]>
Commit | Line | Data |
---|---|---|
383fded7 MW |
1 | // SPDX-License-Identifier: GPL-2.0+ |
2 | /* | |
3 | * NXP FlexSPI(FSPI) controller driver. | |
4 | * | |
5 | * Copyright (c) 2019 Michael Walle <[email protected]> | |
6 | * Copyright (c) 2019 NXP | |
7 | * | |
8 | * This driver was originally ported from the linux kernel v5.4-rc3, which had | |
9 | * the following notes: | |
10 | * | |
11 | * FlexSPI is a flexsible SPI host controller which supports two SPI | |
12 | * channels and up to 4 external devices. Each channel supports | |
13 | * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional | |
14 | * data lines). | |
15 | * | |
16 | * FlexSPI controller is driven by the LUT(Look-up Table) registers | |
17 | * LUT registers are a look-up-table for sequences of instructions. | |
18 | * A valid sequence consists of four LUT registers. | |
19 | * Maximum 32 LUT sequences can be programmed simultaneously. | |
20 | * | |
21 | * LUTs are being created at run-time based on the commands passed | |
22 | * from the spi-mem framework, thus using single LUT index. | |
23 | * | |
24 | * Software triggered Flash read/write access by IP Bus. | |
25 | * | |
26 | * Memory mapped read access by AHB Bus. | |
27 | * | |
28 | * Based on SPI MEM interface and spi-fsl-qspi.c driver. | |
29 | * | |
30 | * Author: | |
31 | * Yogesh Narayan Gaur <[email protected]> | |
32 | * Boris Brezillon <[email protected]> | |
33 | * Frieder Schrempf <[email protected]> | |
34 | */ | |
35 | ||
36 | #include <common.h> | |
06aaca51 SA |
37 | #include <clk.h> |
38 | #include <dm.h> | |
39 | #include <dm/device_compat.h> | |
383fded7 MW |
40 | #include <malloc.h> |
41 | #include <spi.h> | |
42 | #include <spi-mem.h> | |
06aaca51 | 43 | #include <asm/io.h> |
cd93d625 | 44 | #include <linux/bitops.h> |
383fded7 MW |
45 | #include <linux/kernel.h> |
46 | #include <linux/sizes.h> | |
47 | #include <linux/iopoll.h> | |
48 | #include <linux/bug.h> | |
f2176515 | 49 | #include <linux/err.h> |
383fded7 MW |
50 | |
51 | /* | |
52 | * The driver only uses one single LUT entry, that is updated on | |
53 | * each call of exec_op(). Index 0 is preset at boot with a basic | |
54 | * read operation, so let's use the last entry (31). | |
55 | */ | |
56 | #define SEQID_LUT 31 | |
57 | ||
58 | /* Registers used by the driver */ | |
59 | #define FSPI_MCR0 0x00 | |
60 | #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) | |
61 | #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) | |
62 | #define FSPI_MCR0_LEARN_EN BIT(15) | |
63 | #define FSPI_MCR0_SCRFRUN_EN BIT(14) | |
64 | #define FSPI_MCR0_OCTCOMB_EN BIT(13) | |
65 | #define FSPI_MCR0_DOZE_EN BIT(12) | |
66 | #define FSPI_MCR0_HSEN BIT(11) | |
67 | #define FSPI_MCR0_SERCLKDIV BIT(8) | |
68 | #define FSPI_MCR0_ATDF_EN BIT(7) | |
69 | #define FSPI_MCR0_ARDF_EN BIT(6) | |
70 | #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) | |
71 | #define FSPI_MCR0_END_CFG(x) ((x) << 2) | |
72 | #define FSPI_MCR0_MDIS BIT(1) | |
73 | #define FSPI_MCR0_SWRST BIT(0) | |
74 | ||
75 | #define FSPI_MCR1 0x04 | |
76 | #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) | |
77 | #define FSPI_MCR1_AHB_TIMEOUT(x) (x) | |
78 | ||
79 | #define FSPI_MCR2 0x08 | |
80 | #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) | |
81 | #define FSPI_MCR2_SAMEDEVICEEN BIT(15) | |
82 | #define FSPI_MCR2_CLRLRPHS BIT(14) | |
83 | #define FSPI_MCR2_ABRDATSZ BIT(8) | |
84 | #define FSPI_MCR2_ABRLEARN BIT(7) | |
85 | #define FSPI_MCR2_ABR_READ BIT(6) | |
86 | #define FSPI_MCR2_ABRWRITE BIT(5) | |
87 | #define FSPI_MCR2_ABRDUMMY BIT(4) | |
88 | #define FSPI_MCR2_ABR_MODE BIT(3) | |
89 | #define FSPI_MCR2_ABRCADDR BIT(2) | |
90 | #define FSPI_MCR2_ABRRADDR BIT(1) | |
91 | #define FSPI_MCR2_ABR_CMD BIT(0) | |
92 | ||
93 | #define FSPI_AHBCR 0x0c | |
94 | #define FSPI_AHBCR_RDADDROPT BIT(6) | |
95 | #define FSPI_AHBCR_PREF_EN BIT(5) | |
96 | #define FSPI_AHBCR_BUFF_EN BIT(4) | |
97 | #define FSPI_AHBCR_CACH_EN BIT(3) | |
98 | #define FSPI_AHBCR_CLRTXBUF BIT(2) | |
99 | #define FSPI_AHBCR_CLRRXBUF BIT(1) | |
100 | #define FSPI_AHBCR_PAR_EN BIT(0) | |
101 | ||
102 | #define FSPI_INTEN 0x10 | |
103 | #define FSPI_INTEN_SCLKSBWR BIT(9) | |
104 | #define FSPI_INTEN_SCLKSBRD BIT(8) | |
105 | #define FSPI_INTEN_DATALRNFL BIT(7) | |
106 | #define FSPI_INTEN_IPTXWE BIT(6) | |
107 | #define FSPI_INTEN_IPRXWA BIT(5) | |
108 | #define FSPI_INTEN_AHBCMDERR BIT(4) | |
109 | #define FSPI_INTEN_IPCMDERR BIT(3) | |
110 | #define FSPI_INTEN_AHBCMDGE BIT(2) | |
111 | #define FSPI_INTEN_IPCMDGE BIT(1) | |
112 | #define FSPI_INTEN_IPCMDDONE BIT(0) | |
113 | ||
114 | #define FSPI_INTR 0x14 | |
115 | #define FSPI_INTR_SCLKSBWR BIT(9) | |
116 | #define FSPI_INTR_SCLKSBRD BIT(8) | |
117 | #define FSPI_INTR_DATALRNFL BIT(7) | |
118 | #define FSPI_INTR_IPTXWE BIT(6) | |
119 | #define FSPI_INTR_IPRXWA BIT(5) | |
120 | #define FSPI_INTR_AHBCMDERR BIT(4) | |
121 | #define FSPI_INTR_IPCMDERR BIT(3) | |
122 | #define FSPI_INTR_AHBCMDGE BIT(2) | |
123 | #define FSPI_INTR_IPCMDGE BIT(1) | |
124 | #define FSPI_INTR_IPCMDDONE BIT(0) | |
125 | ||
126 | #define FSPI_LUTKEY 0x18 | |
127 | #define FSPI_LUTKEY_VALUE 0x5AF05AF0 | |
128 | ||
129 | #define FSPI_LCKCR 0x1C | |
130 | ||
131 | #define FSPI_LCKER_LOCK 0x1 | |
132 | #define FSPI_LCKER_UNLOCK 0x2 | |
133 | ||
134 | #define FSPI_BUFXCR_INVALID_MSTRID 0xE | |
135 | #define FSPI_AHBRX_BUF0CR0 0x20 | |
136 | #define FSPI_AHBRX_BUF1CR0 0x24 | |
137 | #define FSPI_AHBRX_BUF2CR0 0x28 | |
138 | #define FSPI_AHBRX_BUF3CR0 0x2C | |
139 | #define FSPI_AHBRX_BUF4CR0 0x30 | |
140 | #define FSPI_AHBRX_BUF5CR0 0x34 | |
141 | #define FSPI_AHBRX_BUF6CR0 0x38 | |
142 | #define FSPI_AHBRX_BUF7CR0 0x3C | |
143 | #define FSPI_AHBRXBUF0CR7_PREF BIT(31) | |
144 | ||
145 | #define FSPI_AHBRX_BUF0CR1 0x40 | |
146 | #define FSPI_AHBRX_BUF1CR1 0x44 | |
147 | #define FSPI_AHBRX_BUF2CR1 0x48 | |
148 | #define FSPI_AHBRX_BUF3CR1 0x4C | |
149 | #define FSPI_AHBRX_BUF4CR1 0x50 | |
150 | #define FSPI_AHBRX_BUF5CR1 0x54 | |
151 | #define FSPI_AHBRX_BUF6CR1 0x58 | |
152 | #define FSPI_AHBRX_BUF7CR1 0x5C | |
153 | ||
154 | #define FSPI_FLSHA1CR0 0x60 | |
155 | #define FSPI_FLSHA2CR0 0x64 | |
156 | #define FSPI_FLSHB1CR0 0x68 | |
157 | #define FSPI_FLSHB2CR0 0x6C | |
158 | #define FSPI_FLSHXCR0_SZ_KB 10 | |
159 | #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) | |
160 | ||
161 | #define FSPI_FLSHA1CR1 0x70 | |
162 | #define FSPI_FLSHA2CR1 0x74 | |
163 | #define FSPI_FLSHB1CR1 0x78 | |
164 | #define FSPI_FLSHB2CR1 0x7C | |
165 | #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) | |
166 | #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) | |
167 | #define FSPI_FLSHXCR1_WA BIT(10) | |
168 | #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) | |
169 | #define FSPI_FLSHXCR1_TCSS(x) (x) | |
170 | ||
171 | #define FSPI_FLSHA1CR2 0x80 | |
172 | #define FSPI_FLSHA2CR2 0x84 | |
173 | #define FSPI_FLSHB1CR2 0x88 | |
174 | #define FSPI_FLSHB2CR2 0x8C | |
175 | #define FSPI_FLSHXCR2_CLRINSP BIT(24) | |
176 | #define FSPI_FLSHXCR2_AWRWAIT BIT(16) | |
177 | #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 | |
178 | #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 | |
179 | #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 | |
180 | #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 | |
181 | ||
182 | #define FSPI_IPCR0 0xA0 | |
183 | ||
184 | #define FSPI_IPCR1 0xA4 | |
185 | #define FSPI_IPCR1_IPAREN BIT(31) | |
186 | #define FSPI_IPCR1_SEQNUM_SHIFT 24 | |
187 | #define FSPI_IPCR1_SEQID_SHIFT 16 | |
188 | #define FSPI_IPCR1_IDATSZ(x) (x) | |
189 | ||
190 | #define FSPI_IPCMD 0xB0 | |
191 | #define FSPI_IPCMD_TRG BIT(0) | |
192 | ||
193 | #define FSPI_DLPR 0xB4 | |
194 | ||
195 | #define FSPI_IPRXFCR 0xB8 | |
196 | #define FSPI_IPRXFCR_CLR BIT(0) | |
197 | #define FSPI_IPRXFCR_DMA_EN BIT(1) | |
198 | #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) | |
199 | ||
200 | #define FSPI_IPTXFCR 0xBC | |
201 | #define FSPI_IPTXFCR_CLR BIT(0) | |
202 | #define FSPI_IPTXFCR_DMA_EN BIT(1) | |
203 | #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) | |
204 | ||
205 | #define FSPI_DLLACR 0xC0 | |
206 | #define FSPI_DLLACR_OVRDEN BIT(8) | |
207 | ||
208 | #define FSPI_DLLBCR 0xC4 | |
209 | #define FSPI_DLLBCR_OVRDEN BIT(8) | |
210 | ||
211 | #define FSPI_STS0 0xE0 | |
212 | #define FSPI_STS0_DLPHB(x) ((x) << 8) | |
213 | #define FSPI_STS0_DLPHA(x) ((x) << 4) | |
214 | #define FSPI_STS0_CMD_SRC(x) ((x) << 2) | |
215 | #define FSPI_STS0_ARB_IDLE BIT(1) | |
216 | #define FSPI_STS0_SEQ_IDLE BIT(0) | |
217 | ||
218 | #define FSPI_STS1 0xE4 | |
219 | #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) | |
220 | #define FSPI_STS1_IP_ERRID(x) ((x) << 16) | |
221 | #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) | |
222 | #define FSPI_STS1_AHB_ERRID(x) (x) | |
223 | ||
224 | #define FSPI_AHBSPNST 0xEC | |
225 | #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) | |
226 | #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) | |
227 | #define FSPI_AHBSPNST_ACTIVE BIT(0) | |
228 | ||
229 | #define FSPI_IPRXFSTS 0xF0 | |
230 | #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) | |
231 | #define FSPI_IPRXFSTS_FILL(x) (x) | |
232 | ||
233 | #define FSPI_IPTXFSTS 0xF4 | |
234 | #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) | |
235 | #define FSPI_IPTXFSTS_FILL(x) (x) | |
236 | ||
237 | #define FSPI_RFDR 0x100 | |
238 | #define FSPI_TFDR 0x180 | |
239 | ||
240 | #define FSPI_LUT_BASE 0x200 | |
241 | #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) | |
242 | #define FSPI_LUT_REG(idx) \ | |
243 | (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) | |
244 | ||
245 | /* register map end */ | |
246 | ||
247 | /* Instruction set for the LUT register. */ | |
248 | #define LUT_STOP 0x00 | |
249 | #define LUT_CMD 0x01 | |
250 | #define LUT_ADDR 0x02 | |
251 | #define LUT_CADDR_SDR 0x03 | |
252 | #define LUT_MODE 0x04 | |
253 | #define LUT_MODE2 0x05 | |
254 | #define LUT_MODE4 0x06 | |
255 | #define LUT_MODE8 0x07 | |
256 | #define LUT_NXP_WRITE 0x08 | |
257 | #define LUT_NXP_READ 0x09 | |
258 | #define LUT_LEARN_SDR 0x0A | |
259 | #define LUT_DATSZ_SDR 0x0B | |
260 | #define LUT_DUMMY 0x0C | |
261 | #define LUT_DUMMY_RWDS_SDR 0x0D | |
262 | #define LUT_JMP_ON_CS 0x1F | |
263 | #define LUT_CMD_DDR 0x21 | |
264 | #define LUT_ADDR_DDR 0x22 | |
265 | #define LUT_CADDR_DDR 0x23 | |
266 | #define LUT_MODE_DDR 0x24 | |
267 | #define LUT_MODE2_DDR 0x25 | |
268 | #define LUT_MODE4_DDR 0x26 | |
269 | #define LUT_MODE8_DDR 0x27 | |
270 | #define LUT_WRITE_DDR 0x28 | |
271 | #define LUT_READ_DDR 0x29 | |
272 | #define LUT_LEARN_DDR 0x2A | |
273 | #define LUT_DATSZ_DDR 0x2B | |
274 | #define LUT_DUMMY_DDR 0x2C | |
275 | #define LUT_DUMMY_RWDS_DDR 0x2D | |
276 | ||
277 | /* | |
278 | * Calculate number of required PAD bits for LUT register. | |
279 | * | |
280 | * The pad stands for the number of IO lines [0:7]. | |
281 | * For example, the octal read needs eight IO lines, | |
282 | * so you should use LUT_PAD(8). This macro | |
283 | * returns 3 i.e. use eight (2^3) IP lines for read. | |
284 | */ | |
285 | #define LUT_PAD(x) (fls(x) - 1) | |
286 | ||
287 | /* | |
288 | * Macro for constructing the LUT entries with the following | |
289 | * register layout: | |
290 | * | |
291 | * --------------------------------------------------- | |
292 | * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | | |
293 | * --------------------------------------------------- | |
294 | */ | |
295 | #define PAD_SHIFT 8 | |
296 | #define INSTR_SHIFT 10 | |
297 | #define OPRND_SHIFT 16 | |
298 | ||
299 | /* Macros for constructing the LUT register. */ | |
300 | #define LUT_DEF(idx, ins, pad, opr) \ | |
301 | ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ | |
302 | (opr)) << (((idx) % 2) * OPRND_SHIFT)) | |
303 | ||
304 | #define POLL_TOUT 5000 | |
305 | #define NXP_FSPI_MAX_CHIPSELECT 4 | |
306 | ||
307 | struct nxp_fspi_devtype_data { | |
308 | unsigned int rxfifo; | |
309 | unsigned int txfifo; | |
310 | unsigned int ahb_buf_size; | |
311 | unsigned int quirks; | |
312 | bool little_endian; | |
313 | }; | |
314 | ||
315 | static const struct nxp_fspi_devtype_data lx2160a_data = { | |
316 | .rxfifo = SZ_512, /* (64 * 64 bits) */ | |
317 | .txfifo = SZ_1K, /* (128 * 64 bits) */ | |
318 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ | |
319 | .quirks = 0, | |
320 | .little_endian = true, /* little-endian */ | |
321 | }; | |
322 | ||
323 | struct nxp_fspi { | |
324 | struct udevice *dev; | |
325 | void __iomem *iobase; | |
326 | void __iomem *ahb_addr; | |
327 | u32 memmap_phy; | |
328 | u32 memmap_phy_size; | |
329 | struct clk clk, clk_en; | |
330 | const struct nxp_fspi_devtype_data *devtype_data; | |
331 | }; | |
332 | ||
333 | /* | |
334 | * R/W functions for big- or little-endian registers: | |
335 | * The FSPI controller's endianness is independent of | |
336 | * the CPU core's endianness. So far, although the CPU | |
337 | * core is little-endian the FSPI controller can use | |
338 | * big-endian or little-endian. | |
339 | */ | |
340 | static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) | |
341 | { | |
342 | if (f->devtype_data->little_endian) | |
343 | out_le32(addr, val); | |
344 | else | |
345 | out_be32(addr, val); | |
346 | } | |
347 | ||
348 | static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) | |
349 | { | |
350 | if (f->devtype_data->little_endian) | |
351 | return in_le32(addr); | |
352 | else | |
353 | return in_be32(addr); | |
354 | } | |
355 | ||
356 | static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) | |
357 | { | |
358 | switch (width) { | |
359 | case 1: | |
360 | case 2: | |
361 | case 4: | |
362 | case 8: | |
363 | return 0; | |
364 | } | |
365 | ||
366 | return -ENOTSUPP; | |
367 | } | |
368 | ||
369 | static bool nxp_fspi_supports_op(struct spi_slave *slave, | |
370 | const struct spi_mem_op *op) | |
371 | { | |
372 | struct nxp_fspi *f; | |
373 | struct udevice *bus; | |
374 | int ret; | |
375 | ||
376 | bus = slave->dev->parent; | |
377 | f = dev_get_priv(bus); | |
378 | ||
379 | ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); | |
380 | ||
381 | if (op->addr.nbytes) | |
382 | ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); | |
383 | ||
384 | if (op->dummy.nbytes) | |
385 | ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); | |
386 | ||
387 | if (op->data.nbytes) | |
388 | ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); | |
389 | ||
390 | if (ret) | |
391 | return false; | |
392 | ||
393 | /* | |
394 | * The number of address bytes should be equal to or less than 4 bytes. | |
395 | */ | |
396 | if (op->addr.nbytes > 4) | |
397 | return false; | |
398 | ||
399 | /* | |
400 | * If requested address value is greater than controller assigned | |
401 | * memory mapped space, return error as it didn't fit in the range | |
402 | * of assigned address space. | |
403 | */ | |
404 | if (op->addr.val >= f->memmap_phy_size) | |
405 | return false; | |
406 | ||
407 | /* Max 64 dummy clock cycles supported */ | |
408 | if (op->dummy.buswidth && | |
409 | (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) | |
410 | return false; | |
411 | ||
412 | /* Max data length, check controller limits and alignment */ | |
413 | if (op->data.dir == SPI_MEM_DATA_IN && | |
414 | (op->data.nbytes > f->devtype_data->ahb_buf_size || | |
415 | (op->data.nbytes > f->devtype_data->rxfifo - 4 && | |
416 | !IS_ALIGNED(op->data.nbytes, 8)))) | |
417 | return false; | |
418 | ||
419 | if (op->data.dir == SPI_MEM_DATA_OUT && | |
420 | op->data.nbytes > f->devtype_data->txfifo) | |
421 | return false; | |
422 | ||
423 | return true; | |
424 | } | |
425 | ||
28029c76 | 426 | /* Instead of busy looping invoke readl_poll_sleep_timeout functionality. */ |
383fded7 MW |
427 | static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, |
428 | u32 mask, u32 delay_us, | |
429 | u32 timeout_us, bool c) | |
430 | { | |
431 | u32 reg; | |
432 | ||
433 | if (!f->devtype_data->little_endian) | |
434 | mask = (u32)cpu_to_be32(mask); | |
435 | ||
436 | if (c) | |
28029c76 KS |
437 | return readl_poll_sleep_timeout(base, reg, (reg & mask), |
438 | delay_us, timeout_us); | |
383fded7 | 439 | else |
28029c76 KS |
440 | return readl_poll_sleep_timeout(base, reg, !(reg & mask), |
441 | delay_us, timeout_us); | |
383fded7 MW |
442 | } |
443 | ||
444 | /* | |
445 | * If the slave device content being changed by Write/Erase, need to | |
446 | * invalidate the AHB buffer. This can be achieved by doing the reset | |
447 | * of controller after setting MCR0[SWRESET] bit. | |
448 | */ | |
449 | static inline void nxp_fspi_invalid(struct nxp_fspi *f) | |
450 | { | |
451 | u32 reg; | |
452 | int ret; | |
453 | ||
454 | reg = fspi_readl(f, f->iobase + FSPI_MCR0); | |
455 | fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); | |
456 | ||
457 | /* w1c register, wait unit clear */ | |
458 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, | |
459 | FSPI_MCR0_SWRST, 0, POLL_TOUT, false); | |
460 | WARN_ON(ret); | |
461 | } | |
462 | ||
463 | static void nxp_fspi_prepare_lut(struct nxp_fspi *f, | |
464 | const struct spi_mem_op *op) | |
465 | { | |
466 | void __iomem *base = f->iobase; | |
467 | u32 lutval[4] = {}; | |
468 | int lutidx = 1, i; | |
469 | ||
470 | /* cmd */ | |
471 | lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), | |
472 | op->cmd.opcode); | |
473 | ||
474 | /* addr bytes */ | |
475 | if (op->addr.nbytes) { | |
476 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, | |
477 | LUT_PAD(op->addr.buswidth), | |
478 | op->addr.nbytes * 8); | |
479 | lutidx++; | |
480 | } | |
481 | ||
482 | /* dummy bytes, if needed */ | |
483 | if (op->dummy.nbytes) { | |
484 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, | |
485 | /* | |
486 | * Due to FlexSPI controller limitation number of PAD for dummy | |
487 | * buswidth needs to be programmed as equal to data buswidth. | |
488 | */ | |
489 | LUT_PAD(op->data.buswidth), | |
490 | op->dummy.nbytes * 8 / | |
491 | op->dummy.buswidth); | |
492 | lutidx++; | |
493 | } | |
494 | ||
495 | /* read/write data bytes */ | |
496 | if (op->data.nbytes) { | |
497 | lutval[lutidx / 2] |= LUT_DEF(lutidx, | |
498 | op->data.dir == SPI_MEM_DATA_IN ? | |
499 | LUT_NXP_READ : LUT_NXP_WRITE, | |
500 | LUT_PAD(op->data.buswidth), | |
501 | 0); | |
502 | lutidx++; | |
503 | } | |
504 | ||
505 | /* stop condition. */ | |
506 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); | |
507 | ||
508 | /* unlock LUT */ | |
509 | fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); | |
510 | fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); | |
511 | ||
512 | /* fill LUT */ | |
513 | for (i = 0; i < ARRAY_SIZE(lutval); i++) | |
514 | fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); | |
515 | ||
516 | dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n", | |
517 | op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]); | |
518 | ||
519 | /* lock LUT */ | |
520 | fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); | |
521 | fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); | |
522 | } | |
523 | ||
957a3e54 | 524 | #if CONFIG_IS_ENABLED(CLK) |
383fded7 MW |
525 | static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) |
526 | { | |
527 | int ret; | |
528 | ||
529 | ret = clk_enable(&f->clk_en); | |
530 | if (ret) | |
531 | return ret; | |
532 | ||
533 | ret = clk_enable(&f->clk); | |
534 | if (ret) { | |
535 | clk_disable(&f->clk_en); | |
536 | return ret; | |
537 | } | |
538 | ||
539 | return 0; | |
540 | } | |
541 | ||
542 | static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) | |
543 | { | |
544 | clk_disable(&f->clk); | |
545 | clk_disable(&f->clk_en); | |
546 | } | |
547 | #endif | |
548 | ||
549 | /* | |
550 | * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 | |
551 | * register and start base address of the slave device. | |
552 | * | |
553 | * (Higher address) | |
554 | * -------- <-- FLSHB2CR0 | |
555 | * | B2 | | |
556 | * | | | |
557 | * B2 start address --> -------- <-- FLSHB1CR0 | |
558 | * | B1 | | |
559 | * | | | |
560 | * B1 start address --> -------- <-- FLSHA2CR0 | |
561 | * | A2 | | |
562 | * | | | |
563 | * A2 start address --> -------- <-- FLSHA1CR0 | |
564 | * | A1 | | |
565 | * | | | |
566 | * A1 start address --> -------- (Lower address) | |
567 | * | |
568 | * | |
569 | * Start base address defines the starting address range for given CS and | |
570 | * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS. | |
571 | * | |
572 | * But, different targets are having different combinations of number of CS, | |
573 | * some targets only have single CS or two CS covering controller's full | |
574 | * memory mapped space area. | |
575 | * Thus, implementation is being done as independent of the size and number | |
576 | * of the connected slave device. | |
577 | * Assign controller memory mapped space size as the size to the connected | |
578 | * slave device. | |
579 | * Mark FLSHxxCR0 as zero initially and then assign value only to the selected | |
580 | * chip-select Flash configuration register. | |
581 | * | |
582 | * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the | |
583 | * memory mapped size of the controller. | |
584 | * Value for rest of the CS FLSHxxCR0 register would be zero. | |
585 | * | |
586 | */ | |
587 | static void nxp_fspi_select_mem(struct nxp_fspi *f, int chip_select) | |
588 | { | |
589 | u64 size_kb; | |
590 | ||
591 | /* Reset FLSHxxCR0 registers */ | |
592 | fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); | |
593 | fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); | |
594 | fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); | |
595 | fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); | |
596 | ||
597 | /* Assign controller memory mapped space as size, KBytes, of flash. */ | |
598 | size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); | |
599 | ||
600 | fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + | |
601 | 4 * chip_select); | |
602 | ||
603 | dev_dbg(f->dev, "Slave device [CS:%x] selected\n", chip_select); | |
604 | } | |
605 | ||
606 | static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) | |
607 | { | |
608 | u32 len = op->data.nbytes; | |
609 | ||
610 | /* Read out the data directly from the AHB buffer. */ | |
611 | memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len); | |
612 | } | |
613 | ||
614 | static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, | |
615 | const struct spi_mem_op *op) | |
616 | { | |
617 | void __iomem *base = f->iobase; | |
618 | int i, ret; | |
619 | u8 *buf = (u8 *)op->data.buf.out; | |
620 | ||
621 | /* clear the TX FIFO. */ | |
622 | fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); | |
623 | ||
624 | /* | |
625 | * Default value of water mark level is 8 bytes, hence in single | |
626 | * write request controller can write max 8 bytes of data. | |
627 | */ | |
628 | ||
629 | for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { | |
630 | /* Wait for TXFIFO empty */ | |
631 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
632 | FSPI_INTR_IPTXWE, 0, | |
633 | POLL_TOUT, true); | |
634 | WARN_ON(ret); | |
635 | ||
636 | fspi_writel(f, *(u32 *)(buf + i), base + FSPI_TFDR); | |
637 | fspi_writel(f, *(u32 *)(buf + i + 4), base + FSPI_TFDR + 4); | |
638 | fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); | |
639 | } | |
640 | ||
641 | if (i < op->data.nbytes) { | |
642 | u32 data = 0; | |
643 | int j; | |
644 | /* Wait for TXFIFO empty */ | |
645 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
646 | FSPI_INTR_IPTXWE, 0, | |
647 | POLL_TOUT, true); | |
648 | WARN_ON(ret); | |
649 | ||
650 | for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { | |
651 | memcpy(&data, buf + i + j, 4); | |
652 | fspi_writel(f, data, base + FSPI_TFDR + j); | |
653 | } | |
654 | fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); | |
655 | } | |
656 | } | |
657 | ||
658 | static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, | |
659 | const struct spi_mem_op *op) | |
660 | { | |
661 | void __iomem *base = f->iobase; | |
662 | int i, ret; | |
663 | int len = op->data.nbytes; | |
664 | u8 *buf = (u8 *)op->data.buf.in; | |
665 | ||
666 | /* | |
667 | * Default value of water mark level is 8 bytes, hence in single | |
668 | * read request controller can read max 8 bytes of data. | |
669 | */ | |
670 | for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { | |
671 | /* Wait for RXFIFO available */ | |
672 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
673 | FSPI_INTR_IPRXWA, 0, | |
674 | POLL_TOUT, true); | |
675 | WARN_ON(ret); | |
676 | ||
677 | *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); | |
678 | *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); | |
679 | /* move the FIFO pointer */ | |
680 | fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); | |
681 | } | |
682 | ||
683 | if (i < len) { | |
684 | u32 tmp; | |
685 | int size, j; | |
686 | ||
687 | buf = op->data.buf.in + i; | |
688 | /* Wait for RXFIFO available */ | |
689 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
690 | FSPI_INTR_IPRXWA, 0, | |
691 | POLL_TOUT, true); | |
692 | WARN_ON(ret); | |
693 | ||
694 | len = op->data.nbytes - i; | |
695 | for (j = 0; j < op->data.nbytes - i; j += 4) { | |
696 | tmp = fspi_readl(f, base + FSPI_RFDR + j); | |
697 | size = min(len, 4); | |
698 | memcpy(buf + j, &tmp, size); | |
699 | len -= size; | |
700 | } | |
701 | } | |
702 | ||
703 | /* invalid the RXFIFO */ | |
704 | fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); | |
705 | /* move the FIFO pointer */ | |
706 | fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); | |
707 | } | |
708 | ||
709 | static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) | |
710 | { | |
711 | void __iomem *base = f->iobase; | |
712 | int seqnum = 0; | |
713 | int err = 0; | |
714 | u32 reg; | |
715 | ||
716 | reg = fspi_readl(f, base + FSPI_IPRXFCR); | |
717 | /* invalid RXFIFO first */ | |
718 | reg &= ~FSPI_IPRXFCR_DMA_EN; | |
719 | reg = reg | FSPI_IPRXFCR_CLR; | |
720 | fspi_writel(f, reg, base + FSPI_IPRXFCR); | |
721 | ||
722 | fspi_writel(f, op->addr.val, base + FSPI_IPCR0); | |
723 | /* | |
724 | * Always start the sequence at the same index since we update | |
725 | * the LUT at each exec_op() call. And also specify the DATA | |
726 | * length, since it's has not been specified in the LUT. | |
727 | */ | |
728 | fspi_writel(f, op->data.nbytes | | |
729 | (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | | |
730 | (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), | |
731 | base + FSPI_IPCR1); | |
732 | ||
733 | /* Trigger the LUT now. */ | |
734 | fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); | |
735 | ||
736 | /* Wait for the completion. */ | |
737 | err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, | |
738 | FSPI_STS0_ARB_IDLE, 1, 1000 * 1000, true); | |
739 | ||
740 | /* Invoke IP data read, if request is of data read. */ | |
741 | if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) | |
742 | nxp_fspi_read_rxfifo(f, op); | |
743 | ||
744 | return err; | |
745 | } | |
746 | ||
747 | static int nxp_fspi_exec_op(struct spi_slave *slave, | |
748 | const struct spi_mem_op *op) | |
749 | { | |
750 | struct nxp_fspi *f; | |
751 | struct udevice *bus; | |
752 | int err = 0; | |
753 | ||
754 | bus = slave->dev->parent; | |
755 | f = dev_get_priv(bus); | |
756 | ||
757 | /* Wait for controller being ready. */ | |
758 | err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, | |
759 | FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); | |
760 | WARN_ON(err); | |
761 | ||
762 | nxp_fspi_prepare_lut(f, op); | |
763 | /* | |
764 | * If we have large chunks of data, we read them through the AHB bus | |
765 | * by accessing the mapped memory. In all other cases we use | |
766 | * IP commands to access the flash. | |
767 | */ | |
768 | if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && | |
769 | op->data.dir == SPI_MEM_DATA_IN) { | |
770 | nxp_fspi_read_ahb(f, op); | |
771 | } else { | |
772 | if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) | |
773 | nxp_fspi_fill_txfifo(f, op); | |
774 | ||
775 | err = nxp_fspi_do_op(f, op); | |
776 | } | |
777 | ||
778 | /* Invalidate the data in the AHB buffer. */ | |
779 | nxp_fspi_invalid(f); | |
780 | ||
781 | return err; | |
782 | } | |
783 | ||
784 | static int nxp_fspi_adjust_op_size(struct spi_slave *slave, | |
785 | struct spi_mem_op *op) | |
786 | { | |
787 | struct nxp_fspi *f; | |
788 | struct udevice *bus; | |
789 | ||
790 | bus = slave->dev->parent; | |
791 | f = dev_get_priv(bus); | |
792 | ||
793 | if (op->data.dir == SPI_MEM_DATA_OUT) { | |
794 | if (op->data.nbytes > f->devtype_data->txfifo) | |
795 | op->data.nbytes = f->devtype_data->txfifo; | |
796 | } else { | |
797 | if (op->data.nbytes > f->devtype_data->ahb_buf_size) | |
798 | op->data.nbytes = f->devtype_data->ahb_buf_size; | |
799 | else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) | |
800 | op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); | |
801 | } | |
802 | ||
803 | return 0; | |
804 | } | |
805 | ||
806 | static int nxp_fspi_default_setup(struct nxp_fspi *f) | |
807 | { | |
808 | void __iomem *base = f->iobase; | |
809 | int ret, i; | |
810 | u32 reg; | |
811 | ||
957a3e54 | 812 | #if CONFIG_IS_ENABLED(CLK) |
383fded7 MW |
813 | /* disable and unprepare clock to avoid glitch pass to controller */ |
814 | nxp_fspi_clk_disable_unprep(f); | |
815 | ||
816 | /* the default frequency, we will change it later if necessary. */ | |
817 | ret = clk_set_rate(&f->clk, 20000000); | |
818 | if (ret) | |
819 | return ret; | |
820 | ||
821 | ret = nxp_fspi_clk_prep_enable(f); | |
822 | if (ret) | |
823 | return ret; | |
824 | #endif | |
825 | ||
826 | /* Reset the module */ | |
827 | /* w1c register, wait unit clear */ | |
828 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, | |
829 | FSPI_MCR0_SWRST, 0, POLL_TOUT, false); | |
830 | WARN_ON(ret); | |
831 | ||
832 | /* Disable the module */ | |
833 | fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); | |
834 | ||
835 | /* Reset the DLL register to default value */ | |
836 | fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); | |
837 | fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); | |
838 | ||
839 | /* enable module */ | |
840 | fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF), | |
841 | base + FSPI_MCR0); | |
842 | ||
843 | /* | |
844 | * Disable same device enable bit and configure all slave devices | |
845 | * independently. | |
846 | */ | |
847 | reg = fspi_readl(f, f->iobase + FSPI_MCR2); | |
848 | reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); | |
849 | fspi_writel(f, reg, base + FSPI_MCR2); | |
850 | ||
851 | /* AHB configuration for access buffer 0~7. */ | |
852 | for (i = 0; i < 7; i++) | |
853 | fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); | |
854 | ||
855 | /* | |
856 | * Set ADATSZ with the maximum AHB buffer size to improve the read | |
857 | * performance. | |
858 | */ | |
859 | fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | | |
860 | FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); | |
861 | ||
862 | /* prefetch and no start address alignment limitation */ | |
863 | fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, | |
864 | base + FSPI_AHBCR); | |
865 | ||
866 | /* AHB Read - Set lut sequence ID for all CS. */ | |
867 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2); | |
868 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2); | |
869 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2); | |
870 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2); | |
871 | ||
872 | return 0; | |
873 | } | |
874 | ||
875 | static int nxp_fspi_probe(struct udevice *bus) | |
876 | { | |
877 | struct nxp_fspi *f = dev_get_priv(bus); | |
878 | ||
879 | f->devtype_data = | |
880 | (struct nxp_fspi_devtype_data *)dev_get_driver_data(bus); | |
881 | nxp_fspi_default_setup(f); | |
882 | ||
883 | return 0; | |
884 | } | |
885 | ||
886 | static int nxp_fspi_claim_bus(struct udevice *dev) | |
887 | { | |
888 | struct nxp_fspi *f; | |
889 | struct udevice *bus; | |
8a8d24bd | 890 | struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev); |
383fded7 MW |
891 | |
892 | bus = dev->parent; | |
893 | f = dev_get_priv(bus); | |
894 | ||
895 | nxp_fspi_select_mem(f, slave_plat->cs); | |
896 | ||
897 | return 0; | |
898 | } | |
899 | ||
900 | static int nxp_fspi_set_speed(struct udevice *bus, uint speed) | |
901 | { | |
957a3e54 | 902 | #if CONFIG_IS_ENABLED(CLK) |
383fded7 MW |
903 | struct nxp_fspi *f = dev_get_priv(bus); |
904 | int ret; | |
905 | ||
906 | nxp_fspi_clk_disable_unprep(f); | |
907 | ||
908 | ret = clk_set_rate(&f->clk, speed); | |
909 | if (ret) | |
910 | return ret; | |
911 | ||
912 | ret = nxp_fspi_clk_prep_enable(f); | |
913 | if (ret) | |
914 | return ret; | |
915 | #endif | |
916 | return 0; | |
917 | } | |
918 | ||
919 | static int nxp_fspi_set_mode(struct udevice *bus, uint mode) | |
920 | { | |
921 | /* Nothing to do */ | |
922 | return 0; | |
923 | } | |
924 | ||
d1998a9f | 925 | static int nxp_fspi_of_to_plat(struct udevice *bus) |
383fded7 MW |
926 | { |
927 | struct nxp_fspi *f = dev_get_priv(bus); | |
957a3e54 | 928 | #if CONFIG_IS_ENABLED(CLK) |
383fded7 MW |
929 | int ret; |
930 | #endif | |
931 | ||
932 | fdt_addr_t iobase; | |
933 | fdt_addr_t iobase_size; | |
934 | fdt_addr_t ahb_addr; | |
935 | fdt_addr_t ahb_size; | |
936 | ||
937 | f->dev = bus; | |
938 | ||
939 | iobase = devfdt_get_addr_size_name(bus, "fspi_base", &iobase_size); | |
940 | if (iobase == FDT_ADDR_T_NONE) { | |
941 | dev_err(bus, "fspi_base regs missing\n"); | |
942 | return -ENODEV; | |
943 | } | |
944 | f->iobase = map_physmem(iobase, iobase_size, MAP_NOCACHE); | |
945 | ||
946 | ahb_addr = devfdt_get_addr_size_name(bus, "fspi_mmap", &ahb_size); | |
947 | if (ahb_addr == FDT_ADDR_T_NONE) { | |
948 | dev_err(bus, "fspi_mmap regs missing\n"); | |
949 | return -ENODEV; | |
950 | } | |
951 | f->ahb_addr = map_physmem(ahb_addr, ahb_size, MAP_NOCACHE); | |
952 | f->memmap_phy_size = ahb_size; | |
953 | ||
957a3e54 | 954 | #if CONFIG_IS_ENABLED(CLK) |
383fded7 MW |
955 | ret = clk_get_by_name(bus, "fspi_en", &f->clk_en); |
956 | if (ret) { | |
957 | dev_err(bus, "failed to get fspi_en clock\n"); | |
958 | return ret; | |
959 | } | |
960 | ||
961 | ret = clk_get_by_name(bus, "fspi", &f->clk); | |
962 | if (ret) { | |
963 | dev_err(bus, "failed to get fspi clock\n"); | |
964 | return ret; | |
965 | } | |
966 | #endif | |
967 | ||
968 | dev_dbg(bus, "iobase=<0x%llx>, ahb_addr=<0x%llx>\n", iobase, ahb_addr); | |
969 | ||
970 | return 0; | |
971 | } | |
972 | ||
973 | static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { | |
974 | .adjust_op_size = nxp_fspi_adjust_op_size, | |
975 | .supports_op = nxp_fspi_supports_op, | |
976 | .exec_op = nxp_fspi_exec_op, | |
977 | }; | |
978 | ||
979 | static const struct dm_spi_ops nxp_fspi_ops = { | |
980 | .claim_bus = nxp_fspi_claim_bus, | |
981 | .set_speed = nxp_fspi_set_speed, | |
982 | .set_mode = nxp_fspi_set_mode, | |
983 | .mem_ops = &nxp_fspi_mem_ops, | |
984 | }; | |
985 | ||
986 | static const struct udevice_id nxp_fspi_ids[] = { | |
987 | { .compatible = "nxp,lx2160a-fspi", .data = (ulong)&lx2160a_data, }, | |
988 | { } | |
989 | }; | |
990 | ||
991 | U_BOOT_DRIVER(nxp_fspi) = { | |
992 | .name = "nxp_fspi", | |
993 | .id = UCLASS_SPI, | |
994 | .of_match = nxp_fspi_ids, | |
995 | .ops = &nxp_fspi_ops, | |
d1998a9f | 996 | .of_to_plat = nxp_fspi_of_to_plat, |
41575d8e | 997 | .priv_auto = sizeof(struct nxp_fspi), |
383fded7 MW |
998 | .probe = nxp_fspi_probe, |
999 | }; |