if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
return;
- WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
+ uclamp_rq_set(rq, clamp_id, clamp_value);
}
static inline
if (bucket->tasks == 1 || uc_se->value > bucket->value)
bucket->value = uc_se->value;
- if (uc_se->value > READ_ONCE(uc_rq->value))
- WRITE_ONCE(uc_rq->value, uc_se->value);
+ if (uc_se->value > uclamp_rq_get(rq, clamp_id))
+ uclamp_rq_set(rq, clamp_id, uc_se->value);
}
/*
if (likely(bucket->tasks))
return;
- rq_clamp = READ_ONCE(uc_rq->value);
+ rq_clamp = uclamp_rq_get(rq, clamp_id);
/*
* Defensive programming: this should never happen. If it happens,
* e.g. due to future modification, warn and fixup the expected value.
SCHED_WARN_ON(bucket->value > rq_clamp);
if (bucket->value >= rq_clamp) {
bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
- WRITE_ONCE(uc_rq->value, bkt_clamp);
+ uclamp_rq_set(rq, clamp_id, bkt_clamp);
}
}
if (!(flags & ENQUEUE_RESTORE)) {
sched_info_enqueue(rq, p);
- psi_enqueue(p, flags & ENQUEUE_WAKEUP);
+ psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
}
uclamp_rq_inc(rq, p);
#ifdef CONFIG_SMP
static void
-__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
+__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
static int __set_cpus_allowed_ptr(struct task_struct *p,
- const struct cpumask *new_mask,
- u32 flags);
+ struct affinity_context *ctx);
static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
{
+ struct affinity_context ac = {
+ .new_mask = cpumask_of(rq->cpu),
+ .flags = SCA_MIGRATE_DISABLE,
+ };
+
if (likely(!p->migration_disabled))
return;
/*
* Violates locking rules! see comment in __do_set_cpus_allowed().
*/
- __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
+ __do_set_cpus_allowed(p, &ac);
}
void migrate_disable(void)
void migrate_enable(void)
{
struct task_struct *p = current;
+ struct affinity_context ac = {
+ .new_mask = &p->cpus_mask,
+ .flags = SCA_MIGRATE_ENABLE,
+ };
if (p->migration_disabled > 1) {
p->migration_disabled--;
*/
preempt_disable();
if (p->cpus_ptr != &p->cpus_mask)
- __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
+ __set_cpus_allowed_ptr(p, &ac);
/*
* Mustn't clear migration_disabled() until cpus_ptr points back at the
* regular cpus_mask, otherwise things that race (eg.
* sched_class::set_cpus_allowed must do the below, but is not required to
* actually call this function.
*/
-void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
+void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
{
- if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
- p->cpus_ptr = new_mask;
+ if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
+ p->cpus_ptr = ctx->new_mask;
return;
}
- cpumask_copy(&p->cpus_mask, new_mask);
- p->nr_cpus_allowed = cpumask_weight(new_mask);
+ cpumask_copy(&p->cpus_mask, ctx->new_mask);
+ p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
+
+ /*
+ * Swap in a new user_cpus_ptr if SCA_USER flag set
+ */
+ if (ctx->flags & SCA_USER)
+ swap(p->user_cpus_ptr, ctx->user_mask);
}
static void
-__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
+__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
{
struct rq *rq = task_rq(p);
bool queued, running;
*
* XXX do further audits, this smells like something putrid.
*/
- if (flags & SCA_MIGRATE_DISABLE)
+ if (ctx->flags & SCA_MIGRATE_DISABLE)
SCHED_WARN_ON(!p->on_cpu);
else
lockdep_assert_held(&p->pi_lock);
if (running)
put_prev_task(rq, p);
- p->sched_class->set_cpus_allowed(p, new_mask, flags);
+ p->sched_class->set_cpus_allowed(p, ctx);
if (queued)
enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
set_next_task(rq, p);
}
+/*
+ * Used for kthread_bind() and select_fallback_rq(), in both cases the user
+ * affinity (if any) should be destroyed too.
+ */
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
- __do_set_cpus_allowed(p, new_mask, 0);
+ struct affinity_context ac = {
+ .new_mask = new_mask,
+ .user_mask = NULL,
+ .flags = SCA_USER, /* clear the user requested mask */
+ };
+
+ __do_set_cpus_allowed(p, &ac);
+ kfree(ac.user_mask);
}
int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
int node)
{
+ unsigned long flags;
+
if (!src->user_cpus_ptr)
return 0;
if (!dst->user_cpus_ptr)
return -ENOMEM;
+ /* Use pi_lock to protect content of user_cpus_ptr */
+ raw_spin_lock_irqsave(&src->pi_lock, flags);
cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
+ raw_spin_unlock_irqrestore(&src->pi_lock, flags);
return 0;
}
*/
static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
int dest_cpu, unsigned int flags)
+ __releases(rq->lock)
+ __releases(p->pi_lock)
{
struct set_affinity_pending my_pending = { }, *pending = NULL;
bool stop_pending, complete = false;
* Called with both p->pi_lock and rq->lock held; drops both before returning.
*/
static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
- const struct cpumask *new_mask,
- u32 flags,
+ struct affinity_context *ctx,
struct rq *rq,
struct rq_flags *rf)
__releases(rq->lock)
const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
const struct cpumask *cpu_valid_mask = cpu_active_mask;
bool kthread = p->flags & PF_KTHREAD;
- struct cpumask *user_mask = NULL;
unsigned int dest_cpu;
int ret = 0;
cpu_valid_mask = cpu_online_mask;
}
- if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
+ if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
ret = -EINVAL;
goto out;
}
* Must re-check here, to close a race against __kthread_bind(),
* sched_setaffinity() is not guaranteed to observe the flag.
*/
- if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
+ if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
ret = -EINVAL;
goto out;
}
- if (!(flags & SCA_MIGRATE_ENABLE)) {
- if (cpumask_equal(&p->cpus_mask, new_mask))
+ if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
+ if (cpumask_equal(&p->cpus_mask, ctx->new_mask))
goto out;
if (WARN_ON_ONCE(p == current &&
is_migration_disabled(p) &&
- !cpumask_test_cpu(task_cpu(p), new_mask))) {
+ !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
ret = -EBUSY;
goto out;
}
* for groups of tasks (ie. cpuset), so that load balancing is not
* immediately required to distribute the tasks within their new mask.
*/
- dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
+ dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
if (dest_cpu >= nr_cpu_ids) {
ret = -EINVAL;
goto out;
}
- __do_set_cpus_allowed(p, new_mask, flags);
-
- if (flags & SCA_USER)
- user_mask = clear_user_cpus_ptr(p);
+ __do_set_cpus_allowed(p, ctx);
- ret = affine_move_task(rq, p, rf, dest_cpu, flags);
-
- kfree(user_mask);
-
- return ret;
+ return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
out:
task_rq_unlock(rq, p, rf);
* call is not atomic; no spinlocks may be held.
*/
static int __set_cpus_allowed_ptr(struct task_struct *p,
- const struct cpumask *new_mask, u32 flags)
+ struct affinity_context *ctx)
{
struct rq_flags rf;
struct rq *rq;
rq = task_rq_lock(p, &rf);
- return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
+ /*
+ * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
+ * flags are set.
+ */
+ if (p->user_cpus_ptr &&
+ !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
+ cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
+ ctx->new_mask = rq->scratch_mask;
+
+ return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
}
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
- return __set_cpus_allowed_ptr(p, new_mask, 0);
+ struct affinity_context ac = {
+ .new_mask = new_mask,
+ .flags = 0,
+ };
+
+ return __set_cpus_allowed_ptr(p, &ac);
}
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
/*
* Change a given task's CPU affinity to the intersection of its current
- * affinity mask and @subset_mask, writing the resulting mask to @new_mask
- * and pointing @p->user_cpus_ptr to a copy of the old mask.
+ * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
+ * If user_cpus_ptr is defined, use it as the basis for restricting CPU
+ * affinity or use cpu_online_mask instead.
+ *
* If the resulting mask is empty, leave the affinity unchanged and return
* -EINVAL.
*/
struct cpumask *new_mask,
const struct cpumask *subset_mask)
{
- struct cpumask *user_mask = NULL;
+ struct affinity_context ac = {
+ .new_mask = new_mask,
+ .flags = 0,
+ };
struct rq_flags rf;
struct rq *rq;
int err;
- if (!p->user_cpus_ptr) {
- user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
- if (!user_mask)
- return -ENOMEM;
- }
-
rq = task_rq_lock(p, &rf);
/*
goto err_unlock;
}
- if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
+ if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
err = -EINVAL;
goto err_unlock;
}
- /*
- * We're about to butcher the task affinity, so keep track of what
- * the user asked for in case we're able to restore it later on.
- */
- if (user_mask) {
- cpumask_copy(user_mask, p->cpus_ptr);
- p->user_cpus_ptr = user_mask;
- }
-
- return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
+ return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
err_unlock:
task_rq_unlock(rq, p, &rf);
- kfree(user_mask);
return err;
}
/*
* Restrict the CPU affinity of task @p so that it is a subset of
- * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
+ * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
* old affinity mask. If the resulting mask is empty, we warn and walk
* up the cpuset hierarchy until we find a suitable mask.
*/
}
static int
-__sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
+__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
/*
* Restore the affinity of a task @p which was previously restricted by a
- * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
- * @p->user_cpus_ptr.
+ * call to force_compatible_cpus_allowed_ptr().
*
* It is the caller's responsibility to serialise this with any calls to
* force_compatible_cpus_allowed_ptr(@p).
*/
void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
{
- struct cpumask *user_mask = p->user_cpus_ptr;
- unsigned long flags;
+ struct affinity_context ac = {
+ .new_mask = task_user_cpus(p),
+ .flags = 0,
+ };
+ int ret;
/*
- * Try to restore the old affinity mask. If this fails, then
- * we free the mask explicitly to avoid it being inherited across
- * a subsequent fork().
+ * Try to restore the old affinity mask with __sched_setaffinity().
+ * Cpuset masking will be done there too.
*/
- if (!user_mask || !__sched_setaffinity(p, user_mask))
- return;
-
- raw_spin_lock_irqsave(&p->pi_lock, flags);
- user_mask = clear_user_cpus_ptr(p);
- raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-
- kfree(user_mask);
+ ret = __sched_setaffinity(p, &ac);
+ WARN_ON_ONCE(ret);
}
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
#else /* CONFIG_SMP */
static inline int __set_cpus_allowed_ptr(struct task_struct *p,
- const struct cpumask *new_mask,
- u32 flags)
+ struct affinity_context *ctx)
{
- return set_cpus_allowed_ptr(p, new_mask);
+ return set_cpus_allowed_ptr(p, ctx->new_mask);
}
static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
if (!llist)
return;
- /*
- * rq::ttwu_pending racy indication of out-standing wakeups.
- * Races such that false-negatives are possible, since they
- * are shorter lived that false-positives would be.
- */
- WRITE_ONCE(rq->ttwu_pending, 0);
-
rq_lock_irqsave(rq, &rf);
update_rq_clock(rq);
ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
}
+ /*
+ * Must be after enqueueing at least once task such that
+ * idle_cpu() does not observe a false-negative -- if it does,
+ * it is possible for select_idle_siblings() to stack a number
+ * of tasks on this CPU during that window.
+ *
+ * It is ok to clear ttwu_pending when another task pending.
+ * We will receive IPI after local irq enabled and then enqueue it.
+ * Since now nr_running > 0, idle_cpu() will always get correct result.
+ */
+ WRITE_ONCE(rq->ttwu_pending, 0);
rq_unlock_irqrestore(rq, &rf);
}
return success;
}
+static bool __task_needs_rq_lock(struct task_struct *p)
+{
+ unsigned int state = READ_ONCE(p->__state);
+
+ /*
+ * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
+ * the task is blocked. Make sure to check @state since ttwu() can drop
+ * locks at the end, see ttwu_queue_wakelist().
+ */
+ if (state == TASK_RUNNING || state == TASK_WAKING)
+ return true;
+
+ /*
+ * Ensure we load p->on_rq after p->__state, otherwise it would be
+ * possible to, falsely, observe p->on_rq == 0.
+ *
+ * See try_to_wake_up() for a longer comment.
+ */
+ smp_rmb();
+ if (p->on_rq)
+ return true;
+
+#ifdef CONFIG_SMP
+ /*
+ * Ensure the task has finished __schedule() and will not be referenced
+ * anymore. Again, see try_to_wake_up() for a longer comment.
+ */
+ smp_rmb();
+ smp_cond_load_acquire(&p->on_cpu, !VAL);
+#endif
+
+ return false;
+}
+
/**
* task_call_func - Invoke a function on task in fixed state
* @p: Process for which the function is to be invoked, can be @current.
int task_call_func(struct task_struct *p, task_call_f func, void *arg)
{
struct rq *rq = NULL;
- unsigned int state;
struct rq_flags rf;
int ret;
raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
- state = READ_ONCE(p->__state);
-
- /*
- * Ensure we load p->on_rq after p->__state, otherwise it would be
- * possible to, falsely, observe p->on_rq == 0.
- *
- * See try_to_wake_up() for a longer comment.
- */
- smp_rmb();
-
- /*
- * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
- * the task is blocked. Make sure to check @state since ttwu() can drop
- * locks at the end, see ttwu_queue_wakelist().
- */
- if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
+ if (__task_needs_rq_lock(p))
rq = __task_rq_lock(p, &rf);
/*
}
}
- int sysctl_numa_balancing(struct ctl_table *table, int write,
+ static int sysctl_numa_balancing(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
struct ctl_table t;
.proc_handler = sysctl_sched_uclamp_handler,
},
#endif /* CONFIG_UCLAMP_TASK */
+ #ifdef CONFIG_NUMA_BALANCING
+ {
+ .procname = "numa_balancing",
+ .data = NULL, /* filled in by handler */
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = sysctl_numa_balancing,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_FOUR,
+ },
+ #endif /* CONFIG_NUMA_BALANCING */
{}
};
static int __init sched_core_sysctl_init(void)
#endif
static int
-__sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
+__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
{
int retval;
cpumask_var_t cpus_allowed, new_mask;
}
cpuset_cpus_allowed(p, cpus_allowed);
- cpumask_and(new_mask, mask, cpus_allowed);
+ cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
+
+ ctx->new_mask = new_mask;
+ ctx->flags |= SCA_CHECK;
retval = dl_task_check_affinity(p, new_mask);
if (retval)
goto out_free_new_mask;
-again:
- retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
+
+ retval = __set_cpus_allowed_ptr(p, ctx);
if (retval)
goto out_free_new_mask;
* Just reset the cpumask to the cpuset's cpus_allowed.
*/
cpumask_copy(new_mask, cpus_allowed);
- goto again;
+
+ /*
+ * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
+ * will restore the previous user_cpus_ptr value.
+ *
+ * In the unlikely event a previous user_cpus_ptr exists,
+ * we need to further restrict the mask to what is allowed
+ * by that old user_cpus_ptr.
+ */
+ if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
+ bool empty = !cpumask_and(new_mask, new_mask,
+ ctx->user_mask);
+
+ if (WARN_ON_ONCE(empty))
+ cpumask_copy(new_mask, cpus_allowed);
+ }
+ __set_cpus_allowed_ptr(p, ctx);
+ retval = -EINVAL;
}
out_free_new_mask:
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
{
+ struct affinity_context ac;
+ struct cpumask *user_mask;
struct task_struct *p;
int retval;
if (retval)
goto out_put_task;
- retval = __sched_setaffinity(p, in_mask);
+ user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
+ if (!user_mask) {
+ retval = -ENOMEM;
+ goto out_put_task;
+ }
+ cpumask_copy(user_mask, in_mask);
+ ac = (struct affinity_context){
+ .new_mask = in_mask,
+ .user_mask = user_mask,
+ .flags = SCA_USER,
+ };
+
+ retval = __sched_setaffinity(p, &ac);
+ kfree(ac.user_mask);
+
out_put_task:
put_task_struct(p);
return retval;
*/
void __init init_idle(struct task_struct *idle, int cpu)
{
+#ifdef CONFIG_SMP
+ struct affinity_context ac = (struct affinity_context) {
+ .new_mask = cpumask_of(cpu),
+ .flags = 0,
+ };
+#endif
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
*
* And since this is boot we can forgo the serialization.
*/
- set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
+ set_cpus_allowed_common(idle, &ac);
#endif
/*
* We're having a chicken and egg problem, even though we are
rq->core_cookie = 0UL;
#endif
+ zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
}
set_load_weight(&init_task, false);
static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif
+ #ifdef CONFIG_NUMA_BALANCING
+ /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
+ static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
+ #endif
+
#ifdef CONFIG_SYSCTL
static struct ctl_table sched_fair_sysctls[] = {
{
.extra1 = SYSCTL_ONE,
},
#endif
+ #ifdef CONFIG_NUMA_BALANCING
+ {
+ .procname = "numa_balancing_promote_rate_limit_MBps",
+ .data = &sysctl_numa_balancing_promote_rate_limit,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ZERO,
+ },
+ #endif /* CONFIG_NUMA_BALANCING */
{}
};
/* The page with hint page fault latency < threshold in ms is considered hot */
unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
- /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
- unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
-
struct numa_group {
refcount_t refcount;
}
next_scan = now + msecs_to_jiffies(p->numa_scan_period);
- if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
+ if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
return;
/*
}
#ifdef CONFIG_UCLAMP_TASK
-static inline unsigned long uclamp_task_util(struct task_struct *p)
+static inline unsigned long uclamp_task_util(struct task_struct *p,
+ unsigned long uclamp_min,
+ unsigned long uclamp_max)
{
- return clamp(task_util_est(p),
- uclamp_eff_value(p, UCLAMP_MIN),
- uclamp_eff_value(p, UCLAMP_MAX));
+ return clamp(task_util_est(p), uclamp_min, uclamp_max);
}
#else
-static inline unsigned long uclamp_task_util(struct task_struct *p)
+static inline unsigned long uclamp_task_util(struct task_struct *p,
+ unsigned long uclamp_min,
+ unsigned long uclamp_max)
{
return task_util_est(p);
}
trace_sched_util_est_se_tp(&p->se);
}
-static inline int task_fits_capacity(struct task_struct *p,
- unsigned long capacity)
+static inline int util_fits_cpu(unsigned long util,
+ unsigned long uclamp_min,
+ unsigned long uclamp_max,
+ int cpu)
{
- return fits_capacity(uclamp_task_util(p), capacity);
+ unsigned long capacity_orig, capacity_orig_thermal;
+ unsigned long capacity = capacity_of(cpu);
+ bool fits, uclamp_max_fits;
+
+ /*
+ * Check if the real util fits without any uclamp boost/cap applied.
+ */
+ fits = fits_capacity(util, capacity);
+
+ if (!uclamp_is_used())
+ return fits;
+
+ /*
+ * We must use capacity_orig_of() for comparing against uclamp_min and
+ * uclamp_max. We only care about capacity pressure (by using
+ * capacity_of()) for comparing against the real util.
+ *
+ * If a task is boosted to 1024 for example, we don't want a tiny
+ * pressure to skew the check whether it fits a CPU or not.
+ *
+ * Similarly if a task is capped to capacity_orig_of(little_cpu), it
+ * should fit a little cpu even if there's some pressure.
+ *
+ * Only exception is for thermal pressure since it has a direct impact
+ * on available OPP of the system.
+ *
+ * We honour it for uclamp_min only as a drop in performance level
+ * could result in not getting the requested minimum performance level.
+ *
+ * For uclamp_max, we can tolerate a drop in performance level as the
+ * goal is to cap the task. So it's okay if it's getting less.
+ *
+ * In case of capacity inversion we should honour the inverted capacity
+ * for both uclamp_min and uclamp_max all the time.
+ */
+ capacity_orig = cpu_in_capacity_inversion(cpu);
+ if (capacity_orig) {
+ capacity_orig_thermal = capacity_orig;
+ } else {
+ capacity_orig = capacity_orig_of(cpu);
+ capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
+ }
+
+ /*
+ * We want to force a task to fit a cpu as implied by uclamp_max.
+ * But we do have some corner cases to cater for..
+ *
+ *
+ * C=z
+ * | ___
+ * | C=y | |
+ * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
+ * | C=x | | | |
+ * | ___ | | | |
+ * | | | | | | | (util somewhere in this region)
+ * | | | | | | |
+ * | | | | | | |
+ * +----------------------------------------
+ * cpu0 cpu1 cpu2
+ *
+ * In the above example if a task is capped to a specific performance
+ * point, y, then when:
+ *
+ * * util = 80% of x then it does not fit on cpu0 and should migrate
+ * to cpu1
+ * * util = 80% of y then it is forced to fit on cpu1 to honour
+ * uclamp_max request.
+ *
+ * which is what we're enforcing here. A task always fits if
+ * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
+ * the normal upmigration rules should withhold still.
+ *
+ * Only exception is when we are on max capacity, then we need to be
+ * careful not to block overutilized state. This is so because:
+ *
+ * 1. There's no concept of capping at max_capacity! We can't go
+ * beyond this performance level anyway.
+ * 2. The system is being saturated when we're operating near
+ * max capacity, it doesn't make sense to block overutilized.
+ */
+ uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
+ uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
+ fits = fits || uclamp_max_fits;
+
+ /*
+ *
+ * C=z
+ * | ___ (region a, capped, util >= uclamp_max)
+ * | C=y | |
+ * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
+ * | C=x | | | |
+ * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
+ * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
+ * | | | | | | |
+ * | | | | | | | (region c, boosted, util < uclamp_min)
+ * +----------------------------------------
+ * cpu0 cpu1 cpu2
+ *
+ * a) If util > uclamp_max, then we're capped, we don't care about
+ * actual fitness value here. We only care if uclamp_max fits
+ * capacity without taking margin/pressure into account.
+ * See comment above.
+ *
+ * b) If uclamp_min <= util <= uclamp_max, then the normal
+ * fits_capacity() rules apply. Except we need to ensure that we
+ * enforce we remain within uclamp_max, see comment above.
+ *
+ * c) If util < uclamp_min, then we are boosted. Same as (b) but we
+ * need to take into account the boosted value fits the CPU without
+ * taking margin/pressure into account.
+ *
+ * Cases (a) and (b) are handled in the 'fits' variable already. We
+ * just need to consider an extra check for case (c) after ensuring we
+ * handle the case uclamp_min > uclamp_max.
+ */
+ uclamp_min = min(uclamp_min, uclamp_max);
+ if (util < uclamp_min && capacity_orig != SCHED_CAPACITY_SCALE)
+ fits = fits && (uclamp_min <= capacity_orig_thermal);
+
+ return fits;
+}
+
+static inline int task_fits_cpu(struct task_struct *p, int cpu)
+{
+ unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
+ unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
+ unsigned long util = task_util_est(p);
+ return util_fits_cpu(util, uclamp_min, uclamp_max, cpu);
}
static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
return;
}
- if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
+ if (task_fits_cpu(p, cpu_of(rq))) {
rq->misfit_task_load = 0;
return;
}
#ifdef CONFIG_SMP
static inline bool cpu_overutilized(int cpu)
{
- return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
+ unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
+ unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
+
+ return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
}
static inline void update_overutilized_status(struct rq *rq)
static int
select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
{
- unsigned long task_util, best_cap = 0;
+ unsigned long task_util, util_min, util_max, best_cap = 0;
int cpu, best_cpu = -1;
struct cpumask *cpus;
cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
- task_util = uclamp_task_util(p);
+ task_util = task_util_est(p);
+ util_min = uclamp_eff_value(p, UCLAMP_MIN);
+ util_max = uclamp_eff_value(p, UCLAMP_MAX);
for_each_cpu_wrap(cpu, cpus, target) {
unsigned long cpu_cap = capacity_of(cpu);
if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
continue;
- if (fits_capacity(task_util, cpu_cap))
+ if (util_fits_cpu(task_util, util_min, util_max, cpu))
return cpu;
if (cpu_cap > best_cap) {
return best_cpu;
}
-static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
+static inline bool asym_fits_cpu(unsigned long util,
+ unsigned long util_min,
+ unsigned long util_max,
+ int cpu)
{
if (sched_asym_cpucap_active())
- return fits_capacity(task_util, capacity_of(cpu));
+ return util_fits_cpu(util, util_min, util_max, cpu);
return true;
}
{
bool has_idle_core = false;
struct sched_domain *sd;
- unsigned long task_util;
+ unsigned long task_util, util_min, util_max;
int i, recent_used_cpu;
/*
*/
if (sched_asym_cpucap_active()) {
sync_entity_load_avg(&p->se);
- task_util = uclamp_task_util(p);
+ task_util = task_util_est(p);
+ util_min = uclamp_eff_value(p, UCLAMP_MIN);
+ util_max = uclamp_eff_value(p, UCLAMP_MAX);
}
/*
lockdep_assert_irqs_disabled();
if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
- asym_fits_capacity(task_util, target))
+ asym_fits_cpu(task_util, util_min, util_max, target))
return target;
/*
*/
if (prev != target && cpus_share_cache(prev, target) &&
(available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
- asym_fits_capacity(task_util, prev))
+ asym_fits_cpu(task_util, util_min, util_max, prev))
return prev;
/*
in_task() &&
prev == smp_processor_id() &&
this_rq()->nr_running <= 1 &&
- asym_fits_capacity(task_util, prev)) {
+ asym_fits_cpu(task_util, util_min, util_max, prev)) {
return prev;
}
cpus_share_cache(recent_used_cpu, target) &&
(available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
- asym_fits_capacity(task_util, recent_used_cpu)) {
+ asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
return recent_used_cpu;
}
{
struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
+ unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
+ unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
struct root_domain *rd = this_rq()->rd;
int cpu, best_energy_cpu, target = -1;
struct sched_domain *sd;
target = prev_cpu;
sync_entity_load_avg(&p->se);
- if (!task_util_est(p))
+ if (!uclamp_task_util(p, p_util_min, p_util_max))
goto unlock;
eenv_task_busy_time(&eenv, p, prev_cpu);
for (; pd; pd = pd->next) {
unsigned long cpu_cap, cpu_thermal_cap, util;
unsigned long cur_delta, max_spare_cap = 0;
- bool compute_prev_delta = false;
+ unsigned long rq_util_min, rq_util_max;
+ unsigned long util_min, util_max;
+ unsigned long prev_spare_cap = 0;
int max_spare_cap_cpu = -1;
unsigned long base_energy;
* much capacity we can get out of the CPU; this is
* aligned with sched_cpu_util().
*/
- util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
- if (!fits_capacity(util, cpu_cap))
+ if (uclamp_is_used()) {
+ if (uclamp_rq_is_idle(cpu_rq(cpu))) {
+ util_min = p_util_min;
+ util_max = p_util_max;
+ } else {
+ /*
+ * Open code uclamp_rq_util_with() except for
+ * the clamp() part. Ie: apply max aggregation
+ * only. util_fits_cpu() logic requires to
+ * operate on non clamped util but must use the
+ * max-aggregated uclamp_{min, max}.
+ */
+ rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
+ rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
+
+ util_min = max(rq_util_min, p_util_min);
+ util_max = max(rq_util_max, p_util_max);
+ }
+ }
+ if (!util_fits_cpu(util, util_min, util_max, cpu))
continue;
lsub_positive(&cpu_cap, util);
if (cpu == prev_cpu) {
/* Always use prev_cpu as a candidate. */
- compute_prev_delta = true;
+ prev_spare_cap = cpu_cap;
} else if (cpu_cap > max_spare_cap) {
/*
* Find the CPU with the maximum spare capacity
- * in the performance domain.
+ * among the remaining CPUs in the performance
+ * domain.
*/
max_spare_cap = cpu_cap;
max_spare_cap_cpu = cpu;
}
}
- if (max_spare_cap_cpu < 0 && !compute_prev_delta)
+ if (max_spare_cap_cpu < 0 && prev_spare_cap == 0)
continue;
eenv_pd_busy_time(&eenv, cpus, p);
base_energy = compute_energy(&eenv, pd, cpus, p, -1);
/* Evaluate the energy impact of using prev_cpu. */
- if (compute_prev_delta) {
+ if (prev_spare_cap > 0) {
prev_delta = compute_energy(&eenv, pd, cpus, p,
prev_cpu);
/* CPU utilization has changed */
}
/* Evaluate the energy impact of using max_spare_cap_cpu. */
- if (max_spare_cap_cpu >= 0) {
+ if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
cur_delta = compute_energy(&eenv, pd, cpus, p,
max_spare_cap_cpu);
/* CPU utilization has changed */
case migrate_misfit:
/* This is not a misfit task */
- if (task_fits_capacity(p, capacity_of(env->src_cpu)))
+ if (task_fits_cpu(p, env->src_cpu))
goto next;
env->imbalance = 0;
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
{
+ unsigned long capacity_orig = arch_scale_cpu_capacity(cpu);
unsigned long capacity = scale_rt_capacity(cpu);
struct sched_group *sdg = sd->groups;
+ struct rq *rq = cpu_rq(cpu);
- cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
+ rq->cpu_capacity_orig = capacity_orig;
if (!capacity)
capacity = 1;
- cpu_rq(cpu)->cpu_capacity = capacity;
- trace_sched_cpu_capacity_tp(cpu_rq(cpu));
+ rq->cpu_capacity = capacity;
+
+ /*
+ * Detect if the performance domain is in capacity inversion state.
+ *
+ * Capacity inversion happens when another perf domain with equal or
+ * lower capacity_orig_of() ends up having higher capacity than this
+ * domain after subtracting thermal pressure.
+ *
+ * We only take into account thermal pressure in this detection as it's
+ * the only metric that actually results in *real* reduction of
+ * capacity due to performance points (OPPs) being dropped/become
+ * unreachable due to thermal throttling.
+ *
+ * We assume:
+ * * That all cpus in a perf domain have the same capacity_orig
+ * (same uArch).
+ * * Thermal pressure will impact all cpus in this perf domain
+ * equally.
+ */
+ if (static_branch_unlikely(&sched_asym_cpucapacity)) {
+ unsigned long inv_cap = capacity_orig - thermal_load_avg(rq);
+ struct perf_domain *pd = rcu_dereference(rq->rd->pd);
+
+ rq->cpu_capacity_inverted = 0;
+
+ for (; pd; pd = pd->next) {
+ struct cpumask *pd_span = perf_domain_span(pd);
+ unsigned long pd_cap_orig, pd_cap;
+
+ cpu = cpumask_any(pd_span);
+ pd_cap_orig = arch_scale_cpu_capacity(cpu);
+
+ if (capacity_orig < pd_cap_orig)
+ continue;
+
+ /*
+ * handle the case of multiple perf domains have the
+ * same capacity_orig but one of them is under higher
+ * thermal pressure. We record it as capacity
+ * inversion.
+ */
+ if (capacity_orig == pd_cap_orig) {
+ pd_cap = pd_cap_orig - thermal_load_avg(cpu_rq(cpu));
+
+ if (pd_cap > inv_cap) {
+ rq->cpu_capacity_inverted = inv_cap;
+ break;
+ }
+ } else if (pd_cap_orig > inv_cap) {
+ rq->cpu_capacity_inverted = inv_cap;
+ break;
+ }
+ }
+ }
+
+ trace_sched_cpu_capacity_tp(rq);
sdg->sgc->capacity = capacity;
sdg->sgc->min_capacity = capacity;
memset(sgs, 0, sizeof(*sgs));
+ /* Assume that task can't fit any CPU of the group */
+ if (sd->flags & SD_ASYM_CPUCAPACITY)
+ sgs->group_misfit_task_load = 1;
+
for_each_cpu(i, sched_group_span(group)) {
struct rq *rq = cpu_rq(i);
unsigned int local;
if (!nr_running && idle_cpu_without(i, p))
sgs->idle_cpus++;
- }
+ /* Check if task fits in the CPU */
+ if (sd->flags & SD_ASYM_CPUCAPACITY &&
+ sgs->group_misfit_task_load &&
+ task_fits_cpu(p, i))
+ sgs->group_misfit_task_load = 0;
- /* Check if task fits in the group */
- if (sd->flags & SD_ASYM_CPUCAPACITY &&
- !task_fits_capacity(p, group->sgc->max_capacity)) {
- sgs->group_misfit_task_load = 1;
}
sgs->group_capacity = group->sgc->capacity;
ppos);
}
-static size_t proc_skip_spaces(char **buf)
+static void proc_skip_spaces(char **buf, size_t *size)
{
- size_t ret;
- char *tmp = skip_spaces(*buf);
- ret = tmp - *buf;
- *buf = tmp;
- return ret;
+ while (*size) {
+ if (!isspace(**buf))
+ break;
+ (*size)--;
+ (*buf)++;
+ }
}
static void proc_skip_char(char **buf, size_t *size, const char v)
unsigned long *val, bool *neg,
const char *perm_tr, unsigned perm_tr_len, char *tr)
{
- int len;
char *p, tmp[TMPBUFLEN];
+ ssize_t len = *size;
- if (!*size)
+ if (len <= 0)
return -EINVAL;
- len = *size;
if (len > TMPBUFLEN - 1)
len = TMPBUFLEN - 1;
bool neg;
if (write) {
- left -= proc_skip_spaces(&p);
+ proc_skip_spaces(&p, &left);
if (!left)
break;
if (!write && !first && left && !err)
proc_put_char(&buffer, &left, '\n');
if (write && !err && left)
- left -= proc_skip_spaces(&p);
+ proc_skip_spaces(&p, &left);
if (write && first)
return err ? : -EINVAL;
*lenp -= left;
if (left > PAGE_SIZE - 1)
left = PAGE_SIZE - 1;
- left -= proc_skip_spaces(&p);
+ proc_skip_spaces(&p, &left);
if (!left) {
err = -EINVAL;
goto out_free;
}
if (!err && left)
- left -= proc_skip_spaces(&p);
+ proc_skip_spaces(&p, &left);
out_free:
if (err)
if (write) {
bool neg;
- left -= proc_skip_spaces(&p);
+ proc_skip_spaces(&p, &left);
if (!left)
break;
if (!write && !first && left && !err)
proc_put_char(&buffer, &left, '\n');
if (write && !err)
- left -= proc_skip_spaces(&p);
+ proc_skip_spaces(&p, &left);
if (write && first)
return err ? : -EINVAL;
*lenp -= left;
}
static struct ctl_table kern_table[] = {
- #ifdef CONFIG_NUMA_BALANCING
- {
- .procname = "numa_balancing",
- .data = NULL, /* filled in by handler */
- .maxlen = sizeof(unsigned int),
- .mode = 0644,
- .proc_handler = sysctl_numa_balancing,
- .extra1 = SYSCTL_ZERO,
- .extra2 = SYSCTL_FOUR,
- },
- {
- .procname = "numa_balancing_promote_rate_limit_MBps",
- .data = &sysctl_numa_balancing_promote_rate_limit,
- .maxlen = sizeof(unsigned int),
- .mode = 0644,
- .proc_handler = proc_dointvec_minmax,
- .extra1 = SYSCTL_ZERO,
- },
- #endif /* CONFIG_NUMA_BALANCING */
{
.procname = "panic",
.data = &panic_timeout,