]> Git Repo - J-u-boot.git/blame - drivers/mtd/ubi/io.c
SPDX: Convert all of our single license tags to Linux Kernel style
[J-u-boot.git] / drivers / mtd / ubi / io.c
CommitLineData
83d290c5 1// SPDX-License-Identifier: GPL-2.0+
2d262c48
KP
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2006, 2007
2d262c48
KP
5 *
6 * Author: Artem Bityutskiy (Битюцкий Артём)
7 */
8
9/*
ff94bc40 10 * UBI input/output sub-system.
2d262c48 11 *
ff94bc40
HS
12 * This sub-system provides a uniform way to work with all kinds of the
13 * underlying MTD devices. It also implements handy functions for reading and
14 * writing UBI headers.
2d262c48
KP
15 *
16 * We are trying to have a paranoid mindset and not to trust to what we read
ff94bc40
HS
17 * from the flash media in order to be more secure and robust. So this
18 * sub-system validates every single header it reads from the flash media.
2d262c48
KP
19 *
20 * Some words about how the eraseblock headers are stored.
21 *
22 * The erase counter header is always stored at offset zero. By default, the
23 * VID header is stored after the EC header at the closest aligned offset
24 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
25 * header at the closest aligned offset. But this default layout may be
26 * changed. For example, for different reasons (e.g., optimization) UBI may be
27 * asked to put the VID header at further offset, and even at an unaligned
28 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
29 * proper padding in front of it. Data offset may also be changed but it has to
30 * be aligned.
31 *
32 * About minimal I/O units. In general, UBI assumes flash device model where
33 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
34 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
35 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
36 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
37 * to do different optimizations.
38 *
39 * This is extremely useful in case of NAND flashes which admit of several
40 * write operations to one NAND page. In this case UBI can fit EC and VID
41 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
42 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
43 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
44 * users.
45 *
46 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
47 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
48 * headers.
49 *
50 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
51 * device, e.g., make @ubi->min_io_size = 512 in the example above?
52 *
53 * A: because when writing a sub-page, MTD still writes a full 2K page but the
ff94bc40
HS
54 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
55 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
56 * Thus, we prefer to use sub-pages only for EC and VID headers.
2d262c48
KP
57 *
58 * As it was noted above, the VID header may start at a non-aligned offset.
59 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
60 * the VID header may reside at offset 1984 which is the last 64 bytes of the
61 * last sub-page (EC header is always at offset zero). This causes some
62 * difficulties when reading and writing VID headers.
63 *
64 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
65 * the data and want to write this VID header out. As we can only write in
66 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
67 * to offset 448 of this buffer.
68 *
ff94bc40
HS
69 * The I/O sub-system does the following trick in order to avoid this extra
70 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
71 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
72 * When the VID header is being written out, it shifts the VID header pointer
73 * back and writes the whole sub-page.
2d262c48
KP
74 */
75
ff94bc40 76#ifndef __UBOOT__
2d262c48
KP
77#include <linux/crc32.h>
78#include <linux/err.h>
ff94bc40
HS
79#include <linux/slab.h>
80#else
81#include <ubi_uboot.h>
2d262c48
KP
82#endif
83
2d262c48
KP
84#include "ubi.h"
85
ff94bc40
HS
86static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
87static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
88static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
89 const struct ubi_ec_hdr *ec_hdr);
90static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
91static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
92 const struct ubi_vid_hdr *vid_hdr);
93static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
94 int offset, int len);
2d262c48
KP
95
96/**
97 * ubi_io_read - read data from a physical eraseblock.
98 * @ubi: UBI device description object
99 * @buf: buffer where to store the read data
100 * @pnum: physical eraseblock number to read from
101 * @offset: offset within the physical eraseblock from where to read
102 * @len: how many bytes to read
103 *
104 * This function reads data from offset @offset of physical eraseblock @pnum
105 * and stores the read data in the @buf buffer. The following return codes are
106 * possible:
107 *
108 * o %0 if all the requested data were successfully read;
109 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
110 * correctable bit-flips were detected; this is harmless but may indicate
111 * that this eraseblock may become bad soon (but do not have to);
112 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
113 * example it can be an ECC error in case of NAND; this most probably means
114 * that the data is corrupted;
115 * o %-EIO if some I/O error occurred;
116 * o other negative error codes in case of other errors.
117 */
118int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
119 int len)
120{
121 int err, retries = 0;
122 size_t read;
123 loff_t addr;
124
125 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
126
127 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
128 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
129 ubi_assert(len > 0);
130
ff94bc40 131 err = self_check_not_bad(ubi, pnum);
2d262c48 132 if (err)
ff94bc40
HS
133 return err;
134
135 /*
136 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
137 * do not do this, the following may happen:
138 * 1. The buffer contains data from previous operation, e.g., read from
139 * another PEB previously. The data looks like expected, e.g., if we
140 * just do not read anything and return - the caller would not
141 * notice this. E.g., if we are reading a VID header, the buffer may
142 * contain a valid VID header from another PEB.
143 * 2. The driver is buggy and returns us success or -EBADMSG or
144 * -EUCLEAN, but it does not actually put any data to the buffer.
145 *
146 * This may confuse UBI or upper layers - they may think the buffer
147 * contains valid data while in fact it is just old data. This is
148 * especially possible because UBI (and UBIFS) relies on CRC, and
149 * treats data as correct even in case of ECC errors if the CRC is
150 * correct.
151 *
152 * Try to prevent this situation by changing the first byte of the
153 * buffer.
154 */
155 *((uint8_t *)buf) ^= 0xFF;
2d262c48
KP
156
157 addr = (loff_t)pnum * ubi->peb_size + offset;
158retry:
dfe64e2c 159 err = mtd_read(ubi->mtd, addr, len, &read, buf);
2d262c48 160 if (err) {
ff94bc40
HS
161 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
162
163 if (mtd_is_bitflip(err)) {
2d262c48
KP
164 /*
165 * -EUCLEAN is reported if there was a bit-flip which
166 * was corrected, so this is harmless.
ff94bc40
HS
167 *
168 * We do not report about it here unless debugging is
169 * enabled. A corresponding message will be printed
170 * later, when it is has been scrubbed.
2d262c48 171 */
0195a7bb
HS
172 ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
173 pnum);
2d262c48
KP
174 ubi_assert(len == read);
175 return UBI_IO_BITFLIPS;
176 }
177
ff94bc40 178 if (retries++ < UBI_IO_RETRIES) {
0195a7bb 179 ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
ff94bc40 180 err, errstr, len, pnum, offset, read);
2d262c48
KP
181 yield();
182 goto retry;
183 }
184
0195a7bb 185 ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
ff94bc40
HS
186 err, errstr, len, pnum, offset, read);
187 dump_stack();
2d262c48
KP
188
189 /*
190 * The driver should never return -EBADMSG if it failed to read
191 * all the requested data. But some buggy drivers might do
192 * this, so we change it to -EIO.
193 */
ff94bc40 194 if (read != len && mtd_is_eccerr(err)) {
2d262c48 195 ubi_assert(0);
ff94bc40 196 err = -EIO;
2d262c48
KP
197 }
198 } else {
199 ubi_assert(len == read);
200
ff94bc40
HS
201 if (ubi_dbg_is_bitflip(ubi)) {
202 dbg_gen("bit-flip (emulated)");
2d262c48
KP
203 err = UBI_IO_BITFLIPS;
204 }
205 }
206
207 return err;
208}
209
210/**
211 * ubi_io_write - write data to a physical eraseblock.
212 * @ubi: UBI device description object
213 * @buf: buffer with the data to write
214 * @pnum: physical eraseblock number to write to
215 * @offset: offset within the physical eraseblock where to write
216 * @len: how many bytes to write
217 *
218 * This function writes @len bytes of data from buffer @buf to offset @offset
219 * of physical eraseblock @pnum. If all the data were successfully written,
220 * zero is returned. If an error occurred, this function returns a negative
221 * error code. If %-EIO is returned, the physical eraseblock most probably went
222 * bad.
223 *
224 * Note, in case of an error, it is possible that something was still written
225 * to the flash media, but may be some garbage.
226 */
227int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
228 int len)
229{
230 int err;
231 size_t written;
232 loff_t addr;
233
234 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
235
236 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
237 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
238 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
239 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
240
241 if (ubi->ro_mode) {
0195a7bb 242 ubi_err(ubi, "read-only mode");
2d262c48
KP
243 return -EROFS;
244 }
245
ff94bc40 246 err = self_check_not_bad(ubi, pnum);
2d262c48 247 if (err)
ff94bc40 248 return err;
2d262c48
KP
249
250 /* The area we are writing to has to contain all 0xFF bytes */
ff94bc40 251 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
2d262c48 252 if (err)
ff94bc40 253 return err;
2d262c48
KP
254
255 if (offset >= ubi->leb_start) {
256 /*
257 * We write to the data area of the physical eraseblock. Make
258 * sure it has valid EC and VID headers.
259 */
ff94bc40 260 err = self_check_peb_ec_hdr(ubi, pnum);
2d262c48 261 if (err)
ff94bc40
HS
262 return err;
263 err = self_check_peb_vid_hdr(ubi, pnum);
2d262c48 264 if (err)
ff94bc40 265 return err;
2d262c48
KP
266 }
267
ff94bc40 268 if (ubi_dbg_is_write_failure(ubi)) {
0195a7bb 269 ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
ff94bc40
HS
270 len, pnum, offset);
271 dump_stack();
2d262c48
KP
272 return -EIO;
273 }
274
275 addr = (loff_t)pnum * ubi->peb_size + offset;
dfe64e2c 276 err = mtd_write(ubi->mtd, addr, len, &written, buf);
2d262c48 277 if (err) {
0195a7bb 278 ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
ff94bc40
HS
279 err, len, pnum, offset, written);
280 dump_stack();
281 ubi_dump_flash(ubi, pnum, offset, len);
2d262c48
KP
282 } else
283 ubi_assert(written == len);
284
ff94bc40
HS
285 if (!err) {
286 err = self_check_write(ubi, buf, pnum, offset, len);
287 if (err)
288 return err;
289
290 /*
291 * Since we always write sequentially, the rest of the PEB has
292 * to contain only 0xFF bytes.
293 */
294 offset += len;
295 len = ubi->peb_size - offset;
296 if (len)
297 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
298 }
299
2d262c48
KP
300 return err;
301}
302
303/**
304 * erase_callback - MTD erasure call-back.
305 * @ei: MTD erase information object.
306 *
307 * Note, even though MTD erase interface is asynchronous, all the current
308 * implementations are synchronous anyway.
309 */
310static void erase_callback(struct erase_info *ei)
311{
312 wake_up_interruptible((wait_queue_head_t *)ei->priv);
313}
314
315/**
316 * do_sync_erase - synchronously erase a physical eraseblock.
317 * @ubi: UBI device description object
318 * @pnum: the physical eraseblock number to erase
319 *
320 * This function synchronously erases physical eraseblock @pnum and returns
321 * zero in case of success and a negative error code in case of failure. If
322 * %-EIO is returned, the physical eraseblock most probably went bad.
323 */
324static int do_sync_erase(struct ubi_device *ubi, int pnum)
325{
326 int err, retries = 0;
327 struct erase_info ei;
328 wait_queue_head_t wq;
329
330 dbg_io("erase PEB %d", pnum);
ff94bc40
HS
331 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
332
333 if (ubi->ro_mode) {
0195a7bb 334 ubi_err(ubi, "read-only mode");
ff94bc40
HS
335 return -EROFS;
336 }
2d262c48
KP
337
338retry:
339 init_waitqueue_head(&wq);
340 memset(&ei, 0, sizeof(struct erase_info));
341
342 ei.mtd = ubi->mtd;
343 ei.addr = (loff_t)pnum * ubi->peb_size;
344 ei.len = ubi->peb_size;
345 ei.callback = erase_callback;
346 ei.priv = (unsigned long)&wq;
347
dfe64e2c 348 err = mtd_erase(ubi->mtd, &ei);
2d262c48
KP
349 if (err) {
350 if (retries++ < UBI_IO_RETRIES) {
0195a7bb 351 ubi_warn(ubi, "error %d while erasing PEB %d, retry",
ff94bc40 352 err, pnum);
2d262c48
KP
353 yield();
354 goto retry;
355 }
0195a7bb 356 ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
ff94bc40 357 dump_stack();
2d262c48
KP
358 return err;
359 }
360
361 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
362 ei.state == MTD_ERASE_FAILED);
363 if (err) {
0195a7bb 364 ubi_err(ubi, "interrupted PEB %d erasure", pnum);
2d262c48
KP
365 return -EINTR;
366 }
367
368 if (ei.state == MTD_ERASE_FAILED) {
369 if (retries++ < UBI_IO_RETRIES) {
0195a7bb
HS
370 ubi_warn(ubi, "error while erasing PEB %d, retry",
371 pnum);
2d262c48
KP
372 yield();
373 goto retry;
374 }
0195a7bb 375 ubi_err(ubi, "cannot erase PEB %d", pnum);
ff94bc40 376 dump_stack();
2d262c48
KP
377 return -EIO;
378 }
379
ff94bc40 380 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
2d262c48 381 if (err)
ff94bc40 382 return err;
2d262c48 383
ff94bc40 384 if (ubi_dbg_is_erase_failure(ubi)) {
0195a7bb 385 ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
2d262c48
KP
386 return -EIO;
387 }
388
389 return 0;
390}
391
2d262c48
KP
392/* Patterns to write to a physical eraseblock when torturing it */
393static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
394
395/**
396 * torture_peb - test a supposedly bad physical eraseblock.
397 * @ubi: UBI device description object
398 * @pnum: the physical eraseblock number to test
399 *
400 * This function returns %-EIO if the physical eraseblock did not pass the
401 * test, a positive number of erase operations done if the test was
402 * successfully passed, and other negative error codes in case of other errors.
403 */
404static int torture_peb(struct ubi_device *ubi, int pnum)
405{
406 int err, i, patt_count;
407
0195a7bb 408 ubi_msg(ubi, "run torture test for PEB %d", pnum);
2d262c48
KP
409 patt_count = ARRAY_SIZE(patterns);
410 ubi_assert(patt_count > 0);
411
412 mutex_lock(&ubi->buf_mutex);
413 for (i = 0; i < patt_count; i++) {
414 err = do_sync_erase(ubi, pnum);
415 if (err)
416 goto out;
417
418 /* Make sure the PEB contains only 0xFF bytes */
ff94bc40 419 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
2d262c48
KP
420 if (err)
421 goto out;
422
ff94bc40 423 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
2d262c48 424 if (err == 0) {
0195a7bb 425 ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
2d262c48
KP
426 pnum);
427 err = -EIO;
428 goto out;
429 }
430
431 /* Write a pattern and check it */
ff94bc40
HS
432 memset(ubi->peb_buf, patterns[i], ubi->peb_size);
433 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
2d262c48
KP
434 if (err)
435 goto out;
436
ff94bc40
HS
437 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
438 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
2d262c48
KP
439 if (err)
440 goto out;
441
ff94bc40
HS
442 err = ubi_check_pattern(ubi->peb_buf, patterns[i],
443 ubi->peb_size);
2d262c48 444 if (err == 0) {
0195a7bb 445 ubi_err(ubi, "pattern %x checking failed for PEB %d",
2d262c48
KP
446 patterns[i], pnum);
447 err = -EIO;
448 goto out;
449 }
450 }
451
452 err = patt_count;
0195a7bb 453 ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
2d262c48
KP
454
455out:
456 mutex_unlock(&ubi->buf_mutex);
ff94bc40 457 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
2d262c48
KP
458 /*
459 * If a bit-flip or data integrity error was detected, the test
460 * has not passed because it happened on a freshly erased
461 * physical eraseblock which means something is wrong with it.
462 */
0195a7bb 463 ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
2d262c48
KP
464 pnum);
465 err = -EIO;
466 }
467 return err;
468}
469
ff94bc40
HS
470/**
471 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
472 * @ubi: UBI device description object
473 * @pnum: physical eraseblock number to prepare
474 *
475 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
476 * algorithm: the PEB is first filled with zeroes, then it is erased. And
477 * filling with zeroes starts from the end of the PEB. This was observed with
478 * Spansion S29GL512N NOR flash.
479 *
480 * This means that in case of a power cut we may end up with intact data at the
481 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
482 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
483 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
484 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
485 *
486 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
487 * magic numbers in order to invalidate them and prevent the failures. Returns
488 * zero in case of success and a negative error code in case of failure.
489 */
490static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
491{
492 int err;
493 size_t written;
494 loff_t addr;
495 uint32_t data = 0;
496 struct ubi_ec_hdr ec_hdr;
497
498 /*
499 * Note, we cannot generally define VID header buffers on stack,
500 * because of the way we deal with these buffers (see the header
501 * comment in this file). But we know this is a NOR-specific piece of
502 * code, so we can do this. But yes, this is error-prone and we should
503 * (pre-)allocate VID header buffer instead.
504 */
505 struct ubi_vid_hdr vid_hdr;
506
507 /*
508 * If VID or EC is valid, we have to corrupt them before erasing.
509 * It is important to first invalidate the EC header, and then the VID
510 * header. Otherwise a power cut may lead to valid EC header and
511 * invalid VID header, in which case UBI will treat this PEB as
512 * corrupted and will try to preserve it, and print scary warnings.
513 */
514 addr = (loff_t)pnum * ubi->peb_size;
515 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
516 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
517 err != UBI_IO_FF){
518 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
519 if(err)
520 goto error;
521 }
522
523 err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
524 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
525 err != UBI_IO_FF){
526 addr += ubi->vid_hdr_aloffset;
527 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
528 if (err)
529 goto error;
530 }
531 return 0;
532
533error:
534 /*
535 * The PEB contains a valid VID or EC header, but we cannot invalidate
536 * it. Supposedly the flash media or the driver is screwed up, so
537 * return an error.
538 */
0195a7bb 539 ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
ff94bc40
HS
540 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
541 return -EIO;
542}
543
2d262c48
KP
544/**
545 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
546 * @ubi: UBI device description object
547 * @pnum: physical eraseblock number to erase
548 * @torture: if this physical eraseblock has to be tortured
549 *
550 * This function synchronously erases physical eraseblock @pnum. If @torture
551 * flag is not zero, the physical eraseblock is checked by means of writing
552 * different patterns to it and reading them back. If the torturing is enabled,
ff94bc40 553 * the physical eraseblock is erased more than once.
2d262c48
KP
554 *
555 * This function returns the number of erasures made in case of success, %-EIO
556 * if the erasure failed or the torturing test failed, and other negative error
557 * codes in case of other errors. Note, %-EIO means that the physical
558 * eraseblock is bad.
559 */
560int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
561{
562 int err, ret = 0;
563
564 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
565
ff94bc40 566 err = self_check_not_bad(ubi, pnum);
2d262c48 567 if (err != 0)
ff94bc40 568 return err;
2d262c48
KP
569
570 if (ubi->ro_mode) {
0195a7bb 571 ubi_err(ubi, "read-only mode");
2d262c48
KP
572 return -EROFS;
573 }
574
ff94bc40
HS
575 if (ubi->nor_flash) {
576 err = nor_erase_prepare(ubi, pnum);
577 if (err)
578 return err;
579 }
580
2d262c48
KP
581 if (torture) {
582 ret = torture_peb(ubi, pnum);
583 if (ret < 0)
584 return ret;
585 }
586
587 err = do_sync_erase(ubi, pnum);
588 if (err)
589 return err;
590
591 return ret + 1;
592}
593
594/**
595 * ubi_io_is_bad - check if a physical eraseblock is bad.
596 * @ubi: UBI device description object
597 * @pnum: the physical eraseblock number to check
598 *
599 * This function returns a positive number if the physical eraseblock is bad,
600 * zero if not, and a negative error code if an error occurred.
601 */
602int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
603{
604 struct mtd_info *mtd = ubi->mtd;
605
606 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
607
608 if (ubi->bad_allowed) {
609 int ret;
610
dfe64e2c 611 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
2d262c48 612 if (ret < 0)
0195a7bb 613 ubi_err(ubi, "error %d while checking if PEB %d is bad",
2d262c48
KP
614 ret, pnum);
615 else if (ret)
616 dbg_io("PEB %d is bad", pnum);
617 return ret;
618 }
619
620 return 0;
621}
622
623/**
624 * ubi_io_mark_bad - mark a physical eraseblock as bad.
625 * @ubi: UBI device description object
626 * @pnum: the physical eraseblock number to mark
627 *
628 * This function returns zero in case of success and a negative error code in
629 * case of failure.
630 */
631int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
632{
633 int err;
634 struct mtd_info *mtd = ubi->mtd;
635
636 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
637
638 if (ubi->ro_mode) {
0195a7bb 639 ubi_err(ubi, "read-only mode");
2d262c48
KP
640 return -EROFS;
641 }
642
643 if (!ubi->bad_allowed)
644 return 0;
645
dfe64e2c 646 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
2d262c48 647 if (err)
0195a7bb 648 ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
2d262c48
KP
649 return err;
650}
651
652/**
653 * validate_ec_hdr - validate an erase counter header.
654 * @ubi: UBI device description object
655 * @ec_hdr: the erase counter header to check
656 *
657 * This function returns zero if the erase counter header is OK, and %1 if
658 * not.
659 */
660static int validate_ec_hdr(const struct ubi_device *ubi,
661 const struct ubi_ec_hdr *ec_hdr)
662{
663 long long ec;
664 int vid_hdr_offset, leb_start;
665
666 ec = be64_to_cpu(ec_hdr->ec);
667 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
668 leb_start = be32_to_cpu(ec_hdr->data_offset);
669
670 if (ec_hdr->version != UBI_VERSION) {
0195a7bb 671 ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
2d262c48
KP
672 UBI_VERSION, (int)ec_hdr->version);
673 goto bad;
674 }
675
676 if (vid_hdr_offset != ubi->vid_hdr_offset) {
0195a7bb 677 ubi_err(ubi, "bad VID header offset %d, expected %d",
2d262c48
KP
678 vid_hdr_offset, ubi->vid_hdr_offset);
679 goto bad;
680 }
681
682 if (leb_start != ubi->leb_start) {
0195a7bb 683 ubi_err(ubi, "bad data offset %d, expected %d",
2d262c48
KP
684 leb_start, ubi->leb_start);
685 goto bad;
686 }
687
688 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
0195a7bb 689 ubi_err(ubi, "bad erase counter %lld", ec);
2d262c48
KP
690 goto bad;
691 }
692
693 return 0;
694
695bad:
0195a7bb 696 ubi_err(ubi, "bad EC header");
ff94bc40
HS
697 ubi_dump_ec_hdr(ec_hdr);
698 dump_stack();
2d262c48
KP
699 return 1;
700}
701
702/**
703 * ubi_io_read_ec_hdr - read and check an erase counter header.
704 * @ubi: UBI device description object
705 * @pnum: physical eraseblock to read from
706 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
707 * header
708 * @verbose: be verbose if the header is corrupted or was not found
709 *
710 * This function reads erase counter header from physical eraseblock @pnum and
711 * stores it in @ec_hdr. This function also checks CRC checksum of the read
712 * erase counter header. The following codes may be returned:
713 *
714 * o %0 if the CRC checksum is correct and the header was successfully read;
715 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
716 * and corrected by the flash driver; this is harmless but may indicate that
717 * this eraseblock may become bad soon (but may be not);
ff94bc40
HS
718 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
719 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
720 * a data integrity error (uncorrectable ECC error in case of NAND);
721 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
2d262c48
KP
722 * o a negative error code in case of failure.
723 */
724int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
725 struct ubi_ec_hdr *ec_hdr, int verbose)
726{
ff94bc40 727 int err, read_err;
2d262c48
KP
728 uint32_t crc, magic, hdr_crc;
729
730 dbg_io("read EC header from PEB %d", pnum);
731 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
2d262c48 732
ff94bc40
HS
733 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
734 if (read_err) {
735 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
736 return read_err;
2d262c48
KP
737
738 /*
739 * We read all the data, but either a correctable bit-flip
ff94bc40
HS
740 * occurred, or MTD reported a data integrity error
741 * (uncorrectable ECC error in case of NAND). The former is
742 * harmless, the later may mean that the read data is
743 * corrupted. But we have a CRC check-sum and we will detect
744 * this. If the EC header is still OK, we just report this as
745 * there was a bit-flip, to force scrubbing.
2d262c48 746 */
2d262c48
KP
747 }
748
749 magic = be32_to_cpu(ec_hdr->magic);
750 if (magic != UBI_EC_HDR_MAGIC) {
ff94bc40
HS
751 if (mtd_is_eccerr(read_err))
752 return UBI_IO_BAD_HDR_EBADMSG;
753
2d262c48
KP
754 /*
755 * The magic field is wrong. Let's check if we have read all
756 * 0xFF. If yes, this physical eraseblock is assumed to be
757 * empty.
2d262c48 758 */
ff94bc40 759 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
2d262c48 760 /* The physical eraseblock is supposedly empty */
2d262c48 761 if (verbose)
0195a7bb 762 ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
ff94bc40
HS
763 pnum);
764 dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
765 pnum);
766 if (!read_err)
767 return UBI_IO_FF;
768 else
769 return UBI_IO_FF_BITFLIPS;
2d262c48
KP
770 }
771
772 /*
773 * This is not a valid erase counter header, and these are not
774 * 0xFF bytes. Report that the header is corrupted.
775 */
776 if (verbose) {
0195a7bb 777 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
ff94bc40
HS
778 pnum, magic, UBI_EC_HDR_MAGIC);
779 ubi_dump_ec_hdr(ec_hdr);
2d262c48 780 }
ff94bc40
HS
781 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
782 pnum, magic, UBI_EC_HDR_MAGIC);
783 return UBI_IO_BAD_HDR;
2d262c48
KP
784 }
785
786 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
787 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
788
789 if (hdr_crc != crc) {
790 if (verbose) {
0195a7bb 791 ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
ff94bc40
HS
792 pnum, crc, hdr_crc);
793 ubi_dump_ec_hdr(ec_hdr);
2d262c48 794 }
ff94bc40
HS
795 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
796 pnum, crc, hdr_crc);
797
798 if (!read_err)
799 return UBI_IO_BAD_HDR;
800 else
801 return UBI_IO_BAD_HDR_EBADMSG;
2d262c48
KP
802 }
803
804 /* And of course validate what has just been read from the media */
805 err = validate_ec_hdr(ubi, ec_hdr);
806 if (err) {
0195a7bb 807 ubi_err(ubi, "validation failed for PEB %d", pnum);
2d262c48
KP
808 return -EINVAL;
809 }
810
ff94bc40
HS
811 /*
812 * If there was %-EBADMSG, but the header CRC is still OK, report about
813 * a bit-flip to force scrubbing on this PEB.
814 */
2d262c48
KP
815 return read_err ? UBI_IO_BITFLIPS : 0;
816}
817
818/**
819 * ubi_io_write_ec_hdr - write an erase counter header.
820 * @ubi: UBI device description object
821 * @pnum: physical eraseblock to write to
822 * @ec_hdr: the erase counter header to write
823 *
824 * This function writes erase counter header described by @ec_hdr to physical
825 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
826 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
827 * field.
828 *
829 * This function returns zero in case of success and a negative error code in
830 * case of failure. If %-EIO is returned, the physical eraseblock most probably
831 * went bad.
832 */
833int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
834 struct ubi_ec_hdr *ec_hdr)
835{
836 int err;
837 uint32_t crc;
838
839 dbg_io("write EC header to PEB %d", pnum);
840 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
841
842 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
843 ec_hdr->version = UBI_VERSION;
844 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
845 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
ff94bc40 846 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
2d262c48
KP
847 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
848 ec_hdr->hdr_crc = cpu_to_be32(crc);
849
ff94bc40 850 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
2d262c48 851 if (err)
ff94bc40 852 return err;
2d262c48 853
0195a7bb
HS
854 if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
855 return -EROFS;
856
2d262c48
KP
857 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
858 return err;
859}
860
861/**
862 * validate_vid_hdr - validate a volume identifier header.
863 * @ubi: UBI device description object
864 * @vid_hdr: the volume identifier header to check
865 *
866 * This function checks that data stored in the volume identifier header
867 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
868 */
869static int validate_vid_hdr(const struct ubi_device *ubi,
870 const struct ubi_vid_hdr *vid_hdr)
871{
872 int vol_type = vid_hdr->vol_type;
873 int copy_flag = vid_hdr->copy_flag;
874 int vol_id = be32_to_cpu(vid_hdr->vol_id);
875 int lnum = be32_to_cpu(vid_hdr->lnum);
876 int compat = vid_hdr->compat;
877 int data_size = be32_to_cpu(vid_hdr->data_size);
878 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
879 int data_pad = be32_to_cpu(vid_hdr->data_pad);
880 int data_crc = be32_to_cpu(vid_hdr->data_crc);
881 int usable_leb_size = ubi->leb_size - data_pad;
882
883 if (copy_flag != 0 && copy_flag != 1) {
0195a7bb 884 ubi_err(ubi, "bad copy_flag");
2d262c48
KP
885 goto bad;
886 }
887
888 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
889 data_pad < 0) {
0195a7bb 890 ubi_err(ubi, "negative values");
2d262c48
KP
891 goto bad;
892 }
893
894 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
0195a7bb 895 ubi_err(ubi, "bad vol_id");
2d262c48
KP
896 goto bad;
897 }
898
899 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
0195a7bb 900 ubi_err(ubi, "bad compat");
2d262c48
KP
901 goto bad;
902 }
903
904 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
905 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
906 compat != UBI_COMPAT_REJECT) {
0195a7bb 907 ubi_err(ubi, "bad compat");
2d262c48
KP
908 goto bad;
909 }
910
911 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
0195a7bb 912 ubi_err(ubi, "bad vol_type");
2d262c48
KP
913 goto bad;
914 }
915
916 if (data_pad >= ubi->leb_size / 2) {
0195a7bb 917 ubi_err(ubi, "bad data_pad");
2d262c48
KP
918 goto bad;
919 }
920
921 if (vol_type == UBI_VID_STATIC) {
922 /*
923 * Although from high-level point of view static volumes may
924 * contain zero bytes of data, but no VID headers can contain
925 * zero at these fields, because they empty volumes do not have
926 * mapped logical eraseblocks.
927 */
928 if (used_ebs == 0) {
0195a7bb 929 ubi_err(ubi, "zero used_ebs");
2d262c48
KP
930 goto bad;
931 }
932 if (data_size == 0) {
0195a7bb 933 ubi_err(ubi, "zero data_size");
2d262c48
KP
934 goto bad;
935 }
936 if (lnum < used_ebs - 1) {
937 if (data_size != usable_leb_size) {
0195a7bb 938 ubi_err(ubi, "bad data_size");
2d262c48
KP
939 goto bad;
940 }
941 } else if (lnum == used_ebs - 1) {
942 if (data_size == 0) {
0195a7bb 943 ubi_err(ubi, "bad data_size at last LEB");
2d262c48
KP
944 goto bad;
945 }
946 } else {
0195a7bb 947 ubi_err(ubi, "too high lnum");
2d262c48
KP
948 goto bad;
949 }
950 } else {
951 if (copy_flag == 0) {
952 if (data_crc != 0) {
0195a7bb 953 ubi_err(ubi, "non-zero data CRC");
2d262c48
KP
954 goto bad;
955 }
956 if (data_size != 0) {
0195a7bb 957 ubi_err(ubi, "non-zero data_size");
2d262c48
KP
958 goto bad;
959 }
960 } else {
961 if (data_size == 0) {
0195a7bb 962 ubi_err(ubi, "zero data_size of copy");
2d262c48
KP
963 goto bad;
964 }
965 }
966 if (used_ebs != 0) {
0195a7bb 967 ubi_err(ubi, "bad used_ebs");
2d262c48
KP
968 goto bad;
969 }
970 }
971
972 return 0;
973
974bad:
0195a7bb 975 ubi_err(ubi, "bad VID header");
ff94bc40
HS
976 ubi_dump_vid_hdr(vid_hdr);
977 dump_stack();
2d262c48
KP
978 return 1;
979}
980
981/**
982 * ubi_io_read_vid_hdr - read and check a volume identifier header.
983 * @ubi: UBI device description object
984 * @pnum: physical eraseblock number to read from
985 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
986 * identifier header
987 * @verbose: be verbose if the header is corrupted or wasn't found
988 *
989 * This function reads the volume identifier header from physical eraseblock
990 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
ff94bc40
HS
991 * volume identifier header. The error codes are the same as in
992 * 'ubi_io_read_ec_hdr()'.
2d262c48 993 *
ff94bc40
HS
994 * Note, the implementation of this function is also very similar to
995 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
2d262c48
KP
996 */
997int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
998 struct ubi_vid_hdr *vid_hdr, int verbose)
999{
ff94bc40 1000 int err, read_err;
2d262c48
KP
1001 uint32_t crc, magic, hdr_crc;
1002 void *p;
1003
1004 dbg_io("read VID header from PEB %d", pnum);
1005 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
2d262c48
KP
1006
1007 p = (char *)vid_hdr - ubi->vid_hdr_shift;
ff94bc40 1008 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
2d262c48 1009 ubi->vid_hdr_alsize);
ff94bc40
HS
1010 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1011 return read_err;
2d262c48
KP
1012
1013 magic = be32_to_cpu(vid_hdr->magic);
1014 if (magic != UBI_VID_HDR_MAGIC) {
ff94bc40
HS
1015 if (mtd_is_eccerr(read_err))
1016 return UBI_IO_BAD_HDR_EBADMSG;
2d262c48 1017
ff94bc40 1018 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
2d262c48 1019 if (verbose)
0195a7bb 1020 ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
ff94bc40
HS
1021 pnum);
1022 dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1023 pnum);
1024 if (!read_err)
1025 return UBI_IO_FF;
1026 else
1027 return UBI_IO_FF_BITFLIPS;
2d262c48
KP
1028 }
1029
2d262c48 1030 if (verbose) {
0195a7bb 1031 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
ff94bc40
HS
1032 pnum, magic, UBI_VID_HDR_MAGIC);
1033 ubi_dump_vid_hdr(vid_hdr);
2d262c48 1034 }
ff94bc40
HS
1035 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1036 pnum, magic, UBI_VID_HDR_MAGIC);
1037 return UBI_IO_BAD_HDR;
2d262c48
KP
1038 }
1039
1040 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1041 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1042
1043 if (hdr_crc != crc) {
1044 if (verbose) {
0195a7bb 1045 ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
ff94bc40
HS
1046 pnum, crc, hdr_crc);
1047 ubi_dump_vid_hdr(vid_hdr);
2d262c48 1048 }
ff94bc40
HS
1049 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1050 pnum, crc, hdr_crc);
1051 if (!read_err)
1052 return UBI_IO_BAD_HDR;
1053 else
1054 return UBI_IO_BAD_HDR_EBADMSG;
2d262c48
KP
1055 }
1056
2d262c48
KP
1057 err = validate_vid_hdr(ubi, vid_hdr);
1058 if (err) {
0195a7bb 1059 ubi_err(ubi, "validation failed for PEB %d", pnum);
2d262c48
KP
1060 return -EINVAL;
1061 }
1062
1063 return read_err ? UBI_IO_BITFLIPS : 0;
1064}
1065
1066/**
1067 * ubi_io_write_vid_hdr - write a volume identifier header.
1068 * @ubi: UBI device description object
1069 * @pnum: the physical eraseblock number to write to
1070 * @vid_hdr: the volume identifier header to write
1071 *
1072 * This function writes the volume identifier header described by @vid_hdr to
1073 * physical eraseblock @pnum. This function automatically fills the
1074 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1075 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1076 *
1077 * This function returns zero in case of success and a negative error code in
1078 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1079 * bad.
1080 */
1081int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1082 struct ubi_vid_hdr *vid_hdr)
1083{
1084 int err;
1085 uint32_t crc;
1086 void *p;
1087
1088 dbg_io("write VID header to PEB %d", pnum);
1089 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1090
ff94bc40 1091 err = self_check_peb_ec_hdr(ubi, pnum);
2d262c48 1092 if (err)
ff94bc40 1093 return err;
2d262c48
KP
1094
1095 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1096 vid_hdr->version = UBI_VERSION;
1097 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1098 vid_hdr->hdr_crc = cpu_to_be32(crc);
1099
ff94bc40 1100 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
2d262c48 1101 if (err)
ff94bc40 1102 return err;
2d262c48 1103
0195a7bb
HS
1104 if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1105 return -EROFS;
1106
2d262c48
KP
1107 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1108 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1109 ubi->vid_hdr_alsize);
1110 return err;
1111}
1112
2d262c48 1113/**
ff94bc40 1114 * self_check_not_bad - ensure that a physical eraseblock is not bad.
2d262c48
KP
1115 * @ubi: UBI device description object
1116 * @pnum: physical eraseblock number to check
1117 *
ff94bc40
HS
1118 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1119 * it is bad and a negative error code if an error occurred.
2d262c48 1120 */
ff94bc40 1121static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
2d262c48
KP
1122{
1123 int err;
1124
ff94bc40
HS
1125 if (!ubi_dbg_chk_io(ubi))
1126 return 0;
1127
2d262c48
KP
1128 err = ubi_io_is_bad(ubi, pnum);
1129 if (!err)
1130 return err;
1131
0195a7bb 1132 ubi_err(ubi, "self-check failed for PEB %d", pnum);
ff94bc40
HS
1133 dump_stack();
1134 return err > 0 ? -EINVAL : err;
2d262c48
KP
1135}
1136
1137/**
ff94bc40 1138 * self_check_ec_hdr - check if an erase counter header is all right.
2d262c48
KP
1139 * @ubi: UBI device description object
1140 * @pnum: physical eraseblock number the erase counter header belongs to
1141 * @ec_hdr: the erase counter header to check
1142 *
1143 * This function returns zero if the erase counter header contains valid
ff94bc40 1144 * values, and %-EINVAL if not.
2d262c48 1145 */
ff94bc40
HS
1146static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1147 const struct ubi_ec_hdr *ec_hdr)
2d262c48
KP
1148{
1149 int err;
1150 uint32_t magic;
1151
ff94bc40
HS
1152 if (!ubi_dbg_chk_io(ubi))
1153 return 0;
1154
2d262c48
KP
1155 magic = be32_to_cpu(ec_hdr->magic);
1156 if (magic != UBI_EC_HDR_MAGIC) {
0195a7bb 1157 ubi_err(ubi, "bad magic %#08x, must be %#08x",
2d262c48
KP
1158 magic, UBI_EC_HDR_MAGIC);
1159 goto fail;
1160 }
1161
1162 err = validate_ec_hdr(ubi, ec_hdr);
1163 if (err) {
0195a7bb 1164 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2d262c48
KP
1165 goto fail;
1166 }
1167
1168 return 0;
1169
1170fail:
ff94bc40
HS
1171 ubi_dump_ec_hdr(ec_hdr);
1172 dump_stack();
1173 return -EINVAL;
2d262c48
KP
1174}
1175
1176/**
ff94bc40 1177 * self_check_peb_ec_hdr - check erase counter header.
2d262c48
KP
1178 * @ubi: UBI device description object
1179 * @pnum: the physical eraseblock number to check
1180 *
ff94bc40
HS
1181 * This function returns zero if the erase counter header is all right and and
1182 * a negative error code if not or if an error occurred.
2d262c48 1183 */
ff94bc40 1184static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
2d262c48
KP
1185{
1186 int err;
1187 uint32_t crc, hdr_crc;
1188 struct ubi_ec_hdr *ec_hdr;
1189
ff94bc40
HS
1190 if (!ubi_dbg_chk_io(ubi))
1191 return 0;
1192
2d262c48
KP
1193 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1194 if (!ec_hdr)
1195 return -ENOMEM;
1196
1197 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
ff94bc40 1198 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
2d262c48
KP
1199 goto exit;
1200
1201 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1202 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1203 if (hdr_crc != crc) {
0195a7bb
HS
1204 ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1205 crc, hdr_crc);
1206 ubi_err(ubi, "self-check failed for PEB %d", pnum);
ff94bc40
HS
1207 ubi_dump_ec_hdr(ec_hdr);
1208 dump_stack();
1209 err = -EINVAL;
2d262c48
KP
1210 goto exit;
1211 }
1212
ff94bc40 1213 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
2d262c48
KP
1214
1215exit:
1216 kfree(ec_hdr);
1217 return err;
1218}
1219
1220/**
ff94bc40 1221 * self_check_vid_hdr - check that a volume identifier header is all right.
2d262c48
KP
1222 * @ubi: UBI device description object
1223 * @pnum: physical eraseblock number the volume identifier header belongs to
1224 * @vid_hdr: the volume identifier header to check
1225 *
1226 * This function returns zero if the volume identifier header is all right, and
ff94bc40 1227 * %-EINVAL if not.
2d262c48 1228 */
ff94bc40
HS
1229static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1230 const struct ubi_vid_hdr *vid_hdr)
2d262c48
KP
1231{
1232 int err;
1233 uint32_t magic;
1234
ff94bc40
HS
1235 if (!ubi_dbg_chk_io(ubi))
1236 return 0;
1237
2d262c48
KP
1238 magic = be32_to_cpu(vid_hdr->magic);
1239 if (magic != UBI_VID_HDR_MAGIC) {
0195a7bb 1240 ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
2d262c48
KP
1241 magic, pnum, UBI_VID_HDR_MAGIC);
1242 goto fail;
1243 }
1244
1245 err = validate_vid_hdr(ubi, vid_hdr);
1246 if (err) {
0195a7bb 1247 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2d262c48
KP
1248 goto fail;
1249 }
1250
1251 return err;
1252
1253fail:
0195a7bb 1254 ubi_err(ubi, "self-check failed for PEB %d", pnum);
ff94bc40
HS
1255 ubi_dump_vid_hdr(vid_hdr);
1256 dump_stack();
1257 return -EINVAL;
2d262c48
KP
1258
1259}
1260
1261/**
ff94bc40 1262 * self_check_peb_vid_hdr - check volume identifier header.
2d262c48
KP
1263 * @ubi: UBI device description object
1264 * @pnum: the physical eraseblock number to check
1265 *
1266 * This function returns zero if the volume identifier header is all right,
ff94bc40 1267 * and a negative error code if not or if an error occurred.
2d262c48 1268 */
ff94bc40 1269static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
2d262c48
KP
1270{
1271 int err;
1272 uint32_t crc, hdr_crc;
1273 struct ubi_vid_hdr *vid_hdr;
1274 void *p;
1275
ff94bc40
HS
1276 if (!ubi_dbg_chk_io(ubi))
1277 return 0;
1278
2d262c48
KP
1279 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1280 if (!vid_hdr)
1281 return -ENOMEM;
1282
1283 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1284 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1285 ubi->vid_hdr_alsize);
ff94bc40 1286 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
2d262c48
KP
1287 goto exit;
1288
1289 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1290 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1291 if (hdr_crc != crc) {
0195a7bb 1292 ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
ff94bc40 1293 pnum, crc, hdr_crc);
0195a7bb 1294 ubi_err(ubi, "self-check failed for PEB %d", pnum);
ff94bc40
HS
1295 ubi_dump_vid_hdr(vid_hdr);
1296 dump_stack();
1297 err = -EINVAL;
2d262c48
KP
1298 goto exit;
1299 }
1300
ff94bc40 1301 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
2d262c48
KP
1302
1303exit:
1304 ubi_free_vid_hdr(ubi, vid_hdr);
1305 return err;
1306}
1307
1308/**
ff94bc40
HS
1309 * self_check_write - make sure write succeeded.
1310 * @ubi: UBI device description object
1311 * @buf: buffer with data which were written
1312 * @pnum: physical eraseblock number the data were written to
1313 * @offset: offset within the physical eraseblock the data were written to
1314 * @len: how many bytes were written
1315 *
1316 * This functions reads data which were recently written and compares it with
1317 * the original data buffer - the data have to match. Returns zero if the data
1318 * match and a negative error code if not or in case of failure.
1319 */
1320static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1321 int offset, int len)
1322{
1323 int err, i;
1324 size_t read;
1325 void *buf1;
1326 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1327
1328 if (!ubi_dbg_chk_io(ubi))
1329 return 0;
1330
1331 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1332 if (!buf1) {
0195a7bb 1333 ubi_err(ubi, "cannot allocate memory to check writes");
ff94bc40
HS
1334 return 0;
1335 }
1336
1337 err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1338 if (err && !mtd_is_bitflip(err))
1339 goto out_free;
1340
1341 for (i = 0; i < len; i++) {
1342 uint8_t c = ((uint8_t *)buf)[i];
1343 uint8_t c1 = ((uint8_t *)buf1)[i];
1344#if !defined(CONFIG_UBI_SILENCE_MSG)
1345 int dump_len = max_t(int, 128, len - i);
1346#endif
1347
1348 if (c == c1)
1349 continue;
1350
0195a7bb 1351 ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
ff94bc40 1352 pnum, offset, len);
0195a7bb 1353 ubi_msg(ubi, "data differ at position %d", i);
0195a7bb 1354 ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
ff94bc40
HS
1355 i, i + dump_len);
1356 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1357 buf + i, dump_len, 1);
0195a7bb 1358 ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
ff94bc40
HS
1359 i, i + dump_len);
1360 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1361 buf1 + i, dump_len, 1);
1362 dump_stack();
1363 err = -EINVAL;
1364 goto out_free;
1365 }
1366
1367 vfree(buf1);
1368 return 0;
1369
1370out_free:
1371 vfree(buf1);
1372 return err;
1373}
1374
1375/**
1376 * ubi_self_check_all_ff - check that a region of flash is empty.
2d262c48
KP
1377 * @ubi: UBI device description object
1378 * @pnum: the physical eraseblock number to check
1379 * @offset: the starting offset within the physical eraseblock to check
1380 * @len: the length of the region to check
1381 *
1382 * This function returns zero if only 0xFF bytes are present at offset
ff94bc40
HS
1383 * @offset of the physical eraseblock @pnum, and a negative error code if not
1384 * or if an error occurred.
2d262c48 1385 */
ff94bc40 1386int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
2d262c48
KP
1387{
1388 size_t read;
1389 int err;
ff94bc40 1390 void *buf;
2d262c48
KP
1391 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1392
ff94bc40
HS
1393 if (!ubi_dbg_chk_io(ubi))
1394 return 0;
1395
1396 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1397 if (!buf) {
0195a7bb 1398 ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
ff94bc40
HS
1399 return 0;
1400 }
1401
1402 err = mtd_read(ubi->mtd, addr, len, &read, buf);
1403 if (err && !mtd_is_bitflip(err)) {
0195a7bb 1404 ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
ff94bc40 1405 err, len, pnum, offset, read);
2d262c48
KP
1406 goto error;
1407 }
1408
ff94bc40 1409 err = ubi_check_pattern(buf, 0xFF, len);
2d262c48 1410 if (err == 0) {
0195a7bb 1411 ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
ff94bc40 1412 pnum, offset, len);
2d262c48
KP
1413 goto fail;
1414 }
2d262c48 1415
ff94bc40 1416 vfree(buf);
2d262c48
KP
1417 return 0;
1418
1419fail:
0195a7bb
HS
1420 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1421 ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
ff94bc40
HS
1422 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1423 err = -EINVAL;
2d262c48 1424error:
ff94bc40
HS
1425 dump_stack();
1426 vfree(buf);
2d262c48
KP
1427 return err;
1428}
This page took 0.581903 seconds and 4 git commands to generate.