]>
Commit | Line | Data |
---|---|---|
c752cd2a | 1 | #include <common.h> |
24b852a7 | 2 | #include <console.h> |
ce5207e1 | 3 | #include "e1000.h" |
336d4615 | 4 | #include <malloc.h> |
deb7282f | 5 | #include <linux/compiler.h> |
ce5207e1 KM |
6 | |
7 | /*----------------------------------------------------------------------- | |
8 | * SPI transfer | |
9 | * | |
10 | * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks | |
11 | * "bitlen" bits in the SPI MISO port. That's just the way SPI works. | |
12 | * | |
13 | * The source of the outgoing bits is the "dout" parameter and the | |
14 | * destination of the input bits is the "din" parameter. Note that "dout" | |
15 | * and "din" can point to the same memory location, in which case the | |
16 | * input data overwrites the output data (since both are buffered by | |
17 | * temporary variables, this is OK). | |
18 | * | |
19 | * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will | |
20 | * never return an error. | |
21 | */ | |
22 | static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen, | |
472d5460 | 23 | const void *dout_mem, void *din_mem, bool intr) |
ce5207e1 KM |
24 | { |
25 | const uint8_t *dout = dout_mem; | |
26 | uint8_t *din = din_mem; | |
27 | ||
28 | uint8_t mask = 0; | |
29 | uint32_t eecd; | |
30 | unsigned long i; | |
31 | ||
32 | /* Pre-read the control register */ | |
33 | eecd = E1000_READ_REG(hw, EECD); | |
34 | ||
35 | /* Iterate over each bit */ | |
36 | for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) { | |
37 | /* Check for interrupt */ | |
38 | if (intr && ctrlc()) | |
39 | return -1; | |
40 | ||
41 | /* Determine the output bit */ | |
42 | if (dout && dout[i >> 3] & mask) | |
43 | eecd |= E1000_EECD_DI; | |
44 | else | |
45 | eecd &= ~E1000_EECD_DI; | |
46 | ||
47 | /* Write the output bit and wait 50us */ | |
48 | E1000_WRITE_REG(hw, EECD, eecd); | |
49 | E1000_WRITE_FLUSH(hw); | |
50 | udelay(50); | |
51 | ||
52 | /* Poke the clock (waits 50us) */ | |
53 | e1000_raise_ee_clk(hw, &eecd); | |
54 | ||
55 | /* Now read the input bit */ | |
56 | eecd = E1000_READ_REG(hw, EECD); | |
57 | if (din) { | |
58 | if (eecd & E1000_EECD_DO) | |
59 | din[i >> 3] |= mask; | |
60 | else | |
61 | din[i >> 3] &= ~mask; | |
62 | } | |
63 | ||
64 | /* Poke the clock again (waits 50us) */ | |
65 | e1000_lower_ee_clk(hw, &eecd); | |
66 | } | |
67 | ||
68 | /* Now clear any remaining bits of the input */ | |
69 | if (din && (i & 7)) | |
70 | din[i >> 3] &= ~((mask << 1) - 1); | |
71 | ||
72 | return 0; | |
73 | } | |
74 | ||
75 | #ifdef CONFIG_E1000_SPI_GENERIC | |
76 | static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi) | |
77 | { | |
78 | return container_of(spi, struct e1000_hw, spi); | |
79 | } | |
80 | ||
ce5207e1 KM |
81 | struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, |
82 | unsigned int max_hz, unsigned int mode) | |
83 | { | |
84 | /* Find the right PCI device */ | |
85 | struct e1000_hw *hw = e1000_find_card(bus); | |
86 | if (!hw) { | |
87 | printf("ERROR: No such e1000 device: e1000#%u\n", bus); | |
88 | return NULL; | |
89 | } | |
90 | ||
91 | /* Make sure it has an SPI chip */ | |
92 | if (hw->eeprom.type != e1000_eeprom_spi) { | |
eb4e8ceb | 93 | E1000_ERR(hw, "No attached SPI EEPROM found!\n"); |
ce5207e1 KM |
94 | return NULL; |
95 | } | |
96 | ||
97 | /* Argument sanity checks */ | |
98 | if (cs != 0) { | |
eb4e8ceb | 99 | E1000_ERR(hw, "No such SPI chip: %u\n", cs); |
ce5207e1 KM |
100 | return NULL; |
101 | } | |
102 | if (mode != SPI_MODE_0) { | |
eb4e8ceb | 103 | E1000_ERR(hw, "Only SPI MODE-0 is supported!\n"); |
ce5207e1 KM |
104 | return NULL; |
105 | } | |
106 | ||
107 | /* TODO: Use max_hz somehow */ | |
108 | E1000_DBG(hw->nic, "EEPROM SPI access requested\n"); | |
109 | return &hw->spi; | |
110 | } | |
111 | ||
112 | void spi_free_slave(struct spi_slave *spi) | |
113 | { | |
deb7282f | 114 | __maybe_unused struct e1000_hw *hw = e1000_hw_from_spi(spi); |
ce5207e1 KM |
115 | E1000_DBG(hw->nic, "EEPROM SPI access released\n"); |
116 | } | |
117 | ||
118 | int spi_claim_bus(struct spi_slave *spi) | |
119 | { | |
120 | struct e1000_hw *hw = e1000_hw_from_spi(spi); | |
121 | ||
122 | if (e1000_acquire_eeprom(hw)) { | |
eb4e8ceb | 123 | E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); |
ce5207e1 KM |
124 | return -1; |
125 | } | |
126 | ||
127 | return 0; | |
128 | } | |
129 | ||
130 | void spi_release_bus(struct spi_slave *spi) | |
131 | { | |
132 | struct e1000_hw *hw = e1000_hw_from_spi(spi); | |
133 | e1000_release_eeprom(hw); | |
134 | } | |
135 | ||
136 | /* Skinny wrapper around e1000_spi_xfer */ | |
137 | int spi_xfer(struct spi_slave *spi, unsigned int bitlen, | |
138 | const void *dout_mem, void *din_mem, unsigned long flags) | |
139 | { | |
140 | struct e1000_hw *hw = e1000_hw_from_spi(spi); | |
141 | int ret; | |
142 | ||
143 | if (flags & SPI_XFER_BEGIN) | |
144 | e1000_standby_eeprom(hw); | |
145 | ||
472d5460 | 146 | ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, true); |
ce5207e1 KM |
147 | |
148 | if (flags & SPI_XFER_END) | |
149 | e1000_standby_eeprom(hw); | |
150 | ||
151 | return ret; | |
152 | } | |
153 | ||
154 | #endif /* not CONFIG_E1000_SPI_GENERIC */ | |
155 | ||
156 | #ifdef CONFIG_CMD_E1000 | |
157 | ||
158 | /* The EEPROM opcodes */ | |
159 | #define SPI_EEPROM_ENABLE_WR 0x06 | |
160 | #define SPI_EEPROM_DISABLE_WR 0x04 | |
161 | #define SPI_EEPROM_WRITE_STATUS 0x01 | |
162 | #define SPI_EEPROM_READ_STATUS 0x05 | |
163 | #define SPI_EEPROM_WRITE_PAGE 0x02 | |
164 | #define SPI_EEPROM_READ_PAGE 0x03 | |
165 | ||
166 | /* The EEPROM status bits */ | |
167 | #define SPI_EEPROM_STATUS_BUSY 0x01 | |
168 | #define SPI_EEPROM_STATUS_WREN 0x02 | |
169 | ||
472d5460 | 170 | static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, bool intr) |
ce5207e1 KM |
171 | { |
172 | u8 op[] = { SPI_EEPROM_ENABLE_WR }; | |
173 | e1000_standby_eeprom(hw); | |
174 | return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); | |
175 | } | |
176 | ||
177 | /* | |
178 | * These have been tested to perform correctly, but they are not used by any | |
179 | * of the EEPROM commands at this time. | |
180 | */ | |
140bc33e BM |
181 | static __maybe_unused int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, |
182 | bool intr) | |
ce5207e1 KM |
183 | { |
184 | u8 op[] = { SPI_EEPROM_DISABLE_WR }; | |
185 | e1000_standby_eeprom(hw); | |
186 | return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); | |
187 | } | |
188 | ||
140bc33e BM |
189 | static __maybe_unused int e1000_spi_eeprom_write_status(struct e1000_hw *hw, |
190 | u8 status, bool intr) | |
ce5207e1 KM |
191 | { |
192 | u8 op[] = { SPI_EEPROM_WRITE_STATUS, status }; | |
193 | e1000_standby_eeprom(hw); | |
194 | return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); | |
195 | } | |
ce5207e1 | 196 | |
472d5460 | 197 | static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, bool intr) |
ce5207e1 KM |
198 | { |
199 | u8 op[] = { SPI_EEPROM_READ_STATUS, 0 }; | |
200 | e1000_standby_eeprom(hw); | |
201 | if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr)) | |
202 | return -1; | |
203 | return op[1]; | |
204 | } | |
205 | ||
206 | static int e1000_spi_eeprom_write_page(struct e1000_hw *hw, | |
472d5460 | 207 | const void *data, u16 off, u16 len, bool intr) |
ce5207e1 KM |
208 | { |
209 | u8 op[] = { | |
210 | SPI_EEPROM_WRITE_PAGE, | |
211 | (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff | |
212 | }; | |
213 | ||
214 | e1000_standby_eeprom(hw); | |
215 | ||
216 | if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) | |
217 | return -1; | |
218 | if (e1000_spi_xfer(hw, len << 3, data, NULL, intr)) | |
219 | return -1; | |
220 | ||
221 | return 0; | |
222 | } | |
223 | ||
224 | static int e1000_spi_eeprom_read_page(struct e1000_hw *hw, | |
472d5460 | 225 | void *data, u16 off, u16 len, bool intr) |
ce5207e1 KM |
226 | { |
227 | u8 op[] = { | |
228 | SPI_EEPROM_READ_PAGE, | |
229 | (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff | |
230 | }; | |
231 | ||
232 | e1000_standby_eeprom(hw); | |
233 | ||
234 | if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) | |
235 | return -1; | |
236 | if (e1000_spi_xfer(hw, len << 3, NULL, data, intr)) | |
237 | return -1; | |
238 | ||
239 | return 0; | |
240 | } | |
241 | ||
472d5460 | 242 | static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, bool intr) |
ce5207e1 KM |
243 | { |
244 | int status; | |
245 | while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) { | |
246 | if (!(status & SPI_EEPROM_STATUS_BUSY)) | |
247 | return 0; | |
248 | } | |
249 | return -1; | |
250 | } | |
251 | ||
252 | static int e1000_spi_eeprom_dump(struct e1000_hw *hw, | |
472d5460 | 253 | void *data, u16 off, unsigned int len, bool intr) |
ce5207e1 KM |
254 | { |
255 | /* Interruptibly wait for the EEPROM to be ready */ | |
256 | if (e1000_spi_eeprom_poll_ready(hw, intr)) | |
257 | return -1; | |
258 | ||
259 | /* Dump each page in sequence */ | |
260 | while (len) { | |
261 | /* Calculate the data bytes on this page */ | |
262 | u16 pg_off = off & (hw->eeprom.page_size - 1); | |
263 | u16 pg_len = hw->eeprom.page_size - pg_off; | |
264 | if (pg_len > len) | |
265 | pg_len = len; | |
266 | ||
267 | /* Now dump the page */ | |
268 | if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr)) | |
269 | return -1; | |
270 | ||
271 | /* Otherwise go on to the next page */ | |
272 | len -= pg_len; | |
273 | off += pg_len; | |
274 | data += pg_len; | |
275 | } | |
276 | ||
277 | /* We're done! */ | |
278 | return 0; | |
279 | } | |
280 | ||
281 | static int e1000_spi_eeprom_program(struct e1000_hw *hw, | |
472d5460 | 282 | const void *data, u16 off, u16 len, bool intr) |
ce5207e1 KM |
283 | { |
284 | /* Program each page in sequence */ | |
285 | while (len) { | |
286 | /* Calculate the data bytes on this page */ | |
287 | u16 pg_off = off & (hw->eeprom.page_size - 1); | |
288 | u16 pg_len = hw->eeprom.page_size - pg_off; | |
289 | if (pg_len > len) | |
290 | pg_len = len; | |
291 | ||
292 | /* Interruptibly wait for the EEPROM to be ready */ | |
293 | if (e1000_spi_eeprom_poll_ready(hw, intr)) | |
294 | return -1; | |
295 | ||
296 | /* Enable write access */ | |
297 | if (e1000_spi_eeprom_enable_wr(hw, intr)) | |
298 | return -1; | |
299 | ||
300 | /* Now program the page */ | |
301 | if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr)) | |
302 | return -1; | |
303 | ||
304 | /* Otherwise go on to the next page */ | |
305 | len -= pg_len; | |
306 | off += pg_len; | |
307 | data += pg_len; | |
308 | } | |
309 | ||
310 | /* Wait for the last write to complete */ | |
311 | if (e1000_spi_eeprom_poll_ready(hw, intr)) | |
312 | return -1; | |
313 | ||
314 | /* We're done! */ | |
315 | return 0; | |
316 | } | |
317 | ||
318 | static int do_e1000_spi_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw, | |
319 | int argc, char * const argv[]) | |
320 | { | |
321 | unsigned int length = 0; | |
322 | u16 i, offset = 0; | |
323 | u8 *buffer; | |
324 | int err; | |
325 | ||
326 | if (argc > 2) { | |
327 | cmd_usage(cmdtp); | |
328 | return 1; | |
329 | } | |
330 | ||
331 | /* Parse the offset and length */ | |
332 | if (argc >= 1) | |
333 | offset = simple_strtoul(argv[0], NULL, 0); | |
334 | if (argc == 2) | |
335 | length = simple_strtoul(argv[1], NULL, 0); | |
336 | else if (offset < (hw->eeprom.word_size << 1)) | |
337 | length = (hw->eeprom.word_size << 1) - offset; | |
338 | ||
339 | /* Extra sanity checks */ | |
340 | if (!length) { | |
eb4e8ceb | 341 | E1000_ERR(hw, "Requested zero-sized dump!\n"); |
ce5207e1 KM |
342 | return 1; |
343 | } | |
344 | if ((0x10000 < length) || (0x10000 - length < offset)) { | |
eb4e8ceb | 345 | E1000_ERR(hw, "Can't dump past 0xFFFF!\n"); |
ce5207e1 KM |
346 | return 1; |
347 | } | |
348 | ||
349 | /* Allocate a buffer to hold stuff */ | |
350 | buffer = malloc(length); | |
351 | if (!buffer) { | |
eb4e8ceb | 352 | E1000_ERR(hw, "Out of Memory!\n"); |
ce5207e1 KM |
353 | return 1; |
354 | } | |
355 | ||
356 | /* Acquire the EEPROM and perform the dump */ | |
357 | if (e1000_acquire_eeprom(hw)) { | |
eb4e8ceb | 358 | E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); |
ce5207e1 KM |
359 | free(buffer); |
360 | return 1; | |
361 | } | |
472d5460 | 362 | err = e1000_spi_eeprom_dump(hw, buffer, offset, length, true); |
ce5207e1 KM |
363 | e1000_release_eeprom(hw); |
364 | if (err) { | |
eb4e8ceb | 365 | E1000_ERR(hw, "Interrupted!\n"); |
ce5207e1 KM |
366 | free(buffer); |
367 | return 1; | |
368 | } | |
369 | ||
370 | /* Now hexdump the result */ | |
371 | printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====", | |
eb4e8ceb | 372 | hw->name, offset, offset + length - 1); |
ce5207e1 KM |
373 | for (i = 0; i < length; i++) { |
374 | if ((i & 0xF) == 0) | |
eb4e8ceb | 375 | printf("\n%s: %04hX: ", hw->name, offset + i); |
ce5207e1 KM |
376 | else if ((i & 0xF) == 0x8) |
377 | printf(" "); | |
378 | printf(" %02hx", buffer[i]); | |
379 | } | |
380 | printf("\n"); | |
381 | ||
382 | /* Success! */ | |
383 | free(buffer); | |
384 | return 0; | |
385 | } | |
386 | ||
387 | static int do_e1000_spi_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw, | |
388 | int argc, char * const argv[]) | |
389 | { | |
390 | unsigned int length; | |
391 | u16 offset; | |
392 | void *dest; | |
393 | ||
394 | if (argc != 3) { | |
395 | cmd_usage(cmdtp); | |
396 | return 1; | |
397 | } | |
398 | ||
399 | /* Parse the arguments */ | |
400 | dest = (void *)simple_strtoul(argv[0], NULL, 16); | |
401 | offset = simple_strtoul(argv[1], NULL, 0); | |
402 | length = simple_strtoul(argv[2], NULL, 0); | |
403 | ||
404 | /* Extra sanity checks */ | |
405 | if (!length) { | |
eb4e8ceb | 406 | E1000_ERR(hw, "Requested zero-sized dump!\n"); |
ce5207e1 KM |
407 | return 1; |
408 | } | |
409 | if ((0x10000 < length) || (0x10000 - length < offset)) { | |
eb4e8ceb | 410 | E1000_ERR(hw, "Can't dump past 0xFFFF!\n"); |
ce5207e1 KM |
411 | return 1; |
412 | } | |
413 | ||
414 | /* Acquire the EEPROM */ | |
415 | if (e1000_acquire_eeprom(hw)) { | |
eb4e8ceb | 416 | E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); |
ce5207e1 KM |
417 | return 1; |
418 | } | |
419 | ||
420 | /* Perform the programming operation */ | |
472d5460 | 421 | if (e1000_spi_eeprom_dump(hw, dest, offset, length, true) < 0) { |
eb4e8ceb | 422 | E1000_ERR(hw, "Interrupted!\n"); |
ce5207e1 KM |
423 | e1000_release_eeprom(hw); |
424 | return 1; | |
425 | } | |
426 | ||
427 | e1000_release_eeprom(hw); | |
eb4e8ceb | 428 | printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->name); |
ce5207e1 KM |
429 | return 0; |
430 | } | |
431 | ||
432 | static int do_e1000_spi_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw, | |
433 | int argc, char * const argv[]) | |
434 | { | |
435 | unsigned int length; | |
436 | const void *source; | |
437 | u16 offset; | |
438 | ||
439 | if (argc != 3) { | |
440 | cmd_usage(cmdtp); | |
441 | return 1; | |
442 | } | |
443 | ||
444 | /* Parse the arguments */ | |
445 | source = (const void *)simple_strtoul(argv[0], NULL, 16); | |
446 | offset = simple_strtoul(argv[1], NULL, 0); | |
447 | length = simple_strtoul(argv[2], NULL, 0); | |
448 | ||
449 | /* Acquire the EEPROM */ | |
450 | if (e1000_acquire_eeprom(hw)) { | |
eb4e8ceb | 451 | E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); |
ce5207e1 KM |
452 | return 1; |
453 | } | |
454 | ||
455 | /* Perform the programming operation */ | |
472d5460 | 456 | if (e1000_spi_eeprom_program(hw, source, offset, length, true) < 0) { |
eb4e8ceb | 457 | E1000_ERR(hw, "Interrupted!\n"); |
ce5207e1 KM |
458 | e1000_release_eeprom(hw); |
459 | return 1; | |
460 | } | |
461 | ||
462 | e1000_release_eeprom(hw); | |
eb4e8ceb | 463 | printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->name); |
ce5207e1 KM |
464 | return 0; |
465 | } | |
466 | ||
467 | static int do_e1000_spi_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw, | |
468 | int argc, char * const argv[]) | |
469 | { | |
deb7282f | 470 | uint16_t i, length, checksum = 0, checksum_reg; |
ce5207e1 | 471 | uint16_t *buffer; |
472d5460 | 472 | bool upd; |
ce5207e1 KM |
473 | |
474 | if (argc == 0) | |
475 | upd = 0; | |
476 | else if ((argc == 1) && !strcmp(argv[0], "update")) | |
477 | upd = 1; | |
478 | else { | |
479 | cmd_usage(cmdtp); | |
480 | return 1; | |
481 | } | |
482 | ||
483 | /* Allocate a temporary buffer */ | |
484 | length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1); | |
485 | buffer = malloc(length); | |
486 | if (!buffer) { | |
eb4e8ceb | 487 | E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n"); |
ce5207e1 KM |
488 | return 1; |
489 | } | |
490 | ||
491 | /* Acquire the EEPROM */ | |
492 | if (e1000_acquire_eeprom(hw)) { | |
eb4e8ceb | 493 | E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); |
ce5207e1 KM |
494 | return 1; |
495 | } | |
496 | ||
497 | /* Read the EEPROM */ | |
472d5460 | 498 | if (e1000_spi_eeprom_dump(hw, buffer, 0, length, true) < 0) { |
eb4e8ceb | 499 | E1000_ERR(hw, "Interrupted!\n"); |
ce5207e1 KM |
500 | e1000_release_eeprom(hw); |
501 | return 1; | |
502 | } | |
503 | ||
504 | /* Compute the checksum and read the expected value */ | |
505 | for (i = 0; i < EEPROM_CHECKSUM_REG; i++) | |
506 | checksum += le16_to_cpu(buffer[i]); | |
507 | checksum = ((uint16_t)EEPROM_SUM) - checksum; | |
508 | checksum_reg = le16_to_cpu(buffer[i]); | |
509 | ||
510 | /* Verify it! */ | |
511 | if (checksum_reg == checksum) { | |
512 | printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n", | |
eb4e8ceb | 513 | hw->name, checksum); |
ce5207e1 KM |
514 | e1000_release_eeprom(hw); |
515 | return 0; | |
516 | } | |
517 | ||
518 | /* Hrm, verification failed, print an error */ | |
eb4e8ceb AB |
519 | E1000_ERR(hw, "EEPROM checksum is incorrect!\n"); |
520 | E1000_ERR(hw, " ...register was 0x%04hx, calculated 0x%04hx\n", | |
521 | checksum_reg, checksum); | |
ce5207e1 KM |
522 | |
523 | /* If they didn't ask us to update it, just return an error */ | |
524 | if (!upd) { | |
525 | e1000_release_eeprom(hw); | |
526 | return 1; | |
527 | } | |
528 | ||
529 | /* Ok, correct it! */ | |
eb4e8ceb | 530 | printf("%s: Reprogramming the EEPROM checksum...\n", hw->name); |
ce5207e1 KM |
531 | buffer[i] = cpu_to_le16(checksum); |
532 | if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t), | |
472d5460 | 533 | sizeof(uint16_t), true)) { |
eb4e8ceb | 534 | E1000_ERR(hw, "Interrupted!\n"); |
ce5207e1 KM |
535 | e1000_release_eeprom(hw); |
536 | return 1; | |
537 | } | |
538 | ||
539 | e1000_release_eeprom(hw); | |
540 | return 0; | |
541 | } | |
542 | ||
543 | int do_e1000_spi(cmd_tbl_t *cmdtp, struct e1000_hw *hw, | |
544 | int argc, char * const argv[]) | |
545 | { | |
546 | if (argc < 1) { | |
547 | cmd_usage(cmdtp); | |
548 | return 1; | |
549 | } | |
550 | ||
551 | /* Make sure it has an SPI chip */ | |
552 | if (hw->eeprom.type != e1000_eeprom_spi) { | |
eb4e8ceb AB |
553 | E1000_ERR(hw, "No attached SPI EEPROM found (%d)!\n", |
554 | hw->eeprom.type); | |
ce5207e1 KM |
555 | return 1; |
556 | } | |
557 | ||
558 | /* Check the eeprom sub-sub-command arguments */ | |
559 | if (!strcmp(argv[0], "show")) | |
560 | return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1); | |
561 | ||
562 | if (!strcmp(argv[0], "dump")) | |
563 | return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1); | |
564 | ||
565 | if (!strcmp(argv[0], "program")) | |
566 | return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1); | |
567 | ||
568 | if (!strcmp(argv[0], "checksum")) | |
569 | return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1); | |
570 | ||
571 | cmd_usage(cmdtp); | |
572 | return 1; | |
573 | } | |
574 | ||
575 | #endif /* not CONFIG_CMD_E1000 */ |