]>
Commit | Line | Data |
---|---|---|
83d290c5 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
7ba890bf KP |
2 | /* |
3 | Red Black Trees | |
4 | (C) 1999 Andrea Arcangeli <[email protected]> | |
5 | (C) 2002 David Woodhouse <[email protected]> | |
9dd228b5 | 6 | (C) 2012 Michel Lespinasse <[email protected]> |
7ba890bf | 7 | |
7ba890bf KP |
8 | linux/lib/rbtree.c |
9 | */ | |
10 | ||
9dd228b5 HS |
11 | #include <linux/rbtree_augmented.h> |
12 | #ifndef __UBOOT__ | |
13 | #include <linux/export.h> | |
14 | #else | |
7ba890bf | 15 | #include <ubi_uboot.h> |
9dd228b5 HS |
16 | #endif |
17 | /* | |
18 | * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree | |
19 | * | |
20 | * 1) A node is either red or black | |
21 | * 2) The root is black | |
22 | * 3) All leaves (NULL) are black | |
23 | * 4) Both children of every red node are black | |
24 | * 5) Every simple path from root to leaves contains the same number | |
25 | * of black nodes. | |
26 | * | |
27 | * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two | |
28 | * consecutive red nodes in a path and every red node is therefore followed by | |
29 | * a black. So if B is the number of black nodes on every simple path (as per | |
30 | * 5), then the longest possible path due to 4 is 2B. | |
31 | * | |
32 | * We shall indicate color with case, where black nodes are uppercase and red | |
33 | * nodes will be lowercase. Unknown color nodes shall be drawn as red within | |
34 | * parentheses and have some accompanying text comment. | |
35 | */ | |
7ba890bf | 36 | |
9dd228b5 | 37 | static inline void rb_set_black(struct rb_node *rb) |
7ba890bf | 38 | { |
9dd228b5 | 39 | rb->__rb_parent_color |= RB_BLACK; |
7ba890bf KP |
40 | } |
41 | ||
9dd228b5 | 42 | static inline struct rb_node *rb_red_parent(struct rb_node *red) |
7ba890bf | 43 | { |
9dd228b5 HS |
44 | return (struct rb_node *)red->__rb_parent_color; |
45 | } | |
7ba890bf | 46 | |
9dd228b5 HS |
47 | /* |
48 | * Helper function for rotations: | |
49 | * - old's parent and color get assigned to new | |
50 | * - old gets assigned new as a parent and 'color' as a color. | |
51 | */ | |
52 | static inline void | |
53 | __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new, | |
54 | struct rb_root *root, int color) | |
55 | { | |
56 | struct rb_node *parent = rb_parent(old); | |
57 | new->__rb_parent_color = old->__rb_parent_color; | |
58 | rb_set_parent_color(old, new, color); | |
59 | __rb_change_child(old, new, parent, root); | |
7ba890bf KP |
60 | } |
61 | ||
9dd228b5 HS |
62 | static __always_inline void |
63 | __rb_insert(struct rb_node *node, struct rb_root *root, | |
64 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | |
7ba890bf | 65 | { |
9dd228b5 HS |
66 | struct rb_node *parent = rb_red_parent(node), *gparent, *tmp; |
67 | ||
68 | while (true) { | |
69 | /* | |
70 | * Loop invariant: node is red | |
71 | * | |
72 | * If there is a black parent, we are done. | |
73 | * Otherwise, take some corrective action as we don't | |
74 | * want a red root or two consecutive red nodes. | |
75 | */ | |
76 | if (!parent) { | |
77 | rb_set_parent_color(node, NULL, RB_BLACK); | |
78 | break; | |
79 | } else if (rb_is_black(parent)) | |
80 | break; | |
81 | ||
82 | gparent = rb_red_parent(parent); | |
83 | ||
84 | tmp = gparent->rb_right; | |
85 | if (parent != tmp) { /* parent == gparent->rb_left */ | |
86 | if (tmp && rb_is_red(tmp)) { | |
87 | /* | |
88 | * Case 1 - color flips | |
89 | * | |
90 | * G g | |
91 | * / \ / \ | |
92 | * p u --> P U | |
93 | * / / | |
94 | * n N | |
95 | * | |
96 | * However, since g's parent might be red, and | |
97 | * 4) does not allow this, we need to recurse | |
98 | * at g. | |
99 | */ | |
100 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
101 | rb_set_parent_color(parent, gparent, RB_BLACK); | |
102 | node = gparent; | |
103 | parent = rb_parent(node); | |
104 | rb_set_parent_color(node, parent, RB_RED); | |
105 | continue; | |
7ba890bf KP |
106 | } |
107 | ||
9dd228b5 HS |
108 | tmp = parent->rb_right; |
109 | if (node == tmp) { | |
110 | /* | |
111 | * Case 2 - left rotate at parent | |
112 | * | |
113 | * G G | |
114 | * / \ / \ | |
115 | * p U --> n U | |
116 | * \ / | |
117 | * n p | |
118 | * | |
119 | * This still leaves us in violation of 4), the | |
120 | * continuation into Case 3 will fix that. | |
121 | */ | |
122 | parent->rb_right = tmp = node->rb_left; | |
123 | node->rb_left = parent; | |
124 | if (tmp) | |
125 | rb_set_parent_color(tmp, parent, | |
126 | RB_BLACK); | |
127 | rb_set_parent_color(parent, node, RB_RED); | |
128 | augment_rotate(parent, node); | |
7ba890bf | 129 | parent = node; |
9dd228b5 | 130 | tmp = node->rb_right; |
7ba890bf KP |
131 | } |
132 | ||
9dd228b5 HS |
133 | /* |
134 | * Case 3 - right rotate at gparent | |
135 | * | |
136 | * G P | |
137 | * / \ / \ | |
138 | * p U --> n g | |
139 | * / \ | |
140 | * n U | |
141 | */ | |
142 | gparent->rb_left = tmp; /* == parent->rb_right */ | |
143 | parent->rb_right = gparent; | |
144 | if (tmp) | |
145 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
146 | __rb_rotate_set_parents(gparent, parent, root, RB_RED); | |
147 | augment_rotate(gparent, parent); | |
148 | break; | |
7ba890bf | 149 | } else { |
9dd228b5 HS |
150 | tmp = gparent->rb_left; |
151 | if (tmp && rb_is_red(tmp)) { | |
152 | /* Case 1 - color flips */ | |
153 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
154 | rb_set_parent_color(parent, gparent, RB_BLACK); | |
155 | node = gparent; | |
156 | parent = rb_parent(node); | |
157 | rb_set_parent_color(node, parent, RB_RED); | |
158 | continue; | |
7ba890bf KP |
159 | } |
160 | ||
9dd228b5 HS |
161 | tmp = parent->rb_left; |
162 | if (node == tmp) { | |
163 | /* Case 2 - right rotate at parent */ | |
164 | parent->rb_left = tmp = node->rb_right; | |
165 | node->rb_right = parent; | |
166 | if (tmp) | |
167 | rb_set_parent_color(tmp, parent, | |
168 | RB_BLACK); | |
169 | rb_set_parent_color(parent, node, RB_RED); | |
170 | augment_rotate(parent, node); | |
7ba890bf | 171 | parent = node; |
9dd228b5 | 172 | tmp = node->rb_left; |
7ba890bf KP |
173 | } |
174 | ||
9dd228b5 HS |
175 | /* Case 3 - left rotate at gparent */ |
176 | gparent->rb_right = tmp; /* == parent->rb_left */ | |
177 | parent->rb_left = gparent; | |
178 | if (tmp) | |
179 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
180 | __rb_rotate_set_parents(gparent, parent, root, RB_RED); | |
181 | augment_rotate(gparent, parent); | |
182 | break; | |
7ba890bf KP |
183 | } |
184 | } | |
7ba890bf KP |
185 | } |
186 | ||
9dd228b5 HS |
187 | /* |
188 | * Inline version for rb_erase() use - we want to be able to inline | |
189 | * and eliminate the dummy_rotate callback there | |
190 | */ | |
191 | static __always_inline void | |
192 | ____rb_erase_color(struct rb_node *parent, struct rb_root *root, | |
193 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | |
7ba890bf | 194 | { |
9dd228b5 HS |
195 | struct rb_node *node = NULL, *sibling, *tmp1, *tmp2; |
196 | ||
197 | while (true) { | |
198 | /* | |
199 | * Loop invariants: | |
200 | * - node is black (or NULL on first iteration) | |
201 | * - node is not the root (parent is not NULL) | |
202 | * - All leaf paths going through parent and node have a | |
203 | * black node count that is 1 lower than other leaf paths. | |
204 | */ | |
205 | sibling = parent->rb_right; | |
206 | if (node != sibling) { /* node == parent->rb_left */ | |
207 | if (rb_is_red(sibling)) { | |
208 | /* | |
209 | * Case 1 - left rotate at parent | |
210 | * | |
211 | * P S | |
212 | * / \ / \ | |
213 | * N s --> p Sr | |
214 | * / \ / \ | |
215 | * Sl Sr N Sl | |
216 | */ | |
217 | parent->rb_right = tmp1 = sibling->rb_left; | |
218 | sibling->rb_left = parent; | |
219 | rb_set_parent_color(tmp1, parent, RB_BLACK); | |
220 | __rb_rotate_set_parents(parent, sibling, root, | |
221 | RB_RED); | |
222 | augment_rotate(parent, sibling); | |
223 | sibling = tmp1; | |
7ba890bf | 224 | } |
9dd228b5 HS |
225 | tmp1 = sibling->rb_right; |
226 | if (!tmp1 || rb_is_black(tmp1)) { | |
227 | tmp2 = sibling->rb_left; | |
228 | if (!tmp2 || rb_is_black(tmp2)) { | |
229 | /* | |
230 | * Case 2 - sibling color flip | |
231 | * (p could be either color here) | |
232 | * | |
233 | * (p) (p) | |
234 | * / \ / \ | |
235 | * N S --> N s | |
236 | * / \ / \ | |
237 | * Sl Sr Sl Sr | |
238 | * | |
239 | * This leaves us violating 5) which | |
240 | * can be fixed by flipping p to black | |
241 | * if it was red, or by recursing at p. | |
242 | * p is red when coming from Case 1. | |
243 | */ | |
244 | rb_set_parent_color(sibling, parent, | |
245 | RB_RED); | |
246 | if (rb_is_red(parent)) | |
247 | rb_set_black(parent); | |
248 | else { | |
249 | node = parent; | |
250 | parent = rb_parent(node); | |
251 | if (parent) | |
252 | continue; | |
253 | } | |
254 | break; | |
7ba890bf | 255 | } |
9dd228b5 HS |
256 | /* |
257 | * Case 3 - right rotate at sibling | |
258 | * (p could be either color here) | |
259 | * | |
260 | * (p) (p) | |
261 | * / \ / \ | |
262 | * N S --> N Sl | |
263 | * / \ \ | |
264 | * sl Sr s | |
265 | * \ | |
266 | * Sr | |
267 | */ | |
268 | sibling->rb_left = tmp1 = tmp2->rb_right; | |
269 | tmp2->rb_right = sibling; | |
270 | parent->rb_right = tmp2; | |
271 | if (tmp1) | |
272 | rb_set_parent_color(tmp1, sibling, | |
273 | RB_BLACK); | |
274 | augment_rotate(sibling, tmp2); | |
275 | tmp1 = sibling; | |
276 | sibling = tmp2; | |
7ba890bf | 277 | } |
9dd228b5 HS |
278 | /* |
279 | * Case 4 - left rotate at parent + color flips | |
280 | * (p and sl could be either color here. | |
281 | * After rotation, p becomes black, s acquires | |
282 | * p's color, and sl keeps its color) | |
283 | * | |
284 | * (p) (s) | |
285 | * / \ / \ | |
286 | * N S --> P Sr | |
287 | * / \ / \ | |
288 | * (sl) sr N (sl) | |
289 | */ | |
290 | parent->rb_right = tmp2 = sibling->rb_left; | |
291 | sibling->rb_left = parent; | |
292 | rb_set_parent_color(tmp1, sibling, RB_BLACK); | |
293 | if (tmp2) | |
294 | rb_set_parent(tmp2, parent); | |
295 | __rb_rotate_set_parents(parent, sibling, root, | |
296 | RB_BLACK); | |
297 | augment_rotate(parent, sibling); | |
298 | break; | |
299 | } else { | |
300 | sibling = parent->rb_left; | |
301 | if (rb_is_red(sibling)) { | |
302 | /* Case 1 - right rotate at parent */ | |
303 | parent->rb_left = tmp1 = sibling->rb_right; | |
304 | sibling->rb_right = parent; | |
305 | rb_set_parent_color(tmp1, parent, RB_BLACK); | |
306 | __rb_rotate_set_parents(parent, sibling, root, | |
307 | RB_RED); | |
308 | augment_rotate(parent, sibling); | |
309 | sibling = tmp1; | |
7ba890bf | 310 | } |
9dd228b5 HS |
311 | tmp1 = sibling->rb_left; |
312 | if (!tmp1 || rb_is_black(tmp1)) { | |
313 | tmp2 = sibling->rb_right; | |
314 | if (!tmp2 || rb_is_black(tmp2)) { | |
315 | /* Case 2 - sibling color flip */ | |
316 | rb_set_parent_color(sibling, parent, | |
317 | RB_RED); | |
318 | if (rb_is_red(parent)) | |
319 | rb_set_black(parent); | |
320 | else { | |
321 | node = parent; | |
322 | parent = rb_parent(node); | |
323 | if (parent) | |
324 | continue; | |
325 | } | |
326 | break; | |
7ba890bf | 327 | } |
9dd228b5 HS |
328 | /* Case 3 - right rotate at sibling */ |
329 | sibling->rb_right = tmp1 = tmp2->rb_left; | |
330 | tmp2->rb_left = sibling; | |
331 | parent->rb_left = tmp2; | |
332 | if (tmp1) | |
333 | rb_set_parent_color(tmp1, sibling, | |
334 | RB_BLACK); | |
335 | augment_rotate(sibling, tmp2); | |
336 | tmp1 = sibling; | |
337 | sibling = tmp2; | |
7ba890bf | 338 | } |
9dd228b5 HS |
339 | /* Case 4 - left rotate at parent + color flips */ |
340 | parent->rb_left = tmp2 = sibling->rb_right; | |
341 | sibling->rb_right = parent; | |
342 | rb_set_parent_color(tmp1, sibling, RB_BLACK); | |
343 | if (tmp2) | |
344 | rb_set_parent(tmp2, parent); | |
345 | __rb_rotate_set_parents(parent, sibling, root, | |
346 | RB_BLACK); | |
347 | augment_rotate(parent, sibling); | |
348 | break; | |
7ba890bf KP |
349 | } |
350 | } | |
7ba890bf KP |
351 | } |
352 | ||
9dd228b5 HS |
353 | /* Non-inline version for rb_erase_augmented() use */ |
354 | void __rb_erase_color(struct rb_node *parent, struct rb_root *root, | |
355 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | |
356 | { | |
357 | ____rb_erase_color(parent, root, augment_rotate); | |
358 | } | |
359 | EXPORT_SYMBOL(__rb_erase_color); | |
360 | ||
361 | /* | |
362 | * Non-augmented rbtree manipulation functions. | |
363 | * | |
364 | * We use dummy augmented callbacks here, and have the compiler optimize them | |
365 | * out of the rb_insert_color() and rb_erase() function definitions. | |
366 | */ | |
367 | ||
368 | static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {} | |
369 | static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {} | |
370 | static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {} | |
371 | ||
372 | static const struct rb_augment_callbacks dummy_callbacks = { | |
373 | dummy_propagate, dummy_copy, dummy_rotate | |
374 | }; | |
375 | ||
376 | void rb_insert_color(struct rb_node *node, struct rb_root *root) | |
377 | { | |
378 | __rb_insert(node, root, dummy_rotate); | |
379 | } | |
380 | EXPORT_SYMBOL(rb_insert_color); | |
381 | ||
7ba890bf KP |
382 | void rb_erase(struct rb_node *node, struct rb_root *root) |
383 | { | |
9dd228b5 HS |
384 | struct rb_node *rebalance; |
385 | rebalance = __rb_erase_augmented(node, root, &dummy_callbacks); | |
386 | if (rebalance) | |
387 | ____rb_erase_color(rebalance, root, dummy_rotate); | |
388 | } | |
389 | EXPORT_SYMBOL(rb_erase); | |
7ba890bf | 390 | |
9dd228b5 HS |
391 | /* |
392 | * Augmented rbtree manipulation functions. | |
393 | * | |
394 | * This instantiates the same __always_inline functions as in the non-augmented | |
395 | * case, but this time with user-defined callbacks. | |
396 | */ | |
7ba890bf | 397 | |
9dd228b5 HS |
398 | void __rb_insert_augmented(struct rb_node *node, struct rb_root *root, |
399 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | |
400 | { | |
401 | __rb_insert(node, root, augment_rotate); | |
7ba890bf | 402 | } |
9dd228b5 | 403 | EXPORT_SYMBOL(__rb_insert_augmented); |
7ba890bf KP |
404 | |
405 | /* | |
406 | * This function returns the first node (in sort order) of the tree. | |
407 | */ | |
9dd228b5 | 408 | struct rb_node *rb_first(const struct rb_root *root) |
7ba890bf KP |
409 | { |
410 | struct rb_node *n; | |
411 | ||
412 | n = root->rb_node; | |
413 | if (!n) | |
414 | return NULL; | |
415 | while (n->rb_left) | |
416 | n = n->rb_left; | |
417 | return n; | |
418 | } | |
9dd228b5 | 419 | EXPORT_SYMBOL(rb_first); |
7ba890bf | 420 | |
9dd228b5 | 421 | struct rb_node *rb_last(const struct rb_root *root) |
7ba890bf KP |
422 | { |
423 | struct rb_node *n; | |
424 | ||
425 | n = root->rb_node; | |
426 | if (!n) | |
427 | return NULL; | |
428 | while (n->rb_right) | |
429 | n = n->rb_right; | |
430 | return n; | |
431 | } | |
9dd228b5 | 432 | EXPORT_SYMBOL(rb_last); |
7ba890bf | 433 | |
9dd228b5 | 434 | struct rb_node *rb_next(const struct rb_node *node) |
7ba890bf KP |
435 | { |
436 | struct rb_node *parent; | |
437 | ||
9dd228b5 | 438 | if (RB_EMPTY_NODE(node)) |
7ba890bf KP |
439 | return NULL; |
440 | ||
9dd228b5 HS |
441 | /* |
442 | * If we have a right-hand child, go down and then left as far | |
443 | * as we can. | |
444 | */ | |
7ba890bf | 445 | if (node->rb_right) { |
9dd228b5 | 446 | node = node->rb_right; |
7ba890bf KP |
447 | while (node->rb_left) |
448 | node=node->rb_left; | |
9dd228b5 | 449 | return (struct rb_node *)node; |
7ba890bf KP |
450 | } |
451 | ||
9dd228b5 HS |
452 | /* |
453 | * No right-hand children. Everything down and left is smaller than us, | |
454 | * so any 'next' node must be in the general direction of our parent. | |
455 | * Go up the tree; any time the ancestor is a right-hand child of its | |
456 | * parent, keep going up. First time it's a left-hand child of its | |
457 | * parent, said parent is our 'next' node. | |
458 | */ | |
7ba890bf KP |
459 | while ((parent = rb_parent(node)) && node == parent->rb_right) |
460 | node = parent; | |
461 | ||
462 | return parent; | |
463 | } | |
9dd228b5 | 464 | EXPORT_SYMBOL(rb_next); |
7ba890bf | 465 | |
9dd228b5 | 466 | struct rb_node *rb_prev(const struct rb_node *node) |
7ba890bf KP |
467 | { |
468 | struct rb_node *parent; | |
469 | ||
9dd228b5 | 470 | if (RB_EMPTY_NODE(node)) |
7ba890bf KP |
471 | return NULL; |
472 | ||
9dd228b5 HS |
473 | /* |
474 | * If we have a left-hand child, go down and then right as far | |
475 | * as we can. | |
476 | */ | |
7ba890bf | 477 | if (node->rb_left) { |
9dd228b5 | 478 | node = node->rb_left; |
7ba890bf KP |
479 | while (node->rb_right) |
480 | node=node->rb_right; | |
9dd228b5 | 481 | return (struct rb_node *)node; |
7ba890bf KP |
482 | } |
483 | ||
9dd228b5 HS |
484 | /* |
485 | * No left-hand children. Go up till we find an ancestor which | |
486 | * is a right-hand child of its parent. | |
487 | */ | |
7ba890bf KP |
488 | while ((parent = rb_parent(node)) && node == parent->rb_left) |
489 | node = parent; | |
490 | ||
491 | return parent; | |
492 | } | |
9dd228b5 | 493 | EXPORT_SYMBOL(rb_prev); |
7ba890bf KP |
494 | |
495 | void rb_replace_node(struct rb_node *victim, struct rb_node *new, | |
496 | struct rb_root *root) | |
497 | { | |
498 | struct rb_node *parent = rb_parent(victim); | |
499 | ||
500 | /* Set the surrounding nodes to point to the replacement */ | |
9dd228b5 | 501 | __rb_change_child(victim, new, parent, root); |
7ba890bf KP |
502 | if (victim->rb_left) |
503 | rb_set_parent(victim->rb_left, new); | |
504 | if (victim->rb_right) | |
505 | rb_set_parent(victim->rb_right, new); | |
506 | ||
507 | /* Copy the pointers/colour from the victim to the replacement */ | |
508 | *new = *victim; | |
509 | } | |
9dd228b5 HS |
510 | EXPORT_SYMBOL(rb_replace_node); |
511 | ||
512 | static struct rb_node *rb_left_deepest_node(const struct rb_node *node) | |
513 | { | |
514 | for (;;) { | |
515 | if (node->rb_left) | |
516 | node = node->rb_left; | |
517 | else if (node->rb_right) | |
518 | node = node->rb_right; | |
519 | else | |
520 | return (struct rb_node *)node; | |
521 | } | |
522 | } | |
523 | ||
524 | struct rb_node *rb_next_postorder(const struct rb_node *node) | |
525 | { | |
526 | const struct rb_node *parent; | |
527 | if (!node) | |
528 | return NULL; | |
529 | parent = rb_parent(node); | |
530 | ||
531 | /* If we're sitting on node, we've already seen our children */ | |
532 | if (parent && node == parent->rb_left && parent->rb_right) { | |
533 | /* If we are the parent's left node, go to the parent's right | |
534 | * node then all the way down to the left */ | |
535 | return rb_left_deepest_node(parent->rb_right); | |
536 | } else | |
537 | /* Otherwise we are the parent's right node, and the parent | |
538 | * should be next */ | |
539 | return (struct rb_node *)parent; | |
540 | } | |
541 | EXPORT_SYMBOL(rb_next_postorder); | |
542 | ||
543 | struct rb_node *rb_first_postorder(const struct rb_root *root) | |
544 | { | |
545 | if (!root->rb_node) | |
546 | return NULL; | |
547 | ||
548 | return rb_left_deepest_node(root->rb_node); | |
549 | } | |
550 | EXPORT_SYMBOL(rb_first_postorder); |