1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Red Hat. All rights reserved.
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
18 #include "free-space-cache.h"
19 #include "transaction.h"
21 #include "extent_io.h"
23 #include "space-info.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
28 #include "inode-item.h"
29 #include "accessors.h"
30 #include "file-item.h"
34 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
35 #define MAX_CACHE_BYTES_PER_GIG SZ_64K
36 #define FORCE_EXTENT_THRESHOLD SZ_1M
38 static struct kmem_cache *btrfs_free_space_cachep;
39 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
41 struct btrfs_trim_range {
44 struct list_head list;
47 static int link_free_space(struct btrfs_free_space_ctl *ctl,
48 struct btrfs_free_space *info);
49 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
50 struct btrfs_free_space *info, bool update_stat);
51 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
52 struct btrfs_free_space *bitmap_info, u64 *offset,
53 u64 *bytes, bool for_alloc);
54 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
55 struct btrfs_free_space *bitmap_info);
56 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
57 struct btrfs_free_space *info, u64 offset,
58 u64 bytes, bool update_stats);
60 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
62 struct btrfs_free_space *info;
65 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
66 info = rb_entry(node, struct btrfs_free_space, offset_index);
68 unlink_free_space(ctl, info, true);
69 kmem_cache_free(btrfs_free_space_cachep, info);
71 free_bitmap(ctl, info);
74 cond_resched_lock(&ctl->tree_lock);
78 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
79 struct btrfs_path *path,
82 struct btrfs_fs_info *fs_info = root->fs_info;
84 struct btrfs_key location;
85 struct btrfs_disk_key disk_key;
86 struct btrfs_free_space_header *header;
87 struct extent_buffer *leaf;
88 struct inode *inode = NULL;
92 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
96 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
100 btrfs_release_path(path);
101 return ERR_PTR(-ENOENT);
104 leaf = path->nodes[0];
105 header = btrfs_item_ptr(leaf, path->slots[0],
106 struct btrfs_free_space_header);
107 btrfs_free_space_key(leaf, header, &disk_key);
108 btrfs_disk_key_to_cpu(&location, &disk_key);
109 btrfs_release_path(path);
112 * We are often under a trans handle at this point, so we need to make
113 * sure NOFS is set to keep us from deadlocking.
115 nofs_flag = memalloc_nofs_save();
116 inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
117 btrfs_release_path(path);
118 memalloc_nofs_restore(nofs_flag);
122 mapping_set_gfp_mask(inode->i_mapping,
123 mapping_gfp_constraint(inode->i_mapping,
124 ~(__GFP_FS | __GFP_HIGHMEM)));
129 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
130 struct btrfs_path *path)
132 struct btrfs_fs_info *fs_info = block_group->fs_info;
133 struct inode *inode = NULL;
134 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
136 spin_lock(&block_group->lock);
137 if (block_group->inode)
138 inode = igrab(block_group->inode);
139 spin_unlock(&block_group->lock);
143 inode = __lookup_free_space_inode(fs_info->tree_root, path,
148 spin_lock(&block_group->lock);
149 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
150 btrfs_info(fs_info, "Old style space inode found, converting.");
151 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
152 BTRFS_INODE_NODATACOW;
153 block_group->disk_cache_state = BTRFS_DC_CLEAR;
156 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
157 block_group->inode = igrab(inode);
158 spin_unlock(&block_group->lock);
163 static int __create_free_space_inode(struct btrfs_root *root,
164 struct btrfs_trans_handle *trans,
165 struct btrfs_path *path,
168 struct btrfs_key key;
169 struct btrfs_disk_key disk_key;
170 struct btrfs_free_space_header *header;
171 struct btrfs_inode_item *inode_item;
172 struct extent_buffer *leaf;
173 /* We inline CRCs for the free disk space cache */
174 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
175 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
178 ret = btrfs_insert_empty_inode(trans, root, path, ino);
182 leaf = path->nodes[0];
183 inode_item = btrfs_item_ptr(leaf, path->slots[0],
184 struct btrfs_inode_item);
185 btrfs_item_key(leaf, &disk_key, path->slots[0]);
186 memzero_extent_buffer(leaf, (unsigned long)inode_item,
187 sizeof(*inode_item));
188 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
189 btrfs_set_inode_size(leaf, inode_item, 0);
190 btrfs_set_inode_nbytes(leaf, inode_item, 0);
191 btrfs_set_inode_uid(leaf, inode_item, 0);
192 btrfs_set_inode_gid(leaf, inode_item, 0);
193 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
194 btrfs_set_inode_flags(leaf, inode_item, flags);
195 btrfs_set_inode_nlink(leaf, inode_item, 1);
196 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
197 btrfs_set_inode_block_group(leaf, inode_item, offset);
198 btrfs_mark_buffer_dirty(leaf);
199 btrfs_release_path(path);
201 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
204 ret = btrfs_insert_empty_item(trans, root, path, &key,
205 sizeof(struct btrfs_free_space_header));
207 btrfs_release_path(path);
211 leaf = path->nodes[0];
212 header = btrfs_item_ptr(leaf, path->slots[0],
213 struct btrfs_free_space_header);
214 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
215 btrfs_set_free_space_key(leaf, header, &disk_key);
216 btrfs_mark_buffer_dirty(leaf);
217 btrfs_release_path(path);
222 int create_free_space_inode(struct btrfs_trans_handle *trans,
223 struct btrfs_block_group *block_group,
224 struct btrfs_path *path)
229 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
233 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
234 ino, block_group->start);
238 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
239 * handles lookup, otherwise it takes ownership and iputs the inode.
240 * Don't reuse an inode pointer after passing it into this function.
242 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
244 struct btrfs_block_group *block_group)
246 struct btrfs_path *path;
247 struct btrfs_key key;
250 path = btrfs_alloc_path();
255 inode = lookup_free_space_inode(block_group, path);
257 if (PTR_ERR(inode) != -ENOENT)
258 ret = PTR_ERR(inode);
261 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
263 btrfs_add_delayed_iput(BTRFS_I(inode));
267 /* One for the block groups ref */
268 spin_lock(&block_group->lock);
269 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
270 block_group->inode = NULL;
271 spin_unlock(&block_group->lock);
274 spin_unlock(&block_group->lock);
276 /* One for the lookup ref */
277 btrfs_add_delayed_iput(BTRFS_I(inode));
279 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
281 key.offset = block_group->start;
282 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
289 ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
291 btrfs_free_path(path);
295 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
296 struct btrfs_block_rsv *rsv)
301 /* 1 for slack space, 1 for updating the inode */
302 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
303 btrfs_calc_metadata_size(fs_info, 1);
305 spin_lock(&rsv->lock);
306 if (rsv->reserved < needed_bytes)
310 spin_unlock(&rsv->lock);
314 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
315 struct btrfs_block_group *block_group,
316 struct inode *vfs_inode)
318 struct btrfs_truncate_control control = {
319 .inode = BTRFS_I(vfs_inode),
321 .ino = btrfs_ino(BTRFS_I(vfs_inode)),
322 .min_type = BTRFS_EXTENT_DATA_KEY,
323 .clear_extent_range = true,
325 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
326 struct btrfs_root *root = inode->root;
327 struct extent_state *cached_state = NULL;
332 struct btrfs_path *path = btrfs_alloc_path();
339 mutex_lock(&trans->transaction->cache_write_mutex);
340 if (!list_empty(&block_group->io_list)) {
341 list_del_init(&block_group->io_list);
343 btrfs_wait_cache_io(trans, block_group, path);
344 btrfs_put_block_group(block_group);
348 * now that we've truncated the cache away, its no longer
351 spin_lock(&block_group->lock);
352 block_group->disk_cache_state = BTRFS_DC_CLEAR;
353 spin_unlock(&block_group->lock);
354 btrfs_free_path(path);
357 btrfs_i_size_write(inode, 0);
358 truncate_pagecache(vfs_inode, 0);
360 lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
361 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
364 * We skip the throttling logic for free space cache inodes, so we don't
365 * need to check for -EAGAIN.
367 ret = btrfs_truncate_inode_items(trans, root, &control);
369 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
370 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
372 unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
376 ret = btrfs_update_inode(trans, root, inode);
380 mutex_unlock(&trans->transaction->cache_write_mutex);
382 btrfs_abort_transaction(trans, ret);
387 static void readahead_cache(struct inode *inode)
389 struct file_ra_state ra;
390 unsigned long last_index;
392 file_ra_state_init(&ra, inode->i_mapping);
393 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
395 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
398 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
403 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
405 /* Make sure we can fit our crcs and generation into the first page */
406 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
409 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
411 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
415 io_ctl->num_pages = num_pages;
416 io_ctl->fs_info = btrfs_sb(inode->i_sb);
417 io_ctl->inode = inode;
421 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
423 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
425 kfree(io_ctl->pages);
426 io_ctl->pages = NULL;
429 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
437 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
439 ASSERT(io_ctl->index < io_ctl->num_pages);
440 io_ctl->page = io_ctl->pages[io_ctl->index++];
441 io_ctl->cur = page_address(io_ctl->page);
442 io_ctl->orig = io_ctl->cur;
443 io_ctl->size = PAGE_SIZE;
445 clear_page(io_ctl->cur);
448 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
452 io_ctl_unmap_page(io_ctl);
454 for (i = 0; i < io_ctl->num_pages; i++) {
455 if (io_ctl->pages[i]) {
456 btrfs_page_clear_checked(io_ctl->fs_info,
458 page_offset(io_ctl->pages[i]),
460 unlock_page(io_ctl->pages[i]);
461 put_page(io_ctl->pages[i]);
466 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
469 struct inode *inode = io_ctl->inode;
470 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
473 for (i = 0; i < io_ctl->num_pages; i++) {
476 page = find_or_create_page(inode->i_mapping, i, mask);
478 io_ctl_drop_pages(io_ctl);
482 ret = set_page_extent_mapped(page);
486 io_ctl_drop_pages(io_ctl);
490 io_ctl->pages[i] = page;
491 if (uptodate && !PageUptodate(page)) {
492 btrfs_read_folio(NULL, page_folio(page));
494 if (page->mapping != inode->i_mapping) {
495 btrfs_err(BTRFS_I(inode)->root->fs_info,
496 "free space cache page truncated");
497 io_ctl_drop_pages(io_ctl);
500 if (!PageUptodate(page)) {
501 btrfs_err(BTRFS_I(inode)->root->fs_info,
502 "error reading free space cache");
503 io_ctl_drop_pages(io_ctl);
509 for (i = 0; i < io_ctl->num_pages; i++)
510 clear_page_dirty_for_io(io_ctl->pages[i]);
515 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
517 io_ctl_map_page(io_ctl, 1);
520 * Skip the csum areas. If we don't check crcs then we just have a
521 * 64bit chunk at the front of the first page.
523 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
524 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
526 put_unaligned_le64(generation, io_ctl->cur);
527 io_ctl->cur += sizeof(u64);
530 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
535 * Skip the crc area. If we don't check crcs then we just have a 64bit
536 * chunk at the front of the first page.
538 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
539 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
541 cache_gen = get_unaligned_le64(io_ctl->cur);
542 if (cache_gen != generation) {
543 btrfs_err_rl(io_ctl->fs_info,
544 "space cache generation (%llu) does not match inode (%llu)",
545 cache_gen, generation);
546 io_ctl_unmap_page(io_ctl);
549 io_ctl->cur += sizeof(u64);
553 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
560 offset = sizeof(u32) * io_ctl->num_pages;
562 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
563 btrfs_crc32c_final(crc, (u8 *)&crc);
564 io_ctl_unmap_page(io_ctl);
565 tmp = page_address(io_ctl->pages[0]);
570 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
577 offset = sizeof(u32) * io_ctl->num_pages;
579 tmp = page_address(io_ctl->pages[0]);
583 io_ctl_map_page(io_ctl, 0);
584 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
585 btrfs_crc32c_final(crc, (u8 *)&crc);
587 btrfs_err_rl(io_ctl->fs_info,
588 "csum mismatch on free space cache");
589 io_ctl_unmap_page(io_ctl);
596 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
599 struct btrfs_free_space_entry *entry;
605 put_unaligned_le64(offset, &entry->offset);
606 put_unaligned_le64(bytes, &entry->bytes);
607 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
608 BTRFS_FREE_SPACE_EXTENT;
609 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
610 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
612 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
615 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
617 /* No more pages to map */
618 if (io_ctl->index >= io_ctl->num_pages)
621 /* map the next page */
622 io_ctl_map_page(io_ctl, 1);
626 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
632 * If we aren't at the start of the current page, unmap this one and
633 * map the next one if there is any left.
635 if (io_ctl->cur != io_ctl->orig) {
636 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
637 if (io_ctl->index >= io_ctl->num_pages)
639 io_ctl_map_page(io_ctl, 0);
642 copy_page(io_ctl->cur, bitmap);
643 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
644 if (io_ctl->index < io_ctl->num_pages)
645 io_ctl_map_page(io_ctl, 0);
649 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
652 * If we're not on the boundary we know we've modified the page and we
653 * need to crc the page.
655 if (io_ctl->cur != io_ctl->orig)
656 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
658 io_ctl_unmap_page(io_ctl);
660 while (io_ctl->index < io_ctl->num_pages) {
661 io_ctl_map_page(io_ctl, 1);
662 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
666 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
667 struct btrfs_free_space *entry, u8 *type)
669 struct btrfs_free_space_entry *e;
673 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
679 entry->offset = get_unaligned_le64(&e->offset);
680 entry->bytes = get_unaligned_le64(&e->bytes);
682 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
683 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
685 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
688 io_ctl_unmap_page(io_ctl);
693 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
694 struct btrfs_free_space *entry)
698 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
702 copy_page(entry->bitmap, io_ctl->cur);
703 io_ctl_unmap_page(io_ctl);
708 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
710 struct btrfs_block_group *block_group = ctl->block_group;
714 u64 size = block_group->length;
715 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
716 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
718 max_bitmaps = max_t(u64, max_bitmaps, 1);
720 if (ctl->total_bitmaps > max_bitmaps)
721 btrfs_err(block_group->fs_info,
722 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
723 block_group->start, block_group->length,
724 ctl->total_bitmaps, ctl->unit, max_bitmaps,
726 ASSERT(ctl->total_bitmaps <= max_bitmaps);
729 * We are trying to keep the total amount of memory used per 1GiB of
730 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
731 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
732 * bitmaps, we may end up using more memory than this.
735 max_bytes = MAX_CACHE_BYTES_PER_GIG;
737 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
739 bitmap_bytes = ctl->total_bitmaps * ctl->unit;
742 * we want the extent entry threshold to always be at most 1/2 the max
743 * bytes we can have, or whatever is less than that.
745 extent_bytes = max_bytes - bitmap_bytes;
746 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
748 ctl->extents_thresh =
749 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
752 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
753 struct btrfs_free_space_ctl *ctl,
754 struct btrfs_path *path, u64 offset)
756 struct btrfs_fs_info *fs_info = root->fs_info;
757 struct btrfs_free_space_header *header;
758 struct extent_buffer *leaf;
759 struct btrfs_io_ctl io_ctl;
760 struct btrfs_key key;
761 struct btrfs_free_space *e, *n;
769 /* Nothing in the space cache, goodbye */
770 if (!i_size_read(inode))
773 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
777 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
781 btrfs_release_path(path);
787 leaf = path->nodes[0];
788 header = btrfs_item_ptr(leaf, path->slots[0],
789 struct btrfs_free_space_header);
790 num_entries = btrfs_free_space_entries(leaf, header);
791 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
792 generation = btrfs_free_space_generation(leaf, header);
793 btrfs_release_path(path);
795 if (!BTRFS_I(inode)->generation) {
797 "the free space cache file (%llu) is invalid, skip it",
802 if (BTRFS_I(inode)->generation != generation) {
804 "free space inode generation (%llu) did not match free space cache generation (%llu)",
805 BTRFS_I(inode)->generation, generation);
812 ret = io_ctl_init(&io_ctl, inode, 0);
816 readahead_cache(inode);
818 ret = io_ctl_prepare_pages(&io_ctl, true);
822 ret = io_ctl_check_crc(&io_ctl, 0);
826 ret = io_ctl_check_generation(&io_ctl, generation);
830 while (num_entries) {
831 e = kmem_cache_zalloc(btrfs_free_space_cachep,
838 ret = io_ctl_read_entry(&io_ctl, e, &type);
840 kmem_cache_free(btrfs_free_space_cachep, e);
846 kmem_cache_free(btrfs_free_space_cachep, e);
850 if (type == BTRFS_FREE_SPACE_EXTENT) {
851 spin_lock(&ctl->tree_lock);
852 ret = link_free_space(ctl, e);
853 spin_unlock(&ctl->tree_lock);
856 "Duplicate entries in free space cache, dumping");
857 kmem_cache_free(btrfs_free_space_cachep, e);
863 e->bitmap = kmem_cache_zalloc(
864 btrfs_free_space_bitmap_cachep, GFP_NOFS);
868 btrfs_free_space_cachep, e);
871 spin_lock(&ctl->tree_lock);
872 ret = link_free_space(ctl, e);
873 ctl->total_bitmaps++;
874 recalculate_thresholds(ctl);
875 spin_unlock(&ctl->tree_lock);
878 "Duplicate entries in free space cache, dumping");
879 kmem_cache_free(btrfs_free_space_cachep, e);
882 list_add_tail(&e->list, &bitmaps);
888 io_ctl_unmap_page(&io_ctl);
891 * We add the bitmaps at the end of the entries in order that
892 * the bitmap entries are added to the cache.
894 list_for_each_entry_safe(e, n, &bitmaps, list) {
895 list_del_init(&e->list);
896 ret = io_ctl_read_bitmap(&io_ctl, e);
901 io_ctl_drop_pages(&io_ctl);
904 io_ctl_free(&io_ctl);
907 io_ctl_drop_pages(&io_ctl);
909 spin_lock(&ctl->tree_lock);
910 __btrfs_remove_free_space_cache(ctl);
911 spin_unlock(&ctl->tree_lock);
915 static int copy_free_space_cache(struct btrfs_block_group *block_group,
916 struct btrfs_free_space_ctl *ctl)
918 struct btrfs_free_space *info;
922 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
923 info = rb_entry(n, struct btrfs_free_space, offset_index);
925 unlink_free_space(ctl, info, true);
926 ret = btrfs_add_free_space(block_group, info->offset,
928 kmem_cache_free(btrfs_free_space_cachep, info);
930 u64 offset = info->offset;
931 u64 bytes = ctl->unit;
933 while (search_bitmap(ctl, info, &offset, &bytes,
935 ret = btrfs_add_free_space(block_group, offset,
939 bitmap_clear_bits(ctl, info, offset, bytes, true);
940 offset = info->offset;
943 free_bitmap(ctl, info);
950 static struct lock_class_key btrfs_free_space_inode_key;
952 int load_free_space_cache(struct btrfs_block_group *block_group)
954 struct btrfs_fs_info *fs_info = block_group->fs_info;
955 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
956 struct btrfs_free_space_ctl tmp_ctl = {};
958 struct btrfs_path *path;
961 u64 used = block_group->used;
964 * Because we could potentially discard our loaded free space, we want
965 * to load everything into a temporary structure first, and then if it's
966 * valid copy it all into the actual free space ctl.
968 btrfs_init_free_space_ctl(block_group, &tmp_ctl);
971 * If this block group has been marked to be cleared for one reason or
972 * another then we can't trust the on disk cache, so just return.
974 spin_lock(&block_group->lock);
975 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
976 spin_unlock(&block_group->lock);
979 spin_unlock(&block_group->lock);
981 path = btrfs_alloc_path();
984 path->search_commit_root = 1;
985 path->skip_locking = 1;
988 * We must pass a path with search_commit_root set to btrfs_iget in
989 * order to avoid a deadlock when allocating extents for the tree root.
991 * When we are COWing an extent buffer from the tree root, when looking
992 * for a free extent, at extent-tree.c:find_free_extent(), we can find
993 * block group without its free space cache loaded. When we find one
994 * we must load its space cache which requires reading its free space
995 * cache's inode item from the root tree. If this inode item is located
996 * in the same leaf that we started COWing before, then we end up in
997 * deadlock on the extent buffer (trying to read lock it when we
998 * previously write locked it).
1000 * It's safe to read the inode item using the commit root because
1001 * block groups, once loaded, stay in memory forever (until they are
1002 * removed) as well as their space caches once loaded. New block groups
1003 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
1004 * we will never try to read their inode item while the fs is mounted.
1006 inode = lookup_free_space_inode(block_group, path);
1007 if (IS_ERR(inode)) {
1008 btrfs_free_path(path);
1012 /* We may have converted the inode and made the cache invalid. */
1013 spin_lock(&block_group->lock);
1014 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1015 spin_unlock(&block_group->lock);
1016 btrfs_free_path(path);
1019 spin_unlock(&block_group->lock);
1022 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1023 * free space inodes to prevent false positives related to locks for normal
1026 lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1027 &btrfs_free_space_inode_key);
1029 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1030 path, block_group->start);
1031 btrfs_free_path(path);
1035 matched = (tmp_ctl.free_space == (block_group->length - used -
1036 block_group->bytes_super));
1039 ret = copy_free_space_cache(block_group, &tmp_ctl);
1041 * ret == 1 means we successfully loaded the free space cache,
1042 * so we need to re-set it here.
1048 * We need to call the _locked variant so we don't try to update
1049 * the discard counters.
1051 spin_lock(&tmp_ctl.tree_lock);
1052 __btrfs_remove_free_space_cache(&tmp_ctl);
1053 spin_unlock(&tmp_ctl.tree_lock);
1055 "block group %llu has wrong amount of free space",
1056 block_group->start);
1061 /* This cache is bogus, make sure it gets cleared */
1062 spin_lock(&block_group->lock);
1063 block_group->disk_cache_state = BTRFS_DC_CLEAR;
1064 spin_unlock(&block_group->lock);
1068 "failed to load free space cache for block group %llu, rebuilding it now",
1069 block_group->start);
1072 spin_lock(&ctl->tree_lock);
1073 btrfs_discard_update_discardable(block_group);
1074 spin_unlock(&ctl->tree_lock);
1079 static noinline_for_stack
1080 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1081 struct btrfs_free_space_ctl *ctl,
1082 struct btrfs_block_group *block_group,
1083 int *entries, int *bitmaps,
1084 struct list_head *bitmap_list)
1087 struct btrfs_free_cluster *cluster = NULL;
1088 struct btrfs_free_cluster *cluster_locked = NULL;
1089 struct rb_node *node = rb_first(&ctl->free_space_offset);
1090 struct btrfs_trim_range *trim_entry;
1092 /* Get the cluster for this block_group if it exists */
1093 if (block_group && !list_empty(&block_group->cluster_list)) {
1094 cluster = list_entry(block_group->cluster_list.next,
1095 struct btrfs_free_cluster,
1099 if (!node && cluster) {
1100 cluster_locked = cluster;
1101 spin_lock(&cluster_locked->lock);
1102 node = rb_first(&cluster->root);
1106 /* Write out the extent entries */
1108 struct btrfs_free_space *e;
1110 e = rb_entry(node, struct btrfs_free_space, offset_index);
1113 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1119 list_add_tail(&e->list, bitmap_list);
1122 node = rb_next(node);
1123 if (!node && cluster) {
1124 node = rb_first(&cluster->root);
1125 cluster_locked = cluster;
1126 spin_lock(&cluster_locked->lock);
1130 if (cluster_locked) {
1131 spin_unlock(&cluster_locked->lock);
1132 cluster_locked = NULL;
1136 * Make sure we don't miss any range that was removed from our rbtree
1137 * because trimming is running. Otherwise after a umount+mount (or crash
1138 * after committing the transaction) we would leak free space and get
1139 * an inconsistent free space cache report from fsck.
1141 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1142 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1143 trim_entry->bytes, NULL);
1152 spin_unlock(&cluster_locked->lock);
1156 static noinline_for_stack int
1157 update_cache_item(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root,
1159 struct inode *inode,
1160 struct btrfs_path *path, u64 offset,
1161 int entries, int bitmaps)
1163 struct btrfs_key key;
1164 struct btrfs_free_space_header *header;
1165 struct extent_buffer *leaf;
1168 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1169 key.offset = offset;
1172 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1174 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1175 EXTENT_DELALLOC, NULL);
1178 leaf = path->nodes[0];
1180 struct btrfs_key found_key;
1181 ASSERT(path->slots[0]);
1183 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1184 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1185 found_key.offset != offset) {
1186 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1187 inode->i_size - 1, EXTENT_DELALLOC,
1189 btrfs_release_path(path);
1194 BTRFS_I(inode)->generation = trans->transid;
1195 header = btrfs_item_ptr(leaf, path->slots[0],
1196 struct btrfs_free_space_header);
1197 btrfs_set_free_space_entries(leaf, header, entries);
1198 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1199 btrfs_set_free_space_generation(leaf, header, trans->transid);
1200 btrfs_mark_buffer_dirty(leaf);
1201 btrfs_release_path(path);
1209 static noinline_for_stack int write_pinned_extent_entries(
1210 struct btrfs_trans_handle *trans,
1211 struct btrfs_block_group *block_group,
1212 struct btrfs_io_ctl *io_ctl,
1215 u64 start, extent_start, extent_end, len;
1216 struct extent_io_tree *unpin = NULL;
1223 * We want to add any pinned extents to our free space cache
1224 * so we don't leak the space
1226 * We shouldn't have switched the pinned extents yet so this is the
1229 unpin = &trans->transaction->pinned_extents;
1231 start = block_group->start;
1233 while (start < block_group->start + block_group->length) {
1234 ret = find_first_extent_bit(unpin, start,
1235 &extent_start, &extent_end,
1236 EXTENT_DIRTY, NULL);
1240 /* This pinned extent is out of our range */
1241 if (extent_start >= block_group->start + block_group->length)
1244 extent_start = max(extent_start, start);
1245 extent_end = min(block_group->start + block_group->length,
1247 len = extent_end - extent_start;
1250 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1260 static noinline_for_stack int
1261 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1263 struct btrfs_free_space *entry, *next;
1266 /* Write out the bitmaps */
1267 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1268 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1271 list_del_init(&entry->list);
1277 static int flush_dirty_cache(struct inode *inode)
1281 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1283 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1284 EXTENT_DELALLOC, NULL);
1289 static void noinline_for_stack
1290 cleanup_bitmap_list(struct list_head *bitmap_list)
1292 struct btrfs_free_space *entry, *next;
1294 list_for_each_entry_safe(entry, next, bitmap_list, list)
1295 list_del_init(&entry->list);
1298 static void noinline_for_stack
1299 cleanup_write_cache_enospc(struct inode *inode,
1300 struct btrfs_io_ctl *io_ctl,
1301 struct extent_state **cached_state)
1303 io_ctl_drop_pages(io_ctl);
1304 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1308 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1309 struct btrfs_trans_handle *trans,
1310 struct btrfs_block_group *block_group,
1311 struct btrfs_io_ctl *io_ctl,
1312 struct btrfs_path *path, u64 offset)
1315 struct inode *inode = io_ctl->inode;
1320 /* Flush the dirty pages in the cache file. */
1321 ret = flush_dirty_cache(inode);
1325 /* Update the cache item to tell everyone this cache file is valid. */
1326 ret = update_cache_item(trans, root, inode, path, offset,
1327 io_ctl->entries, io_ctl->bitmaps);
1330 invalidate_inode_pages2(inode->i_mapping);
1331 BTRFS_I(inode)->generation = 0;
1333 btrfs_debug(root->fs_info,
1334 "failed to write free space cache for block group %llu error %d",
1335 block_group->start, ret);
1337 btrfs_update_inode(trans, root, BTRFS_I(inode));
1340 /* the dirty list is protected by the dirty_bgs_lock */
1341 spin_lock(&trans->transaction->dirty_bgs_lock);
1343 /* the disk_cache_state is protected by the block group lock */
1344 spin_lock(&block_group->lock);
1347 * only mark this as written if we didn't get put back on
1348 * the dirty list while waiting for IO. Otherwise our
1349 * cache state won't be right, and we won't get written again
1351 if (!ret && list_empty(&block_group->dirty_list))
1352 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1354 block_group->disk_cache_state = BTRFS_DC_ERROR;
1356 spin_unlock(&block_group->lock);
1357 spin_unlock(&trans->transaction->dirty_bgs_lock);
1358 io_ctl->inode = NULL;
1366 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1367 struct btrfs_block_group *block_group,
1368 struct btrfs_path *path)
1370 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1371 block_group, &block_group->io_ctl,
1372 path, block_group->start);
1376 * Write out cached info to an inode.
1378 * @root: root the inode belongs to
1379 * @inode: freespace inode we are writing out
1380 * @ctl: free space cache we are going to write out
1381 * @block_group: block_group for this cache if it belongs to a block_group
1382 * @io_ctl: holds context for the io
1383 * @trans: the trans handle
1385 * This function writes out a free space cache struct to disk for quick recovery
1386 * on mount. This will return 0 if it was successful in writing the cache out,
1387 * or an errno if it was not.
1389 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1390 struct btrfs_free_space_ctl *ctl,
1391 struct btrfs_block_group *block_group,
1392 struct btrfs_io_ctl *io_ctl,
1393 struct btrfs_trans_handle *trans)
1395 struct extent_state *cached_state = NULL;
1396 LIST_HEAD(bitmap_list);
1402 if (!i_size_read(inode))
1405 WARN_ON(io_ctl->pages);
1406 ret = io_ctl_init(io_ctl, inode, 1);
1410 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1411 down_write(&block_group->data_rwsem);
1412 spin_lock(&block_group->lock);
1413 if (block_group->delalloc_bytes) {
1414 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1415 spin_unlock(&block_group->lock);
1416 up_write(&block_group->data_rwsem);
1417 BTRFS_I(inode)->generation = 0;
1422 spin_unlock(&block_group->lock);
1425 /* Lock all pages first so we can lock the extent safely. */
1426 ret = io_ctl_prepare_pages(io_ctl, false);
1430 lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1433 io_ctl_set_generation(io_ctl, trans->transid);
1435 mutex_lock(&ctl->cache_writeout_mutex);
1436 /* Write out the extent entries in the free space cache */
1437 spin_lock(&ctl->tree_lock);
1438 ret = write_cache_extent_entries(io_ctl, ctl,
1439 block_group, &entries, &bitmaps,
1442 goto out_nospc_locked;
1445 * Some spaces that are freed in the current transaction are pinned,
1446 * they will be added into free space cache after the transaction is
1447 * committed, we shouldn't lose them.
1449 * If this changes while we are working we'll get added back to
1450 * the dirty list and redo it. No locking needed
1452 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1454 goto out_nospc_locked;
1457 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1458 * locked while doing it because a concurrent trim can be manipulating
1459 * or freeing the bitmap.
1461 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1462 spin_unlock(&ctl->tree_lock);
1463 mutex_unlock(&ctl->cache_writeout_mutex);
1467 /* Zero out the rest of the pages just to make sure */
1468 io_ctl_zero_remaining_pages(io_ctl);
1470 /* Everything is written out, now we dirty the pages in the file. */
1471 ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1472 io_ctl->num_pages, 0, i_size_read(inode),
1473 &cached_state, false);
1477 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1478 up_write(&block_group->data_rwsem);
1480 * Release the pages and unlock the extent, we will flush
1483 io_ctl_drop_pages(io_ctl);
1484 io_ctl_free(io_ctl);
1486 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1490 * at this point the pages are under IO and we're happy,
1491 * The caller is responsible for waiting on them and updating
1492 * the cache and the inode
1494 io_ctl->entries = entries;
1495 io_ctl->bitmaps = bitmaps;
1497 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1504 cleanup_bitmap_list(&bitmap_list);
1505 spin_unlock(&ctl->tree_lock);
1506 mutex_unlock(&ctl->cache_writeout_mutex);
1509 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1512 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1513 up_write(&block_group->data_rwsem);
1516 io_ctl->inode = NULL;
1517 io_ctl_free(io_ctl);
1519 invalidate_inode_pages2(inode->i_mapping);
1520 BTRFS_I(inode)->generation = 0;
1522 btrfs_update_inode(trans, root, BTRFS_I(inode));
1528 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1529 struct btrfs_block_group *block_group,
1530 struct btrfs_path *path)
1532 struct btrfs_fs_info *fs_info = trans->fs_info;
1533 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1534 struct inode *inode;
1537 spin_lock(&block_group->lock);
1538 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1539 spin_unlock(&block_group->lock);
1542 spin_unlock(&block_group->lock);
1544 inode = lookup_free_space_inode(block_group, path);
1548 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1549 block_group, &block_group->io_ctl, trans);
1551 btrfs_debug(fs_info,
1552 "failed to write free space cache for block group %llu error %d",
1553 block_group->start, ret);
1554 spin_lock(&block_group->lock);
1555 block_group->disk_cache_state = BTRFS_DC_ERROR;
1556 spin_unlock(&block_group->lock);
1558 block_group->io_ctl.inode = NULL;
1563 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1564 * to wait for IO and put the inode
1570 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1573 ASSERT(offset >= bitmap_start);
1574 offset -= bitmap_start;
1575 return (unsigned long)(div_u64(offset, unit));
1578 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1580 return (unsigned long)(div_u64(bytes, unit));
1583 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1587 u64 bytes_per_bitmap;
1589 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1590 bitmap_start = offset - ctl->start;
1591 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1592 bitmap_start *= bytes_per_bitmap;
1593 bitmap_start += ctl->start;
1595 return bitmap_start;
1598 static int tree_insert_offset(struct rb_root *root, u64 offset,
1599 struct rb_node *node, int bitmap)
1601 struct rb_node **p = &root->rb_node;
1602 struct rb_node *parent = NULL;
1603 struct btrfs_free_space *info;
1607 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1609 if (offset < info->offset) {
1611 } else if (offset > info->offset) {
1612 p = &(*p)->rb_right;
1615 * we could have a bitmap entry and an extent entry
1616 * share the same offset. If this is the case, we want
1617 * the extent entry to always be found first if we do a
1618 * linear search through the tree, since we want to have
1619 * the quickest allocation time, and allocating from an
1620 * extent is faster than allocating from a bitmap. So
1621 * if we're inserting a bitmap and we find an entry at
1622 * this offset, we want to go right, or after this entry
1623 * logically. If we are inserting an extent and we've
1624 * found a bitmap, we want to go left, or before
1632 p = &(*p)->rb_right;
1634 if (!info->bitmap) {
1643 rb_link_node(node, parent, p);
1644 rb_insert_color(node, root);
1650 * This is a little subtle. We *only* have ->max_extent_size set if we actually
1651 * searched through the bitmap and figured out the largest ->max_extent_size,
1652 * otherwise it's 0. In the case that it's 0 we don't want to tell the
1653 * allocator the wrong thing, we want to use the actual real max_extent_size
1654 * we've found already if it's larger, or we want to use ->bytes.
1656 * This matters because find_free_space() will skip entries who's ->bytes is
1657 * less than the required bytes. So if we didn't search down this bitmap, we
1658 * may pick some previous entry that has a smaller ->max_extent_size than we
1659 * have. For example, assume we have two entries, one that has
1660 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set
1661 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will
1662 * call into find_free_space(), and return with max_extent_size == 4K, because
1663 * that first bitmap entry had ->max_extent_size set, but the second one did
1664 * not. If instead we returned 8K we'd come in searching for 8K, and find the
1665 * 8K contiguous range.
1667 * Consider the other case, we have 2 8K chunks in that second entry and still
1668 * don't have ->max_extent_size set. We'll return 16K, and the next time the
1669 * allocator comes in it'll fully search our second bitmap, and this time it'll
1670 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the
1671 * right allocation the next loop through.
1673 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1675 if (entry->bitmap && entry->max_extent_size)
1676 return entry->max_extent_size;
1677 return entry->bytes;
1681 * We want the largest entry to be leftmost, so this is inverted from what you'd
1684 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1686 const struct btrfs_free_space *entry, *exist;
1688 entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1689 exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1690 return get_max_extent_size(exist) < get_max_extent_size(entry);
1694 * searches the tree for the given offset.
1696 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1697 * want a section that has at least bytes size and comes at or after the given
1700 static struct btrfs_free_space *
1701 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1702 u64 offset, int bitmap_only, int fuzzy)
1704 struct rb_node *n = ctl->free_space_offset.rb_node;
1705 struct btrfs_free_space *entry = NULL, *prev = NULL;
1707 /* find entry that is closest to the 'offset' */
1709 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1712 if (offset < entry->offset)
1714 else if (offset > entry->offset)
1729 * bitmap entry and extent entry may share same offset,
1730 * in that case, bitmap entry comes after extent entry.
1735 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1736 if (entry->offset != offset)
1739 WARN_ON(!entry->bitmap);
1742 if (entry->bitmap) {
1744 * if previous extent entry covers the offset,
1745 * we should return it instead of the bitmap entry
1747 n = rb_prev(&entry->offset_index);
1749 prev = rb_entry(n, struct btrfs_free_space,
1751 if (!prev->bitmap &&
1752 prev->offset + prev->bytes > offset)
1762 /* find last entry before the 'offset' */
1764 if (entry->offset > offset) {
1765 n = rb_prev(&entry->offset_index);
1767 entry = rb_entry(n, struct btrfs_free_space,
1769 ASSERT(entry->offset <= offset);
1778 if (entry->bitmap) {
1779 n = rb_prev(&entry->offset_index);
1781 prev = rb_entry(n, struct btrfs_free_space,
1783 if (!prev->bitmap &&
1784 prev->offset + prev->bytes > offset)
1787 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1789 } else if (entry->offset + entry->bytes > offset)
1796 n = rb_next(&entry->offset_index);
1799 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1800 if (entry->bitmap) {
1801 if (entry->offset + BITS_PER_BITMAP *
1805 if (entry->offset + entry->bytes > offset)
1812 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1813 struct btrfs_free_space *info,
1816 rb_erase(&info->offset_index, &ctl->free_space_offset);
1817 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1818 ctl->free_extents--;
1820 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1821 ctl->discardable_extents[BTRFS_STAT_CURR]--;
1822 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1826 ctl->free_space -= info->bytes;
1829 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1830 struct btrfs_free_space *info)
1834 ASSERT(info->bytes || info->bitmap);
1835 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1836 &info->offset_index, (info->bitmap != NULL));
1840 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1842 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1843 ctl->discardable_extents[BTRFS_STAT_CURR]++;
1844 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1847 ctl->free_space += info->bytes;
1848 ctl->free_extents++;
1852 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1853 struct btrfs_free_space *info)
1855 ASSERT(info->bitmap);
1858 * If our entry is empty it's because we're on a cluster and we don't
1859 * want to re-link it into our ctl bytes index.
1861 if (RB_EMPTY_NODE(&info->bytes_index))
1864 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1865 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1868 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1869 struct btrfs_free_space *info,
1870 u64 offset, u64 bytes, bool update_stat)
1872 unsigned long start, count, end;
1873 int extent_delta = -1;
1875 start = offset_to_bit(info->offset, ctl->unit, offset);
1876 count = bytes_to_bits(bytes, ctl->unit);
1877 end = start + count;
1878 ASSERT(end <= BITS_PER_BITMAP);
1880 bitmap_clear(info->bitmap, start, count);
1882 info->bytes -= bytes;
1883 if (info->max_extent_size > ctl->unit)
1884 info->max_extent_size = 0;
1886 relink_bitmap_entry(ctl, info);
1888 if (start && test_bit(start - 1, info->bitmap))
1891 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1894 info->bitmap_extents += extent_delta;
1895 if (!btrfs_free_space_trimmed(info)) {
1896 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1897 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1901 ctl->free_space -= bytes;
1904 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1905 struct btrfs_free_space *info, u64 offset,
1908 unsigned long start, count, end;
1909 int extent_delta = 1;
1911 start = offset_to_bit(info->offset, ctl->unit, offset);
1912 count = bytes_to_bits(bytes, ctl->unit);
1913 end = start + count;
1914 ASSERT(end <= BITS_PER_BITMAP);
1916 bitmap_set(info->bitmap, start, count);
1919 * We set some bytes, we have no idea what the max extent size is
1922 info->max_extent_size = 0;
1923 info->bytes += bytes;
1924 ctl->free_space += bytes;
1926 relink_bitmap_entry(ctl, info);
1928 if (start && test_bit(start - 1, info->bitmap))
1931 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1934 info->bitmap_extents += extent_delta;
1935 if (!btrfs_free_space_trimmed(info)) {
1936 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1937 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1942 * If we can not find suitable extent, we will use bytes to record
1943 * the size of the max extent.
1945 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1946 struct btrfs_free_space *bitmap_info, u64 *offset,
1947 u64 *bytes, bool for_alloc)
1949 unsigned long found_bits = 0;
1950 unsigned long max_bits = 0;
1951 unsigned long bits, i;
1952 unsigned long next_zero;
1953 unsigned long extent_bits;
1956 * Skip searching the bitmap if we don't have a contiguous section that
1957 * is large enough for this allocation.
1960 bitmap_info->max_extent_size &&
1961 bitmap_info->max_extent_size < *bytes) {
1962 *bytes = bitmap_info->max_extent_size;
1966 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1967 max_t(u64, *offset, bitmap_info->offset));
1968 bits = bytes_to_bits(*bytes, ctl->unit);
1970 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1971 if (for_alloc && bits == 1) {
1975 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1976 BITS_PER_BITMAP, i);
1977 extent_bits = next_zero - i;
1978 if (extent_bits >= bits) {
1979 found_bits = extent_bits;
1981 } else if (extent_bits > max_bits) {
1982 max_bits = extent_bits;
1988 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1989 *bytes = (u64)(found_bits) * ctl->unit;
1993 *bytes = (u64)(max_bits) * ctl->unit;
1994 bitmap_info->max_extent_size = *bytes;
1995 relink_bitmap_entry(ctl, bitmap_info);
1999 /* Cache the size of the max extent in bytes */
2000 static struct btrfs_free_space *
2001 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2002 unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2004 struct btrfs_free_space *entry;
2005 struct rb_node *node;
2010 if (!ctl->free_space_offset.rb_node)
2013 if (use_bytes_index) {
2014 node = rb_first_cached(&ctl->free_space_bytes);
2016 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2020 node = &entry->offset_index;
2023 for (; node; node = rb_next(node)) {
2024 if (use_bytes_index)
2025 entry = rb_entry(node, struct btrfs_free_space,
2028 entry = rb_entry(node, struct btrfs_free_space,
2032 * If we are using the bytes index then all subsequent entries
2033 * in this tree are going to be < bytes, so simply set the max
2034 * extent size and exit the loop.
2036 * If we're using the offset index then we need to keep going
2037 * through the rest of the tree.
2039 if (entry->bytes < *bytes) {
2040 *max_extent_size = max(get_max_extent_size(entry),
2042 if (use_bytes_index)
2047 /* make sure the space returned is big enough
2048 * to match our requested alignment
2050 if (*bytes >= align) {
2051 tmp = entry->offset - ctl->start + align - 1;
2052 tmp = div64_u64(tmp, align);
2053 tmp = tmp * align + ctl->start;
2054 align_off = tmp - entry->offset;
2057 tmp = entry->offset;
2061 * We don't break here if we're using the bytes index because we
2062 * may have another entry that has the correct alignment that is
2063 * the right size, so we don't want to miss that possibility.
2064 * At worst this adds another loop through the logic, but if we
2065 * broke here we could prematurely ENOSPC.
2067 if (entry->bytes < *bytes + align_off) {
2068 *max_extent_size = max(get_max_extent_size(entry),
2073 if (entry->bitmap) {
2074 struct rb_node *old_next = rb_next(node);
2077 ret = search_bitmap(ctl, entry, &tmp, &size, true);
2084 max(get_max_extent_size(entry),
2089 * The bitmap may have gotten re-arranged in the space
2090 * index here because the max_extent_size may have been
2091 * updated. Start from the beginning again if this
2094 if (use_bytes_index && old_next != rb_next(node))
2100 *bytes = entry->bytes - align_off;
2107 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2108 struct btrfs_free_space *info, u64 offset)
2110 info->offset = offset_to_bitmap(ctl, offset);
2112 info->bitmap_extents = 0;
2113 INIT_LIST_HEAD(&info->list);
2114 link_free_space(ctl, info);
2115 ctl->total_bitmaps++;
2116 recalculate_thresholds(ctl);
2119 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2120 struct btrfs_free_space *bitmap_info)
2123 * Normally when this is called, the bitmap is completely empty. However,
2124 * if we are blowing up the free space cache for one reason or another
2125 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2126 * we may leave stats on the table.
2128 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2129 ctl->discardable_extents[BTRFS_STAT_CURR] -=
2130 bitmap_info->bitmap_extents;
2131 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2134 unlink_free_space(ctl, bitmap_info, true);
2135 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2136 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2137 ctl->total_bitmaps--;
2138 recalculate_thresholds(ctl);
2141 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2142 struct btrfs_free_space *bitmap_info,
2143 u64 *offset, u64 *bytes)
2146 u64 search_start, search_bytes;
2150 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2153 * We need to search for bits in this bitmap. We could only cover some
2154 * of the extent in this bitmap thanks to how we add space, so we need
2155 * to search for as much as it as we can and clear that amount, and then
2156 * go searching for the next bit.
2158 search_start = *offset;
2159 search_bytes = ctl->unit;
2160 search_bytes = min(search_bytes, end - search_start + 1);
2161 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2163 if (ret < 0 || search_start != *offset)
2166 /* We may have found more bits than what we need */
2167 search_bytes = min(search_bytes, *bytes);
2169 /* Cannot clear past the end of the bitmap */
2170 search_bytes = min(search_bytes, end - search_start + 1);
2172 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2173 *offset += search_bytes;
2174 *bytes -= search_bytes;
2177 struct rb_node *next = rb_next(&bitmap_info->offset_index);
2178 if (!bitmap_info->bytes)
2179 free_bitmap(ctl, bitmap_info);
2182 * no entry after this bitmap, but we still have bytes to
2183 * remove, so something has gone wrong.
2188 bitmap_info = rb_entry(next, struct btrfs_free_space,
2192 * if the next entry isn't a bitmap we need to return to let the
2193 * extent stuff do its work.
2195 if (!bitmap_info->bitmap)
2199 * Ok the next item is a bitmap, but it may not actually hold
2200 * the information for the rest of this free space stuff, so
2201 * look for it, and if we don't find it return so we can try
2202 * everything over again.
2204 search_start = *offset;
2205 search_bytes = ctl->unit;
2206 ret = search_bitmap(ctl, bitmap_info, &search_start,
2207 &search_bytes, false);
2208 if (ret < 0 || search_start != *offset)
2212 } else if (!bitmap_info->bytes)
2213 free_bitmap(ctl, bitmap_info);
2218 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2219 struct btrfs_free_space *info, u64 offset,
2220 u64 bytes, enum btrfs_trim_state trim_state)
2222 u64 bytes_to_set = 0;
2226 * This is a tradeoff to make bitmap trim state minimal. We mark the
2227 * whole bitmap untrimmed if at any point we add untrimmed regions.
2229 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2230 if (btrfs_free_space_trimmed(info)) {
2231 ctl->discardable_extents[BTRFS_STAT_CURR] +=
2232 info->bitmap_extents;
2233 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2235 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2238 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2240 bytes_to_set = min(end - offset, bytes);
2242 bitmap_set_bits(ctl, info, offset, bytes_to_set);
2244 return bytes_to_set;
2248 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2249 struct btrfs_free_space *info)
2251 struct btrfs_block_group *block_group = ctl->block_group;
2252 struct btrfs_fs_info *fs_info = block_group->fs_info;
2253 bool forced = false;
2255 #ifdef CONFIG_BTRFS_DEBUG
2256 if (btrfs_should_fragment_free_space(block_group))
2260 /* This is a way to reclaim large regions from the bitmaps. */
2261 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2265 * If we are below the extents threshold then we can add this as an
2266 * extent, and don't have to deal with the bitmap
2268 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2270 * If this block group has some small extents we don't want to
2271 * use up all of our free slots in the cache with them, we want
2272 * to reserve them to larger extents, however if we have plenty
2273 * of cache left then go ahead an dadd them, no sense in adding
2274 * the overhead of a bitmap if we don't have to.
2276 if (info->bytes <= fs_info->sectorsize * 8) {
2277 if (ctl->free_extents * 3 <= ctl->extents_thresh)
2285 * The original block groups from mkfs can be really small, like 8
2286 * megabytes, so don't bother with a bitmap for those entries. However
2287 * some block groups can be smaller than what a bitmap would cover but
2288 * are still large enough that they could overflow the 32k memory limit,
2289 * so allow those block groups to still be allowed to have a bitmap
2292 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2298 static const struct btrfs_free_space_op free_space_op = {
2299 .use_bitmap = use_bitmap,
2302 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2303 struct btrfs_free_space *info)
2305 struct btrfs_free_space *bitmap_info;
2306 struct btrfs_block_group *block_group = NULL;
2308 u64 bytes, offset, bytes_added;
2309 enum btrfs_trim_state trim_state;
2312 bytes = info->bytes;
2313 offset = info->offset;
2314 trim_state = info->trim_state;
2316 if (!ctl->op->use_bitmap(ctl, info))
2319 if (ctl->op == &free_space_op)
2320 block_group = ctl->block_group;
2323 * Since we link bitmaps right into the cluster we need to see if we
2324 * have a cluster here, and if so and it has our bitmap we need to add
2325 * the free space to that bitmap.
2327 if (block_group && !list_empty(&block_group->cluster_list)) {
2328 struct btrfs_free_cluster *cluster;
2329 struct rb_node *node;
2330 struct btrfs_free_space *entry;
2332 cluster = list_entry(block_group->cluster_list.next,
2333 struct btrfs_free_cluster,
2335 spin_lock(&cluster->lock);
2336 node = rb_first(&cluster->root);
2338 spin_unlock(&cluster->lock);
2339 goto no_cluster_bitmap;
2342 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2343 if (!entry->bitmap) {
2344 spin_unlock(&cluster->lock);
2345 goto no_cluster_bitmap;
2348 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2349 bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2351 bytes -= bytes_added;
2352 offset += bytes_added;
2354 spin_unlock(&cluster->lock);
2362 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2369 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2371 bytes -= bytes_added;
2372 offset += bytes_added;
2382 if (info && info->bitmap) {
2383 add_new_bitmap(ctl, info, offset);
2388 spin_unlock(&ctl->tree_lock);
2390 /* no pre-allocated info, allocate a new one */
2392 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2395 spin_lock(&ctl->tree_lock);
2401 /* allocate the bitmap */
2402 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2404 info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2405 spin_lock(&ctl->tree_lock);
2406 if (!info->bitmap) {
2416 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2418 kmem_cache_free(btrfs_free_space_cachep, info);
2425 * Free space merging rules:
2426 * 1) Merge trimmed areas together
2427 * 2) Let untrimmed areas coalesce with trimmed areas
2428 * 3) Always pull neighboring regions from bitmaps
2430 * The above rules are for when we merge free space based on btrfs_trim_state.
2431 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2432 * same reason: to promote larger extent regions which makes life easier for
2433 * find_free_extent(). Rule 2 enables coalescing based on the common path
2434 * being returning free space from btrfs_finish_extent_commit(). So when free
2435 * space is trimmed, it will prevent aggregating trimmed new region and
2436 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2437 * and provide find_free_extent() with the largest extents possible hoping for
2440 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2441 struct btrfs_free_space *info, bool update_stat)
2443 struct btrfs_free_space *left_info = NULL;
2444 struct btrfs_free_space *right_info;
2445 bool merged = false;
2446 u64 offset = info->offset;
2447 u64 bytes = info->bytes;
2448 const bool is_trimmed = btrfs_free_space_trimmed(info);
2451 * first we want to see if there is free space adjacent to the range we
2452 * are adding, if there is remove that struct and add a new one to
2453 * cover the entire range
2455 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2456 if (right_info && rb_prev(&right_info->offset_index))
2457 left_info = rb_entry(rb_prev(&right_info->offset_index),
2458 struct btrfs_free_space, offset_index);
2459 else if (!right_info)
2460 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2462 /* See try_merge_free_space() comment. */
2463 if (right_info && !right_info->bitmap &&
2464 (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2465 unlink_free_space(ctl, right_info, update_stat);
2466 info->bytes += right_info->bytes;
2467 kmem_cache_free(btrfs_free_space_cachep, right_info);
2471 /* See try_merge_free_space() comment. */
2472 if (left_info && !left_info->bitmap &&
2473 left_info->offset + left_info->bytes == offset &&
2474 (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2475 unlink_free_space(ctl, left_info, update_stat);
2476 info->offset = left_info->offset;
2477 info->bytes += left_info->bytes;
2478 kmem_cache_free(btrfs_free_space_cachep, left_info);
2485 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2486 struct btrfs_free_space *info,
2489 struct btrfs_free_space *bitmap;
2492 const u64 end = info->offset + info->bytes;
2493 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2496 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2500 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2501 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2504 bytes = (j - i) * ctl->unit;
2505 info->bytes += bytes;
2507 /* See try_merge_free_space() comment. */
2508 if (!btrfs_free_space_trimmed(bitmap))
2509 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2511 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2514 free_bitmap(ctl, bitmap);
2519 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2520 struct btrfs_free_space *info,
2523 struct btrfs_free_space *bitmap;
2527 unsigned long prev_j;
2530 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2531 /* If we're on a boundary, try the previous logical bitmap. */
2532 if (bitmap_offset == info->offset) {
2533 if (info->offset == 0)
2535 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2538 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2542 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2544 prev_j = (unsigned long)-1;
2545 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2553 if (prev_j == (unsigned long)-1)
2554 bytes = (i + 1) * ctl->unit;
2556 bytes = (i - prev_j) * ctl->unit;
2558 info->offset -= bytes;
2559 info->bytes += bytes;
2561 /* See try_merge_free_space() comment. */
2562 if (!btrfs_free_space_trimmed(bitmap))
2563 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2565 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2568 free_bitmap(ctl, bitmap);
2574 * We prefer always to allocate from extent entries, both for clustered and
2575 * non-clustered allocation requests. So when attempting to add a new extent
2576 * entry, try to see if there's adjacent free space in bitmap entries, and if
2577 * there is, migrate that space from the bitmaps to the extent.
2578 * Like this we get better chances of satisfying space allocation requests
2579 * because we attempt to satisfy them based on a single cache entry, and never
2580 * on 2 or more entries - even if the entries represent a contiguous free space
2581 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2584 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2585 struct btrfs_free_space *info,
2589 * Only work with disconnected entries, as we can change their offset,
2590 * and must be extent entries.
2592 ASSERT(!info->bitmap);
2593 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2595 if (ctl->total_bitmaps > 0) {
2597 bool stole_front = false;
2599 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2600 if (ctl->total_bitmaps > 0)
2601 stole_front = steal_from_bitmap_to_front(ctl, info,
2604 if (stole_end || stole_front)
2605 try_merge_free_space(ctl, info, update_stat);
2609 int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2610 u64 offset, u64 bytes,
2611 enum btrfs_trim_state trim_state)
2613 struct btrfs_fs_info *fs_info = block_group->fs_info;
2614 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2615 struct btrfs_free_space *info;
2617 u64 filter_bytes = bytes;
2619 ASSERT(!btrfs_is_zoned(fs_info));
2621 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2625 info->offset = offset;
2626 info->bytes = bytes;
2627 info->trim_state = trim_state;
2628 RB_CLEAR_NODE(&info->offset_index);
2629 RB_CLEAR_NODE(&info->bytes_index);
2631 spin_lock(&ctl->tree_lock);
2633 if (try_merge_free_space(ctl, info, true))
2637 * There was no extent directly to the left or right of this new
2638 * extent then we know we're going to have to allocate a new extent, so
2639 * before we do that see if we need to drop this into a bitmap
2641 ret = insert_into_bitmap(ctl, info);
2650 * Only steal free space from adjacent bitmaps if we're sure we're not
2651 * going to add the new free space to existing bitmap entries - because
2652 * that would mean unnecessary work that would be reverted. Therefore
2653 * attempt to steal space from bitmaps if we're adding an extent entry.
2655 steal_from_bitmap(ctl, info, true);
2657 filter_bytes = max(filter_bytes, info->bytes);
2659 ret = link_free_space(ctl, info);
2661 kmem_cache_free(btrfs_free_space_cachep, info);
2663 btrfs_discard_update_discardable(block_group);
2664 spin_unlock(&ctl->tree_lock);
2667 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2668 ASSERT(ret != -EEXIST);
2671 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2672 btrfs_discard_check_filter(block_group, filter_bytes);
2673 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2679 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2680 u64 bytenr, u64 size, bool used)
2682 struct btrfs_space_info *sinfo = block_group->space_info;
2683 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2684 u64 offset = bytenr - block_group->start;
2685 u64 to_free, to_unusable;
2686 int bg_reclaim_threshold = 0;
2687 bool initial = (size == block_group->length);
2688 u64 reclaimable_unusable;
2690 WARN_ON(!initial && offset + size > block_group->zone_capacity);
2693 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2695 spin_lock(&ctl->tree_lock);
2699 to_free = block_group->zone_capacity;
2700 else if (offset >= block_group->alloc_offset)
2702 else if (offset + size <= block_group->alloc_offset)
2705 to_free = offset + size - block_group->alloc_offset;
2706 to_unusable = size - to_free;
2708 ctl->free_space += to_free;
2710 * If the block group is read-only, we should account freed space into
2713 if (!block_group->ro)
2714 block_group->zone_unusable += to_unusable;
2715 spin_unlock(&ctl->tree_lock);
2717 spin_lock(&block_group->lock);
2718 block_group->alloc_offset -= size;
2719 spin_unlock(&block_group->lock);
2722 reclaimable_unusable = block_group->zone_unusable -
2723 (block_group->length - block_group->zone_capacity);
2724 /* All the region is now unusable. Mark it as unused and reclaim */
2725 if (block_group->zone_unusable == block_group->length) {
2726 btrfs_mark_bg_unused(block_group);
2727 } else if (bg_reclaim_threshold &&
2728 reclaimable_unusable >=
2729 mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2730 btrfs_mark_bg_to_reclaim(block_group);
2736 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2737 u64 bytenr, u64 size)
2739 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2741 if (btrfs_is_zoned(block_group->fs_info))
2742 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2745 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2746 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2748 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2751 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2752 u64 bytenr, u64 size)
2754 if (btrfs_is_zoned(block_group->fs_info))
2755 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2758 return btrfs_add_free_space(block_group, bytenr, size);
2762 * This is a subtle distinction because when adding free space back in general,
2763 * we want it to be added as untrimmed for async. But in the case where we add
2764 * it on loading of a block group, we want to consider it trimmed.
2766 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2767 u64 bytenr, u64 size)
2769 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2771 if (btrfs_is_zoned(block_group->fs_info))
2772 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2775 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2776 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2777 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2779 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2782 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2783 u64 offset, u64 bytes)
2785 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2786 struct btrfs_free_space *info;
2788 bool re_search = false;
2790 if (btrfs_is_zoned(block_group->fs_info)) {
2792 * This can happen with conventional zones when replaying log.
2793 * Since the allocation info of tree-log nodes are not recorded
2794 * to the extent-tree, calculate_alloc_pointer() failed to
2795 * advance the allocation pointer after last allocated tree log
2798 * This function is called from
2799 * btrfs_pin_extent_for_log_replay() when replaying the log.
2800 * Advance the pointer not to overwrite the tree-log nodes.
2802 if (block_group->start + block_group->alloc_offset <
2804 block_group->alloc_offset =
2805 offset + bytes - block_group->start;
2810 spin_lock(&ctl->tree_lock);
2817 info = tree_search_offset(ctl, offset, 0, 0);
2820 * oops didn't find an extent that matched the space we wanted
2821 * to remove, look for a bitmap instead
2823 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2827 * If we found a partial bit of our free space in a
2828 * bitmap but then couldn't find the other part this may
2829 * be a problem, so WARN about it.
2837 if (!info->bitmap) {
2838 unlink_free_space(ctl, info, true);
2839 if (offset == info->offset) {
2840 u64 to_free = min(bytes, info->bytes);
2842 info->bytes -= to_free;
2843 info->offset += to_free;
2845 ret = link_free_space(ctl, info);
2848 kmem_cache_free(btrfs_free_space_cachep, info);
2855 u64 old_end = info->bytes + info->offset;
2857 info->bytes = offset - info->offset;
2858 ret = link_free_space(ctl, info);
2863 /* Not enough bytes in this entry to satisfy us */
2864 if (old_end < offset + bytes) {
2865 bytes -= old_end - offset;
2868 } else if (old_end == offset + bytes) {
2872 spin_unlock(&ctl->tree_lock);
2874 ret = __btrfs_add_free_space(block_group,
2876 old_end - (offset + bytes),
2883 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2884 if (ret == -EAGAIN) {
2889 btrfs_discard_update_discardable(block_group);
2890 spin_unlock(&ctl->tree_lock);
2895 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2898 struct btrfs_fs_info *fs_info = block_group->fs_info;
2899 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2900 struct btrfs_free_space *info;
2905 * Zoned btrfs does not use free space tree and cluster. Just print
2906 * out the free space after the allocation offset.
2908 if (btrfs_is_zoned(fs_info)) {
2909 btrfs_info(fs_info, "free space %llu active %d",
2910 block_group->zone_capacity - block_group->alloc_offset,
2911 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2912 &block_group->runtime_flags));
2916 spin_lock(&ctl->tree_lock);
2917 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2918 info = rb_entry(n, struct btrfs_free_space, offset_index);
2919 if (info->bytes >= bytes && !block_group->ro)
2921 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2922 info->offset, info->bytes,
2923 (info->bitmap) ? "yes" : "no");
2925 spin_unlock(&ctl->tree_lock);
2926 btrfs_info(fs_info, "block group has cluster?: %s",
2927 list_empty(&block_group->cluster_list) ? "no" : "yes");
2929 "%d blocks of free space at or bigger than bytes is", count);
2932 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2933 struct btrfs_free_space_ctl *ctl)
2935 struct btrfs_fs_info *fs_info = block_group->fs_info;
2937 spin_lock_init(&ctl->tree_lock);
2938 ctl->unit = fs_info->sectorsize;
2939 ctl->start = block_group->start;
2940 ctl->block_group = block_group;
2941 ctl->op = &free_space_op;
2942 ctl->free_space_bytes = RB_ROOT_CACHED;
2943 INIT_LIST_HEAD(&ctl->trimming_ranges);
2944 mutex_init(&ctl->cache_writeout_mutex);
2947 * we only want to have 32k of ram per block group for keeping
2948 * track of free space, and if we pass 1/2 of that we want to
2949 * start converting things over to using bitmaps
2951 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2955 * for a given cluster, put all of its extents back into the free
2956 * space cache. If the block group passed doesn't match the block group
2957 * pointed to by the cluster, someone else raced in and freed the
2958 * cluster already. In that case, we just return without changing anything
2960 static void __btrfs_return_cluster_to_free_space(
2961 struct btrfs_block_group *block_group,
2962 struct btrfs_free_cluster *cluster)
2964 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2965 struct btrfs_free_space *entry;
2966 struct rb_node *node;
2968 spin_lock(&cluster->lock);
2969 if (cluster->block_group != block_group) {
2970 spin_unlock(&cluster->lock);
2974 cluster->block_group = NULL;
2975 cluster->window_start = 0;
2976 list_del_init(&cluster->block_group_list);
2978 node = rb_first(&cluster->root);
2982 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2983 node = rb_next(&entry->offset_index);
2984 rb_erase(&entry->offset_index, &cluster->root);
2985 RB_CLEAR_NODE(&entry->offset_index);
2987 bitmap = (entry->bitmap != NULL);
2989 /* Merging treats extents as if they were new */
2990 if (!btrfs_free_space_trimmed(entry)) {
2991 ctl->discardable_extents[BTRFS_STAT_CURR]--;
2992 ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2996 try_merge_free_space(ctl, entry, false);
2997 steal_from_bitmap(ctl, entry, false);
2999 /* As we insert directly, update these statistics */
3000 if (!btrfs_free_space_trimmed(entry)) {
3001 ctl->discardable_extents[BTRFS_STAT_CURR]++;
3002 ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3006 tree_insert_offset(&ctl->free_space_offset,
3007 entry->offset, &entry->offset_index, bitmap);
3008 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3011 cluster->root = RB_ROOT;
3012 spin_unlock(&cluster->lock);
3013 btrfs_put_block_group(block_group);
3016 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3018 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3019 struct btrfs_free_cluster *cluster;
3020 struct list_head *head;
3022 spin_lock(&ctl->tree_lock);
3023 while ((head = block_group->cluster_list.next) !=
3024 &block_group->cluster_list) {
3025 cluster = list_entry(head, struct btrfs_free_cluster,
3028 WARN_ON(cluster->block_group != block_group);
3029 __btrfs_return_cluster_to_free_space(block_group, cluster);
3031 cond_resched_lock(&ctl->tree_lock);
3033 __btrfs_remove_free_space_cache(ctl);
3034 btrfs_discard_update_discardable(block_group);
3035 spin_unlock(&ctl->tree_lock);
3040 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3042 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3044 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3045 struct btrfs_free_space *info;
3046 struct rb_node *node;
3049 spin_lock(&ctl->tree_lock);
3050 node = rb_first(&ctl->free_space_offset);
3053 info = rb_entry(node, struct btrfs_free_space, offset_index);
3055 if (!btrfs_free_space_trimmed(info)) {
3060 node = rb_next(node);
3063 spin_unlock(&ctl->tree_lock);
3067 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3068 u64 offset, u64 bytes, u64 empty_size,
3069 u64 *max_extent_size)
3071 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3072 struct btrfs_discard_ctl *discard_ctl =
3073 &block_group->fs_info->discard_ctl;
3074 struct btrfs_free_space *entry = NULL;
3075 u64 bytes_search = bytes + empty_size;
3078 u64 align_gap_len = 0;
3079 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3080 bool use_bytes_index = (offset == block_group->start);
3082 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3084 spin_lock(&ctl->tree_lock);
3085 entry = find_free_space(ctl, &offset, &bytes_search,
3086 block_group->full_stripe_len, max_extent_size,
3092 if (entry->bitmap) {
3093 bitmap_clear_bits(ctl, entry, offset, bytes, true);
3095 if (!btrfs_free_space_trimmed(entry))
3096 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3099 free_bitmap(ctl, entry);
3101 unlink_free_space(ctl, entry, true);
3102 align_gap_len = offset - entry->offset;
3103 align_gap = entry->offset;
3104 align_gap_trim_state = entry->trim_state;
3106 if (!btrfs_free_space_trimmed(entry))
3107 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3109 entry->offset = offset + bytes;
3110 WARN_ON(entry->bytes < bytes + align_gap_len);
3112 entry->bytes -= bytes + align_gap_len;
3114 kmem_cache_free(btrfs_free_space_cachep, entry);
3116 link_free_space(ctl, entry);
3119 btrfs_discard_update_discardable(block_group);
3120 spin_unlock(&ctl->tree_lock);
3123 __btrfs_add_free_space(block_group, align_gap, align_gap_len,
3124 align_gap_trim_state);
3129 * given a cluster, put all of its extents back into the free space
3130 * cache. If a block group is passed, this function will only free
3131 * a cluster that belongs to the passed block group.
3133 * Otherwise, it'll get a reference on the block group pointed to by the
3134 * cluster and remove the cluster from it.
3136 void btrfs_return_cluster_to_free_space(
3137 struct btrfs_block_group *block_group,
3138 struct btrfs_free_cluster *cluster)
3140 struct btrfs_free_space_ctl *ctl;
3142 /* first, get a safe pointer to the block group */
3143 spin_lock(&cluster->lock);
3145 block_group = cluster->block_group;
3147 spin_unlock(&cluster->lock);
3150 } else if (cluster->block_group != block_group) {
3151 /* someone else has already freed it don't redo their work */
3152 spin_unlock(&cluster->lock);
3155 btrfs_get_block_group(block_group);
3156 spin_unlock(&cluster->lock);
3158 ctl = block_group->free_space_ctl;
3160 /* now return any extents the cluster had on it */
3161 spin_lock(&ctl->tree_lock);
3162 __btrfs_return_cluster_to_free_space(block_group, cluster);
3163 spin_unlock(&ctl->tree_lock);
3165 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3167 /* finally drop our ref */
3168 btrfs_put_block_group(block_group);
3171 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3172 struct btrfs_free_cluster *cluster,
3173 struct btrfs_free_space *entry,
3174 u64 bytes, u64 min_start,
3175 u64 *max_extent_size)
3177 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3179 u64 search_start = cluster->window_start;
3180 u64 search_bytes = bytes;
3183 search_start = min_start;
3184 search_bytes = bytes;
3186 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3188 *max_extent_size = max(get_max_extent_size(entry),
3194 bitmap_clear_bits(ctl, entry, ret, bytes, false);
3200 * given a cluster, try to allocate 'bytes' from it, returns 0
3201 * if it couldn't find anything suitably large, or a logical disk offset
3202 * if things worked out
3204 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3205 struct btrfs_free_cluster *cluster, u64 bytes,
3206 u64 min_start, u64 *max_extent_size)
3208 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3209 struct btrfs_discard_ctl *discard_ctl =
3210 &block_group->fs_info->discard_ctl;
3211 struct btrfs_free_space *entry = NULL;
3212 struct rb_node *node;
3215 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3217 spin_lock(&cluster->lock);
3218 if (bytes > cluster->max_size)
3221 if (cluster->block_group != block_group)
3224 node = rb_first(&cluster->root);
3228 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3230 if (entry->bytes < bytes)
3231 *max_extent_size = max(get_max_extent_size(entry),
3234 if (entry->bytes < bytes ||
3235 (!entry->bitmap && entry->offset < min_start)) {
3236 node = rb_next(&entry->offset_index);
3239 entry = rb_entry(node, struct btrfs_free_space,
3244 if (entry->bitmap) {
3245 ret = btrfs_alloc_from_bitmap(block_group,
3246 cluster, entry, bytes,
3247 cluster->window_start,
3250 node = rb_next(&entry->offset_index);
3253 entry = rb_entry(node, struct btrfs_free_space,
3257 cluster->window_start += bytes;
3259 ret = entry->offset;
3261 entry->offset += bytes;
3262 entry->bytes -= bytes;
3268 spin_unlock(&cluster->lock);
3273 spin_lock(&ctl->tree_lock);
3275 if (!btrfs_free_space_trimmed(entry))
3276 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3278 ctl->free_space -= bytes;
3279 if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3280 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3282 spin_lock(&cluster->lock);
3283 if (entry->bytes == 0) {
3284 rb_erase(&entry->offset_index, &cluster->root);
3285 ctl->free_extents--;
3286 if (entry->bitmap) {
3287 kmem_cache_free(btrfs_free_space_bitmap_cachep,
3289 ctl->total_bitmaps--;
3290 recalculate_thresholds(ctl);
3291 } else if (!btrfs_free_space_trimmed(entry)) {
3292 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3294 kmem_cache_free(btrfs_free_space_cachep, entry);
3297 spin_unlock(&cluster->lock);
3298 spin_unlock(&ctl->tree_lock);
3303 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3304 struct btrfs_free_space *entry,
3305 struct btrfs_free_cluster *cluster,
3306 u64 offset, u64 bytes,
3307 u64 cont1_bytes, u64 min_bytes)
3309 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3310 unsigned long next_zero;
3312 unsigned long want_bits;
3313 unsigned long min_bits;
3314 unsigned long found_bits;
3315 unsigned long max_bits = 0;
3316 unsigned long start = 0;
3317 unsigned long total_found = 0;
3320 i = offset_to_bit(entry->offset, ctl->unit,
3321 max_t(u64, offset, entry->offset));
3322 want_bits = bytes_to_bits(bytes, ctl->unit);
3323 min_bits = bytes_to_bits(min_bytes, ctl->unit);
3326 * Don't bother looking for a cluster in this bitmap if it's heavily
3329 if (entry->max_extent_size &&
3330 entry->max_extent_size < cont1_bytes)
3334 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3335 next_zero = find_next_zero_bit(entry->bitmap,
3336 BITS_PER_BITMAP, i);
3337 if (next_zero - i >= min_bits) {
3338 found_bits = next_zero - i;
3339 if (found_bits > max_bits)
3340 max_bits = found_bits;
3343 if (next_zero - i > max_bits)
3344 max_bits = next_zero - i;
3349 entry->max_extent_size = (u64)max_bits * ctl->unit;
3355 cluster->max_size = 0;
3358 total_found += found_bits;
3360 if (cluster->max_size < found_bits * ctl->unit)
3361 cluster->max_size = found_bits * ctl->unit;
3363 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3368 cluster->window_start = start * ctl->unit + entry->offset;
3369 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3370 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3373 * We need to know if we're currently on the normal space index when we
3374 * manipulate the bitmap so that we know we need to remove and re-insert
3375 * it into the space_index tree. Clear the bytes_index node here so the
3376 * bitmap manipulation helpers know not to mess with the space_index
3377 * until this bitmap entry is added back into the normal cache.
3379 RB_CLEAR_NODE(&entry->bytes_index);
3381 ret = tree_insert_offset(&cluster->root, entry->offset,
3382 &entry->offset_index, 1);
3383 ASSERT(!ret); /* -EEXIST; Logic error */
3385 trace_btrfs_setup_cluster(block_group, cluster,
3386 total_found * ctl->unit, 1);
3391 * This searches the block group for just extents to fill the cluster with.
3392 * Try to find a cluster with at least bytes total bytes, at least one
3393 * extent of cont1_bytes, and other clusters of at least min_bytes.
3396 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3397 struct btrfs_free_cluster *cluster,
3398 struct list_head *bitmaps, u64 offset, u64 bytes,
3399 u64 cont1_bytes, u64 min_bytes)
3401 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3402 struct btrfs_free_space *first = NULL;
3403 struct btrfs_free_space *entry = NULL;
3404 struct btrfs_free_space *last;
3405 struct rb_node *node;
3410 entry = tree_search_offset(ctl, offset, 0, 1);
3415 * We don't want bitmaps, so just move along until we find a normal
3418 while (entry->bitmap || entry->bytes < min_bytes) {
3419 if (entry->bitmap && list_empty(&entry->list))
3420 list_add_tail(&entry->list, bitmaps);
3421 node = rb_next(&entry->offset_index);
3424 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3427 window_free = entry->bytes;
3428 max_extent = entry->bytes;
3432 for (node = rb_next(&entry->offset_index); node;
3433 node = rb_next(&entry->offset_index)) {
3434 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3436 if (entry->bitmap) {
3437 if (list_empty(&entry->list))
3438 list_add_tail(&entry->list, bitmaps);
3442 if (entry->bytes < min_bytes)
3446 window_free += entry->bytes;
3447 if (entry->bytes > max_extent)
3448 max_extent = entry->bytes;
3451 if (window_free < bytes || max_extent < cont1_bytes)
3454 cluster->window_start = first->offset;
3456 node = &first->offset_index;
3459 * now we've found our entries, pull them out of the free space
3460 * cache and put them into the cluster rbtree
3465 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3466 node = rb_next(&entry->offset_index);
3467 if (entry->bitmap || entry->bytes < min_bytes)
3470 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3471 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3472 ret = tree_insert_offset(&cluster->root, entry->offset,
3473 &entry->offset_index, 0);
3474 total_size += entry->bytes;
3475 ASSERT(!ret); /* -EEXIST; Logic error */
3476 } while (node && entry != last);
3478 cluster->max_size = max_extent;
3479 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3484 * This specifically looks for bitmaps that may work in the cluster, we assume
3485 * that we have already failed to find extents that will work.
3488 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3489 struct btrfs_free_cluster *cluster,
3490 struct list_head *bitmaps, u64 offset, u64 bytes,
3491 u64 cont1_bytes, u64 min_bytes)
3493 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3494 struct btrfs_free_space *entry = NULL;
3496 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3498 if (ctl->total_bitmaps == 0)
3502 * The bitmap that covers offset won't be in the list unless offset
3503 * is just its start offset.
3505 if (!list_empty(bitmaps))
3506 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3508 if (!entry || entry->offset != bitmap_offset) {
3509 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3510 if (entry && list_empty(&entry->list))
3511 list_add(&entry->list, bitmaps);
3514 list_for_each_entry(entry, bitmaps, list) {
3515 if (entry->bytes < bytes)
3517 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3518 bytes, cont1_bytes, min_bytes);
3524 * The bitmaps list has all the bitmaps that record free space
3525 * starting after offset, so no more search is required.
3531 * here we try to find a cluster of blocks in a block group. The goal
3532 * is to find at least bytes+empty_size.
3533 * We might not find them all in one contiguous area.
3535 * returns zero and sets up cluster if things worked out, otherwise
3536 * it returns -enospc
3538 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3539 struct btrfs_free_cluster *cluster,
3540 u64 offset, u64 bytes, u64 empty_size)
3542 struct btrfs_fs_info *fs_info = block_group->fs_info;
3543 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3544 struct btrfs_free_space *entry, *tmp;
3551 * Choose the minimum extent size we'll require for this
3552 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3553 * For metadata, allow allocates with smaller extents. For
3554 * data, keep it dense.
3556 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3557 cont1_bytes = bytes + empty_size;
3558 min_bytes = cont1_bytes;
3559 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3560 cont1_bytes = bytes;
3561 min_bytes = fs_info->sectorsize;
3563 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3564 min_bytes = fs_info->sectorsize;
3567 spin_lock(&ctl->tree_lock);
3570 * If we know we don't have enough space to make a cluster don't even
3571 * bother doing all the work to try and find one.
3573 if (ctl->free_space < bytes) {
3574 spin_unlock(&ctl->tree_lock);
3578 spin_lock(&cluster->lock);
3580 /* someone already found a cluster, hooray */
3581 if (cluster->block_group) {
3586 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3589 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3591 cont1_bytes, min_bytes);
3593 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3594 offset, bytes + empty_size,
3595 cont1_bytes, min_bytes);
3597 /* Clear our temporary list */
3598 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3599 list_del_init(&entry->list);
3602 btrfs_get_block_group(block_group);
3603 list_add_tail(&cluster->block_group_list,
3604 &block_group->cluster_list);
3605 cluster->block_group = block_group;
3607 trace_btrfs_failed_cluster_setup(block_group);
3610 spin_unlock(&cluster->lock);
3611 spin_unlock(&ctl->tree_lock);
3617 * simple code to zero out a cluster
3619 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3621 spin_lock_init(&cluster->lock);
3622 spin_lock_init(&cluster->refill_lock);
3623 cluster->root = RB_ROOT;
3624 cluster->max_size = 0;
3625 cluster->fragmented = false;
3626 INIT_LIST_HEAD(&cluster->block_group_list);
3627 cluster->block_group = NULL;
3630 static int do_trimming(struct btrfs_block_group *block_group,
3631 u64 *total_trimmed, u64 start, u64 bytes,
3632 u64 reserved_start, u64 reserved_bytes,
3633 enum btrfs_trim_state reserved_trim_state,
3634 struct btrfs_trim_range *trim_entry)
3636 struct btrfs_space_info *space_info = block_group->space_info;
3637 struct btrfs_fs_info *fs_info = block_group->fs_info;
3638 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3641 const u64 end = start + bytes;
3642 const u64 reserved_end = reserved_start + reserved_bytes;
3643 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3646 spin_lock(&space_info->lock);
3647 spin_lock(&block_group->lock);
3648 if (!block_group->ro) {
3649 block_group->reserved += reserved_bytes;
3650 space_info->bytes_reserved += reserved_bytes;
3653 spin_unlock(&block_group->lock);
3654 spin_unlock(&space_info->lock);
3656 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3658 *total_trimmed += trimmed;
3659 trim_state = BTRFS_TRIM_STATE_TRIMMED;
3662 mutex_lock(&ctl->cache_writeout_mutex);
3663 if (reserved_start < start)
3664 __btrfs_add_free_space(block_group, reserved_start,
3665 start - reserved_start,
3666 reserved_trim_state);
3667 if (start + bytes < reserved_start + reserved_bytes)
3668 __btrfs_add_free_space(block_group, end, reserved_end - end,
3669 reserved_trim_state);
3670 __btrfs_add_free_space(block_group, start, bytes, trim_state);
3671 list_del(&trim_entry->list);
3672 mutex_unlock(&ctl->cache_writeout_mutex);
3675 spin_lock(&space_info->lock);
3676 spin_lock(&block_group->lock);
3677 if (block_group->ro)
3678 space_info->bytes_readonly += reserved_bytes;
3679 block_group->reserved -= reserved_bytes;
3680 space_info->bytes_reserved -= reserved_bytes;
3681 spin_unlock(&block_group->lock);
3682 spin_unlock(&space_info->lock);
3689 * If @async is set, then we will trim 1 region and return.
3691 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3692 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3695 struct btrfs_discard_ctl *discard_ctl =
3696 &block_group->fs_info->discard_ctl;
3697 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3698 struct btrfs_free_space *entry;
3699 struct rb_node *node;
3703 enum btrfs_trim_state extent_trim_state;
3705 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3707 while (start < end) {
3708 struct btrfs_trim_range trim_entry;
3710 mutex_lock(&ctl->cache_writeout_mutex);
3711 spin_lock(&ctl->tree_lock);
3713 if (ctl->free_space < minlen)
3716 entry = tree_search_offset(ctl, start, 0, 1);
3720 /* Skip bitmaps and if async, already trimmed entries */
3721 while (entry->bitmap ||
3722 (async && btrfs_free_space_trimmed(entry))) {
3723 node = rb_next(&entry->offset_index);
3726 entry = rb_entry(node, struct btrfs_free_space,
3730 if (entry->offset >= end)
3733 extent_start = entry->offset;
3734 extent_bytes = entry->bytes;
3735 extent_trim_state = entry->trim_state;
3737 start = entry->offset;
3738 bytes = entry->bytes;
3739 if (bytes < minlen) {
3740 spin_unlock(&ctl->tree_lock);
3741 mutex_unlock(&ctl->cache_writeout_mutex);
3744 unlink_free_space(ctl, entry, true);
3746 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3747 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3748 * X when we come back around. So trim it now.
3750 if (max_discard_size &&
3751 bytes >= (max_discard_size +
3752 BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3753 bytes = max_discard_size;
3754 extent_bytes = max_discard_size;
3755 entry->offset += max_discard_size;
3756 entry->bytes -= max_discard_size;
3757 link_free_space(ctl, entry);
3759 kmem_cache_free(btrfs_free_space_cachep, entry);
3762 start = max(start, extent_start);
3763 bytes = min(extent_start + extent_bytes, end) - start;
3764 if (bytes < minlen) {
3765 spin_unlock(&ctl->tree_lock);
3766 mutex_unlock(&ctl->cache_writeout_mutex);
3770 unlink_free_space(ctl, entry, true);
3771 kmem_cache_free(btrfs_free_space_cachep, entry);
3774 spin_unlock(&ctl->tree_lock);
3775 trim_entry.start = extent_start;
3776 trim_entry.bytes = extent_bytes;
3777 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3778 mutex_unlock(&ctl->cache_writeout_mutex);
3780 ret = do_trimming(block_group, total_trimmed, start, bytes,
3781 extent_start, extent_bytes, extent_trim_state,
3784 block_group->discard_cursor = start + bytes;
3789 block_group->discard_cursor = start;
3790 if (async && *total_trimmed)
3793 if (fatal_signal_pending(current)) {
3804 block_group->discard_cursor = btrfs_block_group_end(block_group);
3805 spin_unlock(&ctl->tree_lock);
3806 mutex_unlock(&ctl->cache_writeout_mutex);
3812 * If we break out of trimming a bitmap prematurely, we should reset the
3813 * trimming bit. In a rather contrieved case, it's possible to race here so
3814 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3816 * start = start of bitmap
3817 * end = near end of bitmap
3819 * Thread 1: Thread 2:
3820 * trim_bitmaps(start)
3822 * end_trimming_bitmap()
3823 * reset_trimming_bitmap()
3825 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3827 struct btrfs_free_space *entry;
3829 spin_lock(&ctl->tree_lock);
3830 entry = tree_search_offset(ctl, offset, 1, 0);
3832 if (btrfs_free_space_trimmed(entry)) {
3833 ctl->discardable_extents[BTRFS_STAT_CURR] +=
3834 entry->bitmap_extents;
3835 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3837 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3840 spin_unlock(&ctl->tree_lock);
3843 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3844 struct btrfs_free_space *entry)
3846 if (btrfs_free_space_trimming_bitmap(entry)) {
3847 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3848 ctl->discardable_extents[BTRFS_STAT_CURR] -=
3849 entry->bitmap_extents;
3850 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3855 * If @async is set, then we will trim 1 region and return.
3857 static int trim_bitmaps(struct btrfs_block_group *block_group,
3858 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3859 u64 maxlen, bool async)
3861 struct btrfs_discard_ctl *discard_ctl =
3862 &block_group->fs_info->discard_ctl;
3863 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3864 struct btrfs_free_space *entry;
3868 u64 offset = offset_to_bitmap(ctl, start);
3869 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3871 while (offset < end) {
3872 bool next_bitmap = false;
3873 struct btrfs_trim_range trim_entry;
3875 mutex_lock(&ctl->cache_writeout_mutex);
3876 spin_lock(&ctl->tree_lock);
3878 if (ctl->free_space < minlen) {
3879 block_group->discard_cursor =
3880 btrfs_block_group_end(block_group);
3881 spin_unlock(&ctl->tree_lock);
3882 mutex_unlock(&ctl->cache_writeout_mutex);
3886 entry = tree_search_offset(ctl, offset, 1, 0);
3888 * Bitmaps are marked trimmed lossily now to prevent constant
3889 * discarding of the same bitmap (the reason why we are bound
3890 * by the filters). So, retrim the block group bitmaps when we
3891 * are preparing to punt to the unused_bgs list. This uses
3892 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3893 * which is the only discard index which sets minlen to 0.
3895 if (!entry || (async && minlen && start == offset &&
3896 btrfs_free_space_trimmed(entry))) {
3897 spin_unlock(&ctl->tree_lock);
3898 mutex_unlock(&ctl->cache_writeout_mutex);
3904 * Async discard bitmap trimming begins at by setting the start
3905 * to be key.objectid and the offset_to_bitmap() aligns to the
3906 * start of the bitmap. This lets us know we are fully
3907 * scanning the bitmap rather than only some portion of it.
3909 if (start == offset)
3910 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3913 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3914 if (ret2 || start >= end) {
3916 * We lossily consider a bitmap trimmed if we only skip
3917 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3919 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3920 end_trimming_bitmap(ctl, entry);
3922 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3923 spin_unlock(&ctl->tree_lock);
3924 mutex_unlock(&ctl->cache_writeout_mutex);
3930 * We already trimmed a region, but are using the locking above
3931 * to reset the trim_state.
3933 if (async && *total_trimmed) {
3934 spin_unlock(&ctl->tree_lock);
3935 mutex_unlock(&ctl->cache_writeout_mutex);
3939 bytes = min(bytes, end - start);
3940 if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3941 spin_unlock(&ctl->tree_lock);
3942 mutex_unlock(&ctl->cache_writeout_mutex);
3947 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3948 * If X < @minlen, we won't trim X when we come back around.
3949 * So trim it now. We differ here from trimming extents as we
3950 * don't keep individual state per bit.
3954 bytes > (max_discard_size + minlen))
3955 bytes = max_discard_size;
3957 bitmap_clear_bits(ctl, entry, start, bytes, true);
3958 if (entry->bytes == 0)
3959 free_bitmap(ctl, entry);
3961 spin_unlock(&ctl->tree_lock);
3962 trim_entry.start = start;
3963 trim_entry.bytes = bytes;
3964 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3965 mutex_unlock(&ctl->cache_writeout_mutex);
3967 ret = do_trimming(block_group, total_trimmed, start, bytes,
3968 start, bytes, 0, &trim_entry);
3970 reset_trimming_bitmap(ctl, offset);
3971 block_group->discard_cursor =
3972 btrfs_block_group_end(block_group);
3977 offset += BITS_PER_BITMAP * ctl->unit;
3982 block_group->discard_cursor = start;
3984 if (fatal_signal_pending(current)) {
3985 if (start != offset)
3986 reset_trimming_bitmap(ctl, offset);
3995 block_group->discard_cursor = end;
4001 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4002 u64 *trimmed, u64 start, u64 end, u64 minlen)
4004 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4008 ASSERT(!btrfs_is_zoned(block_group->fs_info));
4012 spin_lock(&block_group->lock);
4013 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4014 spin_unlock(&block_group->lock);
4017 btrfs_freeze_block_group(block_group);
4018 spin_unlock(&block_group->lock);
4020 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4024 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4025 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4026 /* If we ended in the middle of a bitmap, reset the trimming flag */
4028 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4030 btrfs_unfreeze_block_group(block_group);
4034 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4035 u64 *trimmed, u64 start, u64 end, u64 minlen,
4042 spin_lock(&block_group->lock);
4043 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4044 spin_unlock(&block_group->lock);
4047 btrfs_freeze_block_group(block_group);
4048 spin_unlock(&block_group->lock);
4050 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4051 btrfs_unfreeze_block_group(block_group);
4056 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4057 u64 *trimmed, u64 start, u64 end, u64 minlen,
4058 u64 maxlen, bool async)
4064 spin_lock(&block_group->lock);
4065 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4066 spin_unlock(&block_group->lock);
4069 btrfs_freeze_block_group(block_group);
4070 spin_unlock(&block_group->lock);
4072 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4075 btrfs_unfreeze_block_group(block_group);
4080 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4082 return btrfs_super_cache_generation(fs_info->super_copy);
4085 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4086 struct btrfs_trans_handle *trans)
4088 struct btrfs_block_group *block_group;
4089 struct rb_node *node;
4092 btrfs_info(fs_info, "cleaning free space cache v1");
4094 node = rb_first_cached(&fs_info->block_group_cache_tree);
4096 block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4097 ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4100 node = rb_next(node);
4106 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4108 struct btrfs_trans_handle *trans;
4112 * update_super_roots will appropriately set or unset
4113 * super_copy->cache_generation based on SPACE_CACHE and
4114 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4115 * transaction commit whether we are enabling space cache v1 and don't
4116 * have any other work to do, or are disabling it and removing free
4119 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4121 return PTR_ERR(trans);
4124 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4125 ret = cleanup_free_space_cache_v1(fs_info, trans);
4127 btrfs_abort_transaction(trans, ret);
4128 btrfs_end_transaction(trans);
4133 ret = btrfs_commit_transaction(trans);
4135 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4140 int __init btrfs_free_space_init(void)
4142 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
4143 sizeof(struct btrfs_free_space), 0,
4144 SLAB_MEM_SPREAD, NULL);
4145 if (!btrfs_free_space_cachep)
4148 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4149 PAGE_SIZE, PAGE_SIZE,
4150 SLAB_MEM_SPREAD, NULL);
4151 if (!btrfs_free_space_bitmap_cachep) {
4152 kmem_cache_destroy(btrfs_free_space_cachep);
4159 void __cold btrfs_free_space_exit(void)
4161 kmem_cache_destroy(btrfs_free_space_cachep);
4162 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4165 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4167 * Use this if you need to make a bitmap or extent entry specifically, it
4168 * doesn't do any of the merging that add_free_space does, this acts a lot like
4169 * how the free space cache loading stuff works, so you can get really weird
4172 int test_add_free_space_entry(struct btrfs_block_group *cache,
4173 u64 offset, u64 bytes, bool bitmap)
4175 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4176 struct btrfs_free_space *info = NULL, *bitmap_info;
4178 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4184 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4190 spin_lock(&ctl->tree_lock);
4191 info->offset = offset;
4192 info->bytes = bytes;
4193 info->max_extent_size = 0;
4194 ret = link_free_space(ctl, info);
4195 spin_unlock(&ctl->tree_lock);
4197 kmem_cache_free(btrfs_free_space_cachep, info);
4202 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4204 kmem_cache_free(btrfs_free_space_cachep, info);
4209 spin_lock(&ctl->tree_lock);
4210 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4215 add_new_bitmap(ctl, info, offset);
4220 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4223 bytes -= bytes_added;
4224 offset += bytes_added;
4225 spin_unlock(&ctl->tree_lock);
4231 kmem_cache_free(btrfs_free_space_cachep, info);
4233 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4238 * Checks to see if the given range is in the free space cache. This is really
4239 * just used to check the absence of space, so if there is free space in the
4240 * range at all we will return 1.
4242 int test_check_exists(struct btrfs_block_group *cache,
4243 u64 offset, u64 bytes)
4245 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4246 struct btrfs_free_space *info;
4249 spin_lock(&ctl->tree_lock);
4250 info = tree_search_offset(ctl, offset, 0, 0);
4252 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4260 u64 bit_off, bit_bytes;
4262 struct btrfs_free_space *tmp;
4265 bit_bytes = ctl->unit;
4266 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4268 if (bit_off == offset) {
4271 } else if (bit_off > offset &&
4272 offset + bytes > bit_off) {
4278 n = rb_prev(&info->offset_index);
4280 tmp = rb_entry(n, struct btrfs_free_space,
4282 if (tmp->offset + tmp->bytes < offset)
4284 if (offset + bytes < tmp->offset) {
4285 n = rb_prev(&tmp->offset_index);
4292 n = rb_next(&info->offset_index);
4294 tmp = rb_entry(n, struct btrfs_free_space,
4296 if (offset + bytes < tmp->offset)
4298 if (tmp->offset + tmp->bytes < offset) {
4299 n = rb_next(&tmp->offset_index);
4310 if (info->offset == offset) {
4315 if (offset > info->offset && offset < info->offset + info->bytes)
4318 spin_unlock(&ctl->tree_lock);
4321 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */