]>
Commit | Line | Data |
---|---|---|
7b64fef3 WD |
1 | /* |
2 | * Copyright (C) 2003 Bernardo Innocenti <[email protected]> | |
3 | * | |
4 | * Based on former do_div() implementation from asm-parisc/div64.h: | |
5 | * Copyright (C) 1999 Hewlett-Packard Co | |
6 | * Copyright (C) 1999 David Mosberger-Tang <[email protected]> | |
7 | * | |
8 | * | |
9 | * Generic C version of 64bit/32bit division and modulo, with | |
10 | * 64bit result and 32bit remainder. | |
11 | * | |
12 | * The fast case for (n>>32 == 0) is handled inline by do_div(). | |
13 | * | |
14 | * Code generated for this function might be very inefficient | |
15 | * for some CPUs. __div64_32() can be overridden by linking arch-specific | |
0342e335 PF |
16 | * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S |
17 | * or by defining a preprocessor macro in arch/include/asm/div64.h. | |
7b64fef3 WD |
18 | */ |
19 | ||
0342e335 PF |
20 | #include <linux/compat.h> |
21 | #include <linux/kernel.h> | |
22 | #include <linux/math64.h> | |
7b64fef3 | 23 | |
0342e335 PF |
24 | /* Not needed on 64bit architectures */ |
25 | #if BITS_PER_LONG == 32 | |
26 | ||
27 | #ifndef __div64_32 | |
f611a46e SG |
28 | /* |
29 | * Don't instrument this function as it may be called from tracing code, since | |
30 | * it needs to read the timer and this often requires calling do_div(), which | |
31 | * calls this function. | |
32 | */ | |
33 | uint32_t __attribute__((weak, no_instrument_function)) __div64_32(u64 *n, | |
34 | u32 base) | |
7b64fef3 | 35 | { |
ca49b2c6 SG |
36 | u64 rem = *n; |
37 | u64 b = base; | |
38 | u64 res, d = 1; | |
39 | u32 high = rem >> 32; | |
7b64fef3 WD |
40 | |
41 | /* Reduce the thing a bit first */ | |
42 | res = 0; | |
43 | if (high >= base) { | |
44 | high /= base; | |
ca49b2c6 SG |
45 | res = (u64)high << 32; |
46 | rem -= (u64)(high * base) << 32; | |
7b64fef3 WD |
47 | } |
48 | ||
49 | while ((int64_t)b > 0 && b < rem) { | |
50 | b = b+b; | |
51 | d = d+d; | |
52 | } | |
53 | ||
54 | do { | |
55 | if (rem >= b) { | |
56 | rem -= b; | |
57 | res += d; | |
58 | } | |
59 | b >>= 1; | |
60 | d >>= 1; | |
61 | } while (d); | |
62 | ||
63 | *n = res; | |
64 | return rem; | |
65 | } | |
0342e335 PF |
66 | EXPORT_SYMBOL(__div64_32); |
67 | #endif | |
68 | ||
69 | #ifndef div_s64_rem | |
70 | s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) | |
71 | { | |
72 | u64 quotient; | |
73 | ||
74 | if (dividend < 0) { | |
75 | quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); | |
76 | *remainder = -*remainder; | |
77 | if (divisor > 0) | |
78 | quotient = -quotient; | |
79 | } else { | |
80 | quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); | |
81 | if (divisor < 0) | |
82 | quotient = -quotient; | |
83 | } | |
84 | return quotient; | |
85 | } | |
86 | EXPORT_SYMBOL(div_s64_rem); | |
87 | #endif | |
88 | ||
89 | /** | |
90 | * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder | |
91 | * @dividend: 64bit dividend | |
92 | * @divisor: 64bit divisor | |
93 | * @remainder: 64bit remainder | |
94 | * | |
95 | * This implementation is a comparable to algorithm used by div64_u64. | |
96 | * But this operation, which includes math for calculating the remainder, | |
97 | * is kept distinct to avoid slowing down the div64_u64 operation on 32bit | |
98 | * systems. | |
99 | */ | |
100 | #ifndef div64_u64_rem | |
101 | u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) | |
102 | { | |
103 | u32 high = divisor >> 32; | |
104 | u64 quot; | |
105 | ||
106 | if (high == 0) { | |
107 | u32 rem32; | |
108 | quot = div_u64_rem(dividend, divisor, &rem32); | |
109 | *remainder = rem32; | |
110 | } else { | |
111 | int n = 1 + fls(high); | |
112 | quot = div_u64(dividend >> n, divisor >> n); | |
113 | ||
114 | if (quot != 0) | |
115 | quot--; | |
116 | ||
117 | *remainder = dividend - quot * divisor; | |
118 | if (*remainder >= divisor) { | |
119 | quot++; | |
120 | *remainder -= divisor; | |
121 | } | |
122 | } | |
123 | ||
124 | return quot; | |
125 | } | |
126 | EXPORT_SYMBOL(div64_u64_rem); | |
127 | #endif | |
128 | ||
129 | /** | |
130 | * div64_u64 - unsigned 64bit divide with 64bit divisor | |
131 | * @dividend: 64bit dividend | |
132 | * @divisor: 64bit divisor | |
133 | * | |
134 | * This implementation is a modified version of the algorithm proposed | |
135 | * by the book 'Hacker's Delight'. The original source and full proof | |
136 | * can be found here and is available for use without restriction. | |
137 | * | |
138 | * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt' | |
139 | */ | |
140 | #ifndef div64_u64 | |
141 | u64 div64_u64(u64 dividend, u64 divisor) | |
142 | { | |
143 | u32 high = divisor >> 32; | |
144 | u64 quot; | |
145 | ||
146 | if (high == 0) { | |
147 | quot = div_u64(dividend, divisor); | |
148 | } else { | |
149 | int n = 1 + fls(high); | |
150 | quot = div_u64(dividend >> n, divisor >> n); | |
151 | ||
152 | if (quot != 0) | |
153 | quot--; | |
154 | if ((dividend - quot * divisor) >= divisor) | |
155 | quot++; | |
156 | } | |
157 | ||
158 | return quot; | |
159 | } | |
160 | EXPORT_SYMBOL(div64_u64); | |
161 | #endif | |
162 | ||
163 | /** | |
164 | * div64_s64 - signed 64bit divide with 64bit divisor | |
165 | * @dividend: 64bit dividend | |
166 | * @divisor: 64bit divisor | |
167 | */ | |
168 | #ifndef div64_s64 | |
169 | s64 div64_s64(s64 dividend, s64 divisor) | |
170 | { | |
171 | s64 quot, t; | |
172 | ||
173 | quot = div64_u64(abs(dividend), abs(divisor)); | |
174 | t = (dividend ^ divisor) >> 63; | |
175 | ||
176 | return (quot ^ t) - t; | |
177 | } | |
178 | EXPORT_SYMBOL(div64_s64); | |
179 | #endif | |
180 | ||
181 | #endif /* BITS_PER_LONG == 32 */ | |
182 | ||
183 | /* | |
184 | * Iterative div/mod for use when dividend is not expected to be much | |
185 | * bigger than divisor. | |
186 | */ | |
187 | u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) | |
188 | { | |
189 | return __iter_div_u64_rem(dividend, divisor, remainder); | |
190 | } | |
191 | EXPORT_SYMBOL(iter_div_u64_rem); |