]>
Commit | Line | Data |
---|---|---|
9eefe2a2 SR |
1 | #ifndef _LINUX_MATH64_H |
2 | #define _LINUX_MATH64_H | |
3 | ||
0342e335 PF |
4 | #include <div64.h> |
5 | #include <linux/bitops.h> | |
9eefe2a2 SR |
6 | #include <linux/types.h> |
7 | ||
8 | #if BITS_PER_LONG == 64 | |
9 | ||
0342e335 PF |
10 | #define div64_long(x, y) div64_s64((x), (y)) |
11 | #define div64_ul(x, y) div64_u64((x), (y)) | |
12 | ||
9eefe2a2 SR |
13 | /** |
14 | * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder | |
15 | * | |
16 | * This is commonly provided by 32bit archs to provide an optimized 64bit | |
17 | * divide. | |
18 | */ | |
19 | static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) | |
20 | { | |
21 | *remainder = dividend % divisor; | |
22 | return dividend / divisor; | |
23 | } | |
24 | ||
25 | /** | |
26 | * div_s64_rem - signed 64bit divide with 32bit divisor with remainder | |
27 | */ | |
28 | static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) | |
29 | { | |
30 | *remainder = dividend % divisor; | |
31 | return dividend / divisor; | |
32 | } | |
33 | ||
0342e335 PF |
34 | /** |
35 | * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder | |
36 | */ | |
37 | static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) | |
38 | { | |
39 | *remainder = dividend % divisor; | |
40 | return dividend / divisor; | |
41 | } | |
42 | ||
9eefe2a2 SR |
43 | /** |
44 | * div64_u64 - unsigned 64bit divide with 64bit divisor | |
45 | */ | |
46 | static inline u64 div64_u64(u64 dividend, u64 divisor) | |
47 | { | |
48 | return dividend / divisor; | |
49 | } | |
50 | ||
0342e335 PF |
51 | /** |
52 | * div64_s64 - signed 64bit divide with 64bit divisor | |
53 | */ | |
54 | static inline s64 div64_s64(s64 dividend, s64 divisor) | |
55 | { | |
56 | return dividend / divisor; | |
57 | } | |
58 | ||
9eefe2a2 SR |
59 | #elif BITS_PER_LONG == 32 |
60 | ||
0342e335 PF |
61 | #define div64_long(x, y) div_s64((x), (y)) |
62 | #define div64_ul(x, y) div_u64((x), (y)) | |
63 | ||
9eefe2a2 SR |
64 | #ifndef div_u64_rem |
65 | static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) | |
66 | { | |
67 | *remainder = do_div(dividend, divisor); | |
68 | return dividend; | |
69 | } | |
70 | #endif | |
71 | ||
72 | #ifndef div_s64_rem | |
73 | extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder); | |
74 | #endif | |
75 | ||
0342e335 PF |
76 | #ifndef div64_u64_rem |
77 | extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder); | |
78 | #endif | |
79 | ||
9eefe2a2 SR |
80 | #ifndef div64_u64 |
81 | extern u64 div64_u64(u64 dividend, u64 divisor); | |
82 | #endif | |
83 | ||
0342e335 PF |
84 | #ifndef div64_s64 |
85 | extern s64 div64_s64(s64 dividend, s64 divisor); | |
86 | #endif | |
87 | ||
9eefe2a2 SR |
88 | #endif /* BITS_PER_LONG */ |
89 | ||
90 | /** | |
91 | * div_u64 - unsigned 64bit divide with 32bit divisor | |
92 | * | |
93 | * This is the most common 64bit divide and should be used if possible, | |
94 | * as many 32bit archs can optimize this variant better than a full 64bit | |
95 | * divide. | |
96 | */ | |
97 | #ifndef div_u64 | |
98 | static inline u64 div_u64(u64 dividend, u32 divisor) | |
99 | { | |
100 | u32 remainder; | |
101 | return div_u64_rem(dividend, divisor, &remainder); | |
102 | } | |
103 | #endif | |
104 | ||
105 | /** | |
106 | * div_s64 - signed 64bit divide with 32bit divisor | |
107 | */ | |
108 | #ifndef div_s64 | |
109 | static inline s64 div_s64(s64 dividend, s32 divisor) | |
110 | { | |
111 | s32 remainder; | |
112 | return div_s64_rem(dividend, divisor, &remainder); | |
113 | } | |
114 | #endif | |
115 | ||
116 | u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder); | |
117 | ||
0342e335 PF |
118 | static __always_inline u32 |
119 | __iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) | |
120 | { | |
121 | u32 ret = 0; | |
122 | ||
123 | while (dividend >= divisor) { | |
124 | /* The following asm() prevents the compiler from | |
125 | optimising this loop into a modulo operation. */ | |
126 | asm("" : "+rm"(dividend)); | |
127 | ||
128 | dividend -= divisor; | |
129 | ret++; | |
130 | } | |
131 | ||
132 | *remainder = dividend; | |
133 | ||
134 | return ret; | |
135 | } | |
136 | ||
137 | #ifndef mul_u32_u32 | |
138 | /* | |
139 | * Many a GCC version messes this up and generates a 64x64 mult :-( | |
140 | */ | |
141 | static inline u64 mul_u32_u32(u32 a, u32 b) | |
142 | { | |
143 | return (u64)a * b; | |
144 | } | |
145 | #endif | |
146 | ||
147 | #if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__) | |
148 | ||
149 | #ifndef mul_u64_u32_shr | |
150 | static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift) | |
151 | { | |
152 | return (u64)(((unsigned __int128)a * mul) >> shift); | |
153 | } | |
154 | #endif /* mul_u64_u32_shr */ | |
155 | ||
156 | #ifndef mul_u64_u64_shr | |
157 | static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift) | |
158 | { | |
159 | return (u64)(((unsigned __int128)a * mul) >> shift); | |
160 | } | |
161 | #endif /* mul_u64_u64_shr */ | |
162 | ||
163 | #else | |
164 | ||
165 | #ifndef mul_u64_u32_shr | |
166 | static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift) | |
167 | { | |
168 | u32 ah, al; | |
169 | u64 ret; | |
170 | ||
171 | al = a; | |
172 | ah = a >> 32; | |
173 | ||
174 | ret = mul_u32_u32(al, mul) >> shift; | |
175 | if (ah) | |
176 | ret += mul_u32_u32(ah, mul) << (32 - shift); | |
177 | ||
178 | return ret; | |
179 | } | |
180 | #endif /* mul_u64_u32_shr */ | |
181 | ||
182 | #ifndef mul_u64_u64_shr | |
183 | static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift) | |
184 | { | |
185 | union { | |
186 | u64 ll; | |
187 | struct { | |
188 | #ifdef __BIG_ENDIAN | |
189 | u32 high, low; | |
190 | #else | |
191 | u32 low, high; | |
192 | #endif | |
193 | } l; | |
194 | } rl, rm, rn, rh, a0, b0; | |
195 | u64 c; | |
196 | ||
197 | a0.ll = a; | |
198 | b0.ll = b; | |
199 | ||
200 | rl.ll = mul_u32_u32(a0.l.low, b0.l.low); | |
201 | rm.ll = mul_u32_u32(a0.l.low, b0.l.high); | |
202 | rn.ll = mul_u32_u32(a0.l.high, b0.l.low); | |
203 | rh.ll = mul_u32_u32(a0.l.high, b0.l.high); | |
204 | ||
205 | /* | |
206 | * Each of these lines computes a 64-bit intermediate result into "c", | |
207 | * starting at bits 32-95. The low 32-bits go into the result of the | |
208 | * multiplication, the high 32-bits are carried into the next step. | |
209 | */ | |
210 | rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low; | |
211 | rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low; | |
212 | rh.l.high = (c >> 32) + rh.l.high; | |
213 | ||
214 | /* | |
215 | * The 128-bit result of the multiplication is in rl.ll and rh.ll, | |
216 | * shift it right and throw away the high part of the result. | |
217 | */ | |
218 | if (shift == 0) | |
219 | return rl.ll; | |
220 | if (shift < 64) | |
221 | return (rl.ll >> shift) | (rh.ll << (64 - shift)); | |
222 | return rh.ll >> (shift & 63); | |
223 | } | |
224 | #endif /* mul_u64_u64_shr */ | |
225 | ||
226 | #endif | |
227 | ||
228 | #ifndef mul_u64_u32_div | |
229 | static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor) | |
230 | { | |
231 | union { | |
232 | u64 ll; | |
233 | struct { | |
234 | #ifdef __BIG_ENDIAN | |
235 | u32 high, low; | |
236 | #else | |
237 | u32 low, high; | |
238 | #endif | |
239 | } l; | |
240 | } u, rl, rh; | |
241 | ||
242 | u.ll = a; | |
243 | rl.ll = mul_u32_u32(u.l.low, mul); | |
244 | rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high; | |
245 | ||
246 | /* Bits 32-63 of the result will be in rh.l.low. */ | |
247 | rl.l.high = do_div(rh.ll, divisor); | |
248 | ||
249 | /* Bits 0-31 of the result will be in rl.l.low. */ | |
250 | do_div(rl.ll, divisor); | |
251 | ||
252 | rl.l.high = rh.l.low; | |
253 | return rl.ll; | |
254 | } | |
255 | #endif /* mul_u64_u32_div */ | |
256 | ||
9eefe2a2 | 257 | #endif /* _LINUX_MATH64_H */ |