]>
Commit | Line | Data |
---|---|---|
83d290c5 | 1 | // SPDX-License-Identifier: GPL-2.0 |
4c6de856 CH |
2 | /* |
3 | * Generic binary BCH encoding/decoding library | |
4 | * | |
4c6de856 CH |
5 | * Copyright © 2011 Parrot S.A. |
6 | * | |
7 | * Author: Ivan Djelic <[email protected]> | |
8 | * | |
9 | * Description: | |
10 | * | |
11 | * This library provides runtime configurable encoding/decoding of binary | |
12 | * Bose-Chaudhuri-Hocquenghem (BCH) codes. | |
13 | * | |
14 | * Call init_bch to get a pointer to a newly allocated bch_control structure for | |
15 | * the given m (Galois field order), t (error correction capability) and | |
16 | * (optional) primitive polynomial parameters. | |
17 | * | |
18 | * Call encode_bch to compute and store ecc parity bytes to a given buffer. | |
19 | * Call decode_bch to detect and locate errors in received data. | |
20 | * | |
21 | * On systems supporting hw BCH features, intermediate results may be provided | |
22 | * to decode_bch in order to skip certain steps. See decode_bch() documentation | |
23 | * for details. | |
24 | * | |
25 | * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of | |
26 | * parameters m and t; thus allowing extra compiler optimizations and providing | |
27 | * better (up to 2x) encoding performance. Using this option makes sense when | |
28 | * (m,t) are fixed and known in advance, e.g. when using BCH error correction | |
29 | * on a particular NAND flash device. | |
30 | * | |
31 | * Algorithmic details: | |
32 | * | |
33 | * Encoding is performed by processing 32 input bits in parallel, using 4 | |
34 | * remainder lookup tables. | |
35 | * | |
36 | * The final stage of decoding involves the following internal steps: | |
37 | * a. Syndrome computation | |
38 | * b. Error locator polynomial computation using Berlekamp-Massey algorithm | |
39 | * c. Error locator root finding (by far the most expensive step) | |
40 | * | |
41 | * In this implementation, step c is not performed using the usual Chien search. | |
42 | * Instead, an alternative approach described in [1] is used. It consists in | |
43 | * factoring the error locator polynomial using the Berlekamp Trace algorithm | |
44 | * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial | |
45 | * solving techniques [2] are used. The resulting algorithm, called BTZ, yields | |
46 | * much better performance than Chien search for usual (m,t) values (typically | |
47 | * m >= 13, t < 32, see [1]). | |
48 | * | |
49 | * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields | |
50 | * of characteristic 2, in: Western European Workshop on Research in Cryptology | |
51 | * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. | |
52 | * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over | |
53 | * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. | |
54 | */ | |
55 | ||
71d2c070 | 56 | #ifndef USE_HOSTCC |
4c6de856 | 57 | #include <common.h> |
336d4615 | 58 | #include <malloc.h> |
4c6de856 | 59 | #include <ubi_uboot.h> |
61b29b82 | 60 | #include <dm/devres.h> |
4c6de856 CH |
61 | |
62 | #include <linux/bitops.h> | |
71d2c070 MR |
63 | #else |
64 | #include <errno.h> | |
4ecc9883 EV |
65 | #if defined(__FreeBSD__) |
66 | #include <sys/endian.h> | |
ab8fc413 | 67 | #elif defined(__APPLE__) |
68 | #include <machine/endian.h> | |
69 | #include <libkern/OSByteOrder.h> | |
4ecc9883 | 70 | #else |
71d2c070 | 71 | #include <endian.h> |
4ecc9883 | 72 | #endif |
71d2c070 MR |
73 | #include <stdint.h> |
74 | #include <stdlib.h> | |
75 | #include <string.h> | |
76 | ||
77 | #undef cpu_to_be32 | |
ab8fc413 | 78 | #if defined(__APPLE__) |
79 | #define cpu_to_be32 OSSwapHostToBigInt32 | |
80 | #else | |
71d2c070 | 81 | #define cpu_to_be32 htobe32 |
ab8fc413 | 82 | #endif |
71d2c070 MR |
83 | #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) |
84 | #define kmalloc(size, flags) malloc(size) | |
85 | #define kzalloc(size, flags) calloc(1, size) | |
86 | #define kfree free | |
87 | #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) | |
88 | #endif | |
89 | ||
4c6de856 CH |
90 | #include <asm/byteorder.h> |
91 | #include <linux/bch.h> | |
92 | ||
93 | #if defined(CONFIG_BCH_CONST_PARAMS) | |
94 | #define GF_M(_p) (CONFIG_BCH_CONST_M) | |
95 | #define GF_T(_p) (CONFIG_BCH_CONST_T) | |
96 | #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) | |
97 | #else | |
98 | #define GF_M(_p) ((_p)->m) | |
99 | #define GF_T(_p) ((_p)->t) | |
100 | #define GF_N(_p) ((_p)->n) | |
101 | #endif | |
102 | ||
103 | #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) | |
104 | #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) | |
105 | ||
106 | #ifndef dbg | |
107 | #define dbg(_fmt, args...) do {} while (0) | |
108 | #endif | |
109 | ||
110 | /* | |
111 | * represent a polynomial over GF(2^m) | |
112 | */ | |
113 | struct gf_poly { | |
114 | unsigned int deg; /* polynomial degree */ | |
115 | unsigned int c[0]; /* polynomial terms */ | |
116 | }; | |
117 | ||
118 | /* given its degree, compute a polynomial size in bytes */ | |
119 | #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) | |
120 | ||
121 | /* polynomial of degree 1 */ | |
122 | struct gf_poly_deg1 { | |
123 | struct gf_poly poly; | |
124 | unsigned int c[2]; | |
125 | }; | |
126 | ||
71d2c070 | 127 | #ifdef USE_HOSTCC |
ab8fc413 | 128 | #if !defined(__DragonFly__) && !defined(__FreeBSD__) && !defined(__APPLE__) |
71d2c070 MR |
129 | static int fls(int x) |
130 | { | |
131 | int r = 32; | |
132 | ||
133 | if (!x) | |
134 | return 0; | |
135 | if (!(x & 0xffff0000u)) { | |
136 | x <<= 16; | |
137 | r -= 16; | |
138 | } | |
139 | if (!(x & 0xff000000u)) { | |
140 | x <<= 8; | |
141 | r -= 8; | |
142 | } | |
143 | if (!(x & 0xf0000000u)) { | |
144 | x <<= 4; | |
145 | r -= 4; | |
146 | } | |
147 | if (!(x & 0xc0000000u)) { | |
148 | x <<= 2; | |
149 | r -= 2; | |
150 | } | |
151 | if (!(x & 0x80000000u)) { | |
152 | x <<= 1; | |
153 | r -= 1; | |
154 | } | |
155 | return r; | |
156 | } | |
157 | #endif | |
4ecc9883 | 158 | #endif |
71d2c070 | 159 | |
4c6de856 CH |
160 | /* |
161 | * same as encode_bch(), but process input data one byte at a time | |
162 | */ | |
163 | static void encode_bch_unaligned(struct bch_control *bch, | |
164 | const unsigned char *data, unsigned int len, | |
165 | uint32_t *ecc) | |
166 | { | |
167 | int i; | |
168 | const uint32_t *p; | |
169 | const int l = BCH_ECC_WORDS(bch)-1; | |
170 | ||
171 | while (len--) { | |
172 | p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); | |
173 | ||
174 | for (i = 0; i < l; i++) | |
175 | ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); | |
176 | ||
177 | ecc[l] = (ecc[l] << 8)^(*p); | |
178 | } | |
179 | } | |
180 | ||
181 | /* | |
182 | * convert ecc bytes to aligned, zero-padded 32-bit ecc words | |
183 | */ | |
184 | static void load_ecc8(struct bch_control *bch, uint32_t *dst, | |
185 | const uint8_t *src) | |
186 | { | |
187 | uint8_t pad[4] = {0, 0, 0, 0}; | |
188 | unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; | |
189 | ||
190 | for (i = 0; i < nwords; i++, src += 4) | |
191 | dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; | |
192 | ||
193 | memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); | |
194 | dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; | |
195 | } | |
196 | ||
197 | /* | |
198 | * convert 32-bit ecc words to ecc bytes | |
199 | */ | |
200 | static void store_ecc8(struct bch_control *bch, uint8_t *dst, | |
201 | const uint32_t *src) | |
202 | { | |
203 | uint8_t pad[4]; | |
204 | unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; | |
205 | ||
206 | for (i = 0; i < nwords; i++) { | |
207 | *dst++ = (src[i] >> 24); | |
208 | *dst++ = (src[i] >> 16) & 0xff; | |
209 | *dst++ = (src[i] >> 8) & 0xff; | |
210 | *dst++ = (src[i] >> 0) & 0xff; | |
211 | } | |
212 | pad[0] = (src[nwords] >> 24); | |
213 | pad[1] = (src[nwords] >> 16) & 0xff; | |
214 | pad[2] = (src[nwords] >> 8) & 0xff; | |
215 | pad[3] = (src[nwords] >> 0) & 0xff; | |
216 | memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); | |
217 | } | |
218 | ||
219 | /** | |
220 | * encode_bch - calculate BCH ecc parity of data | |
221 | * @bch: BCH control structure | |
222 | * @data: data to encode | |
223 | * @len: data length in bytes | |
224 | * @ecc: ecc parity data, must be initialized by caller | |
225 | * | |
226 | * The @ecc parity array is used both as input and output parameter, in order to | |
227 | * allow incremental computations. It should be of the size indicated by member | |
228 | * @ecc_bytes of @bch, and should be initialized to 0 before the first call. | |
229 | * | |
230 | * The exact number of computed ecc parity bits is given by member @ecc_bits of | |
231 | * @bch; it may be less than m*t for large values of t. | |
232 | */ | |
233 | void encode_bch(struct bch_control *bch, const uint8_t *data, | |
234 | unsigned int len, uint8_t *ecc) | |
235 | { | |
236 | const unsigned int l = BCH_ECC_WORDS(bch)-1; | |
237 | unsigned int i, mlen; | |
238 | unsigned long m; | |
239 | uint32_t w, r[l+1]; | |
240 | const uint32_t * const tab0 = bch->mod8_tab; | |
241 | const uint32_t * const tab1 = tab0 + 256*(l+1); | |
242 | const uint32_t * const tab2 = tab1 + 256*(l+1); | |
243 | const uint32_t * const tab3 = tab2 + 256*(l+1); | |
244 | const uint32_t *pdata, *p0, *p1, *p2, *p3; | |
245 | ||
246 | if (ecc) { | |
247 | /* load ecc parity bytes into internal 32-bit buffer */ | |
248 | load_ecc8(bch, bch->ecc_buf, ecc); | |
249 | } else { | |
250 | memset(bch->ecc_buf, 0, sizeof(r)); | |
251 | } | |
252 | ||
253 | /* process first unaligned data bytes */ | |
254 | m = ((unsigned long)data) & 3; | |
255 | if (m) { | |
256 | mlen = (len < (4-m)) ? len : 4-m; | |
257 | encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); | |
258 | data += mlen; | |
259 | len -= mlen; | |
260 | } | |
261 | ||
262 | /* process 32-bit aligned data words */ | |
263 | pdata = (uint32_t *)data; | |
264 | mlen = len/4; | |
265 | data += 4*mlen; | |
266 | len -= 4*mlen; | |
267 | memcpy(r, bch->ecc_buf, sizeof(r)); | |
268 | ||
269 | /* | |
270 | * split each 32-bit word into 4 polynomials of weight 8 as follows: | |
271 | * | |
272 | * 31 ...24 23 ...16 15 ... 8 7 ... 0 | |
273 | * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt | |
274 | * tttttttt mod g = r0 (precomputed) | |
275 | * zzzzzzzz 00000000 mod g = r1 (precomputed) | |
276 | * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) | |
277 | * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) | |
278 | * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 | |
279 | */ | |
280 | while (mlen--) { | |
281 | /* input data is read in big-endian format */ | |
282 | w = r[0]^cpu_to_be32(*pdata++); | |
283 | p0 = tab0 + (l+1)*((w >> 0) & 0xff); | |
284 | p1 = tab1 + (l+1)*((w >> 8) & 0xff); | |
285 | p2 = tab2 + (l+1)*((w >> 16) & 0xff); | |
286 | p3 = tab3 + (l+1)*((w >> 24) & 0xff); | |
287 | ||
288 | for (i = 0; i < l; i++) | |
289 | r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; | |
290 | ||
291 | r[l] = p0[l]^p1[l]^p2[l]^p3[l]; | |
292 | } | |
293 | memcpy(bch->ecc_buf, r, sizeof(r)); | |
294 | ||
295 | /* process last unaligned bytes */ | |
296 | if (len) | |
297 | encode_bch_unaligned(bch, data, len, bch->ecc_buf); | |
298 | ||
299 | /* store ecc parity bytes into original parity buffer */ | |
300 | if (ecc) | |
301 | store_ecc8(bch, ecc, bch->ecc_buf); | |
302 | } | |
303 | ||
304 | static inline int modulo(struct bch_control *bch, unsigned int v) | |
305 | { | |
306 | const unsigned int n = GF_N(bch); | |
307 | while (v >= n) { | |
308 | v -= n; | |
309 | v = (v & n) + (v >> GF_M(bch)); | |
310 | } | |
311 | return v; | |
312 | } | |
313 | ||
314 | /* | |
315 | * shorter and faster modulo function, only works when v < 2N. | |
316 | */ | |
317 | static inline int mod_s(struct bch_control *bch, unsigned int v) | |
318 | { | |
319 | const unsigned int n = GF_N(bch); | |
320 | return (v < n) ? v : v-n; | |
321 | } | |
322 | ||
323 | static inline int deg(unsigned int poly) | |
324 | { | |
325 | /* polynomial degree is the most-significant bit index */ | |
326 | return fls(poly)-1; | |
327 | } | |
328 | ||
329 | static inline int parity(unsigned int x) | |
330 | { | |
331 | /* | |
332 | * public domain code snippet, lifted from | |
333 | * http://www-graphics.stanford.edu/~seander/bithacks.html | |
334 | */ | |
335 | x ^= x >> 1; | |
336 | x ^= x >> 2; | |
337 | x = (x & 0x11111111U) * 0x11111111U; | |
338 | return (x >> 28) & 1; | |
339 | } | |
340 | ||
341 | /* Galois field basic operations: multiply, divide, inverse, etc. */ | |
342 | ||
343 | static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, | |
344 | unsigned int b) | |
345 | { | |
346 | return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ | |
347 | bch->a_log_tab[b])] : 0; | |
348 | } | |
349 | ||
350 | static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) | |
351 | { | |
352 | return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; | |
353 | } | |
354 | ||
355 | static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, | |
356 | unsigned int b) | |
357 | { | |
358 | return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ | |
359 | GF_N(bch)-bch->a_log_tab[b])] : 0; | |
360 | } | |
361 | ||
362 | static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) | |
363 | { | |
364 | return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; | |
365 | } | |
366 | ||
367 | static inline unsigned int a_pow(struct bch_control *bch, int i) | |
368 | { | |
369 | return bch->a_pow_tab[modulo(bch, i)]; | |
370 | } | |
371 | ||
372 | static inline int a_log(struct bch_control *bch, unsigned int x) | |
373 | { | |
374 | return bch->a_log_tab[x]; | |
375 | } | |
376 | ||
377 | static inline int a_ilog(struct bch_control *bch, unsigned int x) | |
378 | { | |
379 | return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); | |
380 | } | |
381 | ||
382 | /* | |
383 | * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t | |
384 | */ | |
385 | static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, | |
386 | unsigned int *syn) | |
387 | { | |
388 | int i, j, s; | |
389 | unsigned int m; | |
390 | uint32_t poly; | |
391 | const int t = GF_T(bch); | |
392 | ||
393 | s = bch->ecc_bits; | |
394 | ||
395 | /* make sure extra bits in last ecc word are cleared */ | |
396 | m = ((unsigned int)s) & 31; | |
397 | if (m) | |
398 | ecc[s/32] &= ~((1u << (32-m))-1); | |
399 | memset(syn, 0, 2*t*sizeof(*syn)); | |
400 | ||
401 | /* compute v(a^j) for j=1 .. 2t-1 */ | |
402 | do { | |
403 | poly = *ecc++; | |
404 | s -= 32; | |
405 | while (poly) { | |
406 | i = deg(poly); | |
407 | for (j = 0; j < 2*t; j += 2) | |
408 | syn[j] ^= a_pow(bch, (j+1)*(i+s)); | |
409 | ||
410 | poly ^= (1 << i); | |
411 | } | |
412 | } while (s > 0); | |
413 | ||
414 | /* v(a^(2j)) = v(a^j)^2 */ | |
415 | for (j = 0; j < t; j++) | |
416 | syn[2*j+1] = gf_sqr(bch, syn[j]); | |
417 | } | |
418 | ||
419 | static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) | |
420 | { | |
421 | memcpy(dst, src, GF_POLY_SZ(src->deg)); | |
422 | } | |
423 | ||
424 | static int compute_error_locator_polynomial(struct bch_control *bch, | |
425 | const unsigned int *syn) | |
426 | { | |
427 | const unsigned int t = GF_T(bch); | |
428 | const unsigned int n = GF_N(bch); | |
429 | unsigned int i, j, tmp, l, pd = 1, d = syn[0]; | |
430 | struct gf_poly *elp = bch->elp; | |
431 | struct gf_poly *pelp = bch->poly_2t[0]; | |
432 | struct gf_poly *elp_copy = bch->poly_2t[1]; | |
433 | int k, pp = -1; | |
434 | ||
435 | memset(pelp, 0, GF_POLY_SZ(2*t)); | |
436 | memset(elp, 0, GF_POLY_SZ(2*t)); | |
437 | ||
438 | pelp->deg = 0; | |
439 | pelp->c[0] = 1; | |
440 | elp->deg = 0; | |
441 | elp->c[0] = 1; | |
442 | ||
443 | /* use simplified binary Berlekamp-Massey algorithm */ | |
444 | for (i = 0; (i < t) && (elp->deg <= t); i++) { | |
445 | if (d) { | |
446 | k = 2*i-pp; | |
447 | gf_poly_copy(elp_copy, elp); | |
448 | /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ | |
449 | tmp = a_log(bch, d)+n-a_log(bch, pd); | |
450 | for (j = 0; j <= pelp->deg; j++) { | |
451 | if (pelp->c[j]) { | |
452 | l = a_log(bch, pelp->c[j]); | |
453 | elp->c[j+k] ^= a_pow(bch, tmp+l); | |
454 | } | |
455 | } | |
456 | /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ | |
457 | tmp = pelp->deg+k; | |
458 | if (tmp > elp->deg) { | |
459 | elp->deg = tmp; | |
460 | gf_poly_copy(pelp, elp_copy); | |
461 | pd = d; | |
462 | pp = 2*i; | |
463 | } | |
464 | } | |
465 | /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ | |
466 | if (i < t-1) { | |
467 | d = syn[2*i+2]; | |
468 | for (j = 1; j <= elp->deg; j++) | |
469 | d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); | |
470 | } | |
471 | } | |
472 | dbg("elp=%s\n", gf_poly_str(elp)); | |
473 | return (elp->deg > t) ? -1 : (int)elp->deg; | |
474 | } | |
475 | ||
476 | /* | |
477 | * solve a m x m linear system in GF(2) with an expected number of solutions, | |
478 | * and return the number of found solutions | |
479 | */ | |
480 | static int solve_linear_system(struct bch_control *bch, unsigned int *rows, | |
481 | unsigned int *sol, int nsol) | |
482 | { | |
483 | const int m = GF_M(bch); | |
484 | unsigned int tmp, mask; | |
485 | int rem, c, r, p, k, param[m]; | |
486 | ||
487 | k = 0; | |
488 | mask = 1 << m; | |
489 | ||
490 | /* Gaussian elimination */ | |
491 | for (c = 0; c < m; c++) { | |
492 | rem = 0; | |
493 | p = c-k; | |
494 | /* find suitable row for elimination */ | |
495 | for (r = p; r < m; r++) { | |
496 | if (rows[r] & mask) { | |
497 | if (r != p) { | |
498 | tmp = rows[r]; | |
499 | rows[r] = rows[p]; | |
500 | rows[p] = tmp; | |
501 | } | |
502 | rem = r+1; | |
503 | break; | |
504 | } | |
505 | } | |
506 | if (rem) { | |
507 | /* perform elimination on remaining rows */ | |
508 | tmp = rows[p]; | |
509 | for (r = rem; r < m; r++) { | |
510 | if (rows[r] & mask) | |
511 | rows[r] ^= tmp; | |
512 | } | |
513 | } else { | |
514 | /* elimination not needed, store defective row index */ | |
515 | param[k++] = c; | |
516 | } | |
517 | mask >>= 1; | |
518 | } | |
519 | /* rewrite system, inserting fake parameter rows */ | |
520 | if (k > 0) { | |
521 | p = k; | |
522 | for (r = m-1; r >= 0; r--) { | |
523 | if ((r > m-1-k) && rows[r]) | |
524 | /* system has no solution */ | |
525 | return 0; | |
526 | ||
527 | rows[r] = (p && (r == param[p-1])) ? | |
528 | p--, 1u << (m-r) : rows[r-p]; | |
529 | } | |
530 | } | |
531 | ||
532 | if (nsol != (1 << k)) | |
533 | /* unexpected number of solutions */ | |
534 | return 0; | |
535 | ||
536 | for (p = 0; p < nsol; p++) { | |
537 | /* set parameters for p-th solution */ | |
538 | for (c = 0; c < k; c++) | |
539 | rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); | |
540 | ||
541 | /* compute unique solution */ | |
542 | tmp = 0; | |
543 | for (r = m-1; r >= 0; r--) { | |
544 | mask = rows[r] & (tmp|1); | |
545 | tmp |= parity(mask) << (m-r); | |
546 | } | |
547 | sol[p] = tmp >> 1; | |
548 | } | |
549 | return nsol; | |
550 | } | |
551 | ||
552 | /* | |
553 | * this function builds and solves a linear system for finding roots of a degree | |
554 | * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). | |
555 | */ | |
556 | static int find_affine4_roots(struct bch_control *bch, unsigned int a, | |
557 | unsigned int b, unsigned int c, | |
558 | unsigned int *roots) | |
559 | { | |
560 | int i, j, k; | |
561 | const int m = GF_M(bch); | |
562 | unsigned int mask = 0xff, t, rows[16] = {0,}; | |
563 | ||
564 | j = a_log(bch, b); | |
565 | k = a_log(bch, a); | |
566 | rows[0] = c; | |
567 | ||
568 | /* buid linear system to solve X^4+aX^2+bX+c = 0 */ | |
569 | for (i = 0; i < m; i++) { | |
570 | rows[i+1] = bch->a_pow_tab[4*i]^ | |
571 | (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ | |
572 | (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); | |
573 | j++; | |
574 | k += 2; | |
575 | } | |
576 | /* | |
577 | * transpose 16x16 matrix before passing it to linear solver | |
578 | * warning: this code assumes m < 16 | |
579 | */ | |
580 | for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { | |
581 | for (k = 0; k < 16; k = (k+j+1) & ~j) { | |
582 | t = ((rows[k] >> j)^rows[k+j]) & mask; | |
583 | rows[k] ^= (t << j); | |
584 | rows[k+j] ^= t; | |
585 | } | |
586 | } | |
587 | return solve_linear_system(bch, rows, roots, 4); | |
588 | } | |
589 | ||
590 | /* | |
591 | * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) | |
592 | */ | |
593 | static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, | |
594 | unsigned int *roots) | |
595 | { | |
596 | int n = 0; | |
597 | ||
598 | if (poly->c[0]) | |
599 | /* poly[X] = bX+c with c!=0, root=c/b */ | |
600 | roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ | |
601 | bch->a_log_tab[poly->c[1]]); | |
602 | return n; | |
603 | } | |
604 | ||
605 | /* | |
606 | * compute roots of a degree 2 polynomial over GF(2^m) | |
607 | */ | |
608 | static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, | |
609 | unsigned int *roots) | |
610 | { | |
611 | int n = 0, i, l0, l1, l2; | |
612 | unsigned int u, v, r; | |
613 | ||
614 | if (poly->c[0] && poly->c[1]) { | |
615 | ||
616 | l0 = bch->a_log_tab[poly->c[0]]; | |
617 | l1 = bch->a_log_tab[poly->c[1]]; | |
618 | l2 = bch->a_log_tab[poly->c[2]]; | |
619 | ||
620 | /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ | |
621 | u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); | |
622 | /* | |
623 | * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): | |
624 | * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = | |
625 | * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) | |
626 | * i.e. r and r+1 are roots iff Tr(u)=0 | |
627 | */ | |
628 | r = 0; | |
629 | v = u; | |
630 | while (v) { | |
631 | i = deg(v); | |
632 | r ^= bch->xi_tab[i]; | |
633 | v ^= (1 << i); | |
634 | } | |
635 | /* verify root */ | |
636 | if ((gf_sqr(bch, r)^r) == u) { | |
637 | /* reverse z=a/bX transformation and compute log(1/r) */ | |
638 | roots[n++] = modulo(bch, 2*GF_N(bch)-l1- | |
639 | bch->a_log_tab[r]+l2); | |
640 | roots[n++] = modulo(bch, 2*GF_N(bch)-l1- | |
641 | bch->a_log_tab[r^1]+l2); | |
642 | } | |
643 | } | |
644 | return n; | |
645 | } | |
646 | ||
647 | /* | |
648 | * compute roots of a degree 3 polynomial over GF(2^m) | |
649 | */ | |
650 | static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, | |
651 | unsigned int *roots) | |
652 | { | |
653 | int i, n = 0; | |
654 | unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; | |
655 | ||
656 | if (poly->c[0]) { | |
657 | /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ | |
658 | e3 = poly->c[3]; | |
659 | c2 = gf_div(bch, poly->c[0], e3); | |
660 | b2 = gf_div(bch, poly->c[1], e3); | |
661 | a2 = gf_div(bch, poly->c[2], e3); | |
662 | ||
663 | /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ | |
664 | c = gf_mul(bch, a2, c2); /* c = a2c2 */ | |
665 | b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */ | |
666 | a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */ | |
667 | ||
668 | /* find the 4 roots of this affine polynomial */ | |
669 | if (find_affine4_roots(bch, a, b, c, tmp) == 4) { | |
670 | /* remove a2 from final list of roots */ | |
671 | for (i = 0; i < 4; i++) { | |
672 | if (tmp[i] != a2) | |
673 | roots[n++] = a_ilog(bch, tmp[i]); | |
674 | } | |
675 | } | |
676 | } | |
677 | return n; | |
678 | } | |
679 | ||
680 | /* | |
681 | * compute roots of a degree 4 polynomial over GF(2^m) | |
682 | */ | |
683 | static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, | |
684 | unsigned int *roots) | |
685 | { | |
686 | int i, l, n = 0; | |
687 | unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; | |
688 | ||
689 | if (poly->c[0] == 0) | |
690 | return 0; | |
691 | ||
692 | /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ | |
693 | e4 = poly->c[4]; | |
694 | d = gf_div(bch, poly->c[0], e4); | |
695 | c = gf_div(bch, poly->c[1], e4); | |
696 | b = gf_div(bch, poly->c[2], e4); | |
697 | a = gf_div(bch, poly->c[3], e4); | |
698 | ||
699 | /* use Y=1/X transformation to get an affine polynomial */ | |
700 | if (a) { | |
701 | /* first, eliminate cX by using z=X+e with ae^2+c=0 */ | |
702 | if (c) { | |
703 | /* compute e such that e^2 = c/a */ | |
704 | f = gf_div(bch, c, a); | |
705 | l = a_log(bch, f); | |
706 | l += (l & 1) ? GF_N(bch) : 0; | |
707 | e = a_pow(bch, l/2); | |
708 | /* | |
709 | * use transformation z=X+e: | |
710 | * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d | |
711 | * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d | |
712 | * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d | |
713 | * z^4 + az^3 + b'z^2 + d' | |
714 | */ | |
715 | d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; | |
716 | b = gf_mul(bch, a, e)^b; | |
717 | } | |
718 | /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ | |
719 | if (d == 0) | |
720 | /* assume all roots have multiplicity 1 */ | |
721 | return 0; | |
722 | ||
723 | c2 = gf_inv(bch, d); | |
724 | b2 = gf_div(bch, a, d); | |
725 | a2 = gf_div(bch, b, d); | |
726 | } else { | |
727 | /* polynomial is already affine */ | |
728 | c2 = d; | |
729 | b2 = c; | |
730 | a2 = b; | |
731 | } | |
732 | /* find the 4 roots of this affine polynomial */ | |
733 | if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { | |
734 | for (i = 0; i < 4; i++) { | |
735 | /* post-process roots (reverse transformations) */ | |
736 | f = a ? gf_inv(bch, roots[i]) : roots[i]; | |
737 | roots[i] = a_ilog(bch, f^e); | |
738 | } | |
739 | n = 4; | |
740 | } | |
741 | return n; | |
742 | } | |
743 | ||
744 | /* | |
745 | * build monic, log-based representation of a polynomial | |
746 | */ | |
747 | static void gf_poly_logrep(struct bch_control *bch, | |
748 | const struct gf_poly *a, int *rep) | |
749 | { | |
750 | int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); | |
751 | ||
752 | /* represent 0 values with -1; warning, rep[d] is not set to 1 */ | |
753 | for (i = 0; i < d; i++) | |
754 | rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; | |
755 | } | |
756 | ||
757 | /* | |
758 | * compute polynomial Euclidean division remainder in GF(2^m)[X] | |
759 | */ | |
760 | static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, | |
761 | const struct gf_poly *b, int *rep) | |
762 | { | |
763 | int la, p, m; | |
764 | unsigned int i, j, *c = a->c; | |
765 | const unsigned int d = b->deg; | |
766 | ||
767 | if (a->deg < d) | |
768 | return; | |
769 | ||
770 | /* reuse or compute log representation of denominator */ | |
771 | if (!rep) { | |
772 | rep = bch->cache; | |
773 | gf_poly_logrep(bch, b, rep); | |
774 | } | |
775 | ||
776 | for (j = a->deg; j >= d; j--) { | |
777 | if (c[j]) { | |
778 | la = a_log(bch, c[j]); | |
779 | p = j-d; | |
780 | for (i = 0; i < d; i++, p++) { | |
781 | m = rep[i]; | |
782 | if (m >= 0) | |
783 | c[p] ^= bch->a_pow_tab[mod_s(bch, | |
784 | m+la)]; | |
785 | } | |
786 | } | |
787 | } | |
788 | a->deg = d-1; | |
789 | while (!c[a->deg] && a->deg) | |
790 | a->deg--; | |
791 | } | |
792 | ||
793 | /* | |
794 | * compute polynomial Euclidean division quotient in GF(2^m)[X] | |
795 | */ | |
796 | static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, | |
797 | const struct gf_poly *b, struct gf_poly *q) | |
798 | { | |
799 | if (a->deg >= b->deg) { | |
800 | q->deg = a->deg-b->deg; | |
801 | /* compute a mod b (modifies a) */ | |
802 | gf_poly_mod(bch, a, b, NULL); | |
803 | /* quotient is stored in upper part of polynomial a */ | |
804 | memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); | |
805 | } else { | |
806 | q->deg = 0; | |
807 | q->c[0] = 0; | |
808 | } | |
809 | } | |
810 | ||
811 | /* | |
812 | * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] | |
813 | */ | |
814 | static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, | |
815 | struct gf_poly *b) | |
816 | { | |
817 | struct gf_poly *tmp; | |
818 | ||
819 | dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); | |
820 | ||
821 | if (a->deg < b->deg) { | |
822 | tmp = b; | |
823 | b = a; | |
824 | a = tmp; | |
825 | } | |
826 | ||
827 | while (b->deg > 0) { | |
828 | gf_poly_mod(bch, a, b, NULL); | |
829 | tmp = b; | |
830 | b = a; | |
831 | a = tmp; | |
832 | } | |
833 | ||
834 | dbg("%s\n", gf_poly_str(a)); | |
835 | ||
836 | return a; | |
837 | } | |
838 | ||
839 | /* | |
840 | * Given a polynomial f and an integer k, compute Tr(a^kX) mod f | |
841 | * This is used in Berlekamp Trace algorithm for splitting polynomials | |
842 | */ | |
843 | static void compute_trace_bk_mod(struct bch_control *bch, int k, | |
844 | const struct gf_poly *f, struct gf_poly *z, | |
845 | struct gf_poly *out) | |
846 | { | |
847 | const int m = GF_M(bch); | |
848 | int i, j; | |
849 | ||
850 | /* z contains z^2j mod f */ | |
851 | z->deg = 1; | |
852 | z->c[0] = 0; | |
853 | z->c[1] = bch->a_pow_tab[k]; | |
854 | ||
855 | out->deg = 0; | |
856 | memset(out, 0, GF_POLY_SZ(f->deg)); | |
857 | ||
858 | /* compute f log representation only once */ | |
859 | gf_poly_logrep(bch, f, bch->cache); | |
860 | ||
861 | for (i = 0; i < m; i++) { | |
862 | /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ | |
863 | for (j = z->deg; j >= 0; j--) { | |
864 | out->c[j] ^= z->c[j]; | |
865 | z->c[2*j] = gf_sqr(bch, z->c[j]); | |
866 | z->c[2*j+1] = 0; | |
867 | } | |
868 | if (z->deg > out->deg) | |
869 | out->deg = z->deg; | |
870 | ||
871 | if (i < m-1) { | |
872 | z->deg *= 2; | |
873 | /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ | |
874 | gf_poly_mod(bch, z, f, bch->cache); | |
875 | } | |
876 | } | |
877 | while (!out->c[out->deg] && out->deg) | |
878 | out->deg--; | |
879 | ||
880 | dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); | |
881 | } | |
882 | ||
883 | /* | |
884 | * factor a polynomial using Berlekamp Trace algorithm (BTA) | |
885 | */ | |
886 | static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, | |
887 | struct gf_poly **g, struct gf_poly **h) | |
888 | { | |
889 | struct gf_poly *f2 = bch->poly_2t[0]; | |
890 | struct gf_poly *q = bch->poly_2t[1]; | |
891 | struct gf_poly *tk = bch->poly_2t[2]; | |
892 | struct gf_poly *z = bch->poly_2t[3]; | |
893 | struct gf_poly *gcd; | |
894 | ||
895 | dbg("factoring %s...\n", gf_poly_str(f)); | |
896 | ||
897 | *g = f; | |
898 | *h = NULL; | |
899 | ||
900 | /* tk = Tr(a^k.X) mod f */ | |
901 | compute_trace_bk_mod(bch, k, f, z, tk); | |
902 | ||
903 | if (tk->deg > 0) { | |
904 | /* compute g = gcd(f, tk) (destructive operation) */ | |
905 | gf_poly_copy(f2, f); | |
906 | gcd = gf_poly_gcd(bch, f2, tk); | |
907 | if (gcd->deg < f->deg) { | |
908 | /* compute h=f/gcd(f,tk); this will modify f and q */ | |
909 | gf_poly_div(bch, f, gcd, q); | |
910 | /* store g and h in-place (clobbering f) */ | |
911 | *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; | |
912 | gf_poly_copy(*g, gcd); | |
913 | gf_poly_copy(*h, q); | |
914 | } | |
915 | } | |
916 | } | |
917 | ||
918 | /* | |
919 | * find roots of a polynomial, using BTZ algorithm; see the beginning of this | |
920 | * file for details | |
921 | */ | |
922 | static int find_poly_roots(struct bch_control *bch, unsigned int k, | |
923 | struct gf_poly *poly, unsigned int *roots) | |
924 | { | |
925 | int cnt; | |
926 | struct gf_poly *f1, *f2; | |
927 | ||
928 | switch (poly->deg) { | |
929 | /* handle low degree polynomials with ad hoc techniques */ | |
930 | case 1: | |
931 | cnt = find_poly_deg1_roots(bch, poly, roots); | |
932 | break; | |
933 | case 2: | |
934 | cnt = find_poly_deg2_roots(bch, poly, roots); | |
935 | break; | |
936 | case 3: | |
937 | cnt = find_poly_deg3_roots(bch, poly, roots); | |
938 | break; | |
939 | case 4: | |
940 | cnt = find_poly_deg4_roots(bch, poly, roots); | |
941 | break; | |
942 | default: | |
943 | /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ | |
944 | cnt = 0; | |
945 | if (poly->deg && (k <= GF_M(bch))) { | |
946 | factor_polynomial(bch, k, poly, &f1, &f2); | |
947 | if (f1) | |
948 | cnt += find_poly_roots(bch, k+1, f1, roots); | |
949 | if (f2) | |
950 | cnt += find_poly_roots(bch, k+1, f2, roots+cnt); | |
951 | } | |
952 | break; | |
953 | } | |
954 | return cnt; | |
955 | } | |
956 | ||
957 | #if defined(USE_CHIEN_SEARCH) | |
958 | /* | |
959 | * exhaustive root search (Chien) implementation - not used, included only for | |
960 | * reference/comparison tests | |
961 | */ | |
962 | static int chien_search(struct bch_control *bch, unsigned int len, | |
963 | struct gf_poly *p, unsigned int *roots) | |
964 | { | |
965 | int m; | |
966 | unsigned int i, j, syn, syn0, count = 0; | |
967 | const unsigned int k = 8*len+bch->ecc_bits; | |
968 | ||
969 | /* use a log-based representation of polynomial */ | |
970 | gf_poly_logrep(bch, p, bch->cache); | |
971 | bch->cache[p->deg] = 0; | |
972 | syn0 = gf_div(bch, p->c[0], p->c[p->deg]); | |
973 | ||
974 | for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { | |
975 | /* compute elp(a^i) */ | |
976 | for (j = 1, syn = syn0; j <= p->deg; j++) { | |
977 | m = bch->cache[j]; | |
978 | if (m >= 0) | |
979 | syn ^= a_pow(bch, m+j*i); | |
980 | } | |
981 | if (syn == 0) { | |
982 | roots[count++] = GF_N(bch)-i; | |
983 | if (count == p->deg) | |
984 | break; | |
985 | } | |
986 | } | |
987 | return (count == p->deg) ? count : 0; | |
988 | } | |
989 | #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) | |
990 | #endif /* USE_CHIEN_SEARCH */ | |
991 | ||
992 | /** | |
993 | * decode_bch - decode received codeword and find bit error locations | |
994 | * @bch: BCH control structure | |
995 | * @data: received data, ignored if @calc_ecc is provided | |
996 | * @len: data length in bytes, must always be provided | |
997 | * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc | |
998 | * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data | |
999 | * @syn: hw computed syndrome data (if NULL, syndrome is calculated) | |
1000 | * @errloc: output array of error locations | |
1001 | * | |
1002 | * Returns: | |
1003 | * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if | |
1004 | * invalid parameters were provided | |
1005 | * | |
1006 | * Depending on the available hw BCH support and the need to compute @calc_ecc | |
1007 | * separately (using encode_bch()), this function should be called with one of | |
1008 | * the following parameter configurations - | |
1009 | * | |
1010 | * by providing @data and @recv_ecc only: | |
1011 | * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) | |
1012 | * | |
1013 | * by providing @recv_ecc and @calc_ecc: | |
1014 | * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) | |
1015 | * | |
1016 | * by providing ecc = recv_ecc XOR calc_ecc: | |
1017 | * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) | |
1018 | * | |
1019 | * by providing syndrome results @syn: | |
1020 | * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) | |
1021 | * | |
1022 | * Once decode_bch() has successfully returned with a positive value, error | |
1023 | * locations returned in array @errloc should be interpreted as follows - | |
1024 | * | |
1025 | * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for | |
1026 | * data correction) | |
1027 | * | |
1028 | * if (errloc[n] < 8*len), then n-th error is located in data and can be | |
1029 | * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); | |
1030 | * | |
1031 | * Note that this function does not perform any data correction by itself, it | |
1032 | * merely indicates error locations. | |
1033 | */ | |
1034 | int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, | |
1035 | const uint8_t *recv_ecc, const uint8_t *calc_ecc, | |
1036 | const unsigned int *syn, unsigned int *errloc) | |
1037 | { | |
1038 | const unsigned int ecc_words = BCH_ECC_WORDS(bch); | |
1039 | unsigned int nbits; | |
1040 | int i, err, nroots; | |
1041 | uint32_t sum; | |
1042 | ||
1043 | /* sanity check: make sure data length can be handled */ | |
1044 | if (8*len > (bch->n-bch->ecc_bits)) | |
1045 | return -EINVAL; | |
1046 | ||
1047 | /* if caller does not provide syndromes, compute them */ | |
1048 | if (!syn) { | |
1049 | if (!calc_ecc) { | |
1050 | /* compute received data ecc into an internal buffer */ | |
1051 | if (!data || !recv_ecc) | |
1052 | return -EINVAL; | |
1053 | encode_bch(bch, data, len, NULL); | |
1054 | } else { | |
1055 | /* load provided calculated ecc */ | |
1056 | load_ecc8(bch, bch->ecc_buf, calc_ecc); | |
1057 | } | |
1058 | /* load received ecc or assume it was XORed in calc_ecc */ | |
1059 | if (recv_ecc) { | |
1060 | load_ecc8(bch, bch->ecc_buf2, recv_ecc); | |
1061 | /* XOR received and calculated ecc */ | |
1062 | for (i = 0, sum = 0; i < (int)ecc_words; i++) { | |
1063 | bch->ecc_buf[i] ^= bch->ecc_buf2[i]; | |
1064 | sum |= bch->ecc_buf[i]; | |
1065 | } | |
1066 | if (!sum) | |
1067 | /* no error found */ | |
1068 | return 0; | |
1069 | } | |
1070 | compute_syndromes(bch, bch->ecc_buf, bch->syn); | |
1071 | syn = bch->syn; | |
1072 | } | |
1073 | ||
1074 | err = compute_error_locator_polynomial(bch, syn); | |
1075 | if (err > 0) { | |
1076 | nroots = find_poly_roots(bch, 1, bch->elp, errloc); | |
1077 | if (err != nroots) | |
1078 | err = -1; | |
1079 | } | |
1080 | if (err > 0) { | |
1081 | /* post-process raw error locations for easier correction */ | |
1082 | nbits = (len*8)+bch->ecc_bits; | |
1083 | for (i = 0; i < err; i++) { | |
1084 | if (errloc[i] >= nbits) { | |
1085 | err = -1; | |
1086 | break; | |
1087 | } | |
1088 | errloc[i] = nbits-1-errloc[i]; | |
1089 | errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); | |
1090 | } | |
1091 | } | |
1092 | return (err >= 0) ? err : -EBADMSG; | |
1093 | } | |
1094 | ||
1095 | /* | |
1096 | * generate Galois field lookup tables | |
1097 | */ | |
1098 | static int build_gf_tables(struct bch_control *bch, unsigned int poly) | |
1099 | { | |
1100 | unsigned int i, x = 1; | |
1101 | const unsigned int k = 1 << deg(poly); | |
1102 | ||
1103 | /* primitive polynomial must be of degree m */ | |
1104 | if (k != (1u << GF_M(bch))) | |
1105 | return -1; | |
1106 | ||
1107 | for (i = 0; i < GF_N(bch); i++) { | |
1108 | bch->a_pow_tab[i] = x; | |
1109 | bch->a_log_tab[x] = i; | |
1110 | if (i && (x == 1)) | |
1111 | /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ | |
1112 | return -1; | |
1113 | x <<= 1; | |
1114 | if (x & k) | |
1115 | x ^= poly; | |
1116 | } | |
1117 | bch->a_pow_tab[GF_N(bch)] = 1; | |
1118 | bch->a_log_tab[0] = 0; | |
1119 | ||
1120 | return 0; | |
1121 | } | |
1122 | ||
1123 | /* | |
1124 | * compute generator polynomial remainder tables for fast encoding | |
1125 | */ | |
1126 | static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) | |
1127 | { | |
1128 | int i, j, b, d; | |
1129 | uint32_t data, hi, lo, *tab; | |
1130 | const int l = BCH_ECC_WORDS(bch); | |
1131 | const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); | |
1132 | const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); | |
1133 | ||
1134 | memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); | |
1135 | ||
1136 | for (i = 0; i < 256; i++) { | |
1137 | /* p(X)=i is a small polynomial of weight <= 8 */ | |
1138 | for (b = 0; b < 4; b++) { | |
1139 | /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ | |
1140 | tab = bch->mod8_tab + (b*256+i)*l; | |
1141 | data = i << (8*b); | |
1142 | while (data) { | |
1143 | d = deg(data); | |
1144 | /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ | |
1145 | data ^= g[0] >> (31-d); | |
1146 | for (j = 0; j < ecclen; j++) { | |
1147 | hi = (d < 31) ? g[j] << (d+1) : 0; | |
1148 | lo = (j+1 < plen) ? | |
1149 | g[j+1] >> (31-d) : 0; | |
1150 | tab[j] ^= hi|lo; | |
1151 | } | |
1152 | } | |
1153 | } | |
1154 | } | |
1155 | } | |
1156 | ||
1157 | /* | |
1158 | * build a base for factoring degree 2 polynomials | |
1159 | */ | |
1160 | static int build_deg2_base(struct bch_control *bch) | |
1161 | { | |
1162 | const int m = GF_M(bch); | |
1163 | int i, j, r; | |
1164 | unsigned int sum, x, y, remaining, ak = 0, xi[m]; | |
1165 | ||
1166 | /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ | |
1167 | for (i = 0; i < m; i++) { | |
1168 | for (j = 0, sum = 0; j < m; j++) | |
1169 | sum ^= a_pow(bch, i*(1 << j)); | |
1170 | ||
1171 | if (sum) { | |
1172 | ak = bch->a_pow_tab[i]; | |
1173 | break; | |
1174 | } | |
1175 | } | |
1176 | /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ | |
1177 | remaining = m; | |
1178 | memset(xi, 0, sizeof(xi)); | |
1179 | ||
1180 | for (x = 0; (x <= GF_N(bch)) && remaining; x++) { | |
1181 | y = gf_sqr(bch, x)^x; | |
1182 | for (i = 0; i < 2; i++) { | |
1183 | r = a_log(bch, y); | |
1184 | if (y && (r < m) && !xi[r]) { | |
1185 | bch->xi_tab[r] = x; | |
1186 | xi[r] = 1; | |
1187 | remaining--; | |
1188 | dbg("x%d = %x\n", r, x); | |
1189 | break; | |
1190 | } | |
1191 | y ^= ak; | |
1192 | } | |
1193 | } | |
1194 | /* should not happen but check anyway */ | |
1195 | return remaining ? -1 : 0; | |
1196 | } | |
1197 | ||
1198 | static void *bch_alloc(size_t size, int *err) | |
1199 | { | |
1200 | void *ptr; | |
1201 | ||
1202 | ptr = kmalloc(size, GFP_KERNEL); | |
1203 | if (ptr == NULL) | |
1204 | *err = 1; | |
1205 | return ptr; | |
1206 | } | |
1207 | ||
1208 | /* | |
1209 | * compute generator polynomial for given (m,t) parameters. | |
1210 | */ | |
1211 | static uint32_t *compute_generator_polynomial(struct bch_control *bch) | |
1212 | { | |
1213 | const unsigned int m = GF_M(bch); | |
1214 | const unsigned int t = GF_T(bch); | |
1215 | int n, err = 0; | |
1216 | unsigned int i, j, nbits, r, word, *roots; | |
1217 | struct gf_poly *g; | |
1218 | uint32_t *genpoly; | |
1219 | ||
1220 | g = bch_alloc(GF_POLY_SZ(m*t), &err); | |
1221 | roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); | |
1222 | genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); | |
1223 | ||
1224 | if (err) { | |
1225 | kfree(genpoly); | |
1226 | genpoly = NULL; | |
1227 | goto finish; | |
1228 | } | |
1229 | ||
1230 | /* enumerate all roots of g(X) */ | |
1231 | memset(roots , 0, (bch->n+1)*sizeof(*roots)); | |
1232 | for (i = 0; i < t; i++) { | |
1233 | for (j = 0, r = 2*i+1; j < m; j++) { | |
1234 | roots[r] = 1; | |
1235 | r = mod_s(bch, 2*r); | |
1236 | } | |
1237 | } | |
1238 | /* build generator polynomial g(X) */ | |
1239 | g->deg = 0; | |
1240 | g->c[0] = 1; | |
1241 | for (i = 0; i < GF_N(bch); i++) { | |
1242 | if (roots[i]) { | |
1243 | /* multiply g(X) by (X+root) */ | |
1244 | r = bch->a_pow_tab[i]; | |
1245 | g->c[g->deg+1] = 1; | |
1246 | for (j = g->deg; j > 0; j--) | |
1247 | g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; | |
1248 | ||
1249 | g->c[0] = gf_mul(bch, g->c[0], r); | |
1250 | g->deg++; | |
1251 | } | |
1252 | } | |
1253 | /* store left-justified binary representation of g(X) */ | |
1254 | n = g->deg+1; | |
1255 | i = 0; | |
1256 | ||
1257 | while (n > 0) { | |
1258 | nbits = (n > 32) ? 32 : n; | |
1259 | for (j = 0, word = 0; j < nbits; j++) { | |
1260 | if (g->c[n-1-j]) | |
1261 | word |= 1u << (31-j); | |
1262 | } | |
1263 | genpoly[i++] = word; | |
1264 | n -= nbits; | |
1265 | } | |
1266 | bch->ecc_bits = g->deg; | |
1267 | ||
1268 | finish: | |
1269 | kfree(g); | |
1270 | kfree(roots); | |
1271 | ||
1272 | return genpoly; | |
1273 | } | |
1274 | ||
1275 | /** | |
1276 | * init_bch - initialize a BCH encoder/decoder | |
1277 | * @m: Galois field order, should be in the range 5-15 | |
1278 | * @t: maximum error correction capability, in bits | |
1279 | * @prim_poly: user-provided primitive polynomial (or 0 to use default) | |
1280 | * | |
1281 | * Returns: | |
1282 | * a newly allocated BCH control structure if successful, NULL otherwise | |
1283 | * | |
1284 | * This initialization can take some time, as lookup tables are built for fast | |
1285 | * encoding/decoding; make sure not to call this function from a time critical | |
1286 | * path. Usually, init_bch() should be called on module/driver init and | |
1287 | * free_bch() should be called to release memory on exit. | |
1288 | * | |
1289 | * You may provide your own primitive polynomial of degree @m in argument | |
1290 | * @prim_poly, or let init_bch() use its default polynomial. | |
1291 | * | |
1292 | * Once init_bch() has successfully returned a pointer to a newly allocated | |
1293 | * BCH control structure, ecc length in bytes is given by member @ecc_bytes of | |
1294 | * the structure. | |
1295 | */ | |
1296 | struct bch_control *init_bch(int m, int t, unsigned int prim_poly) | |
1297 | { | |
1298 | int err = 0; | |
1299 | unsigned int i, words; | |
1300 | uint32_t *genpoly; | |
1301 | struct bch_control *bch = NULL; | |
1302 | ||
1303 | const int min_m = 5; | |
1304 | const int max_m = 15; | |
1305 | ||
1306 | /* default primitive polynomials */ | |
1307 | static const unsigned int prim_poly_tab[] = { | |
1308 | 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, | |
1309 | 0x402b, 0x8003, | |
1310 | }; | |
1311 | ||
1312 | #if defined(CONFIG_BCH_CONST_PARAMS) | |
1313 | if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { | |
1314 | printk(KERN_ERR "bch encoder/decoder was configured to support " | |
1315 | "parameters m=%d, t=%d only!\n", | |
1316 | CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); | |
1317 | goto fail; | |
1318 | } | |
1319 | #endif | |
1320 | if ((m < min_m) || (m > max_m)) | |
1321 | /* | |
1322 | * values of m greater than 15 are not currently supported; | |
1323 | * supporting m > 15 would require changing table base type | |
1324 | * (uint16_t) and a small patch in matrix transposition | |
1325 | */ | |
1326 | goto fail; | |
1327 | ||
1328 | /* sanity checks */ | |
1329 | if ((t < 1) || (m*t >= ((1 << m)-1))) | |
1330 | /* invalid t value */ | |
1331 | goto fail; | |
1332 | ||
1333 | /* select a primitive polynomial for generating GF(2^m) */ | |
1334 | if (prim_poly == 0) | |
1335 | prim_poly = prim_poly_tab[m-min_m]; | |
1336 | ||
1337 | bch = kzalloc(sizeof(*bch), GFP_KERNEL); | |
1338 | if (bch == NULL) | |
1339 | goto fail; | |
1340 | ||
1341 | bch->m = m; | |
1342 | bch->t = t; | |
1343 | bch->n = (1 << m)-1; | |
1344 | words = DIV_ROUND_UP(m*t, 32); | |
1345 | bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); | |
1346 | bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); | |
1347 | bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); | |
1348 | bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); | |
1349 | bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); | |
1350 | bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); | |
1351 | bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); | |
1352 | bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); | |
1353 | bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); | |
1354 | bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); | |
1355 | ||
1356 | for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) | |
1357 | bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); | |
1358 | ||
1359 | if (err) | |
1360 | goto fail; | |
1361 | ||
1362 | err = build_gf_tables(bch, prim_poly); | |
1363 | if (err) | |
1364 | goto fail; | |
1365 | ||
1366 | /* use generator polynomial for computing encoding tables */ | |
1367 | genpoly = compute_generator_polynomial(bch); | |
1368 | if (genpoly == NULL) | |
1369 | goto fail; | |
1370 | ||
1371 | build_mod8_tables(bch, genpoly); | |
1372 | kfree(genpoly); | |
1373 | ||
1374 | err = build_deg2_base(bch); | |
1375 | if (err) | |
1376 | goto fail; | |
1377 | ||
1378 | return bch; | |
1379 | ||
1380 | fail: | |
1381 | free_bch(bch); | |
1382 | return NULL; | |
1383 | } | |
1384 | ||
1385 | /** | |
1386 | * free_bch - free the BCH control structure | |
1387 | * @bch: BCH control structure to release | |
1388 | */ | |
1389 | void free_bch(struct bch_control *bch) | |
1390 | { | |
1391 | unsigned int i; | |
1392 | ||
1393 | if (bch) { | |
1394 | kfree(bch->a_pow_tab); | |
1395 | kfree(bch->a_log_tab); | |
1396 | kfree(bch->mod8_tab); | |
1397 | kfree(bch->ecc_buf); | |
1398 | kfree(bch->ecc_buf2); | |
1399 | kfree(bch->xi_tab); | |
1400 | kfree(bch->syn); | |
1401 | kfree(bch->cache); | |
1402 | kfree(bch->elp); | |
1403 | ||
1404 | for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) | |
1405 | kfree(bch->poly_2t[i]); | |
1406 | ||
1407 | kfree(bch); | |
1408 | } | |
1409 | } |