]>
Commit | Line | Data |
---|---|---|
83d290c5 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
9eefe2a2 SR |
2 | /* |
3 | * This file is part of UBIFS. | |
4 | * | |
5 | * Copyright (C) 2006-2008 Nokia Corporation. | |
6 | * Copyright (C) 2006, 2007 University of Szeged, Hungary | |
7 | * | |
9eefe2a2 SR |
8 | * Authors: Artem Bityutskiy (Битюцкий Артём) |
9 | * Adrian Hunter | |
10 | * Zoltan Sogor | |
11 | */ | |
12 | ||
13 | /* | |
14 | * This file implements UBIFS I/O subsystem which provides various I/O-related | |
15 | * helper functions (reading/writing/checking/validating nodes) and implements | |
16 | * write-buffering support. Write buffers help to save space which otherwise | |
17 | * would have been wasted for padding to the nearest minimal I/O unit boundary. | |
18 | * Instead, data first goes to the write-buffer and is flushed when the | |
19 | * buffer is full or when it is not used for some time (by timer). This is | |
20 | * similar to the mechanism is used by JFFS2. | |
21 | * | |
ff94bc40 HS |
22 | * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum |
23 | * write size (@c->max_write_size). The latter is the maximum amount of bytes | |
24 | * the underlying flash is able to program at a time, and writing in | |
25 | * @c->max_write_size units should presumably be faster. Obviously, | |
26 | * @c->min_io_size <= @c->max_write_size. Write-buffers are of | |
27 | * @c->max_write_size bytes in size for maximum performance. However, when a | |
28 | * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size | |
29 | * boundary) which contains data is written, not the whole write-buffer, | |
30 | * because this is more space-efficient. | |
31 | * | |
32 | * This optimization adds few complications to the code. Indeed, on the one | |
33 | * hand, we want to write in optimal @c->max_write_size bytes chunks, which | |
34 | * also means aligning writes at the @c->max_write_size bytes offsets. On the | |
35 | * other hand, we do not want to waste space when synchronizing the write | |
36 | * buffer, so during synchronization we writes in smaller chunks. And this makes | |
37 | * the next write offset to be not aligned to @c->max_write_size bytes. So the | |
38 | * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned | |
39 | * to @c->max_write_size bytes again. We do this by temporarily shrinking | |
40 | * write-buffer size (@wbuf->size). | |
41 | * | |
9eefe2a2 SR |
42 | * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by |
43 | * mutexes defined inside these objects. Since sometimes upper-level code | |
44 | * has to lock the write-buffer (e.g. journal space reservation code), many | |
45 | * functions related to write-buffers have "nolock" suffix which means that the | |
46 | * caller has to lock the write-buffer before calling this function. | |
47 | * | |
48 | * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not | |
49 | * aligned, UBIFS starts the next node from the aligned address, and the padded | |
50 | * bytes may contain any rubbish. In other words, UBIFS does not put padding | |
51 | * bytes in those small gaps. Common headers of nodes store real node lengths, | |
52 | * not aligned lengths. Indexing nodes also store real lengths in branches. | |
53 | * | |
54 | * UBIFS uses padding when it pads to the next min. I/O unit. In this case it | |
55 | * uses padding nodes or padding bytes, if the padding node does not fit. | |
56 | * | |
ff94bc40 HS |
57 | * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when |
58 | * they are read from the flash media. | |
9eefe2a2 SR |
59 | */ |
60 | ||
ff94bc40 HS |
61 | #ifndef __UBOOT__ |
62 | #include <linux/crc32.h> | |
63 | #include <linux/slab.h> | |
3db71108 | 64 | #include <u-boot/crc.h> |
ff94bc40 HS |
65 | #else |
66 | #include <linux/compat.h> | |
67 | #include <linux/err.h> | |
68 | #endif | |
9eefe2a2 SR |
69 | #include "ubifs.h" |
70 | ||
71 | /** | |
72 | * ubifs_ro_mode - switch UBIFS to read read-only mode. | |
73 | * @c: UBIFS file-system description object | |
74 | * @err: error code which is the reason of switching to R/O mode | |
75 | */ | |
76 | void ubifs_ro_mode(struct ubifs_info *c, int err) | |
77 | { | |
ff94bc40 HS |
78 | if (!c->ro_error) { |
79 | c->ro_error = 1; | |
9eefe2a2 | 80 | c->no_chk_data_crc = 0; |
ff94bc40 | 81 | c->vfs_sb->s_flags |= MS_RDONLY; |
0195a7bb | 82 | ubifs_warn(c, "switched to read-only mode, error %d", err); |
ff94bc40 HS |
83 | dump_stack(); |
84 | } | |
85 | } | |
86 | ||
87 | /* | |
88 | * Below are simple wrappers over UBI I/O functions which include some | |
89 | * additional checks and UBIFS debugging stuff. See corresponding UBI function | |
90 | * for more information. | |
91 | */ | |
92 | ||
93 | int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, | |
94 | int len, int even_ebadmsg) | |
95 | { | |
96 | int err; | |
97 | ||
98 | err = ubi_read(c->ubi, lnum, buf, offs, len); | |
99 | /* | |
100 | * In case of %-EBADMSG print the error message only if the | |
101 | * @even_ebadmsg is true. | |
102 | */ | |
103 | if (err && (err != -EBADMSG || even_ebadmsg)) { | |
0195a7bb | 104 | ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d", |
ff94bc40 HS |
105 | len, lnum, offs, err); |
106 | dump_stack(); | |
107 | } | |
108 | return err; | |
109 | } | |
110 | ||
111 | int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, | |
112 | int len) | |
113 | { | |
114 | int err; | |
115 | ||
116 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
117 | if (c->ro_error) | |
118 | return -EROFS; | |
119 | if (!dbg_is_tst_rcvry(c)) | |
120 | err = ubi_leb_write(c->ubi, lnum, buf, offs, len); | |
0195a7bb | 121 | #ifndef __UBOOT__ |
ff94bc40 HS |
122 | else |
123 | err = dbg_leb_write(c, lnum, buf, offs, len); | |
0195a7bb | 124 | #endif |
ff94bc40 | 125 | if (err) { |
0195a7bb | 126 | ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d", |
ff94bc40 HS |
127 | len, lnum, offs, err); |
128 | ubifs_ro_mode(c, err); | |
129 | dump_stack(); | |
130 | } | |
131 | return err; | |
132 | } | |
133 | ||
134 | int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len) | |
135 | { | |
136 | int err; | |
137 | ||
138 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
139 | if (c->ro_error) | |
140 | return -EROFS; | |
141 | if (!dbg_is_tst_rcvry(c)) | |
142 | err = ubi_leb_change(c->ubi, lnum, buf, len); | |
0195a7bb | 143 | #ifndef __UBOOT__ |
ff94bc40 HS |
144 | else |
145 | err = dbg_leb_change(c, lnum, buf, len); | |
0195a7bb | 146 | #endif |
ff94bc40 | 147 | if (err) { |
0195a7bb | 148 | ubifs_err(c, "changing %d bytes in LEB %d failed, error %d", |
ff94bc40 HS |
149 | len, lnum, err); |
150 | ubifs_ro_mode(c, err); | |
151 | dump_stack(); | |
9eefe2a2 | 152 | } |
ff94bc40 HS |
153 | return err; |
154 | } | |
155 | ||
156 | int ubifs_leb_unmap(struct ubifs_info *c, int lnum) | |
157 | { | |
158 | int err; | |
159 | ||
160 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
161 | if (c->ro_error) | |
162 | return -EROFS; | |
163 | if (!dbg_is_tst_rcvry(c)) | |
164 | err = ubi_leb_unmap(c->ubi, lnum); | |
0195a7bb | 165 | #ifndef __UBOOT__ |
ff94bc40 HS |
166 | else |
167 | err = dbg_leb_unmap(c, lnum); | |
0195a7bb | 168 | #endif |
ff94bc40 | 169 | if (err) { |
0195a7bb | 170 | ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err); |
ff94bc40 HS |
171 | ubifs_ro_mode(c, err); |
172 | dump_stack(); | |
173 | } | |
174 | return err; | |
175 | } | |
176 | ||
177 | int ubifs_leb_map(struct ubifs_info *c, int lnum) | |
178 | { | |
179 | int err; | |
180 | ||
181 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
182 | if (c->ro_error) | |
183 | return -EROFS; | |
184 | if (!dbg_is_tst_rcvry(c)) | |
185 | err = ubi_leb_map(c->ubi, lnum); | |
0195a7bb | 186 | #ifndef __UBOOT__ |
ff94bc40 HS |
187 | else |
188 | err = dbg_leb_map(c, lnum); | |
0195a7bb | 189 | #endif |
ff94bc40 | 190 | if (err) { |
0195a7bb | 191 | ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err); |
ff94bc40 HS |
192 | ubifs_ro_mode(c, err); |
193 | dump_stack(); | |
194 | } | |
195 | return err; | |
196 | } | |
197 | ||
198 | int ubifs_is_mapped(const struct ubifs_info *c, int lnum) | |
199 | { | |
200 | int err; | |
201 | ||
202 | err = ubi_is_mapped(c->ubi, lnum); | |
203 | if (err < 0) { | |
0195a7bb | 204 | ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d", |
ff94bc40 HS |
205 | lnum, err); |
206 | dump_stack(); | |
207 | } | |
208 | return err; | |
9eefe2a2 SR |
209 | } |
210 | ||
211 | /** | |
212 | * ubifs_check_node - check node. | |
213 | * @c: UBIFS file-system description object | |
214 | * @buf: node to check | |
215 | * @lnum: logical eraseblock number | |
216 | * @offs: offset within the logical eraseblock | |
217 | * @quiet: print no messages | |
218 | * @must_chk_crc: indicates whether to always check the CRC | |
219 | * | |
220 | * This function checks node magic number and CRC checksum. This function also | |
221 | * validates node length to prevent UBIFS from becoming crazy when an attacker | |
222 | * feeds it a file-system image with incorrect nodes. For example, too large | |
223 | * node length in the common header could cause UBIFS to read memory outside of | |
224 | * allocated buffer when checking the CRC checksum. | |
225 | * | |
226 | * This function may skip data nodes CRC checking if @c->no_chk_data_crc is | |
227 | * true, which is controlled by corresponding UBIFS mount option. However, if | |
228 | * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is | |
ff94bc40 HS |
229 | * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are |
230 | * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC | |
231 | * is checked. This is because during mounting or re-mounting from R/O mode to | |
232 | * R/W mode we may read journal nodes (when replying the journal or doing the | |
233 | * recovery) and the journal nodes may potentially be corrupted, so checking is | |
234 | * required. | |
9eefe2a2 SR |
235 | * |
236 | * This function returns zero in case of success and %-EUCLEAN in case of bad | |
237 | * CRC or magic. | |
238 | */ | |
239 | int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, | |
240 | int offs, int quiet, int must_chk_crc) | |
241 | { | |
242 | int err = -EINVAL, type, node_len; | |
243 | uint32_t crc, node_crc, magic; | |
244 | const struct ubifs_ch *ch = buf; | |
245 | ||
246 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | |
247 | ubifs_assert(!(offs & 7) && offs < c->leb_size); | |
248 | ||
249 | magic = le32_to_cpu(ch->magic); | |
250 | if (magic != UBIFS_NODE_MAGIC) { | |
251 | if (!quiet) | |
0195a7bb | 252 | ubifs_err(c, "bad magic %#08x, expected %#08x", |
9eefe2a2 SR |
253 | magic, UBIFS_NODE_MAGIC); |
254 | err = -EUCLEAN; | |
255 | goto out; | |
256 | } | |
257 | ||
258 | type = ch->node_type; | |
259 | if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { | |
260 | if (!quiet) | |
0195a7bb | 261 | ubifs_err(c, "bad node type %d", type); |
9eefe2a2 SR |
262 | goto out; |
263 | } | |
264 | ||
265 | node_len = le32_to_cpu(ch->len); | |
266 | if (node_len + offs > c->leb_size) | |
267 | goto out_len; | |
268 | ||
269 | if (c->ranges[type].max_len == 0) { | |
270 | if (node_len != c->ranges[type].len) | |
271 | goto out_len; | |
272 | } else if (node_len < c->ranges[type].min_len || | |
273 | node_len > c->ranges[type].max_len) | |
274 | goto out_len; | |
275 | ||
ff94bc40 HS |
276 | if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && |
277 | !c->remounting_rw && c->no_chk_data_crc) | |
9eefe2a2 SR |
278 | return 0; |
279 | ||
280 | crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); | |
281 | node_crc = le32_to_cpu(ch->crc); | |
282 | if (crc != node_crc) { | |
283 | if (!quiet) | |
0195a7bb | 284 | ubifs_err(c, "bad CRC: calculated %#08x, read %#08x", |
9eefe2a2 SR |
285 | crc, node_crc); |
286 | err = -EUCLEAN; | |
287 | goto out; | |
288 | } | |
289 | ||
290 | return 0; | |
291 | ||
292 | out_len: | |
293 | if (!quiet) | |
0195a7bb | 294 | ubifs_err(c, "bad node length %d", node_len); |
9eefe2a2 SR |
295 | out: |
296 | if (!quiet) { | |
0195a7bb | 297 | ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); |
ff94bc40 HS |
298 | ubifs_dump_node(c, buf); |
299 | dump_stack(); | |
9eefe2a2 SR |
300 | } |
301 | return err; | |
302 | } | |
303 | ||
304 | /** | |
305 | * ubifs_pad - pad flash space. | |
306 | * @c: UBIFS file-system description object | |
307 | * @buf: buffer to put padding to | |
308 | * @pad: how many bytes to pad | |
309 | * | |
310 | * The flash media obliges us to write only in chunks of %c->min_io_size and | |
311 | * when we have to write less data we add padding node to the write-buffer and | |
312 | * pad it to the next minimal I/O unit's boundary. Padding nodes help when the | |
313 | * media is being scanned. If the amount of wasted space is not enough to fit a | |
314 | * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes | |
315 | * pattern (%UBIFS_PADDING_BYTE). | |
316 | * | |
317 | * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is | |
318 | * used. | |
319 | */ | |
320 | void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) | |
321 | { | |
322 | uint32_t crc; | |
323 | ||
324 | ubifs_assert(pad >= 0 && !(pad & 7)); | |
325 | ||
326 | if (pad >= UBIFS_PAD_NODE_SZ) { | |
327 | struct ubifs_ch *ch = buf; | |
328 | struct ubifs_pad_node *pad_node = buf; | |
329 | ||
330 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | |
331 | ch->node_type = UBIFS_PAD_NODE; | |
332 | ch->group_type = UBIFS_NO_NODE_GROUP; | |
333 | ch->padding[0] = ch->padding[1] = 0; | |
334 | ch->sqnum = 0; | |
335 | ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); | |
336 | pad -= UBIFS_PAD_NODE_SZ; | |
337 | pad_node->pad_len = cpu_to_le32(pad); | |
338 | crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); | |
339 | ch->crc = cpu_to_le32(crc); | |
340 | memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); | |
341 | } else if (pad > 0) | |
342 | /* Too little space, padding node won't fit */ | |
343 | memset(buf, UBIFS_PADDING_BYTE, pad); | |
344 | } | |
345 | ||
346 | /** | |
347 | * next_sqnum - get next sequence number. | |
348 | * @c: UBIFS file-system description object | |
349 | */ | |
350 | static unsigned long long next_sqnum(struct ubifs_info *c) | |
351 | { | |
352 | unsigned long long sqnum; | |
353 | ||
354 | spin_lock(&c->cnt_lock); | |
355 | sqnum = ++c->max_sqnum; | |
356 | spin_unlock(&c->cnt_lock); | |
357 | ||
358 | if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { | |
359 | if (sqnum >= SQNUM_WATERMARK) { | |
0195a7bb | 360 | ubifs_err(c, "sequence number overflow %llu, end of life", |
9eefe2a2 SR |
361 | sqnum); |
362 | ubifs_ro_mode(c, -EINVAL); | |
363 | } | |
0195a7bb | 364 | ubifs_warn(c, "running out of sequence numbers, end of life soon"); |
9eefe2a2 SR |
365 | } |
366 | ||
367 | return sqnum; | |
368 | } | |
369 | ||
370 | /** | |
371 | * ubifs_prepare_node - prepare node to be written to flash. | |
372 | * @c: UBIFS file-system description object | |
373 | * @node: the node to pad | |
374 | * @len: node length | |
375 | * @pad: if the buffer has to be padded | |
376 | * | |
377 | * This function prepares node at @node to be written to the media - it | |
378 | * calculates node CRC, fills the common header, and adds proper padding up to | |
379 | * the next minimum I/O unit if @pad is not zero. | |
380 | */ | |
381 | void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) | |
382 | { | |
383 | uint32_t crc; | |
384 | struct ubifs_ch *ch = node; | |
385 | unsigned long long sqnum = next_sqnum(c); | |
386 | ||
387 | ubifs_assert(len >= UBIFS_CH_SZ); | |
388 | ||
389 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | |
390 | ch->len = cpu_to_le32(len); | |
391 | ch->group_type = UBIFS_NO_NODE_GROUP; | |
392 | ch->sqnum = cpu_to_le64(sqnum); | |
393 | ch->padding[0] = ch->padding[1] = 0; | |
394 | crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); | |
395 | ch->crc = cpu_to_le32(crc); | |
396 | ||
397 | if (pad) { | |
398 | len = ALIGN(len, 8); | |
399 | pad = ALIGN(len, c->min_io_size) - len; | |
400 | ubifs_pad(c, node + len, pad); | |
401 | } | |
402 | } | |
403 | ||
ff94bc40 HS |
404 | /** |
405 | * ubifs_prep_grp_node - prepare node of a group to be written to flash. | |
406 | * @c: UBIFS file-system description object | |
407 | * @node: the node to pad | |
408 | * @len: node length | |
409 | * @last: indicates the last node of the group | |
410 | * | |
411 | * This function prepares node at @node to be written to the media - it | |
412 | * calculates node CRC and fills the common header. | |
413 | */ | |
414 | void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) | |
415 | { | |
416 | uint32_t crc; | |
417 | struct ubifs_ch *ch = node; | |
418 | unsigned long long sqnum = next_sqnum(c); | |
419 | ||
420 | ubifs_assert(len >= UBIFS_CH_SZ); | |
421 | ||
422 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | |
423 | ch->len = cpu_to_le32(len); | |
424 | if (last) | |
425 | ch->group_type = UBIFS_LAST_OF_NODE_GROUP; | |
426 | else | |
427 | ch->group_type = UBIFS_IN_NODE_GROUP; | |
428 | ch->sqnum = cpu_to_le64(sqnum); | |
429 | ch->padding[0] = ch->padding[1] = 0; | |
430 | crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); | |
431 | ch->crc = cpu_to_le32(crc); | |
432 | } | |
433 | ||
434 | #ifndef __UBOOT__ | |
435 | /** | |
436 | * wbuf_timer_callback - write-buffer timer callback function. | |
0195a7bb | 437 | * @timer: timer data (write-buffer descriptor) |
ff94bc40 HS |
438 | * |
439 | * This function is called when the write-buffer timer expires. | |
440 | */ | |
441 | static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) | |
442 | { | |
443 | struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); | |
444 | ||
445 | dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); | |
446 | wbuf->need_sync = 1; | |
447 | wbuf->c->need_wbuf_sync = 1; | |
448 | ubifs_wake_up_bgt(wbuf->c); | |
449 | return HRTIMER_NORESTART; | |
450 | } | |
451 | ||
452 | /** | |
453 | * new_wbuf_timer - start new write-buffer timer. | |
454 | * @wbuf: write-buffer descriptor | |
455 | */ | |
456 | static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) | |
457 | { | |
458 | ubifs_assert(!hrtimer_active(&wbuf->timer)); | |
459 | ||
460 | if (wbuf->no_timer) | |
461 | return; | |
462 | dbg_io("set timer for jhead %s, %llu-%llu millisecs", | |
463 | dbg_jhead(wbuf->jhead), | |
464 | div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC), | |
465 | div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta, | |
466 | USEC_PER_SEC)); | |
467 | hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta, | |
468 | HRTIMER_MODE_REL); | |
469 | } | |
470 | #endif | |
471 | ||
472 | /** | |
473 | * cancel_wbuf_timer - cancel write-buffer timer. | |
474 | * @wbuf: write-buffer descriptor | |
475 | */ | |
476 | static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) | |
477 | { | |
478 | if (wbuf->no_timer) | |
479 | return; | |
480 | wbuf->need_sync = 0; | |
481 | #ifndef __UBOOT__ | |
482 | hrtimer_cancel(&wbuf->timer); | |
483 | #endif | |
484 | } | |
485 | ||
486 | /** | |
487 | * ubifs_wbuf_sync_nolock - synchronize write-buffer. | |
488 | * @wbuf: write-buffer to synchronize | |
489 | * | |
490 | * This function synchronizes write-buffer @buf and returns zero in case of | |
491 | * success or a negative error code in case of failure. | |
492 | * | |
493 | * Note, although write-buffers are of @c->max_write_size, this function does | |
494 | * not necessarily writes all @c->max_write_size bytes to the flash. Instead, | |
495 | * if the write-buffer is only partially filled with data, only the used part | |
496 | * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. | |
497 | * This way we waste less space. | |
498 | */ | |
499 | int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) | |
500 | { | |
501 | struct ubifs_info *c = wbuf->c; | |
502 | int err, dirt, sync_len; | |
503 | ||
504 | cancel_wbuf_timer_nolock(wbuf); | |
505 | if (!wbuf->used || wbuf->lnum == -1) | |
506 | /* Write-buffer is empty or not seeked */ | |
507 | return 0; | |
508 | ||
509 | dbg_io("LEB %d:%d, %d bytes, jhead %s", | |
510 | wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); | |
511 | ubifs_assert(!(wbuf->avail & 7)); | |
512 | ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size); | |
513 | ubifs_assert(wbuf->size >= c->min_io_size); | |
514 | ubifs_assert(wbuf->size <= c->max_write_size); | |
515 | ubifs_assert(wbuf->size % c->min_io_size == 0); | |
516 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
517 | if (c->leb_size - wbuf->offs >= c->max_write_size) | |
518 | ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); | |
519 | ||
520 | if (c->ro_error) | |
521 | return -EROFS; | |
522 | ||
523 | /* | |
524 | * Do not write whole write buffer but write only the minimum necessary | |
525 | * amount of min. I/O units. | |
526 | */ | |
527 | sync_len = ALIGN(wbuf->used, c->min_io_size); | |
528 | dirt = sync_len - wbuf->used; | |
529 | if (dirt) | |
530 | ubifs_pad(c, wbuf->buf + wbuf->used, dirt); | |
531 | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len); | |
532 | if (err) | |
533 | return err; | |
534 | ||
535 | spin_lock(&wbuf->lock); | |
536 | wbuf->offs += sync_len; | |
537 | /* | |
538 | * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. | |
539 | * But our goal is to optimize writes and make sure we write in | |
540 | * @c->max_write_size chunks and to @c->max_write_size-aligned offset. | |
541 | * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make | |
542 | * sure that @wbuf->offs + @wbuf->size is aligned to | |
543 | * @c->max_write_size. This way we make sure that after next | |
544 | * write-buffer flush we are again at the optimal offset (aligned to | |
545 | * @c->max_write_size). | |
546 | */ | |
547 | if (c->leb_size - wbuf->offs < c->max_write_size) | |
548 | wbuf->size = c->leb_size - wbuf->offs; | |
549 | else if (wbuf->offs & (c->max_write_size - 1)) | |
550 | wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; | |
551 | else | |
552 | wbuf->size = c->max_write_size; | |
553 | wbuf->avail = wbuf->size; | |
554 | wbuf->used = 0; | |
555 | wbuf->next_ino = 0; | |
556 | spin_unlock(&wbuf->lock); | |
557 | ||
558 | if (wbuf->sync_callback) | |
559 | err = wbuf->sync_callback(c, wbuf->lnum, | |
560 | c->leb_size - wbuf->offs, dirt); | |
561 | return err; | |
562 | } | |
563 | ||
564 | /** | |
565 | * ubifs_wbuf_seek_nolock - seek write-buffer. | |
566 | * @wbuf: write-buffer | |
567 | * @lnum: logical eraseblock number to seek to | |
568 | * @offs: logical eraseblock offset to seek to | |
569 | * | |
570 | * This function targets the write-buffer to logical eraseblock @lnum:@offs. | |
571 | * The write-buffer has to be empty. Returns zero in case of success and a | |
572 | * negative error code in case of failure. | |
573 | */ | |
574 | int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs) | |
575 | { | |
576 | const struct ubifs_info *c = wbuf->c; | |
577 | ||
578 | dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); | |
579 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); | |
580 | ubifs_assert(offs >= 0 && offs <= c->leb_size); | |
581 | ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); | |
582 | ubifs_assert(lnum != wbuf->lnum); | |
583 | ubifs_assert(wbuf->used == 0); | |
584 | ||
585 | spin_lock(&wbuf->lock); | |
586 | wbuf->lnum = lnum; | |
587 | wbuf->offs = offs; | |
588 | if (c->leb_size - wbuf->offs < c->max_write_size) | |
589 | wbuf->size = c->leb_size - wbuf->offs; | |
590 | else if (wbuf->offs & (c->max_write_size - 1)) | |
591 | wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; | |
592 | else | |
593 | wbuf->size = c->max_write_size; | |
594 | wbuf->avail = wbuf->size; | |
595 | wbuf->used = 0; | |
596 | spin_unlock(&wbuf->lock); | |
597 | ||
598 | return 0; | |
599 | } | |
600 | ||
601 | #ifndef __UBOOT__ | |
602 | /** | |
603 | * ubifs_bg_wbufs_sync - synchronize write-buffers. | |
604 | * @c: UBIFS file-system description object | |
605 | * | |
606 | * This function is called by background thread to synchronize write-buffers. | |
607 | * Returns zero in case of success and a negative error code in case of | |
608 | * failure. | |
609 | */ | |
610 | int ubifs_bg_wbufs_sync(struct ubifs_info *c) | |
611 | { | |
612 | int err, i; | |
613 | ||
614 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
615 | if (!c->need_wbuf_sync) | |
616 | return 0; | |
617 | c->need_wbuf_sync = 0; | |
618 | ||
619 | if (c->ro_error) { | |
620 | err = -EROFS; | |
621 | goto out_timers; | |
622 | } | |
623 | ||
624 | dbg_io("synchronize"); | |
625 | for (i = 0; i < c->jhead_cnt; i++) { | |
626 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | |
627 | ||
628 | cond_resched(); | |
629 | ||
630 | /* | |
631 | * If the mutex is locked then wbuf is being changed, so | |
632 | * synchronization is not necessary. | |
633 | */ | |
634 | if (mutex_is_locked(&wbuf->io_mutex)) | |
635 | continue; | |
636 | ||
637 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
638 | if (!wbuf->need_sync) { | |
639 | mutex_unlock(&wbuf->io_mutex); | |
640 | continue; | |
641 | } | |
642 | ||
643 | err = ubifs_wbuf_sync_nolock(wbuf); | |
644 | mutex_unlock(&wbuf->io_mutex); | |
645 | if (err) { | |
0195a7bb | 646 | ubifs_err(c, "cannot sync write-buffer, error %d", err); |
ff94bc40 HS |
647 | ubifs_ro_mode(c, err); |
648 | goto out_timers; | |
649 | } | |
650 | } | |
651 | ||
652 | return 0; | |
653 | ||
654 | out_timers: | |
655 | /* Cancel all timers to prevent repeated errors */ | |
656 | for (i = 0; i < c->jhead_cnt; i++) { | |
657 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | |
658 | ||
659 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
660 | cancel_wbuf_timer_nolock(wbuf); | |
661 | mutex_unlock(&wbuf->io_mutex); | |
662 | } | |
663 | return err; | |
664 | } | |
665 | ||
666 | /** | |
667 | * ubifs_wbuf_write_nolock - write data to flash via write-buffer. | |
668 | * @wbuf: write-buffer | |
669 | * @buf: node to write | |
670 | * @len: node length | |
671 | * | |
672 | * This function writes data to flash via write-buffer @wbuf. This means that | |
673 | * the last piece of the node won't reach the flash media immediately if it | |
674 | * does not take whole max. write unit (@c->max_write_size). Instead, the node | |
675 | * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or | |
676 | * because more data are appended to the write-buffer). | |
677 | * | |
678 | * This function returns zero in case of success and a negative error code in | |
679 | * case of failure. If the node cannot be written because there is no more | |
680 | * space in this logical eraseblock, %-ENOSPC is returned. | |
681 | */ | |
682 | int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) | |
683 | { | |
684 | struct ubifs_info *c = wbuf->c; | |
685 | int err, written, n, aligned_len = ALIGN(len, 8); | |
686 | ||
687 | dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, | |
688 | dbg_ntype(((struct ubifs_ch *)buf)->node_type), | |
689 | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); | |
690 | ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); | |
691 | ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); | |
692 | ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); | |
693 | ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size); | |
694 | ubifs_assert(wbuf->size >= c->min_io_size); | |
695 | ubifs_assert(wbuf->size <= c->max_write_size); | |
696 | ubifs_assert(wbuf->size % c->min_io_size == 0); | |
697 | ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); | |
698 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
699 | ubifs_assert(!c->space_fixup); | |
700 | if (c->leb_size - wbuf->offs >= c->max_write_size) | |
701 | ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); | |
702 | ||
703 | if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { | |
704 | err = -ENOSPC; | |
705 | goto out; | |
706 | } | |
707 | ||
708 | cancel_wbuf_timer_nolock(wbuf); | |
709 | ||
710 | if (c->ro_error) | |
711 | return -EROFS; | |
712 | ||
713 | if (aligned_len <= wbuf->avail) { | |
714 | /* | |
715 | * The node is not very large and fits entirely within | |
716 | * write-buffer. | |
717 | */ | |
718 | memcpy(wbuf->buf + wbuf->used, buf, len); | |
719 | ||
720 | if (aligned_len == wbuf->avail) { | |
721 | dbg_io("flush jhead %s wbuf to LEB %d:%d", | |
722 | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); | |
723 | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, | |
724 | wbuf->offs, wbuf->size); | |
725 | if (err) | |
726 | goto out; | |
727 | ||
728 | spin_lock(&wbuf->lock); | |
729 | wbuf->offs += wbuf->size; | |
730 | if (c->leb_size - wbuf->offs >= c->max_write_size) | |
731 | wbuf->size = c->max_write_size; | |
732 | else | |
733 | wbuf->size = c->leb_size - wbuf->offs; | |
734 | wbuf->avail = wbuf->size; | |
735 | wbuf->used = 0; | |
736 | wbuf->next_ino = 0; | |
737 | spin_unlock(&wbuf->lock); | |
738 | } else { | |
739 | spin_lock(&wbuf->lock); | |
740 | wbuf->avail -= aligned_len; | |
741 | wbuf->used += aligned_len; | |
742 | spin_unlock(&wbuf->lock); | |
743 | } | |
744 | ||
745 | goto exit; | |
746 | } | |
747 | ||
748 | written = 0; | |
749 | ||
750 | if (wbuf->used) { | |
751 | /* | |
752 | * The node is large enough and does not fit entirely within | |
753 | * current available space. We have to fill and flush | |
754 | * write-buffer and switch to the next max. write unit. | |
755 | */ | |
756 | dbg_io("flush jhead %s wbuf to LEB %d:%d", | |
757 | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); | |
758 | memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); | |
759 | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, | |
760 | wbuf->size); | |
761 | if (err) | |
762 | goto out; | |
763 | ||
764 | wbuf->offs += wbuf->size; | |
765 | len -= wbuf->avail; | |
766 | aligned_len -= wbuf->avail; | |
767 | written += wbuf->avail; | |
768 | } else if (wbuf->offs & (c->max_write_size - 1)) { | |
769 | /* | |
770 | * The write-buffer offset is not aligned to | |
771 | * @c->max_write_size and @wbuf->size is less than | |
772 | * @c->max_write_size. Write @wbuf->size bytes to make sure the | |
773 | * following writes are done in optimal @c->max_write_size | |
774 | * chunks. | |
775 | */ | |
776 | dbg_io("write %d bytes to LEB %d:%d", | |
777 | wbuf->size, wbuf->lnum, wbuf->offs); | |
778 | err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, | |
779 | wbuf->size); | |
780 | if (err) | |
781 | goto out; | |
782 | ||
783 | wbuf->offs += wbuf->size; | |
784 | len -= wbuf->size; | |
785 | aligned_len -= wbuf->size; | |
786 | written += wbuf->size; | |
787 | } | |
788 | ||
789 | /* | |
790 | * The remaining data may take more whole max. write units, so write the | |
791 | * remains multiple to max. write unit size directly to the flash media. | |
792 | * We align node length to 8-byte boundary because we anyway flash wbuf | |
793 | * if the remaining space is less than 8 bytes. | |
794 | */ | |
795 | n = aligned_len >> c->max_write_shift; | |
796 | if (n) { | |
797 | n <<= c->max_write_shift; | |
798 | dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, | |
799 | wbuf->offs); | |
800 | err = ubifs_leb_write(c, wbuf->lnum, buf + written, | |
801 | wbuf->offs, n); | |
802 | if (err) | |
803 | goto out; | |
804 | wbuf->offs += n; | |
805 | aligned_len -= n; | |
806 | len -= n; | |
807 | written += n; | |
808 | } | |
809 | ||
810 | spin_lock(&wbuf->lock); | |
811 | if (aligned_len) | |
812 | /* | |
813 | * And now we have what's left and what does not take whole | |
814 | * max. write unit, so write it to the write-buffer and we are | |
815 | * done. | |
816 | */ | |
817 | memcpy(wbuf->buf, buf + written, len); | |
818 | ||
819 | if (c->leb_size - wbuf->offs >= c->max_write_size) | |
820 | wbuf->size = c->max_write_size; | |
821 | else | |
822 | wbuf->size = c->leb_size - wbuf->offs; | |
823 | wbuf->avail = wbuf->size - aligned_len; | |
824 | wbuf->used = aligned_len; | |
825 | wbuf->next_ino = 0; | |
826 | spin_unlock(&wbuf->lock); | |
827 | ||
828 | exit: | |
829 | if (wbuf->sync_callback) { | |
830 | int free = c->leb_size - wbuf->offs - wbuf->used; | |
831 | ||
832 | err = wbuf->sync_callback(c, wbuf->lnum, free, 0); | |
833 | if (err) | |
834 | goto out; | |
835 | } | |
836 | ||
837 | if (wbuf->used) | |
838 | new_wbuf_timer_nolock(wbuf); | |
839 | ||
840 | return 0; | |
841 | ||
842 | out: | |
0195a7bb | 843 | ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d", |
ff94bc40 HS |
844 | len, wbuf->lnum, wbuf->offs, err); |
845 | ubifs_dump_node(c, buf); | |
846 | dump_stack(); | |
847 | ubifs_dump_leb(c, wbuf->lnum); | |
848 | return err; | |
849 | } | |
850 | ||
851 | /** | |
852 | * ubifs_write_node - write node to the media. | |
853 | * @c: UBIFS file-system description object | |
854 | * @buf: the node to write | |
855 | * @len: node length | |
856 | * @lnum: logical eraseblock number | |
857 | * @offs: offset within the logical eraseblock | |
858 | * | |
859 | * This function automatically fills node magic number, assigns sequence | |
860 | * number, and calculates node CRC checksum. The length of the @buf buffer has | |
861 | * to be aligned to the minimal I/O unit size. This function automatically | |
862 | * appends padding node and padding bytes if needed. Returns zero in case of | |
863 | * success and a negative error code in case of failure. | |
864 | */ | |
865 | int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, | |
866 | int offs) | |
867 | { | |
868 | int err, buf_len = ALIGN(len, c->min_io_size); | |
869 | ||
870 | dbg_io("LEB %d:%d, %s, length %d (aligned %d)", | |
871 | lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, | |
872 | buf_len); | |
873 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | |
874 | ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); | |
875 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
876 | ubifs_assert(!c->space_fixup); | |
877 | ||
878 | if (c->ro_error) | |
879 | return -EROFS; | |
880 | ||
881 | ubifs_prepare_node(c, buf, len, 1); | |
882 | err = ubifs_leb_write(c, lnum, buf, offs, buf_len); | |
883 | if (err) | |
884 | ubifs_dump_node(c, buf); | |
885 | ||
886 | return err; | |
887 | } | |
888 | #endif | |
889 | ||
890 | /** | |
891 | * ubifs_read_node_wbuf - read node from the media or write-buffer. | |
892 | * @wbuf: wbuf to check for un-written data | |
893 | * @buf: buffer to read to | |
894 | * @type: node type | |
895 | * @len: node length | |
896 | * @lnum: logical eraseblock number | |
897 | * @offs: offset within the logical eraseblock | |
898 | * | |
899 | * This function reads a node of known type and length, checks it and stores | |
900 | * in @buf. If the node partially or fully sits in the write-buffer, this | |
901 | * function takes data from the buffer, otherwise it reads the flash media. | |
902 | * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative | |
903 | * error code in case of failure. | |
904 | */ | |
905 | int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, | |
906 | int lnum, int offs) | |
907 | { | |
908 | const struct ubifs_info *c = wbuf->c; | |
909 | int err, rlen, overlap; | |
910 | struct ubifs_ch *ch = buf; | |
911 | ||
912 | dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, | |
913 | dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); | |
914 | ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | |
915 | ubifs_assert(!(offs & 7) && offs < c->leb_size); | |
916 | ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); | |
917 | ||
918 | spin_lock(&wbuf->lock); | |
919 | overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); | |
920 | if (!overlap) { | |
921 | /* We may safely unlock the write-buffer and read the data */ | |
922 | spin_unlock(&wbuf->lock); | |
923 | return ubifs_read_node(c, buf, type, len, lnum, offs); | |
924 | } | |
925 | ||
926 | /* Don't read under wbuf */ | |
927 | rlen = wbuf->offs - offs; | |
928 | if (rlen < 0) | |
929 | rlen = 0; | |
930 | ||
931 | /* Copy the rest from the write-buffer */ | |
932 | memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); | |
933 | spin_unlock(&wbuf->lock); | |
934 | ||
935 | if (rlen > 0) { | |
936 | /* Read everything that goes before write-buffer */ | |
937 | err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); | |
938 | if (err && err != -EBADMSG) | |
939 | return err; | |
940 | } | |
941 | ||
942 | if (type != ch->node_type) { | |
0195a7bb | 943 | ubifs_err(c, "bad node type (%d but expected %d)", |
ff94bc40 HS |
944 | ch->node_type, type); |
945 | goto out; | |
946 | } | |
947 | ||
948 | err = ubifs_check_node(c, buf, lnum, offs, 0, 0); | |
949 | if (err) { | |
0195a7bb | 950 | ubifs_err(c, "expected node type %d", type); |
ff94bc40 HS |
951 | return err; |
952 | } | |
953 | ||
954 | rlen = le32_to_cpu(ch->len); | |
955 | if (rlen != len) { | |
0195a7bb | 956 | ubifs_err(c, "bad node length %d, expected %d", rlen, len); |
ff94bc40 HS |
957 | goto out; |
958 | } | |
959 | ||
960 | return 0; | |
961 | ||
962 | out: | |
0195a7bb | 963 | ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); |
ff94bc40 HS |
964 | ubifs_dump_node(c, buf); |
965 | dump_stack(); | |
966 | return -EINVAL; | |
967 | } | |
968 | ||
9eefe2a2 SR |
969 | /** |
970 | * ubifs_read_node - read node. | |
971 | * @c: UBIFS file-system description object | |
972 | * @buf: buffer to read to | |
973 | * @type: node type | |
974 | * @len: node length (not aligned) | |
975 | * @lnum: logical eraseblock number | |
976 | * @offs: offset within the logical eraseblock | |
977 | * | |
978 | * This function reads a node of known type and and length, checks it and | |
979 | * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched | |
980 | * and a negative error code in case of failure. | |
981 | */ | |
982 | int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, | |
983 | int lnum, int offs) | |
984 | { | |
985 | int err, l; | |
986 | struct ubifs_ch *ch = buf; | |
987 | ||
988 | dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); | |
989 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | |
990 | ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); | |
991 | ubifs_assert(!(offs & 7) && offs < c->leb_size); | |
992 | ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); | |
993 | ||
ff94bc40 HS |
994 | err = ubifs_leb_read(c, lnum, buf, offs, len, 0); |
995 | if (err && err != -EBADMSG) | |
9eefe2a2 | 996 | return err; |
9eefe2a2 SR |
997 | |
998 | if (type != ch->node_type) { | |
0195a7bb HS |
999 | ubifs_errc(c, "bad node type (%d but expected %d)", |
1000 | ch->node_type, type); | |
9eefe2a2 SR |
1001 | goto out; |
1002 | } | |
1003 | ||
1004 | err = ubifs_check_node(c, buf, lnum, offs, 0, 0); | |
1005 | if (err) { | |
0195a7bb | 1006 | ubifs_errc(c, "expected node type %d", type); |
9eefe2a2 SR |
1007 | return err; |
1008 | } | |
1009 | ||
1010 | l = le32_to_cpu(ch->len); | |
1011 | if (l != len) { | |
0195a7bb | 1012 | ubifs_errc(c, "bad node length %d, expected %d", l, len); |
9eefe2a2 SR |
1013 | goto out; |
1014 | } | |
1015 | ||
1016 | return 0; | |
1017 | ||
1018 | out: | |
0195a7bb HS |
1019 | ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum, |
1020 | offs, ubi_is_mapped(c->ubi, lnum)); | |
1021 | if (!c->probing) { | |
1022 | ubifs_dump_node(c, buf); | |
1023 | dump_stack(); | |
1024 | } | |
9eefe2a2 SR |
1025 | return -EINVAL; |
1026 | } | |
ff94bc40 HS |
1027 | |
1028 | /** | |
1029 | * ubifs_wbuf_init - initialize write-buffer. | |
1030 | * @c: UBIFS file-system description object | |
1031 | * @wbuf: write-buffer to initialize | |
1032 | * | |
1033 | * This function initializes write-buffer. Returns zero in case of success | |
1034 | * %-ENOMEM in case of failure. | |
1035 | */ | |
1036 | int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) | |
1037 | { | |
1038 | size_t size; | |
1039 | ||
1040 | wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); | |
1041 | if (!wbuf->buf) | |
1042 | return -ENOMEM; | |
1043 | ||
1044 | size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); | |
1045 | wbuf->inodes = kmalloc(size, GFP_KERNEL); | |
1046 | if (!wbuf->inodes) { | |
1047 | kfree(wbuf->buf); | |
1048 | wbuf->buf = NULL; | |
1049 | return -ENOMEM; | |
1050 | } | |
1051 | ||
1052 | wbuf->used = 0; | |
1053 | wbuf->lnum = wbuf->offs = -1; | |
1054 | /* | |
1055 | * If the LEB starts at the max. write size aligned address, then | |
1056 | * write-buffer size has to be set to @c->max_write_size. Otherwise, | |
1057 | * set it to something smaller so that it ends at the closest max. | |
1058 | * write size boundary. | |
1059 | */ | |
1060 | size = c->max_write_size - (c->leb_start % c->max_write_size); | |
1061 | wbuf->avail = wbuf->size = size; | |
1062 | wbuf->sync_callback = NULL; | |
1063 | mutex_init(&wbuf->io_mutex); | |
1064 | spin_lock_init(&wbuf->lock); | |
1065 | wbuf->c = c; | |
1066 | wbuf->next_ino = 0; | |
1067 | ||
1068 | #ifndef __UBOOT__ | |
1069 | hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
1070 | wbuf->timer.function = wbuf_timer_callback_nolock; | |
1071 | wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0); | |
1072 | wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT; | |
1073 | wbuf->delta *= 1000000000ULL; | |
1074 | ubifs_assert(wbuf->delta <= ULONG_MAX); | |
1075 | #endif | |
1076 | return 0; | |
1077 | } | |
1078 | ||
1079 | /** | |
1080 | * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. | |
1081 | * @wbuf: the write-buffer where to add | |
1082 | * @inum: the inode number | |
1083 | * | |
1084 | * This function adds an inode number to the inode array of the write-buffer. | |
1085 | */ | |
1086 | void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) | |
1087 | { | |
1088 | if (!wbuf->buf) | |
1089 | /* NOR flash or something similar */ | |
1090 | return; | |
1091 | ||
1092 | spin_lock(&wbuf->lock); | |
1093 | if (wbuf->used) | |
1094 | wbuf->inodes[wbuf->next_ino++] = inum; | |
1095 | spin_unlock(&wbuf->lock); | |
1096 | } | |
1097 | ||
1098 | /** | |
1099 | * wbuf_has_ino - returns if the wbuf contains data from the inode. | |
1100 | * @wbuf: the write-buffer | |
1101 | * @inum: the inode number | |
1102 | * | |
1103 | * This function returns with %1 if the write-buffer contains some data from the | |
1104 | * given inode otherwise it returns with %0. | |
1105 | */ | |
1106 | static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) | |
1107 | { | |
1108 | int i, ret = 0; | |
1109 | ||
1110 | spin_lock(&wbuf->lock); | |
1111 | for (i = 0; i < wbuf->next_ino; i++) | |
1112 | if (inum == wbuf->inodes[i]) { | |
1113 | ret = 1; | |
1114 | break; | |
1115 | } | |
1116 | spin_unlock(&wbuf->lock); | |
1117 | ||
1118 | return ret; | |
1119 | } | |
1120 | ||
1121 | /** | |
1122 | * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. | |
1123 | * @c: UBIFS file-system description object | |
1124 | * @inode: inode to synchronize | |
1125 | * | |
1126 | * This function synchronizes write-buffers which contain nodes belonging to | |
1127 | * @inode. Returns zero in case of success and a negative error code in case of | |
1128 | * failure. | |
1129 | */ | |
1130 | int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) | |
1131 | { | |
1132 | int i, err = 0; | |
1133 | ||
1134 | for (i = 0; i < c->jhead_cnt; i++) { | |
1135 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | |
1136 | ||
1137 | if (i == GCHD) | |
1138 | /* | |
1139 | * GC head is special, do not look at it. Even if the | |
1140 | * head contains something related to this inode, it is | |
1141 | * a _copy_ of corresponding on-flash node which sits | |
1142 | * somewhere else. | |
1143 | */ | |
1144 | continue; | |
1145 | ||
1146 | if (!wbuf_has_ino(wbuf, inode->i_ino)) | |
1147 | continue; | |
1148 | ||
1149 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
1150 | if (wbuf_has_ino(wbuf, inode->i_ino)) | |
1151 | err = ubifs_wbuf_sync_nolock(wbuf); | |
1152 | mutex_unlock(&wbuf->io_mutex); | |
1153 | ||
1154 | if (err) { | |
1155 | ubifs_ro_mode(c, err); | |
1156 | return err; | |
1157 | } | |
1158 | } | |
1159 | return 0; | |
1160 | } |