_INT_ENA_W1C); | |
2169 | writeq(~0ull, tn->base + NDF_INT); | |
2170 | debug("%s: NDF_ST_REG: 0x%llx\n", __func__, | |
2171 | readq(tn->base + NDF_ST_REG)); | |
2172 | return 0; | |
2173 | } | |
2174 | ||
2175 | /** | |
2176 | * Since it's possible (and even likely) that the NAND device will be probed | |
2177 | * before the BCH device has been probed, we may need to defer the probing. | |
2178 | * | |
2179 | * In this case, the initial probe returns success but the actual probing | |
2180 | * is deferred until the BCH VF has been probed. | |
2181 | * | |
2182 | * @return 0 for success, otherwise error | |
2183 | */ | |
2184 | int octeontx_pci_nand_deferred_probe(void) | |
2185 | { | |
2186 | int rc = 0; | |
2187 | struct octeontx_probe_device *pdev; | |
2188 | ||
2189 | debug("%s: Performing deferred probing\n", __func__); | |
2190 | list_for_each_entry(pdev, &octeontx_pci_nand_deferred_devices, list) { | |
2191 | debug("%s: Probing %s\n", __func__, pdev->dev->name); | |
73466df3 | 2192 | dev_get_flags(pdev->dev) &= ~DM_FLAG_ACTIVATED; |
05c7606a SG |
2193 | rc = device_probe(pdev->dev); |
2194 | if (rc && rc != -ENODEV) { | |
2195 | printf("%s: Error %d with deferred probe of %s\n", | |
2196 | __func__, rc, pdev->dev->name); | |
2197 | break; | |
2198 | } | |
2199 | } | |
2200 | return rc; | |
2201 | } | |
2202 | ||
2203 | static const struct pci_device_id octeontx_nfc_pci_id_table[] = { | |
2204 | { PCI_VDEVICE(CAVIUM, 0xA04F) }, | |
2205 | {} | |
2206 | }; | |
2207 | ||
d1998a9f | 2208 | static int octeontx_nand_of_to_plat(struct udevice *dev) |
05c7606a SG |
2209 | { |
2210 | return 0; | |
2211 | } | |
2212 | ||
2213 | static const struct udevice_id octeontx_nand_ids[] = { | |
2214 | { .compatible = "cavium,cn8130-nand" }, | |
2215 | { }, | |
2216 | }; | |
2217 | ||
2218 | U_BOOT_DRIVER(octeontx_pci_nand) = { | |
2219 | .name = OCTEONTX_NAND_DRIVER_NAME, | |
2220 | .id = UCLASS_MTD, | |
2221 | .of_match = of_match_ptr(octeontx_nand_ids), | |
d1998a9f | 2222 | .of_to_plat = octeontx_nand_of_to_plat, |
05c7606a | 2223 | .probe = octeontx_pci_nand_probe, |
41575d8e | 2224 | .priv_auto = sizeof(struct octeontx_nfc), |
05c7606a SG |
2225 | .remove = octeontx_pci_nand_disable, |
2226 | .flags = DM_FLAG_OS_PREPARE, | |
2227 | }; | |
2228 | ||
2229 | U_BOOT_PCI_DEVICE(octeontx_pci_nand, octeontx_nfc_pci_id_table); | |
2230 | ||
2231 | void board_nand_init(void) | |
2232 | { | |
2233 | struct udevice *dev; | |
2234 | int ret; | |
2235 | ||
2236 | if (IS_ENABLED(CONFIG_NAND_OCTEONTX_HW_ECC)) { | |
2237 | ret = uclass_get_device_by_driver(UCLASS_MISC, | |
65e25bea | 2238 | DM_DRIVER_GET(octeontx_pci_bchpf), |
05c7606a SG |
2239 | &dev); |
2240 | if (ret && ret != -ENODEV) { | |
2241 | pr_err("Failed to initialize OcteonTX BCH PF controller. (error %d)\n", | |
2242 | ret); | |
2243 | } | |
2244 | ret = uclass_get_device_by_driver(UCLASS_MISC, | |
65e25bea | 2245 | DM_DRIVER_GET(octeontx_pci_bchvf), |
05c7606a SG |
2246 | &dev); |
2247 | if (ret && ret != -ENODEV) { | |
2248 | pr_err("Failed to initialize OcteonTX BCH VF controller. (error %d)\n", | |
2249 | ret); | |
2250 | } | |
2251 | } | |
2252 | ||
2253 | ret = uclass_get_device_by_driver(UCLASS_MTD, | |
65e25bea | 2254 | DM_DRIVER_GET(octeontx_pci_nand), |
05c7606a SG |
2255 | &dev); |
2256 | if (ret && ret != -ENODEV) | |
2257 | pr_err("Failed to initialize OcteonTX NAND controller. (error %d)\n", | |
2258 | ret); | |
2259 | } |