]>
Commit | Line | Data |
---|---|---|
4c6de856 CH |
1 | /* |
2 | * Generic binary BCH encoding/decoding library | |
3 | * | |
5b8031cc | 4 | * SPDX-License-Identifier: GPL-2.0 |
4c6de856 CH |
5 | * |
6 | * Copyright © 2011 Parrot S.A. | |
7 | * | |
8 | * Author: Ivan Djelic <[email protected]> | |
9 | * | |
10 | * Description: | |
11 | * | |
12 | * This library provides runtime configurable encoding/decoding of binary | |
13 | * Bose-Chaudhuri-Hocquenghem (BCH) codes. | |
14 | * | |
15 | * Call init_bch to get a pointer to a newly allocated bch_control structure for | |
16 | * the given m (Galois field order), t (error correction capability) and | |
17 | * (optional) primitive polynomial parameters. | |
18 | * | |
19 | * Call encode_bch to compute and store ecc parity bytes to a given buffer. | |
20 | * Call decode_bch to detect and locate errors in received data. | |
21 | * | |
22 | * On systems supporting hw BCH features, intermediate results may be provided | |
23 | * to decode_bch in order to skip certain steps. See decode_bch() documentation | |
24 | * for details. | |
25 | * | |
26 | * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of | |
27 | * parameters m and t; thus allowing extra compiler optimizations and providing | |
28 | * better (up to 2x) encoding performance. Using this option makes sense when | |
29 | * (m,t) are fixed and known in advance, e.g. when using BCH error correction | |
30 | * on a particular NAND flash device. | |
31 | * | |
32 | * Algorithmic details: | |
33 | * | |
34 | * Encoding is performed by processing 32 input bits in parallel, using 4 | |
35 | * remainder lookup tables. | |
36 | * | |
37 | * The final stage of decoding involves the following internal steps: | |
38 | * a. Syndrome computation | |
39 | * b. Error locator polynomial computation using Berlekamp-Massey algorithm | |
40 | * c. Error locator root finding (by far the most expensive step) | |
41 | * | |
42 | * In this implementation, step c is not performed using the usual Chien search. | |
43 | * Instead, an alternative approach described in [1] is used. It consists in | |
44 | * factoring the error locator polynomial using the Berlekamp Trace algorithm | |
45 | * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial | |
46 | * solving techniques [2] are used. The resulting algorithm, called BTZ, yields | |
47 | * much better performance than Chien search for usual (m,t) values (typically | |
48 | * m >= 13, t < 32, see [1]). | |
49 | * | |
50 | * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields | |
51 | * of characteristic 2, in: Western European Workshop on Research in Cryptology | |
52 | * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. | |
53 | * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over | |
54 | * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. | |
55 | */ | |
56 | ||
57 | #include <common.h> | |
58 | #include <ubi_uboot.h> | |
59 | ||
60 | #include <linux/bitops.h> | |
61 | #include <asm/byteorder.h> | |
62 | #include <linux/bch.h> | |
63 | ||
64 | #if defined(CONFIG_BCH_CONST_PARAMS) | |
65 | #define GF_M(_p) (CONFIG_BCH_CONST_M) | |
66 | #define GF_T(_p) (CONFIG_BCH_CONST_T) | |
67 | #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) | |
68 | #else | |
69 | #define GF_M(_p) ((_p)->m) | |
70 | #define GF_T(_p) ((_p)->t) | |
71 | #define GF_N(_p) ((_p)->n) | |
72 | #endif | |
73 | ||
74 | #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) | |
75 | #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) | |
76 | ||
77 | #ifndef dbg | |
78 | #define dbg(_fmt, args...) do {} while (0) | |
79 | #endif | |
80 | ||
81 | /* | |
82 | * represent a polynomial over GF(2^m) | |
83 | */ | |
84 | struct gf_poly { | |
85 | unsigned int deg; /* polynomial degree */ | |
86 | unsigned int c[0]; /* polynomial terms */ | |
87 | }; | |
88 | ||
89 | /* given its degree, compute a polynomial size in bytes */ | |
90 | #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) | |
91 | ||
92 | /* polynomial of degree 1 */ | |
93 | struct gf_poly_deg1 { | |
94 | struct gf_poly poly; | |
95 | unsigned int c[2]; | |
96 | }; | |
97 | ||
98 | /* | |
99 | * same as encode_bch(), but process input data one byte at a time | |
100 | */ | |
101 | static void encode_bch_unaligned(struct bch_control *bch, | |
102 | const unsigned char *data, unsigned int len, | |
103 | uint32_t *ecc) | |
104 | { | |
105 | int i; | |
106 | const uint32_t *p; | |
107 | const int l = BCH_ECC_WORDS(bch)-1; | |
108 | ||
109 | while (len--) { | |
110 | p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); | |
111 | ||
112 | for (i = 0; i < l; i++) | |
113 | ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); | |
114 | ||
115 | ecc[l] = (ecc[l] << 8)^(*p); | |
116 | } | |
117 | } | |
118 | ||
119 | /* | |
120 | * convert ecc bytes to aligned, zero-padded 32-bit ecc words | |
121 | */ | |
122 | static void load_ecc8(struct bch_control *bch, uint32_t *dst, | |
123 | const uint8_t *src) | |
124 | { | |
125 | uint8_t pad[4] = {0, 0, 0, 0}; | |
126 | unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; | |
127 | ||
128 | for (i = 0; i < nwords; i++, src += 4) | |
129 | dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; | |
130 | ||
131 | memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); | |
132 | dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; | |
133 | } | |
134 | ||
135 | /* | |
136 | * convert 32-bit ecc words to ecc bytes | |
137 | */ | |
138 | static void store_ecc8(struct bch_control *bch, uint8_t *dst, | |
139 | const uint32_t *src) | |
140 | { | |
141 | uint8_t pad[4]; | |
142 | unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; | |
143 | ||
144 | for (i = 0; i < nwords; i++) { | |
145 | *dst++ = (src[i] >> 24); | |
146 | *dst++ = (src[i] >> 16) & 0xff; | |
147 | *dst++ = (src[i] >> 8) & 0xff; | |
148 | *dst++ = (src[i] >> 0) & 0xff; | |
149 | } | |
150 | pad[0] = (src[nwords] >> 24); | |
151 | pad[1] = (src[nwords] >> 16) & 0xff; | |
152 | pad[2] = (src[nwords] >> 8) & 0xff; | |
153 | pad[3] = (src[nwords] >> 0) & 0xff; | |
154 | memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); | |
155 | } | |
156 | ||
157 | /** | |
158 | * encode_bch - calculate BCH ecc parity of data | |
159 | * @bch: BCH control structure | |
160 | * @data: data to encode | |
161 | * @len: data length in bytes | |
162 | * @ecc: ecc parity data, must be initialized by caller | |
163 | * | |
164 | * The @ecc parity array is used both as input and output parameter, in order to | |
165 | * allow incremental computations. It should be of the size indicated by member | |
166 | * @ecc_bytes of @bch, and should be initialized to 0 before the first call. | |
167 | * | |
168 | * The exact number of computed ecc parity bits is given by member @ecc_bits of | |
169 | * @bch; it may be less than m*t for large values of t. | |
170 | */ | |
171 | void encode_bch(struct bch_control *bch, const uint8_t *data, | |
172 | unsigned int len, uint8_t *ecc) | |
173 | { | |
174 | const unsigned int l = BCH_ECC_WORDS(bch)-1; | |
175 | unsigned int i, mlen; | |
176 | unsigned long m; | |
177 | uint32_t w, r[l+1]; | |
178 | const uint32_t * const tab0 = bch->mod8_tab; | |
179 | const uint32_t * const tab1 = tab0 + 256*(l+1); | |
180 | const uint32_t * const tab2 = tab1 + 256*(l+1); | |
181 | const uint32_t * const tab3 = tab2 + 256*(l+1); | |
182 | const uint32_t *pdata, *p0, *p1, *p2, *p3; | |
183 | ||
184 | if (ecc) { | |
185 | /* load ecc parity bytes into internal 32-bit buffer */ | |
186 | load_ecc8(bch, bch->ecc_buf, ecc); | |
187 | } else { | |
188 | memset(bch->ecc_buf, 0, sizeof(r)); | |
189 | } | |
190 | ||
191 | /* process first unaligned data bytes */ | |
192 | m = ((unsigned long)data) & 3; | |
193 | if (m) { | |
194 | mlen = (len < (4-m)) ? len : 4-m; | |
195 | encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); | |
196 | data += mlen; | |
197 | len -= mlen; | |
198 | } | |
199 | ||
200 | /* process 32-bit aligned data words */ | |
201 | pdata = (uint32_t *)data; | |
202 | mlen = len/4; | |
203 | data += 4*mlen; | |
204 | len -= 4*mlen; | |
205 | memcpy(r, bch->ecc_buf, sizeof(r)); | |
206 | ||
207 | /* | |
208 | * split each 32-bit word into 4 polynomials of weight 8 as follows: | |
209 | * | |
210 | * 31 ...24 23 ...16 15 ... 8 7 ... 0 | |
211 | * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt | |
212 | * tttttttt mod g = r0 (precomputed) | |
213 | * zzzzzzzz 00000000 mod g = r1 (precomputed) | |
214 | * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) | |
215 | * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) | |
216 | * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 | |
217 | */ | |
218 | while (mlen--) { | |
219 | /* input data is read in big-endian format */ | |
220 | w = r[0]^cpu_to_be32(*pdata++); | |
221 | p0 = tab0 + (l+1)*((w >> 0) & 0xff); | |
222 | p1 = tab1 + (l+1)*((w >> 8) & 0xff); | |
223 | p2 = tab2 + (l+1)*((w >> 16) & 0xff); | |
224 | p3 = tab3 + (l+1)*((w >> 24) & 0xff); | |
225 | ||
226 | for (i = 0; i < l; i++) | |
227 | r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; | |
228 | ||
229 | r[l] = p0[l]^p1[l]^p2[l]^p3[l]; | |
230 | } | |
231 | memcpy(bch->ecc_buf, r, sizeof(r)); | |
232 | ||
233 | /* process last unaligned bytes */ | |
234 | if (len) | |
235 | encode_bch_unaligned(bch, data, len, bch->ecc_buf); | |
236 | ||
237 | /* store ecc parity bytes into original parity buffer */ | |
238 | if (ecc) | |
239 | store_ecc8(bch, ecc, bch->ecc_buf); | |
240 | } | |
241 | ||
242 | static inline int modulo(struct bch_control *bch, unsigned int v) | |
243 | { | |
244 | const unsigned int n = GF_N(bch); | |
245 | while (v >= n) { | |
246 | v -= n; | |
247 | v = (v & n) + (v >> GF_M(bch)); | |
248 | } | |
249 | return v; | |
250 | } | |
251 | ||
252 | /* | |
253 | * shorter and faster modulo function, only works when v < 2N. | |
254 | */ | |
255 | static inline int mod_s(struct bch_control *bch, unsigned int v) | |
256 | { | |
257 | const unsigned int n = GF_N(bch); | |
258 | return (v < n) ? v : v-n; | |
259 | } | |
260 | ||
261 | static inline int deg(unsigned int poly) | |
262 | { | |
263 | /* polynomial degree is the most-significant bit index */ | |
264 | return fls(poly)-1; | |
265 | } | |
266 | ||
267 | static inline int parity(unsigned int x) | |
268 | { | |
269 | /* | |
270 | * public domain code snippet, lifted from | |
271 | * http://www-graphics.stanford.edu/~seander/bithacks.html | |
272 | */ | |
273 | x ^= x >> 1; | |
274 | x ^= x >> 2; | |
275 | x = (x & 0x11111111U) * 0x11111111U; | |
276 | return (x >> 28) & 1; | |
277 | } | |
278 | ||
279 | /* Galois field basic operations: multiply, divide, inverse, etc. */ | |
280 | ||
281 | static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, | |
282 | unsigned int b) | |
283 | { | |
284 | return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ | |
285 | bch->a_log_tab[b])] : 0; | |
286 | } | |
287 | ||
288 | static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) | |
289 | { | |
290 | return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; | |
291 | } | |
292 | ||
293 | static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, | |
294 | unsigned int b) | |
295 | { | |
296 | return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ | |
297 | GF_N(bch)-bch->a_log_tab[b])] : 0; | |
298 | } | |
299 | ||
300 | static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) | |
301 | { | |
302 | return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; | |
303 | } | |
304 | ||
305 | static inline unsigned int a_pow(struct bch_control *bch, int i) | |
306 | { | |
307 | return bch->a_pow_tab[modulo(bch, i)]; | |
308 | } | |
309 | ||
310 | static inline int a_log(struct bch_control *bch, unsigned int x) | |
311 | { | |
312 | return bch->a_log_tab[x]; | |
313 | } | |
314 | ||
315 | static inline int a_ilog(struct bch_control *bch, unsigned int x) | |
316 | { | |
317 | return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); | |
318 | } | |
319 | ||
320 | /* | |
321 | * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t | |
322 | */ | |
323 | static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, | |
324 | unsigned int *syn) | |
325 | { | |
326 | int i, j, s; | |
327 | unsigned int m; | |
328 | uint32_t poly; | |
329 | const int t = GF_T(bch); | |
330 | ||
331 | s = bch->ecc_bits; | |
332 | ||
333 | /* make sure extra bits in last ecc word are cleared */ | |
334 | m = ((unsigned int)s) & 31; | |
335 | if (m) | |
336 | ecc[s/32] &= ~((1u << (32-m))-1); | |
337 | memset(syn, 0, 2*t*sizeof(*syn)); | |
338 | ||
339 | /* compute v(a^j) for j=1 .. 2t-1 */ | |
340 | do { | |
341 | poly = *ecc++; | |
342 | s -= 32; | |
343 | while (poly) { | |
344 | i = deg(poly); | |
345 | for (j = 0; j < 2*t; j += 2) | |
346 | syn[j] ^= a_pow(bch, (j+1)*(i+s)); | |
347 | ||
348 | poly ^= (1 << i); | |
349 | } | |
350 | } while (s > 0); | |
351 | ||
352 | /* v(a^(2j)) = v(a^j)^2 */ | |
353 | for (j = 0; j < t; j++) | |
354 | syn[2*j+1] = gf_sqr(bch, syn[j]); | |
355 | } | |
356 | ||
357 | static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) | |
358 | { | |
359 | memcpy(dst, src, GF_POLY_SZ(src->deg)); | |
360 | } | |
361 | ||
362 | static int compute_error_locator_polynomial(struct bch_control *bch, | |
363 | const unsigned int *syn) | |
364 | { | |
365 | const unsigned int t = GF_T(bch); | |
366 | const unsigned int n = GF_N(bch); | |
367 | unsigned int i, j, tmp, l, pd = 1, d = syn[0]; | |
368 | struct gf_poly *elp = bch->elp; | |
369 | struct gf_poly *pelp = bch->poly_2t[0]; | |
370 | struct gf_poly *elp_copy = bch->poly_2t[1]; | |
371 | int k, pp = -1; | |
372 | ||
373 | memset(pelp, 0, GF_POLY_SZ(2*t)); | |
374 | memset(elp, 0, GF_POLY_SZ(2*t)); | |
375 | ||
376 | pelp->deg = 0; | |
377 | pelp->c[0] = 1; | |
378 | elp->deg = 0; | |
379 | elp->c[0] = 1; | |
380 | ||
381 | /* use simplified binary Berlekamp-Massey algorithm */ | |
382 | for (i = 0; (i < t) && (elp->deg <= t); i++) { | |
383 | if (d) { | |
384 | k = 2*i-pp; | |
385 | gf_poly_copy(elp_copy, elp); | |
386 | /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ | |
387 | tmp = a_log(bch, d)+n-a_log(bch, pd); | |
388 | for (j = 0; j <= pelp->deg; j++) { | |
389 | if (pelp->c[j]) { | |
390 | l = a_log(bch, pelp->c[j]); | |
391 | elp->c[j+k] ^= a_pow(bch, tmp+l); | |
392 | } | |
393 | } | |
394 | /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ | |
395 | tmp = pelp->deg+k; | |
396 | if (tmp > elp->deg) { | |
397 | elp->deg = tmp; | |
398 | gf_poly_copy(pelp, elp_copy); | |
399 | pd = d; | |
400 | pp = 2*i; | |
401 | } | |
402 | } | |
403 | /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ | |
404 | if (i < t-1) { | |
405 | d = syn[2*i+2]; | |
406 | for (j = 1; j <= elp->deg; j++) | |
407 | d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); | |
408 | } | |
409 | } | |
410 | dbg("elp=%s\n", gf_poly_str(elp)); | |
411 | return (elp->deg > t) ? -1 : (int)elp->deg; | |
412 | } | |
413 | ||
414 | /* | |
415 | * solve a m x m linear system in GF(2) with an expected number of solutions, | |
416 | * and return the number of found solutions | |
417 | */ | |
418 | static int solve_linear_system(struct bch_control *bch, unsigned int *rows, | |
419 | unsigned int *sol, int nsol) | |
420 | { | |
421 | const int m = GF_M(bch); | |
422 | unsigned int tmp, mask; | |
423 | int rem, c, r, p, k, param[m]; | |
424 | ||
425 | k = 0; | |
426 | mask = 1 << m; | |
427 | ||
428 | /* Gaussian elimination */ | |
429 | for (c = 0; c < m; c++) { | |
430 | rem = 0; | |
431 | p = c-k; | |
432 | /* find suitable row for elimination */ | |
433 | for (r = p; r < m; r++) { | |
434 | if (rows[r] & mask) { | |
435 | if (r != p) { | |
436 | tmp = rows[r]; | |
437 | rows[r] = rows[p]; | |
438 | rows[p] = tmp; | |
439 | } | |
440 | rem = r+1; | |
441 | break; | |
442 | } | |
443 | } | |
444 | if (rem) { | |
445 | /* perform elimination on remaining rows */ | |
446 | tmp = rows[p]; | |
447 | for (r = rem; r < m; r++) { | |
448 | if (rows[r] & mask) | |
449 | rows[r] ^= tmp; | |
450 | } | |
451 | } else { | |
452 | /* elimination not needed, store defective row index */ | |
453 | param[k++] = c; | |
454 | } | |
455 | mask >>= 1; | |
456 | } | |
457 | /* rewrite system, inserting fake parameter rows */ | |
458 | if (k > 0) { | |
459 | p = k; | |
460 | for (r = m-1; r >= 0; r--) { | |
461 | if ((r > m-1-k) && rows[r]) | |
462 | /* system has no solution */ | |
463 | return 0; | |
464 | ||
465 | rows[r] = (p && (r == param[p-1])) ? | |
466 | p--, 1u << (m-r) : rows[r-p]; | |
467 | } | |
468 | } | |
469 | ||
470 | if (nsol != (1 << k)) | |
471 | /* unexpected number of solutions */ | |
472 | return 0; | |
473 | ||
474 | for (p = 0; p < nsol; p++) { | |
475 | /* set parameters for p-th solution */ | |
476 | for (c = 0; c < k; c++) | |
477 | rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); | |
478 | ||
479 | /* compute unique solution */ | |
480 | tmp = 0; | |
481 | for (r = m-1; r >= 0; r--) { | |
482 | mask = rows[r] & (tmp|1); | |
483 | tmp |= parity(mask) << (m-r); | |
484 | } | |
485 | sol[p] = tmp >> 1; | |
486 | } | |
487 | return nsol; | |
488 | } | |
489 | ||
490 | /* | |
491 | * this function builds and solves a linear system for finding roots of a degree | |
492 | * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). | |
493 | */ | |
494 | static int find_affine4_roots(struct bch_control *bch, unsigned int a, | |
495 | unsigned int b, unsigned int c, | |
496 | unsigned int *roots) | |
497 | { | |
498 | int i, j, k; | |
499 | const int m = GF_M(bch); | |
500 | unsigned int mask = 0xff, t, rows[16] = {0,}; | |
501 | ||
502 | j = a_log(bch, b); | |
503 | k = a_log(bch, a); | |
504 | rows[0] = c; | |
505 | ||
506 | /* buid linear system to solve X^4+aX^2+bX+c = 0 */ | |
507 | for (i = 0; i < m; i++) { | |
508 | rows[i+1] = bch->a_pow_tab[4*i]^ | |
509 | (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ | |
510 | (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); | |
511 | j++; | |
512 | k += 2; | |
513 | } | |
514 | /* | |
515 | * transpose 16x16 matrix before passing it to linear solver | |
516 | * warning: this code assumes m < 16 | |
517 | */ | |
518 | for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { | |
519 | for (k = 0; k < 16; k = (k+j+1) & ~j) { | |
520 | t = ((rows[k] >> j)^rows[k+j]) & mask; | |
521 | rows[k] ^= (t << j); | |
522 | rows[k+j] ^= t; | |
523 | } | |
524 | } | |
525 | return solve_linear_system(bch, rows, roots, 4); | |
526 | } | |
527 | ||
528 | /* | |
529 | * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) | |
530 | */ | |
531 | static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, | |
532 | unsigned int *roots) | |
533 | { | |
534 | int n = 0; | |
535 | ||
536 | if (poly->c[0]) | |
537 | /* poly[X] = bX+c with c!=0, root=c/b */ | |
538 | roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ | |
539 | bch->a_log_tab[poly->c[1]]); | |
540 | return n; | |
541 | } | |
542 | ||
543 | /* | |
544 | * compute roots of a degree 2 polynomial over GF(2^m) | |
545 | */ | |
546 | static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, | |
547 | unsigned int *roots) | |
548 | { | |
549 | int n = 0, i, l0, l1, l2; | |
550 | unsigned int u, v, r; | |
551 | ||
552 | if (poly->c[0] && poly->c[1]) { | |
553 | ||
554 | l0 = bch->a_log_tab[poly->c[0]]; | |
555 | l1 = bch->a_log_tab[poly->c[1]]; | |
556 | l2 = bch->a_log_tab[poly->c[2]]; | |
557 | ||
558 | /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ | |
559 | u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); | |
560 | /* | |
561 | * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): | |
562 | * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = | |
563 | * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) | |
564 | * i.e. r and r+1 are roots iff Tr(u)=0 | |
565 | */ | |
566 | r = 0; | |
567 | v = u; | |
568 | while (v) { | |
569 | i = deg(v); | |
570 | r ^= bch->xi_tab[i]; | |
571 | v ^= (1 << i); | |
572 | } | |
573 | /* verify root */ | |
574 | if ((gf_sqr(bch, r)^r) == u) { | |
575 | /* reverse z=a/bX transformation and compute log(1/r) */ | |
576 | roots[n++] = modulo(bch, 2*GF_N(bch)-l1- | |
577 | bch->a_log_tab[r]+l2); | |
578 | roots[n++] = modulo(bch, 2*GF_N(bch)-l1- | |
579 | bch->a_log_tab[r^1]+l2); | |
580 | } | |
581 | } | |
582 | return n; | |
583 | } | |
584 | ||
585 | /* | |
586 | * compute roots of a degree 3 polynomial over GF(2^m) | |
587 | */ | |
588 | static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, | |
589 | unsigned int *roots) | |
590 | { | |
591 | int i, n = 0; | |
592 | unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; | |
593 | ||
594 | if (poly->c[0]) { | |
595 | /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ | |
596 | e3 = poly->c[3]; | |
597 | c2 = gf_div(bch, poly->c[0], e3); | |
598 | b2 = gf_div(bch, poly->c[1], e3); | |
599 | a2 = gf_div(bch, poly->c[2], e3); | |
600 | ||
601 | /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ | |
602 | c = gf_mul(bch, a2, c2); /* c = a2c2 */ | |
603 | b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */ | |
604 | a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */ | |
605 | ||
606 | /* find the 4 roots of this affine polynomial */ | |
607 | if (find_affine4_roots(bch, a, b, c, tmp) == 4) { | |
608 | /* remove a2 from final list of roots */ | |
609 | for (i = 0; i < 4; i++) { | |
610 | if (tmp[i] != a2) | |
611 | roots[n++] = a_ilog(bch, tmp[i]); | |
612 | } | |
613 | } | |
614 | } | |
615 | return n; | |
616 | } | |
617 | ||
618 | /* | |
619 | * compute roots of a degree 4 polynomial over GF(2^m) | |
620 | */ | |
621 | static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, | |
622 | unsigned int *roots) | |
623 | { | |
624 | int i, l, n = 0; | |
625 | unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; | |
626 | ||
627 | if (poly->c[0] == 0) | |
628 | return 0; | |
629 | ||
630 | /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ | |
631 | e4 = poly->c[4]; | |
632 | d = gf_div(bch, poly->c[0], e4); | |
633 | c = gf_div(bch, poly->c[1], e4); | |
634 | b = gf_div(bch, poly->c[2], e4); | |
635 | a = gf_div(bch, poly->c[3], e4); | |
636 | ||
637 | /* use Y=1/X transformation to get an affine polynomial */ | |
638 | if (a) { | |
639 | /* first, eliminate cX by using z=X+e with ae^2+c=0 */ | |
640 | if (c) { | |
641 | /* compute e such that e^2 = c/a */ | |
642 | f = gf_div(bch, c, a); | |
643 | l = a_log(bch, f); | |
644 | l += (l & 1) ? GF_N(bch) : 0; | |
645 | e = a_pow(bch, l/2); | |
646 | /* | |
647 | * use transformation z=X+e: | |
648 | * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d | |
649 | * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d | |
650 | * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d | |
651 | * z^4 + az^3 + b'z^2 + d' | |
652 | */ | |
653 | d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; | |
654 | b = gf_mul(bch, a, e)^b; | |
655 | } | |
656 | /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ | |
657 | if (d == 0) | |
658 | /* assume all roots have multiplicity 1 */ | |
659 | return 0; | |
660 | ||
661 | c2 = gf_inv(bch, d); | |
662 | b2 = gf_div(bch, a, d); | |
663 | a2 = gf_div(bch, b, d); | |
664 | } else { | |
665 | /* polynomial is already affine */ | |
666 | c2 = d; | |
667 | b2 = c; | |
668 | a2 = b; | |
669 | } | |
670 | /* find the 4 roots of this affine polynomial */ | |
671 | if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { | |
672 | for (i = 0; i < 4; i++) { | |
673 | /* post-process roots (reverse transformations) */ | |
674 | f = a ? gf_inv(bch, roots[i]) : roots[i]; | |
675 | roots[i] = a_ilog(bch, f^e); | |
676 | } | |
677 | n = 4; | |
678 | } | |
679 | return n; | |
680 | } | |
681 | ||
682 | /* | |
683 | * build monic, log-based representation of a polynomial | |
684 | */ | |
685 | static void gf_poly_logrep(struct bch_control *bch, | |
686 | const struct gf_poly *a, int *rep) | |
687 | { | |
688 | int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); | |
689 | ||
690 | /* represent 0 values with -1; warning, rep[d] is not set to 1 */ | |
691 | for (i = 0; i < d; i++) | |
692 | rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; | |
693 | } | |
694 | ||
695 | /* | |
696 | * compute polynomial Euclidean division remainder in GF(2^m)[X] | |
697 | */ | |
698 | static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, | |
699 | const struct gf_poly *b, int *rep) | |
700 | { | |
701 | int la, p, m; | |
702 | unsigned int i, j, *c = a->c; | |
703 | const unsigned int d = b->deg; | |
704 | ||
705 | if (a->deg < d) | |
706 | return; | |
707 | ||
708 | /* reuse or compute log representation of denominator */ | |
709 | if (!rep) { | |
710 | rep = bch->cache; | |
711 | gf_poly_logrep(bch, b, rep); | |
712 | } | |
713 | ||
714 | for (j = a->deg; j >= d; j--) { | |
715 | if (c[j]) { | |
716 | la = a_log(bch, c[j]); | |
717 | p = j-d; | |
718 | for (i = 0; i < d; i++, p++) { | |
719 | m = rep[i]; | |
720 | if (m >= 0) | |
721 | c[p] ^= bch->a_pow_tab[mod_s(bch, | |
722 | m+la)]; | |
723 | } | |
724 | } | |
725 | } | |
726 | a->deg = d-1; | |
727 | while (!c[a->deg] && a->deg) | |
728 | a->deg--; | |
729 | } | |
730 | ||
731 | /* | |
732 | * compute polynomial Euclidean division quotient in GF(2^m)[X] | |
733 | */ | |
734 | static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, | |
735 | const struct gf_poly *b, struct gf_poly *q) | |
736 | { | |
737 | if (a->deg >= b->deg) { | |
738 | q->deg = a->deg-b->deg; | |
739 | /* compute a mod b (modifies a) */ | |
740 | gf_poly_mod(bch, a, b, NULL); | |
741 | /* quotient is stored in upper part of polynomial a */ | |
742 | memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); | |
743 | } else { | |
744 | q->deg = 0; | |
745 | q->c[0] = 0; | |
746 | } | |
747 | } | |
748 | ||
749 | /* | |
750 | * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] | |
751 | */ | |
752 | static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, | |
753 | struct gf_poly *b) | |
754 | { | |
755 | struct gf_poly *tmp; | |
756 | ||
757 | dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); | |
758 | ||
759 | if (a->deg < b->deg) { | |
760 | tmp = b; | |
761 | b = a; | |
762 | a = tmp; | |
763 | } | |
764 | ||
765 | while (b->deg > 0) { | |
766 | gf_poly_mod(bch, a, b, NULL); | |
767 | tmp = b; | |
768 | b = a; | |
769 | a = tmp; | |
770 | } | |
771 | ||
772 | dbg("%s\n", gf_poly_str(a)); | |
773 | ||
774 | return a; | |
775 | } | |
776 | ||
777 | /* | |
778 | * Given a polynomial f and an integer k, compute Tr(a^kX) mod f | |
779 | * This is used in Berlekamp Trace algorithm for splitting polynomials | |
780 | */ | |
781 | static void compute_trace_bk_mod(struct bch_control *bch, int k, | |
782 | const struct gf_poly *f, struct gf_poly *z, | |
783 | struct gf_poly *out) | |
784 | { | |
785 | const int m = GF_M(bch); | |
786 | int i, j; | |
787 | ||
788 | /* z contains z^2j mod f */ | |
789 | z->deg = 1; | |
790 | z->c[0] = 0; | |
791 | z->c[1] = bch->a_pow_tab[k]; | |
792 | ||
793 | out->deg = 0; | |
794 | memset(out, 0, GF_POLY_SZ(f->deg)); | |
795 | ||
796 | /* compute f log representation only once */ | |
797 | gf_poly_logrep(bch, f, bch->cache); | |
798 | ||
799 | for (i = 0; i < m; i++) { | |
800 | /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ | |
801 | for (j = z->deg; j >= 0; j--) { | |
802 | out->c[j] ^= z->c[j]; | |
803 | z->c[2*j] = gf_sqr(bch, z->c[j]); | |
804 | z->c[2*j+1] = 0; | |
805 | } | |
806 | if (z->deg > out->deg) | |
807 | out->deg = z->deg; | |
808 | ||
809 | if (i < m-1) { | |
810 | z->deg *= 2; | |
811 | /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ | |
812 | gf_poly_mod(bch, z, f, bch->cache); | |
813 | } | |
814 | } | |
815 | while (!out->c[out->deg] && out->deg) | |
816 | out->deg--; | |
817 | ||
818 | dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); | |
819 | } | |
820 | ||
821 | /* | |
822 | * factor a polynomial using Berlekamp Trace algorithm (BTA) | |
823 | */ | |
824 | static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, | |
825 | struct gf_poly **g, struct gf_poly **h) | |
826 | { | |
827 | struct gf_poly *f2 = bch->poly_2t[0]; | |
828 | struct gf_poly *q = bch->poly_2t[1]; | |
829 | struct gf_poly *tk = bch->poly_2t[2]; | |
830 | struct gf_poly *z = bch->poly_2t[3]; | |
831 | struct gf_poly *gcd; | |
832 | ||
833 | dbg("factoring %s...\n", gf_poly_str(f)); | |
834 | ||
835 | *g = f; | |
836 | *h = NULL; | |
837 | ||
838 | /* tk = Tr(a^k.X) mod f */ | |
839 | compute_trace_bk_mod(bch, k, f, z, tk); | |
840 | ||
841 | if (tk->deg > 0) { | |
842 | /* compute g = gcd(f, tk) (destructive operation) */ | |
843 | gf_poly_copy(f2, f); | |
844 | gcd = gf_poly_gcd(bch, f2, tk); | |
845 | if (gcd->deg < f->deg) { | |
846 | /* compute h=f/gcd(f,tk); this will modify f and q */ | |
847 | gf_poly_div(bch, f, gcd, q); | |
848 | /* store g and h in-place (clobbering f) */ | |
849 | *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; | |
850 | gf_poly_copy(*g, gcd); | |
851 | gf_poly_copy(*h, q); | |
852 | } | |
853 | } | |
854 | } | |
855 | ||
856 | /* | |
857 | * find roots of a polynomial, using BTZ algorithm; see the beginning of this | |
858 | * file for details | |
859 | */ | |
860 | static int find_poly_roots(struct bch_control *bch, unsigned int k, | |
861 | struct gf_poly *poly, unsigned int *roots) | |
862 | { | |
863 | int cnt; | |
864 | struct gf_poly *f1, *f2; | |
865 | ||
866 | switch (poly->deg) { | |
867 | /* handle low degree polynomials with ad hoc techniques */ | |
868 | case 1: | |
869 | cnt = find_poly_deg1_roots(bch, poly, roots); | |
870 | break; | |
871 | case 2: | |
872 | cnt = find_poly_deg2_roots(bch, poly, roots); | |
873 | break; | |
874 | case 3: | |
875 | cnt = find_poly_deg3_roots(bch, poly, roots); | |
876 | break; | |
877 | case 4: | |
878 | cnt = find_poly_deg4_roots(bch, poly, roots); | |
879 | break; | |
880 | default: | |
881 | /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ | |
882 | cnt = 0; | |
883 | if (poly->deg && (k <= GF_M(bch))) { | |
884 | factor_polynomial(bch, k, poly, &f1, &f2); | |
885 | if (f1) | |
886 | cnt += find_poly_roots(bch, k+1, f1, roots); | |
887 | if (f2) | |
888 | cnt += find_poly_roots(bch, k+1, f2, roots+cnt); | |
889 | } | |
890 | break; | |
891 | } | |
892 | return cnt; | |
893 | } | |
894 | ||
895 | #if defined(USE_CHIEN_SEARCH) | |
896 | /* | |
897 | * exhaustive root search (Chien) implementation - not used, included only for | |
898 | * reference/comparison tests | |
899 | */ | |
900 | static int chien_search(struct bch_control *bch, unsigned int len, | |
901 | struct gf_poly *p, unsigned int *roots) | |
902 | { | |
903 | int m; | |
904 | unsigned int i, j, syn, syn0, count = 0; | |
905 | const unsigned int k = 8*len+bch->ecc_bits; | |
906 | ||
907 | /* use a log-based representation of polynomial */ | |
908 | gf_poly_logrep(bch, p, bch->cache); | |
909 | bch->cache[p->deg] = 0; | |
910 | syn0 = gf_div(bch, p->c[0], p->c[p->deg]); | |
911 | ||
912 | for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { | |
913 | /* compute elp(a^i) */ | |
914 | for (j = 1, syn = syn0; j <= p->deg; j++) { | |
915 | m = bch->cache[j]; | |
916 | if (m >= 0) | |
917 | syn ^= a_pow(bch, m+j*i); | |
918 | } | |
919 | if (syn == 0) { | |
920 | roots[count++] = GF_N(bch)-i; | |
921 | if (count == p->deg) | |
922 | break; | |
923 | } | |
924 | } | |
925 | return (count == p->deg) ? count : 0; | |
926 | } | |
927 | #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) | |
928 | #endif /* USE_CHIEN_SEARCH */ | |
929 | ||
930 | /** | |
931 | * decode_bch - decode received codeword and find bit error locations | |
932 | * @bch: BCH control structure | |
933 | * @data: received data, ignored if @calc_ecc is provided | |
934 | * @len: data length in bytes, must always be provided | |
935 | * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc | |
936 | * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data | |
937 | * @syn: hw computed syndrome data (if NULL, syndrome is calculated) | |
938 | * @errloc: output array of error locations | |
939 | * | |
940 | * Returns: | |
941 | * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if | |
942 | * invalid parameters were provided | |
943 | * | |
944 | * Depending on the available hw BCH support and the need to compute @calc_ecc | |
945 | * separately (using encode_bch()), this function should be called with one of | |
946 | * the following parameter configurations - | |
947 | * | |
948 | * by providing @data and @recv_ecc only: | |
949 | * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) | |
950 | * | |
951 | * by providing @recv_ecc and @calc_ecc: | |
952 | * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) | |
953 | * | |
954 | * by providing ecc = recv_ecc XOR calc_ecc: | |
955 | * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) | |
956 | * | |
957 | * by providing syndrome results @syn: | |
958 | * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) | |
959 | * | |
960 | * Once decode_bch() has successfully returned with a positive value, error | |
961 | * locations returned in array @errloc should be interpreted as follows - | |
962 | * | |
963 | * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for | |
964 | * data correction) | |
965 | * | |
966 | * if (errloc[n] < 8*len), then n-th error is located in data and can be | |
967 | * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); | |
968 | * | |
969 | * Note that this function does not perform any data correction by itself, it | |
970 | * merely indicates error locations. | |
971 | */ | |
972 | int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, | |
973 | const uint8_t *recv_ecc, const uint8_t *calc_ecc, | |
974 | const unsigned int *syn, unsigned int *errloc) | |
975 | { | |
976 | const unsigned int ecc_words = BCH_ECC_WORDS(bch); | |
977 | unsigned int nbits; | |
978 | int i, err, nroots; | |
979 | uint32_t sum; | |
980 | ||
981 | /* sanity check: make sure data length can be handled */ | |
982 | if (8*len > (bch->n-bch->ecc_bits)) | |
983 | return -EINVAL; | |
984 | ||
985 | /* if caller does not provide syndromes, compute them */ | |
986 | if (!syn) { | |
987 | if (!calc_ecc) { | |
988 | /* compute received data ecc into an internal buffer */ | |
989 | if (!data || !recv_ecc) | |
990 | return -EINVAL; | |
991 | encode_bch(bch, data, len, NULL); | |
992 | } else { | |
993 | /* load provided calculated ecc */ | |
994 | load_ecc8(bch, bch->ecc_buf, calc_ecc); | |
995 | } | |
996 | /* load received ecc or assume it was XORed in calc_ecc */ | |
997 | if (recv_ecc) { | |
998 | load_ecc8(bch, bch->ecc_buf2, recv_ecc); | |
999 | /* XOR received and calculated ecc */ | |
1000 | for (i = 0, sum = 0; i < (int)ecc_words; i++) { | |
1001 | bch->ecc_buf[i] ^= bch->ecc_buf2[i]; | |
1002 | sum |= bch->ecc_buf[i]; | |
1003 | } | |
1004 | if (!sum) | |
1005 | /* no error found */ | |
1006 | return 0; | |
1007 | } | |
1008 | compute_syndromes(bch, bch->ecc_buf, bch->syn); | |
1009 | syn = bch->syn; | |
1010 | } | |
1011 | ||
1012 | err = compute_error_locator_polynomial(bch, syn); | |
1013 | if (err > 0) { | |
1014 | nroots = find_poly_roots(bch, 1, bch->elp, errloc); | |
1015 | if (err != nroots) | |
1016 | err = -1; | |
1017 | } | |
1018 | if (err > 0) { | |
1019 | /* post-process raw error locations for easier correction */ | |
1020 | nbits = (len*8)+bch->ecc_bits; | |
1021 | for (i = 0; i < err; i++) { | |
1022 | if (errloc[i] >= nbits) { | |
1023 | err = -1; | |
1024 | break; | |
1025 | } | |
1026 | errloc[i] = nbits-1-errloc[i]; | |
1027 | errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); | |
1028 | } | |
1029 | } | |
1030 | return (err >= 0) ? err : -EBADMSG; | |
1031 | } | |
1032 | ||
1033 | /* | |
1034 | * generate Galois field lookup tables | |
1035 | */ | |
1036 | static int build_gf_tables(struct bch_control *bch, unsigned int poly) | |
1037 | { | |
1038 | unsigned int i, x = 1; | |
1039 | const unsigned int k = 1 << deg(poly); | |
1040 | ||
1041 | /* primitive polynomial must be of degree m */ | |
1042 | if (k != (1u << GF_M(bch))) | |
1043 | return -1; | |
1044 | ||
1045 | for (i = 0; i < GF_N(bch); i++) { | |
1046 | bch->a_pow_tab[i] = x; | |
1047 | bch->a_log_tab[x] = i; | |
1048 | if (i && (x == 1)) | |
1049 | /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ | |
1050 | return -1; | |
1051 | x <<= 1; | |
1052 | if (x & k) | |
1053 | x ^= poly; | |
1054 | } | |
1055 | bch->a_pow_tab[GF_N(bch)] = 1; | |
1056 | bch->a_log_tab[0] = 0; | |
1057 | ||
1058 | return 0; | |
1059 | } | |
1060 | ||
1061 | /* | |
1062 | * compute generator polynomial remainder tables for fast encoding | |
1063 | */ | |
1064 | static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) | |
1065 | { | |
1066 | int i, j, b, d; | |
1067 | uint32_t data, hi, lo, *tab; | |
1068 | const int l = BCH_ECC_WORDS(bch); | |
1069 | const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); | |
1070 | const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); | |
1071 | ||
1072 | memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); | |
1073 | ||
1074 | for (i = 0; i < 256; i++) { | |
1075 | /* p(X)=i is a small polynomial of weight <= 8 */ | |
1076 | for (b = 0; b < 4; b++) { | |
1077 | /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ | |
1078 | tab = bch->mod8_tab + (b*256+i)*l; | |
1079 | data = i << (8*b); | |
1080 | while (data) { | |
1081 | d = deg(data); | |
1082 | /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ | |
1083 | data ^= g[0] >> (31-d); | |
1084 | for (j = 0; j < ecclen; j++) { | |
1085 | hi = (d < 31) ? g[j] << (d+1) : 0; | |
1086 | lo = (j+1 < plen) ? | |
1087 | g[j+1] >> (31-d) : 0; | |
1088 | tab[j] ^= hi|lo; | |
1089 | } | |
1090 | } | |
1091 | } | |
1092 | } | |
1093 | } | |
1094 | ||
1095 | /* | |
1096 | * build a base for factoring degree 2 polynomials | |
1097 | */ | |
1098 | static int build_deg2_base(struct bch_control *bch) | |
1099 | { | |
1100 | const int m = GF_M(bch); | |
1101 | int i, j, r; | |
1102 | unsigned int sum, x, y, remaining, ak = 0, xi[m]; | |
1103 | ||
1104 | /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ | |
1105 | for (i = 0; i < m; i++) { | |
1106 | for (j = 0, sum = 0; j < m; j++) | |
1107 | sum ^= a_pow(bch, i*(1 << j)); | |
1108 | ||
1109 | if (sum) { | |
1110 | ak = bch->a_pow_tab[i]; | |
1111 | break; | |
1112 | } | |
1113 | } | |
1114 | /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ | |
1115 | remaining = m; | |
1116 | memset(xi, 0, sizeof(xi)); | |
1117 | ||
1118 | for (x = 0; (x <= GF_N(bch)) && remaining; x++) { | |
1119 | y = gf_sqr(bch, x)^x; | |
1120 | for (i = 0; i < 2; i++) { | |
1121 | r = a_log(bch, y); | |
1122 | if (y && (r < m) && !xi[r]) { | |
1123 | bch->xi_tab[r] = x; | |
1124 | xi[r] = 1; | |
1125 | remaining--; | |
1126 | dbg("x%d = %x\n", r, x); | |
1127 | break; | |
1128 | } | |
1129 | y ^= ak; | |
1130 | } | |
1131 | } | |
1132 | /* should not happen but check anyway */ | |
1133 | return remaining ? -1 : 0; | |
1134 | } | |
1135 | ||
1136 | static void *bch_alloc(size_t size, int *err) | |
1137 | { | |
1138 | void *ptr; | |
1139 | ||
1140 | ptr = kmalloc(size, GFP_KERNEL); | |
1141 | if (ptr == NULL) | |
1142 | *err = 1; | |
1143 | return ptr; | |
1144 | } | |
1145 | ||
1146 | /* | |
1147 | * compute generator polynomial for given (m,t) parameters. | |
1148 | */ | |
1149 | static uint32_t *compute_generator_polynomial(struct bch_control *bch) | |
1150 | { | |
1151 | const unsigned int m = GF_M(bch); | |
1152 | const unsigned int t = GF_T(bch); | |
1153 | int n, err = 0; | |
1154 | unsigned int i, j, nbits, r, word, *roots; | |
1155 | struct gf_poly *g; | |
1156 | uint32_t *genpoly; | |
1157 | ||
1158 | g = bch_alloc(GF_POLY_SZ(m*t), &err); | |
1159 | roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); | |
1160 | genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); | |
1161 | ||
1162 | if (err) { | |
1163 | kfree(genpoly); | |
1164 | genpoly = NULL; | |
1165 | goto finish; | |
1166 | } | |
1167 | ||
1168 | /* enumerate all roots of g(X) */ | |
1169 | memset(roots , 0, (bch->n+1)*sizeof(*roots)); | |
1170 | for (i = 0; i < t; i++) { | |
1171 | for (j = 0, r = 2*i+1; j < m; j++) { | |
1172 | roots[r] = 1; | |
1173 | r = mod_s(bch, 2*r); | |
1174 | } | |
1175 | } | |
1176 | /* build generator polynomial g(X) */ | |
1177 | g->deg = 0; | |
1178 | g->c[0] = 1; | |
1179 | for (i = 0; i < GF_N(bch); i++) { | |
1180 | if (roots[i]) { | |
1181 | /* multiply g(X) by (X+root) */ | |
1182 | r = bch->a_pow_tab[i]; | |
1183 | g->c[g->deg+1] = 1; | |
1184 | for (j = g->deg; j > 0; j--) | |
1185 | g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; | |
1186 | ||
1187 | g->c[0] = gf_mul(bch, g->c[0], r); | |
1188 | g->deg++; | |
1189 | } | |
1190 | } | |
1191 | /* store left-justified binary representation of g(X) */ | |
1192 | n = g->deg+1; | |
1193 | i = 0; | |
1194 | ||
1195 | while (n > 0) { | |
1196 | nbits = (n > 32) ? 32 : n; | |
1197 | for (j = 0, word = 0; j < nbits; j++) { | |
1198 | if (g->c[n-1-j]) | |
1199 | word |= 1u << (31-j); | |
1200 | } | |
1201 | genpoly[i++] = word; | |
1202 | n -= nbits; | |
1203 | } | |
1204 | bch->ecc_bits = g->deg; | |
1205 | ||
1206 | finish: | |
1207 | kfree(g); | |
1208 | kfree(roots); | |
1209 | ||
1210 | return genpoly; | |
1211 | } | |
1212 | ||
1213 | /** | |
1214 | * init_bch - initialize a BCH encoder/decoder | |
1215 | * @m: Galois field order, should be in the range 5-15 | |
1216 | * @t: maximum error correction capability, in bits | |
1217 | * @prim_poly: user-provided primitive polynomial (or 0 to use default) | |
1218 | * | |
1219 | * Returns: | |
1220 | * a newly allocated BCH control structure if successful, NULL otherwise | |
1221 | * | |
1222 | * This initialization can take some time, as lookup tables are built for fast | |
1223 | * encoding/decoding; make sure not to call this function from a time critical | |
1224 | * path. Usually, init_bch() should be called on module/driver init and | |
1225 | * free_bch() should be called to release memory on exit. | |
1226 | * | |
1227 | * You may provide your own primitive polynomial of degree @m in argument | |
1228 | * @prim_poly, or let init_bch() use its default polynomial. | |
1229 | * | |
1230 | * Once init_bch() has successfully returned a pointer to a newly allocated | |
1231 | * BCH control structure, ecc length in bytes is given by member @ecc_bytes of | |
1232 | * the structure. | |
1233 | */ | |
1234 | struct bch_control *init_bch(int m, int t, unsigned int prim_poly) | |
1235 | { | |
1236 | int err = 0; | |
1237 | unsigned int i, words; | |
1238 | uint32_t *genpoly; | |
1239 | struct bch_control *bch = NULL; | |
1240 | ||
1241 | const int min_m = 5; | |
1242 | const int max_m = 15; | |
1243 | ||
1244 | /* default primitive polynomials */ | |
1245 | static const unsigned int prim_poly_tab[] = { | |
1246 | 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, | |
1247 | 0x402b, 0x8003, | |
1248 | }; | |
1249 | ||
1250 | #if defined(CONFIG_BCH_CONST_PARAMS) | |
1251 | if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { | |
1252 | printk(KERN_ERR "bch encoder/decoder was configured to support " | |
1253 | "parameters m=%d, t=%d only!\n", | |
1254 | CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); | |
1255 | goto fail; | |
1256 | } | |
1257 | #endif | |
1258 | if ((m < min_m) || (m > max_m)) | |
1259 | /* | |
1260 | * values of m greater than 15 are not currently supported; | |
1261 | * supporting m > 15 would require changing table base type | |
1262 | * (uint16_t) and a small patch in matrix transposition | |
1263 | */ | |
1264 | goto fail; | |
1265 | ||
1266 | /* sanity checks */ | |
1267 | if ((t < 1) || (m*t >= ((1 << m)-1))) | |
1268 | /* invalid t value */ | |
1269 | goto fail; | |
1270 | ||
1271 | /* select a primitive polynomial for generating GF(2^m) */ | |
1272 | if (prim_poly == 0) | |
1273 | prim_poly = prim_poly_tab[m-min_m]; | |
1274 | ||
1275 | bch = kzalloc(sizeof(*bch), GFP_KERNEL); | |
1276 | if (bch == NULL) | |
1277 | goto fail; | |
1278 | ||
1279 | bch->m = m; | |
1280 | bch->t = t; | |
1281 | bch->n = (1 << m)-1; | |
1282 | words = DIV_ROUND_UP(m*t, 32); | |
1283 | bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); | |
1284 | bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); | |
1285 | bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); | |
1286 | bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); | |
1287 | bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); | |
1288 | bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); | |
1289 | bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); | |
1290 | bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); | |
1291 | bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); | |
1292 | bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); | |
1293 | ||
1294 | for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) | |
1295 | bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); | |
1296 | ||
1297 | if (err) | |
1298 | goto fail; | |
1299 | ||
1300 | err = build_gf_tables(bch, prim_poly); | |
1301 | if (err) | |
1302 | goto fail; | |
1303 | ||
1304 | /* use generator polynomial for computing encoding tables */ | |
1305 | genpoly = compute_generator_polynomial(bch); | |
1306 | if (genpoly == NULL) | |
1307 | goto fail; | |
1308 | ||
1309 | build_mod8_tables(bch, genpoly); | |
1310 | kfree(genpoly); | |
1311 | ||
1312 | err = build_deg2_base(bch); | |
1313 | if (err) | |
1314 | goto fail; | |
1315 | ||
1316 | return bch; | |
1317 | ||
1318 | fail: | |
1319 | free_bch(bch); | |
1320 | return NULL; | |
1321 | } | |
1322 | ||
1323 | /** | |
1324 | * free_bch - free the BCH control structure | |
1325 | * @bch: BCH control structure to release | |
1326 | */ | |
1327 | void free_bch(struct bch_control *bch) | |
1328 | { | |
1329 | unsigned int i; | |
1330 | ||
1331 | if (bch) { | |
1332 | kfree(bch->a_pow_tab); | |
1333 | kfree(bch->a_log_tab); | |
1334 | kfree(bch->mod8_tab); | |
1335 | kfree(bch->ecc_buf); | |
1336 | kfree(bch->ecc_buf2); | |
1337 | kfree(bch->xi_tab); | |
1338 | kfree(bch->syn); | |
1339 | kfree(bch->cache); | |
1340 | kfree(bch->elp); | |
1341 | ||
1342 | for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) | |
1343 | kfree(bch->poly_2t[i]); | |
1344 | ||
1345 | kfree(bch); | |
1346 | } | |
1347 | } |