]> Git Repo - J-linux.git/blob - drivers/gpu/drm/i915/gt/intel_rps.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[J-linux.git] / drivers / gpu / drm / i915 / gt / intel_rps.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6
7 #include <drm/i915_drm.h>
8
9 #include "i915_drv.h"
10 #include "intel_breadcrumbs.h"
11 #include "intel_gt.h"
12 #include "intel_gt_clock_utils.h"
13 #include "intel_gt_irq.h"
14 #include "intel_gt_pm_irq.h"
15 #include "intel_rps.h"
16 #include "intel_sideband.h"
17 #include "../../../platform/x86/intel_ips.h"
18
19 #define BUSY_MAX_EI     20u /* ms */
20
21 /*
22  * Lock protecting IPS related data structures
23  */
24 static DEFINE_SPINLOCK(mchdev_lock);
25
26 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
27 {
28         return container_of(rps, struct intel_gt, rps);
29 }
30
31 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
32 {
33         return rps_to_gt(rps)->i915;
34 }
35
36 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
37 {
38         return rps_to_gt(rps)->uncore;
39 }
40
41 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
42 {
43         return mask & ~rps->pm_intrmsk_mbz;
44 }
45
46 static inline void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
47 {
48         intel_uncore_write_fw(uncore, reg, val);
49 }
50
51 static void rps_timer(struct timer_list *t)
52 {
53         struct intel_rps *rps = from_timer(rps, t, timer);
54         struct intel_engine_cs *engine;
55         ktime_t dt, last, timestamp;
56         enum intel_engine_id id;
57         s64 max_busy[3] = {};
58
59         timestamp = 0;
60         for_each_engine(engine, rps_to_gt(rps), id) {
61                 s64 busy;
62                 int i;
63
64                 dt = intel_engine_get_busy_time(engine, &timestamp);
65                 last = engine->stats.rps;
66                 engine->stats.rps = dt;
67
68                 busy = ktime_to_ns(ktime_sub(dt, last));
69                 for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
70                         if (busy > max_busy[i])
71                                 swap(busy, max_busy[i]);
72                 }
73         }
74         last = rps->pm_timestamp;
75         rps->pm_timestamp = timestamp;
76
77         if (intel_rps_is_active(rps)) {
78                 s64 busy;
79                 int i;
80
81                 dt = ktime_sub(timestamp, last);
82
83                 /*
84                  * Our goal is to evaluate each engine independently, so we run
85                  * at the lowest clocks required to sustain the heaviest
86                  * workload. However, a task may be split into sequential
87                  * dependent operations across a set of engines, such that
88                  * the independent contributions do not account for high load,
89                  * but overall the task is GPU bound. For example, consider
90                  * video decode on vcs followed by colour post-processing
91                  * on vecs, followed by general post-processing on rcs.
92                  * Since multi-engines being active does imply a single
93                  * continuous workload across all engines, we hedge our
94                  * bets by only contributing a factor of the distributed
95                  * load into our busyness calculation.
96                  */
97                 busy = max_busy[0];
98                 for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
99                         if (!max_busy[i])
100                                 break;
101
102                         busy += div_u64(max_busy[i], 1 << i);
103                 }
104                 GT_TRACE(rps_to_gt(rps),
105                          "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
106                          busy, (int)div64_u64(100 * busy, dt),
107                          max_busy[0], max_busy[1], max_busy[2],
108                          rps->pm_interval);
109
110                 if (100 * busy > rps->power.up_threshold * dt &&
111                     rps->cur_freq < rps->max_freq_softlimit) {
112                         rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
113                         rps->pm_interval = 1;
114                         schedule_work(&rps->work);
115                 } else if (100 * busy < rps->power.down_threshold * dt &&
116                            rps->cur_freq > rps->min_freq_softlimit) {
117                         rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
118                         rps->pm_interval = 1;
119                         schedule_work(&rps->work);
120                 } else {
121                         rps->last_adj = 0;
122                 }
123
124                 mod_timer(&rps->timer,
125                           jiffies + msecs_to_jiffies(rps->pm_interval));
126                 rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
127         }
128 }
129
130 static void rps_start_timer(struct intel_rps *rps)
131 {
132         rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
133         rps->pm_interval = 1;
134         mod_timer(&rps->timer, jiffies + 1);
135 }
136
137 static void rps_stop_timer(struct intel_rps *rps)
138 {
139         del_timer_sync(&rps->timer);
140         rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
141         cancel_work_sync(&rps->work);
142 }
143
144 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
145 {
146         u32 mask = 0;
147
148         /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
149         if (val > rps->min_freq_softlimit)
150                 mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
151                          GEN6_PM_RP_DOWN_THRESHOLD |
152                          GEN6_PM_RP_DOWN_TIMEOUT);
153
154         if (val < rps->max_freq_softlimit)
155                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
156
157         mask &= rps->pm_events;
158
159         return rps_pm_sanitize_mask(rps, ~mask);
160 }
161
162 static void rps_reset_ei(struct intel_rps *rps)
163 {
164         memset(&rps->ei, 0, sizeof(rps->ei));
165 }
166
167 static void rps_enable_interrupts(struct intel_rps *rps)
168 {
169         struct intel_gt *gt = rps_to_gt(rps);
170
171         GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
172                  rps->pm_events, rps_pm_mask(rps, rps->last_freq));
173
174         rps_reset_ei(rps);
175
176         spin_lock_irq(&gt->irq_lock);
177         gen6_gt_pm_enable_irq(gt, rps->pm_events);
178         spin_unlock_irq(&gt->irq_lock);
179
180         intel_uncore_write(gt->uncore,
181                            GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
182 }
183
184 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
185 {
186         gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
187 }
188
189 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
190 {
191         while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
192                 ;
193 }
194
195 static void rps_reset_interrupts(struct intel_rps *rps)
196 {
197         struct intel_gt *gt = rps_to_gt(rps);
198
199         spin_lock_irq(&gt->irq_lock);
200         if (INTEL_GEN(gt->i915) >= 11)
201                 gen11_rps_reset_interrupts(rps);
202         else
203                 gen6_rps_reset_interrupts(rps);
204
205         rps->pm_iir = 0;
206         spin_unlock_irq(&gt->irq_lock);
207 }
208
209 static void rps_disable_interrupts(struct intel_rps *rps)
210 {
211         struct intel_gt *gt = rps_to_gt(rps);
212
213         intel_uncore_write(gt->uncore,
214                            GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
215
216         spin_lock_irq(&gt->irq_lock);
217         gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
218         spin_unlock_irq(&gt->irq_lock);
219
220         intel_synchronize_irq(gt->i915);
221
222         /*
223          * Now that we will not be generating any more work, flush any
224          * outstanding tasks. As we are called on the RPS idle path,
225          * we will reset the GPU to minimum frequencies, so the current
226          * state of the worker can be discarded.
227          */
228         cancel_work_sync(&rps->work);
229
230         rps_reset_interrupts(rps);
231         GT_TRACE(gt, "interrupts:off\n");
232 }
233
234 static const struct cparams {
235         u16 i;
236         u16 t;
237         u16 m;
238         u16 c;
239 } cparams[] = {
240         { 1, 1333, 301, 28664 },
241         { 1, 1066, 294, 24460 },
242         { 1, 800, 294, 25192 },
243         { 0, 1333, 276, 27605 },
244         { 0, 1066, 276, 27605 },
245         { 0, 800, 231, 23784 },
246 };
247
248 static void gen5_rps_init(struct intel_rps *rps)
249 {
250         struct drm_i915_private *i915 = rps_to_i915(rps);
251         struct intel_uncore *uncore = rps_to_uncore(rps);
252         u8 fmax, fmin, fstart;
253         u32 rgvmodectl;
254         int c_m, i;
255
256         if (i915->fsb_freq <= 3200)
257                 c_m = 0;
258         else if (i915->fsb_freq <= 4800)
259                 c_m = 1;
260         else
261                 c_m = 2;
262
263         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
264                 if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
265                         rps->ips.m = cparams[i].m;
266                         rps->ips.c = cparams[i].c;
267                         break;
268                 }
269         }
270
271         rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
272
273         /* Set up min, max, and cur for interrupt handling */
274         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
275         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
276         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
277                 MEMMODE_FSTART_SHIFT;
278         drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
279                 fmax, fmin, fstart);
280
281         rps->min_freq = fmax;
282         rps->efficient_freq = fstart;
283         rps->max_freq = fmin;
284 }
285
286 static unsigned long
287 __ips_chipset_val(struct intel_ips *ips)
288 {
289         struct intel_uncore *uncore =
290                 rps_to_uncore(container_of(ips, struct intel_rps, ips));
291         unsigned long now = jiffies_to_msecs(jiffies), dt;
292         unsigned long result;
293         u64 total, delta;
294
295         lockdep_assert_held(&mchdev_lock);
296
297         /*
298          * Prevent division-by-zero if we are asking too fast.
299          * Also, we don't get interesting results if we are polling
300          * faster than once in 10ms, so just return the saved value
301          * in such cases.
302          */
303         dt = now - ips->last_time1;
304         if (dt <= 10)
305                 return ips->chipset_power;
306
307         /* FIXME: handle per-counter overflow */
308         total = intel_uncore_read(uncore, DMIEC);
309         total += intel_uncore_read(uncore, DDREC);
310         total += intel_uncore_read(uncore, CSIEC);
311
312         delta = total - ips->last_count1;
313
314         result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
315
316         ips->last_count1 = total;
317         ips->last_time1 = now;
318
319         ips->chipset_power = result;
320
321         return result;
322 }
323
324 static unsigned long ips_mch_val(struct intel_uncore *uncore)
325 {
326         unsigned int m, x, b;
327         u32 tsfs;
328
329         tsfs = intel_uncore_read(uncore, TSFS);
330         x = intel_uncore_read8(uncore, TR1);
331
332         b = tsfs & TSFS_INTR_MASK;
333         m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
334
335         return m * x / 127 - b;
336 }
337
338 static int _pxvid_to_vd(u8 pxvid)
339 {
340         if (pxvid == 0)
341                 return 0;
342
343         if (pxvid >= 8 && pxvid < 31)
344                 pxvid = 31;
345
346         return (pxvid + 2) * 125;
347 }
348
349 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
350 {
351         const int vd = _pxvid_to_vd(pxvid);
352
353         if (INTEL_INFO(i915)->is_mobile)
354                 return max(vd - 1125, 0);
355
356         return vd;
357 }
358
359 static void __gen5_ips_update(struct intel_ips *ips)
360 {
361         struct intel_uncore *uncore =
362                 rps_to_uncore(container_of(ips, struct intel_rps, ips));
363         u64 now, delta, dt;
364         u32 count;
365
366         lockdep_assert_held(&mchdev_lock);
367
368         now = ktime_get_raw_ns();
369         dt = now - ips->last_time2;
370         do_div(dt, NSEC_PER_MSEC);
371
372         /* Don't divide by 0 */
373         if (dt <= 10)
374                 return;
375
376         count = intel_uncore_read(uncore, GFXEC);
377         delta = count - ips->last_count2;
378
379         ips->last_count2 = count;
380         ips->last_time2 = now;
381
382         /* More magic constants... */
383         ips->gfx_power = div_u64(delta * 1181, dt * 10);
384 }
385
386 static void gen5_rps_update(struct intel_rps *rps)
387 {
388         spin_lock_irq(&mchdev_lock);
389         __gen5_ips_update(&rps->ips);
390         spin_unlock_irq(&mchdev_lock);
391 }
392
393 static unsigned int gen5_invert_freq(struct intel_rps *rps,
394                                      unsigned int val)
395 {
396         /* Invert the frequency bin into an ips delay */
397         val = rps->max_freq - val;
398         val = rps->min_freq + val;
399
400         return val;
401 }
402
403 static bool gen5_rps_set(struct intel_rps *rps, u8 val)
404 {
405         struct intel_uncore *uncore = rps_to_uncore(rps);
406         u16 rgvswctl;
407
408         lockdep_assert_held(&mchdev_lock);
409
410         rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
411         if (rgvswctl & MEMCTL_CMD_STS) {
412                 DRM_DEBUG("gpu busy, RCS change rejected\n");
413                 return false; /* still busy with another command */
414         }
415
416         /* Invert the frequency bin into an ips delay */
417         val = gen5_invert_freq(rps, val);
418
419         rgvswctl =
420                 (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
421                 (val << MEMCTL_FREQ_SHIFT) |
422                 MEMCTL_SFCAVM;
423         intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
424         intel_uncore_posting_read16(uncore, MEMSWCTL);
425
426         rgvswctl |= MEMCTL_CMD_STS;
427         intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
428
429         return true;
430 }
431
432 static unsigned long intel_pxfreq(u32 vidfreq)
433 {
434         int div = (vidfreq & 0x3f0000) >> 16;
435         int post = (vidfreq & 0x3000) >> 12;
436         int pre = (vidfreq & 0x7);
437
438         if (!pre)
439                 return 0;
440
441         return div * 133333 / (pre << post);
442 }
443
444 static unsigned int init_emon(struct intel_uncore *uncore)
445 {
446         u8 pxw[16];
447         int i;
448
449         /* Disable to program */
450         intel_uncore_write(uncore, ECR, 0);
451         intel_uncore_posting_read(uncore, ECR);
452
453         /* Program energy weights for various events */
454         intel_uncore_write(uncore, SDEW, 0x15040d00);
455         intel_uncore_write(uncore, CSIEW0, 0x007f0000);
456         intel_uncore_write(uncore, CSIEW1, 0x1e220004);
457         intel_uncore_write(uncore, CSIEW2, 0x04000004);
458
459         for (i = 0; i < 5; i++)
460                 intel_uncore_write(uncore, PEW(i), 0);
461         for (i = 0; i < 3; i++)
462                 intel_uncore_write(uncore, DEW(i), 0);
463
464         /* Program P-state weights to account for frequency power adjustment */
465         for (i = 0; i < 16; i++) {
466                 u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
467                 unsigned int freq = intel_pxfreq(pxvidfreq);
468                 unsigned int vid =
469                         (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
470                 unsigned int val;
471
472                 val = vid * vid * freq / 1000 * 255;
473                 val /= 127 * 127 * 900;
474
475                 pxw[i] = val;
476         }
477         /* Render standby states get 0 weight */
478         pxw[14] = 0;
479         pxw[15] = 0;
480
481         for (i = 0; i < 4; i++) {
482                 intel_uncore_write(uncore, PXW(i),
483                                    pxw[i * 4 + 0] << 24 |
484                                    pxw[i * 4 + 1] << 16 |
485                                    pxw[i * 4 + 2] <<  8 |
486                                    pxw[i * 4 + 3] <<  0);
487         }
488
489         /* Adjust magic regs to magic values (more experimental results) */
490         intel_uncore_write(uncore, OGW0, 0);
491         intel_uncore_write(uncore, OGW1, 0);
492         intel_uncore_write(uncore, EG0, 0x00007f00);
493         intel_uncore_write(uncore, EG1, 0x0000000e);
494         intel_uncore_write(uncore, EG2, 0x000e0000);
495         intel_uncore_write(uncore, EG3, 0x68000300);
496         intel_uncore_write(uncore, EG4, 0x42000000);
497         intel_uncore_write(uncore, EG5, 0x00140031);
498         intel_uncore_write(uncore, EG6, 0);
499         intel_uncore_write(uncore, EG7, 0);
500
501         for (i = 0; i < 8; i++)
502                 intel_uncore_write(uncore, PXWL(i), 0);
503
504         /* Enable PMON + select events */
505         intel_uncore_write(uncore, ECR, 0x80000019);
506
507         return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
508 }
509
510 static bool gen5_rps_enable(struct intel_rps *rps)
511 {
512         struct drm_i915_private *i915 = rps_to_i915(rps);
513         struct intel_uncore *uncore = rps_to_uncore(rps);
514         u8 fstart, vstart;
515         u32 rgvmodectl;
516
517         spin_lock_irq(&mchdev_lock);
518
519         rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
520
521         /* Enable temp reporting */
522         intel_uncore_write16(uncore, PMMISC,
523                              intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
524         intel_uncore_write16(uncore, TSC1,
525                              intel_uncore_read16(uncore, TSC1) | TSE);
526
527         /* 100ms RC evaluation intervals */
528         intel_uncore_write(uncore, RCUPEI, 100000);
529         intel_uncore_write(uncore, RCDNEI, 100000);
530
531         /* Set max/min thresholds to 90ms and 80ms respectively */
532         intel_uncore_write(uncore, RCBMAXAVG, 90000);
533         intel_uncore_write(uncore, RCBMINAVG, 80000);
534
535         intel_uncore_write(uncore, MEMIHYST, 1);
536
537         /* Set up min, max, and cur for interrupt handling */
538         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
539                 MEMMODE_FSTART_SHIFT;
540
541         vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
542                   PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
543
544         intel_uncore_write(uncore,
545                            MEMINTREN,
546                            MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
547
548         intel_uncore_write(uncore, VIDSTART, vstart);
549         intel_uncore_posting_read(uncore, VIDSTART);
550
551         rgvmodectl |= MEMMODE_SWMODE_EN;
552         intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
553
554         if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
555                              MEMCTL_CMD_STS) == 0, 10))
556                 drm_err(&uncore->i915->drm,
557                         "stuck trying to change perf mode\n");
558         mdelay(1);
559
560         gen5_rps_set(rps, rps->cur_freq);
561
562         rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
563         rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
564         rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
565         rps->ips.last_time1 = jiffies_to_msecs(jiffies);
566
567         rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
568         rps->ips.last_time2 = ktime_get_raw_ns();
569
570         spin_lock(&i915->irq_lock);
571         ilk_enable_display_irq(i915, DE_PCU_EVENT);
572         spin_unlock(&i915->irq_lock);
573
574         spin_unlock_irq(&mchdev_lock);
575
576         rps->ips.corr = init_emon(uncore);
577
578         return true;
579 }
580
581 static void gen5_rps_disable(struct intel_rps *rps)
582 {
583         struct drm_i915_private *i915 = rps_to_i915(rps);
584         struct intel_uncore *uncore = rps_to_uncore(rps);
585         u16 rgvswctl;
586
587         spin_lock_irq(&mchdev_lock);
588
589         spin_lock(&i915->irq_lock);
590         ilk_disable_display_irq(i915, DE_PCU_EVENT);
591         spin_unlock(&i915->irq_lock);
592
593         rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
594
595         /* Ack interrupts, disable EFC interrupt */
596         intel_uncore_write(uncore, MEMINTREN,
597                            intel_uncore_read(uncore, MEMINTREN) &
598                            ~MEMINT_EVAL_CHG_EN);
599         intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
600
601         /* Go back to the starting frequency */
602         gen5_rps_set(rps, rps->idle_freq);
603         mdelay(1);
604         rgvswctl |= MEMCTL_CMD_STS;
605         intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
606         mdelay(1);
607
608         spin_unlock_irq(&mchdev_lock);
609 }
610
611 static u32 rps_limits(struct intel_rps *rps, u8 val)
612 {
613         u32 limits;
614
615         /*
616          * Only set the down limit when we've reached the lowest level to avoid
617          * getting more interrupts, otherwise leave this clear. This prevents a
618          * race in the hw when coming out of rc6: There's a tiny window where
619          * the hw runs at the minimal clock before selecting the desired
620          * frequency, if the down threshold expires in that window we will not
621          * receive a down interrupt.
622          */
623         if (INTEL_GEN(rps_to_i915(rps)) >= 9) {
624                 limits = rps->max_freq_softlimit << 23;
625                 if (val <= rps->min_freq_softlimit)
626                         limits |= rps->min_freq_softlimit << 14;
627         } else {
628                 limits = rps->max_freq_softlimit << 24;
629                 if (val <= rps->min_freq_softlimit)
630                         limits |= rps->min_freq_softlimit << 16;
631         }
632
633         return limits;
634 }
635
636 static void rps_set_power(struct intel_rps *rps, int new_power)
637 {
638         struct intel_gt *gt = rps_to_gt(rps);
639         struct intel_uncore *uncore = gt->uncore;
640         u32 threshold_up = 0, threshold_down = 0; /* in % */
641         u32 ei_up = 0, ei_down = 0;
642
643         lockdep_assert_held(&rps->power.mutex);
644
645         if (new_power == rps->power.mode)
646                 return;
647
648         threshold_up = 95;
649         threshold_down = 85;
650
651         /* Note the units here are not exactly 1us, but 1280ns. */
652         switch (new_power) {
653         case LOW_POWER:
654                 ei_up = 16000;
655                 ei_down = 32000;
656                 break;
657
658         case BETWEEN:
659                 ei_up = 13000;
660                 ei_down = 32000;
661                 break;
662
663         case HIGH_POWER:
664                 ei_up = 10000;
665                 ei_down = 32000;
666                 break;
667         }
668
669         /* When byt can survive without system hang with dynamic
670          * sw freq adjustments, this restriction can be lifted.
671          */
672         if (IS_VALLEYVIEW(gt->i915))
673                 goto skip_hw_write;
674
675         GT_TRACE(gt,
676                  "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
677                  new_power, threshold_up, ei_up, threshold_down, ei_down);
678
679         set(uncore, GEN6_RP_UP_EI,
680             intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
681         set(uncore, GEN6_RP_UP_THRESHOLD,
682             intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
683
684         set(uncore, GEN6_RP_DOWN_EI,
685             intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
686         set(uncore, GEN6_RP_DOWN_THRESHOLD,
687             intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
688
689         set(uncore, GEN6_RP_CONTROL,
690             (INTEL_GEN(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
691             GEN6_RP_MEDIA_HW_NORMAL_MODE |
692             GEN6_RP_MEDIA_IS_GFX |
693             GEN6_RP_ENABLE |
694             GEN6_RP_UP_BUSY_AVG |
695             GEN6_RP_DOWN_IDLE_AVG);
696
697 skip_hw_write:
698         rps->power.mode = new_power;
699         rps->power.up_threshold = threshold_up;
700         rps->power.down_threshold = threshold_down;
701 }
702
703 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
704 {
705         int new_power;
706
707         new_power = rps->power.mode;
708         switch (rps->power.mode) {
709         case LOW_POWER:
710                 if (val > rps->efficient_freq + 1 &&
711                     val > rps->cur_freq)
712                         new_power = BETWEEN;
713                 break;
714
715         case BETWEEN:
716                 if (val <= rps->efficient_freq &&
717                     val < rps->cur_freq)
718                         new_power = LOW_POWER;
719                 else if (val >= rps->rp0_freq &&
720                          val > rps->cur_freq)
721                         new_power = HIGH_POWER;
722                 break;
723
724         case HIGH_POWER:
725                 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
726                     val < rps->cur_freq)
727                         new_power = BETWEEN;
728                 break;
729         }
730         /* Max/min bins are special */
731         if (val <= rps->min_freq_softlimit)
732                 new_power = LOW_POWER;
733         if (val >= rps->max_freq_softlimit)
734                 new_power = HIGH_POWER;
735
736         mutex_lock(&rps->power.mutex);
737         if (rps->power.interactive)
738                 new_power = HIGH_POWER;
739         rps_set_power(rps, new_power);
740         mutex_unlock(&rps->power.mutex);
741 }
742
743 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
744 {
745         GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", yesno(interactive));
746
747         mutex_lock(&rps->power.mutex);
748         if (interactive) {
749                 if (!rps->power.interactive++ && intel_rps_is_active(rps))
750                         rps_set_power(rps, HIGH_POWER);
751         } else {
752                 GEM_BUG_ON(!rps->power.interactive);
753                 rps->power.interactive--;
754         }
755         mutex_unlock(&rps->power.mutex);
756 }
757
758 static int gen6_rps_set(struct intel_rps *rps, u8 val)
759 {
760         struct intel_uncore *uncore = rps_to_uncore(rps);
761         struct drm_i915_private *i915 = rps_to_i915(rps);
762         u32 swreq;
763
764         if (INTEL_GEN(i915) >= 9)
765                 swreq = GEN9_FREQUENCY(val);
766         else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
767                 swreq = HSW_FREQUENCY(val);
768         else
769                 swreq = (GEN6_FREQUENCY(val) |
770                          GEN6_OFFSET(0) |
771                          GEN6_AGGRESSIVE_TURBO);
772         set(uncore, GEN6_RPNSWREQ, swreq);
773
774         GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
775                  val, intel_gpu_freq(rps, val), swreq);
776
777         return 0;
778 }
779
780 static int vlv_rps_set(struct intel_rps *rps, u8 val)
781 {
782         struct drm_i915_private *i915 = rps_to_i915(rps);
783         int err;
784
785         vlv_punit_get(i915);
786         err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
787         vlv_punit_put(i915);
788
789         GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
790                  val, intel_gpu_freq(rps, val));
791
792         return err;
793 }
794
795 static int rps_set(struct intel_rps *rps, u8 val, bool update)
796 {
797         struct drm_i915_private *i915 = rps_to_i915(rps);
798         int err;
799
800         if (INTEL_GEN(i915) < 6)
801                 return 0;
802
803         if (val == rps->last_freq)
804                 return 0;
805
806         if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
807                 err = vlv_rps_set(rps, val);
808         else
809                 err = gen6_rps_set(rps, val);
810         if (err)
811                 return err;
812
813         if (update)
814                 gen6_rps_set_thresholds(rps, val);
815         rps->last_freq = val;
816
817         return 0;
818 }
819
820 void intel_rps_unpark(struct intel_rps *rps)
821 {
822         if (!intel_rps_is_enabled(rps))
823                 return;
824
825         GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
826
827         /*
828          * Use the user's desired frequency as a guide, but for better
829          * performance, jump directly to RPe as our starting frequency.
830          */
831         mutex_lock(&rps->lock);
832
833         intel_rps_set_active(rps);
834         intel_rps_set(rps,
835                       clamp(rps->cur_freq,
836                             rps->min_freq_softlimit,
837                             rps->max_freq_softlimit));
838
839         mutex_unlock(&rps->lock);
840
841         rps->pm_iir = 0;
842         if (intel_rps_has_interrupts(rps))
843                 rps_enable_interrupts(rps);
844         if (intel_rps_uses_timer(rps))
845                 rps_start_timer(rps);
846
847         if (IS_GEN(rps_to_i915(rps), 5))
848                 gen5_rps_update(rps);
849 }
850
851 void intel_rps_park(struct intel_rps *rps)
852 {
853         int adj;
854
855         if (!intel_rps_clear_active(rps))
856                 return;
857
858         if (intel_rps_uses_timer(rps))
859                 rps_stop_timer(rps);
860         if (intel_rps_has_interrupts(rps))
861                 rps_disable_interrupts(rps);
862
863         if (rps->last_freq <= rps->idle_freq)
864                 return;
865
866         /*
867          * The punit delays the write of the frequency and voltage until it
868          * determines the GPU is awake. During normal usage we don't want to
869          * waste power changing the frequency if the GPU is sleeping (rc6).
870          * However, the GPU and driver is now idle and we do not want to delay
871          * switching to minimum voltage (reducing power whilst idle) as we do
872          * not expect to be woken in the near future and so must flush the
873          * change by waking the device.
874          *
875          * We choose to take the media powerwell (either would do to trick the
876          * punit into committing the voltage change) as that takes a lot less
877          * power than the render powerwell.
878          */
879         intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
880         rps_set(rps, rps->idle_freq, false);
881         intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
882
883         /*
884          * Since we will try and restart from the previously requested
885          * frequency on unparking, treat this idle point as a downclock
886          * interrupt and reduce the frequency for resume. If we park/unpark
887          * more frequently than the rps worker can run, we will not respond
888          * to any EI and never see a change in frequency.
889          *
890          * (Note we accommodate Cherryview's limitation of only using an
891          * even bin by applying it to all.)
892          */
893         adj = rps->last_adj;
894         if (adj < 0)
895                 adj *= 2;
896         else /* CHV needs even encode values */
897                 adj = -2;
898         rps->last_adj = adj;
899         rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
900         if (rps->cur_freq < rps->efficient_freq) {
901                 rps->cur_freq = rps->efficient_freq;
902                 rps->last_adj = 0;
903         }
904
905         GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
906 }
907
908 void intel_rps_boost(struct i915_request *rq)
909 {
910         struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
911         unsigned long flags;
912
913         if (i915_request_signaled(rq) || !intel_rps_is_active(rps))
914                 return;
915
916         /* Serializes with i915_request_retire() */
917         spin_lock_irqsave(&rq->lock, flags);
918         if (!i915_request_has_waitboost(rq) &&
919             !dma_fence_is_signaled_locked(&rq->fence)) {
920                 set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
921
922                 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
923                          rq->fence.context, rq->fence.seqno);
924
925                 if (!atomic_fetch_inc(&rps->num_waiters) &&
926                     READ_ONCE(rps->cur_freq) < rps->boost_freq)
927                         schedule_work(&rps->work);
928
929                 atomic_inc(&rps->boosts);
930         }
931         spin_unlock_irqrestore(&rq->lock, flags);
932 }
933
934 int intel_rps_set(struct intel_rps *rps, u8 val)
935 {
936         int err;
937
938         lockdep_assert_held(&rps->lock);
939         GEM_BUG_ON(val > rps->max_freq);
940         GEM_BUG_ON(val < rps->min_freq);
941
942         if (intel_rps_is_active(rps)) {
943                 err = rps_set(rps, val, true);
944                 if (err)
945                         return err;
946
947                 /*
948                  * Make sure we continue to get interrupts
949                  * until we hit the minimum or maximum frequencies.
950                  */
951                 if (intel_rps_has_interrupts(rps)) {
952                         struct intel_uncore *uncore = rps_to_uncore(rps);
953
954                         set(uncore,
955                             GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
956
957                         set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
958                 }
959         }
960
961         rps->cur_freq = val;
962         return 0;
963 }
964
965 static void gen6_rps_init(struct intel_rps *rps)
966 {
967         struct drm_i915_private *i915 = rps_to_i915(rps);
968         struct intel_uncore *uncore = rps_to_uncore(rps);
969
970         /* All of these values are in units of 50MHz */
971
972         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
973         if (IS_GEN9_LP(i915)) {
974                 u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP);
975
976                 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
977                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
978                 rps->min_freq = (rp_state_cap >>  0) & 0xff;
979         } else {
980                 u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
981
982                 rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
983                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
984                 rps->min_freq = (rp_state_cap >> 16) & 0xff;
985         }
986
987         /* hw_max = RP0 until we check for overclocking */
988         rps->max_freq = rps->rp0_freq;
989
990         rps->efficient_freq = rps->rp1_freq;
991         if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
992             IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
993                 u32 ddcc_status = 0;
994
995                 if (sandybridge_pcode_read(i915,
996                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
997                                            &ddcc_status, NULL) == 0)
998                         rps->efficient_freq =
999                                 clamp_t(u8,
1000                                         (ddcc_status >> 8) & 0xff,
1001                                         rps->min_freq,
1002                                         rps->max_freq);
1003         }
1004
1005         if (IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
1006                 /* Store the frequency values in 16.66 MHZ units, which is
1007                  * the natural hardware unit for SKL
1008                  */
1009                 rps->rp0_freq *= GEN9_FREQ_SCALER;
1010                 rps->rp1_freq *= GEN9_FREQ_SCALER;
1011                 rps->min_freq *= GEN9_FREQ_SCALER;
1012                 rps->max_freq *= GEN9_FREQ_SCALER;
1013                 rps->efficient_freq *= GEN9_FREQ_SCALER;
1014         }
1015 }
1016
1017 static bool rps_reset(struct intel_rps *rps)
1018 {
1019         struct drm_i915_private *i915 = rps_to_i915(rps);
1020
1021         /* force a reset */
1022         rps->power.mode = -1;
1023         rps->last_freq = -1;
1024
1025         if (rps_set(rps, rps->min_freq, true)) {
1026                 drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1027                 return false;
1028         }
1029
1030         rps->cur_freq = rps->min_freq;
1031         return true;
1032 }
1033
1034 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1035 static bool gen9_rps_enable(struct intel_rps *rps)
1036 {
1037         struct intel_gt *gt = rps_to_gt(rps);
1038         struct intel_uncore *uncore = gt->uncore;
1039
1040         /* Program defaults and thresholds for RPS */
1041         if (IS_GEN(gt->i915, 9))
1042                 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1043                                       GEN9_FREQUENCY(rps->rp1_freq));
1044
1045         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1046
1047         rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1048
1049         return rps_reset(rps);
1050 }
1051
1052 static bool gen8_rps_enable(struct intel_rps *rps)
1053 {
1054         struct intel_uncore *uncore = rps_to_uncore(rps);
1055
1056         intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1057                               HSW_FREQUENCY(rps->rp1_freq));
1058
1059         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1060
1061         rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1062
1063         return rps_reset(rps);
1064 }
1065
1066 static bool gen6_rps_enable(struct intel_rps *rps)
1067 {
1068         struct intel_uncore *uncore = rps_to_uncore(rps);
1069
1070         /* Power down if completely idle for over 50ms */
1071         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1072         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1073
1074         rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1075                           GEN6_PM_RP_DOWN_THRESHOLD |
1076                           GEN6_PM_RP_DOWN_TIMEOUT);
1077
1078         return rps_reset(rps);
1079 }
1080
1081 static int chv_rps_max_freq(struct intel_rps *rps)
1082 {
1083         struct drm_i915_private *i915 = rps_to_i915(rps);
1084         struct intel_gt *gt = rps_to_gt(rps);
1085         u32 val;
1086
1087         val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1088
1089         switch (gt->info.sseu.eu_total) {
1090         case 8:
1091                 /* (2 * 4) config */
1092                 val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1093                 break;
1094         case 12:
1095                 /* (2 * 6) config */
1096                 val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1097                 break;
1098         case 16:
1099                 /* (2 * 8) config */
1100         default:
1101                 /* Setting (2 * 8) Min RP0 for any other combination */
1102                 val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1103                 break;
1104         }
1105
1106         return val & FB_GFX_FREQ_FUSE_MASK;
1107 }
1108
1109 static int chv_rps_rpe_freq(struct intel_rps *rps)
1110 {
1111         struct drm_i915_private *i915 = rps_to_i915(rps);
1112         u32 val;
1113
1114         val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1115         val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1116
1117         return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1118 }
1119
1120 static int chv_rps_guar_freq(struct intel_rps *rps)
1121 {
1122         struct drm_i915_private *i915 = rps_to_i915(rps);
1123         u32 val;
1124
1125         val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1126
1127         return val & FB_GFX_FREQ_FUSE_MASK;
1128 }
1129
1130 static u32 chv_rps_min_freq(struct intel_rps *rps)
1131 {
1132         struct drm_i915_private *i915 = rps_to_i915(rps);
1133         u32 val;
1134
1135         val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1136         val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1137
1138         return val & FB_GFX_FREQ_FUSE_MASK;
1139 }
1140
1141 static bool chv_rps_enable(struct intel_rps *rps)
1142 {
1143         struct intel_uncore *uncore = rps_to_uncore(rps);
1144         struct drm_i915_private *i915 = rps_to_i915(rps);
1145         u32 val;
1146
1147         /* 1: Program defaults and thresholds for RPS*/
1148         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1149         intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1150         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1151         intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1152         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1153
1154         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1155
1156         /* 2: Enable RPS */
1157         intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1158                               GEN6_RP_MEDIA_HW_NORMAL_MODE |
1159                               GEN6_RP_MEDIA_IS_GFX |
1160                               GEN6_RP_ENABLE |
1161                               GEN6_RP_UP_BUSY_AVG |
1162                               GEN6_RP_DOWN_IDLE_AVG);
1163
1164         rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1165                           GEN6_PM_RP_DOWN_THRESHOLD |
1166                           GEN6_PM_RP_DOWN_TIMEOUT);
1167
1168         /* Setting Fixed Bias */
1169         vlv_punit_get(i915);
1170
1171         val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1172         vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1173
1174         val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1175
1176         vlv_punit_put(i915);
1177
1178         /* RPS code assumes GPLL is used */
1179         drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1180                       "GPLL not enabled\n");
1181
1182         drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1183         drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1184
1185         return rps_reset(rps);
1186 }
1187
1188 static int vlv_rps_guar_freq(struct intel_rps *rps)
1189 {
1190         struct drm_i915_private *i915 = rps_to_i915(rps);
1191         u32 val, rp1;
1192
1193         val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1194
1195         rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1196         rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1197
1198         return rp1;
1199 }
1200
1201 static int vlv_rps_max_freq(struct intel_rps *rps)
1202 {
1203         struct drm_i915_private *i915 = rps_to_i915(rps);
1204         u32 val, rp0;
1205
1206         val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1207
1208         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1209         /* Clamp to max */
1210         rp0 = min_t(u32, rp0, 0xea);
1211
1212         return rp0;
1213 }
1214
1215 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1216 {
1217         struct drm_i915_private *i915 = rps_to_i915(rps);
1218         u32 val, rpe;
1219
1220         val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1221         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1222         val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1223         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1224
1225         return rpe;
1226 }
1227
1228 static int vlv_rps_min_freq(struct intel_rps *rps)
1229 {
1230         struct drm_i915_private *i915 = rps_to_i915(rps);
1231         u32 val;
1232
1233         val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1234         /*
1235          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1236          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1237          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1238          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1239          * to make sure it matches what Punit accepts.
1240          */
1241         return max_t(u32, val, 0xc0);
1242 }
1243
1244 static bool vlv_rps_enable(struct intel_rps *rps)
1245 {
1246         struct intel_uncore *uncore = rps_to_uncore(rps);
1247         struct drm_i915_private *i915 = rps_to_i915(rps);
1248         u32 val;
1249
1250         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1251         intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1252         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1253         intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1254         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1255
1256         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1257
1258         intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1259                               GEN6_RP_MEDIA_TURBO |
1260                               GEN6_RP_MEDIA_HW_NORMAL_MODE |
1261                               GEN6_RP_MEDIA_IS_GFX |
1262                               GEN6_RP_ENABLE |
1263                               GEN6_RP_UP_BUSY_AVG |
1264                               GEN6_RP_DOWN_IDLE_CONT);
1265
1266         /* WaGsvRC0ResidencyMethod:vlv */
1267         rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1268
1269         vlv_punit_get(i915);
1270
1271         /* Setting Fixed Bias */
1272         val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1273         vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1274
1275         val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1276
1277         vlv_punit_put(i915);
1278
1279         /* RPS code assumes GPLL is used */
1280         drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1281                       "GPLL not enabled\n");
1282
1283         drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1284         drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1285
1286         return rps_reset(rps);
1287 }
1288
1289 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1290 {
1291         struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1292         struct intel_uncore *uncore = rps_to_uncore(rps);
1293         unsigned int t, state1, state2;
1294         u32 pxvid, ext_v;
1295         u64 corr, corr2;
1296
1297         lockdep_assert_held(&mchdev_lock);
1298
1299         pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1300         pxvid = (pxvid >> 24) & 0x7f;
1301         ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1302
1303         state1 = ext_v;
1304
1305         /* Revel in the empirically derived constants */
1306
1307         /* Correction factor in 1/100000 units */
1308         t = ips_mch_val(uncore);
1309         if (t > 80)
1310                 corr = t * 2349 + 135940;
1311         else if (t >= 50)
1312                 corr = t * 964 + 29317;
1313         else /* < 50 */
1314                 corr = t * 301 + 1004;
1315
1316         corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1317         corr2 = div_u64(corr, 100000) * ips->corr;
1318
1319         state2 = div_u64(corr2 * state1, 10000);
1320         state2 /= 100; /* convert to mW */
1321
1322         __gen5_ips_update(ips);
1323
1324         return ips->gfx_power + state2;
1325 }
1326
1327 static bool has_busy_stats(struct intel_rps *rps)
1328 {
1329         struct intel_engine_cs *engine;
1330         enum intel_engine_id id;
1331
1332         for_each_engine(engine, rps_to_gt(rps), id) {
1333                 if (!intel_engine_supports_stats(engine))
1334                         return false;
1335         }
1336
1337         return true;
1338 }
1339
1340 void intel_rps_enable(struct intel_rps *rps)
1341 {
1342         struct drm_i915_private *i915 = rps_to_i915(rps);
1343         struct intel_uncore *uncore = rps_to_uncore(rps);
1344         bool enabled = false;
1345
1346         if (!HAS_RPS(i915))
1347                 return;
1348
1349         intel_gt_check_clock_frequency(rps_to_gt(rps));
1350
1351         intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1352         if (rps->max_freq <= rps->min_freq)
1353                 /* leave disabled, no room for dynamic reclocking */;
1354         else if (IS_CHERRYVIEW(i915))
1355                 enabled = chv_rps_enable(rps);
1356         else if (IS_VALLEYVIEW(i915))
1357                 enabled = vlv_rps_enable(rps);
1358         else if (INTEL_GEN(i915) >= 9)
1359                 enabled = gen9_rps_enable(rps);
1360         else if (INTEL_GEN(i915) >= 8)
1361                 enabled = gen8_rps_enable(rps);
1362         else if (INTEL_GEN(i915) >= 6)
1363                 enabled = gen6_rps_enable(rps);
1364         else if (IS_IRONLAKE_M(i915))
1365                 enabled = gen5_rps_enable(rps);
1366         else
1367                 MISSING_CASE(INTEL_GEN(i915));
1368         intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1369         if (!enabled)
1370                 return;
1371
1372         GT_TRACE(rps_to_gt(rps),
1373                  "min:%x, max:%x, freq:[%d, %d]\n",
1374                  rps->min_freq, rps->max_freq,
1375                  intel_gpu_freq(rps, rps->min_freq),
1376                  intel_gpu_freq(rps, rps->max_freq));
1377
1378         GEM_BUG_ON(rps->max_freq < rps->min_freq);
1379         GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1380
1381         GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1382         GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1383
1384         if (has_busy_stats(rps))
1385                 intel_rps_set_timer(rps);
1386         else if (INTEL_GEN(i915) >= 6)
1387                 intel_rps_set_interrupts(rps);
1388         else
1389                 /* Ironlake currently uses intel_ips.ko */ {}
1390
1391         intel_rps_set_enabled(rps);
1392 }
1393
1394 static void gen6_rps_disable(struct intel_rps *rps)
1395 {
1396         set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1397 }
1398
1399 void intel_rps_disable(struct intel_rps *rps)
1400 {
1401         struct drm_i915_private *i915 = rps_to_i915(rps);
1402
1403         intel_rps_clear_enabled(rps);
1404         intel_rps_clear_interrupts(rps);
1405         intel_rps_clear_timer(rps);
1406
1407         if (INTEL_GEN(i915) >= 6)
1408                 gen6_rps_disable(rps);
1409         else if (IS_IRONLAKE_M(i915))
1410                 gen5_rps_disable(rps);
1411 }
1412
1413 static int byt_gpu_freq(struct intel_rps *rps, int val)
1414 {
1415         /*
1416          * N = val - 0xb7
1417          * Slow = Fast = GPLL ref * N
1418          */
1419         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1420 }
1421
1422 static int byt_freq_opcode(struct intel_rps *rps, int val)
1423 {
1424         return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1425 }
1426
1427 static int chv_gpu_freq(struct intel_rps *rps, int val)
1428 {
1429         /*
1430          * N = val / 2
1431          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1432          */
1433         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1434 }
1435
1436 static int chv_freq_opcode(struct intel_rps *rps, int val)
1437 {
1438         /* CHV needs even values */
1439         return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1440 }
1441
1442 int intel_gpu_freq(struct intel_rps *rps, int val)
1443 {
1444         struct drm_i915_private *i915 = rps_to_i915(rps);
1445
1446         if (INTEL_GEN(i915) >= 9)
1447                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1448                                          GEN9_FREQ_SCALER);
1449         else if (IS_CHERRYVIEW(i915))
1450                 return chv_gpu_freq(rps, val);
1451         else if (IS_VALLEYVIEW(i915))
1452                 return byt_gpu_freq(rps, val);
1453         else if (INTEL_GEN(i915) >= 6)
1454                 return val * GT_FREQUENCY_MULTIPLIER;
1455         else
1456                 return val;
1457 }
1458
1459 int intel_freq_opcode(struct intel_rps *rps, int val)
1460 {
1461         struct drm_i915_private *i915 = rps_to_i915(rps);
1462
1463         if (INTEL_GEN(i915) >= 9)
1464                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1465                                          GT_FREQUENCY_MULTIPLIER);
1466         else if (IS_CHERRYVIEW(i915))
1467                 return chv_freq_opcode(rps, val);
1468         else if (IS_VALLEYVIEW(i915))
1469                 return byt_freq_opcode(rps, val);
1470         else if (INTEL_GEN(i915) >= 6)
1471                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1472         else
1473                 return val;
1474 }
1475
1476 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1477 {
1478         struct drm_i915_private *i915 = rps_to_i915(rps);
1479
1480         rps->gpll_ref_freq =
1481                 vlv_get_cck_clock(i915, "GPLL ref",
1482                                   CCK_GPLL_CLOCK_CONTROL,
1483                                   i915->czclk_freq);
1484
1485         drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1486                 rps->gpll_ref_freq);
1487 }
1488
1489 static void vlv_rps_init(struct intel_rps *rps)
1490 {
1491         struct drm_i915_private *i915 = rps_to_i915(rps);
1492         u32 val;
1493
1494         vlv_iosf_sb_get(i915,
1495                         BIT(VLV_IOSF_SB_PUNIT) |
1496                         BIT(VLV_IOSF_SB_NC) |
1497                         BIT(VLV_IOSF_SB_CCK));
1498
1499         vlv_init_gpll_ref_freq(rps);
1500
1501         val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1502         switch ((val >> 6) & 3) {
1503         case 0:
1504         case 1:
1505                 i915->mem_freq = 800;
1506                 break;
1507         case 2:
1508                 i915->mem_freq = 1066;
1509                 break;
1510         case 3:
1511                 i915->mem_freq = 1333;
1512                 break;
1513         }
1514         drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1515
1516         rps->max_freq = vlv_rps_max_freq(rps);
1517         rps->rp0_freq = rps->max_freq;
1518         drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1519                 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1520
1521         rps->efficient_freq = vlv_rps_rpe_freq(rps);
1522         drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1523                 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1524
1525         rps->rp1_freq = vlv_rps_guar_freq(rps);
1526         drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1527                 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1528
1529         rps->min_freq = vlv_rps_min_freq(rps);
1530         drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1531                 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1532
1533         vlv_iosf_sb_put(i915,
1534                         BIT(VLV_IOSF_SB_PUNIT) |
1535                         BIT(VLV_IOSF_SB_NC) |
1536                         BIT(VLV_IOSF_SB_CCK));
1537 }
1538
1539 static void chv_rps_init(struct intel_rps *rps)
1540 {
1541         struct drm_i915_private *i915 = rps_to_i915(rps);
1542         u32 val;
1543
1544         vlv_iosf_sb_get(i915,
1545                         BIT(VLV_IOSF_SB_PUNIT) |
1546                         BIT(VLV_IOSF_SB_NC) |
1547                         BIT(VLV_IOSF_SB_CCK));
1548
1549         vlv_init_gpll_ref_freq(rps);
1550
1551         val = vlv_cck_read(i915, CCK_FUSE_REG);
1552
1553         switch ((val >> 2) & 0x7) {
1554         case 3:
1555                 i915->mem_freq = 2000;
1556                 break;
1557         default:
1558                 i915->mem_freq = 1600;
1559                 break;
1560         }
1561         drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1562
1563         rps->max_freq = chv_rps_max_freq(rps);
1564         rps->rp0_freq = rps->max_freq;
1565         drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1566                 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1567
1568         rps->efficient_freq = chv_rps_rpe_freq(rps);
1569         drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1570                 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1571
1572         rps->rp1_freq = chv_rps_guar_freq(rps);
1573         drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1574                 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1575
1576         rps->min_freq = chv_rps_min_freq(rps);
1577         drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1578                 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1579
1580         vlv_iosf_sb_put(i915,
1581                         BIT(VLV_IOSF_SB_PUNIT) |
1582                         BIT(VLV_IOSF_SB_NC) |
1583                         BIT(VLV_IOSF_SB_CCK));
1584
1585         drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1586                                    rps->rp1_freq | rps->min_freq) & 1,
1587                       "Odd GPU freq values\n");
1588 }
1589
1590 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1591 {
1592         ei->ktime = ktime_get_raw();
1593         ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1594         ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1595 }
1596
1597 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1598 {
1599         struct intel_uncore *uncore = rps_to_uncore(rps);
1600         const struct intel_rps_ei *prev = &rps->ei;
1601         struct intel_rps_ei now;
1602         u32 events = 0;
1603
1604         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1605                 return 0;
1606
1607         vlv_c0_read(uncore, &now);
1608
1609         if (prev->ktime) {
1610                 u64 time, c0;
1611                 u32 render, media;
1612
1613                 time = ktime_us_delta(now.ktime, prev->ktime);
1614
1615                 time *= rps_to_i915(rps)->czclk_freq;
1616
1617                 /* Workload can be split between render + media,
1618                  * e.g. SwapBuffers being blitted in X after being rendered in
1619                  * mesa. To account for this we need to combine both engines
1620                  * into our activity counter.
1621                  */
1622                 render = now.render_c0 - prev->render_c0;
1623                 media = now.media_c0 - prev->media_c0;
1624                 c0 = max(render, media);
1625                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1626
1627                 if (c0 > time * rps->power.up_threshold)
1628                         events = GEN6_PM_RP_UP_THRESHOLD;
1629                 else if (c0 < time * rps->power.down_threshold)
1630                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1631         }
1632
1633         rps->ei = now;
1634         return events;
1635 }
1636
1637 static void rps_work(struct work_struct *work)
1638 {
1639         struct intel_rps *rps = container_of(work, typeof(*rps), work);
1640         struct intel_gt *gt = rps_to_gt(rps);
1641         struct drm_i915_private *i915 = rps_to_i915(rps);
1642         bool client_boost = false;
1643         int new_freq, adj, min, max;
1644         u32 pm_iir = 0;
1645
1646         spin_lock_irq(&gt->irq_lock);
1647         pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1648         client_boost = atomic_read(&rps->num_waiters);
1649         spin_unlock_irq(&gt->irq_lock);
1650
1651         /* Make sure we didn't queue anything we're not going to process. */
1652         if (!pm_iir && !client_boost)
1653                 goto out;
1654
1655         mutex_lock(&rps->lock);
1656         if (!intel_rps_is_active(rps)) {
1657                 mutex_unlock(&rps->lock);
1658                 return;
1659         }
1660
1661         pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1662
1663         adj = rps->last_adj;
1664         new_freq = rps->cur_freq;
1665         min = rps->min_freq_softlimit;
1666         max = rps->max_freq_softlimit;
1667         if (client_boost)
1668                 max = rps->max_freq;
1669
1670         GT_TRACE(gt,
1671                  "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1672                  pm_iir, yesno(client_boost),
1673                  adj, new_freq, min, max);
1674
1675         if (client_boost && new_freq < rps->boost_freq) {
1676                 new_freq = rps->boost_freq;
1677                 adj = 0;
1678         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1679                 if (adj > 0)
1680                         adj *= 2;
1681                 else /* CHV needs even encode values */
1682                         adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1683
1684                 if (new_freq >= rps->max_freq_softlimit)
1685                         adj = 0;
1686         } else if (client_boost) {
1687                 adj = 0;
1688         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1689                 if (rps->cur_freq > rps->efficient_freq)
1690                         new_freq = rps->efficient_freq;
1691                 else if (rps->cur_freq > rps->min_freq_softlimit)
1692                         new_freq = rps->min_freq_softlimit;
1693                 adj = 0;
1694         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1695                 if (adj < 0)
1696                         adj *= 2;
1697                 else /* CHV needs even encode values */
1698                         adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1699
1700                 if (new_freq <= rps->min_freq_softlimit)
1701                         adj = 0;
1702         } else { /* unknown event */
1703                 adj = 0;
1704         }
1705
1706         /*
1707          * sysfs frequency limits may have snuck in while
1708          * servicing the interrupt
1709          */
1710         new_freq += adj;
1711         new_freq = clamp_t(int, new_freq, min, max);
1712
1713         if (intel_rps_set(rps, new_freq)) {
1714                 drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1715                 adj = 0;
1716         }
1717         rps->last_adj = adj;
1718
1719         mutex_unlock(&rps->lock);
1720
1721 out:
1722         spin_lock_irq(&gt->irq_lock);
1723         gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1724         spin_unlock_irq(&gt->irq_lock);
1725 }
1726
1727 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1728 {
1729         struct intel_gt *gt = rps_to_gt(rps);
1730         const u32 events = rps->pm_events & pm_iir;
1731
1732         lockdep_assert_held(&gt->irq_lock);
1733
1734         if (unlikely(!events))
1735                 return;
1736
1737         GT_TRACE(gt, "irq events:%x\n", events);
1738
1739         gen6_gt_pm_mask_irq(gt, events);
1740
1741         rps->pm_iir |= events;
1742         schedule_work(&rps->work);
1743 }
1744
1745 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1746 {
1747         struct intel_gt *gt = rps_to_gt(rps);
1748         u32 events;
1749
1750         events = pm_iir & rps->pm_events;
1751         if (events) {
1752                 spin_lock(&gt->irq_lock);
1753
1754                 GT_TRACE(gt, "irq events:%x\n", events);
1755
1756                 gen6_gt_pm_mask_irq(gt, events);
1757                 rps->pm_iir |= events;
1758
1759                 schedule_work(&rps->work);
1760                 spin_unlock(&gt->irq_lock);
1761         }
1762
1763         if (INTEL_GEN(gt->i915) >= 8)
1764                 return;
1765
1766         if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1767                 intel_engine_signal_breadcrumbs(gt->engine[VECS0]);
1768
1769         if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1770                 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1771 }
1772
1773 void gen5_rps_irq_handler(struct intel_rps *rps)
1774 {
1775         struct intel_uncore *uncore = rps_to_uncore(rps);
1776         u32 busy_up, busy_down, max_avg, min_avg;
1777         u8 new_freq;
1778
1779         spin_lock(&mchdev_lock);
1780
1781         intel_uncore_write16(uncore,
1782                              MEMINTRSTS,
1783                              intel_uncore_read(uncore, MEMINTRSTS));
1784
1785         intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1786         busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1787         busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1788         max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1789         min_avg = intel_uncore_read(uncore, RCBMINAVG);
1790
1791         /* Handle RCS change request from hw */
1792         new_freq = rps->cur_freq;
1793         if (busy_up > max_avg)
1794                 new_freq++;
1795         else if (busy_down < min_avg)
1796                 new_freq--;
1797         new_freq = clamp(new_freq,
1798                          rps->min_freq_softlimit,
1799                          rps->max_freq_softlimit);
1800
1801         if (new_freq != rps->cur_freq && gen5_rps_set(rps, new_freq))
1802                 rps->cur_freq = new_freq;
1803
1804         spin_unlock(&mchdev_lock);
1805 }
1806
1807 void intel_rps_init_early(struct intel_rps *rps)
1808 {
1809         mutex_init(&rps->lock);
1810         mutex_init(&rps->power.mutex);
1811
1812         INIT_WORK(&rps->work, rps_work);
1813         timer_setup(&rps->timer, rps_timer, 0);
1814
1815         atomic_set(&rps->num_waiters, 0);
1816 }
1817
1818 void intel_rps_init(struct intel_rps *rps)
1819 {
1820         struct drm_i915_private *i915 = rps_to_i915(rps);
1821
1822         if (IS_CHERRYVIEW(i915))
1823                 chv_rps_init(rps);
1824         else if (IS_VALLEYVIEW(i915))
1825                 vlv_rps_init(rps);
1826         else if (INTEL_GEN(i915) >= 6)
1827                 gen6_rps_init(rps);
1828         else if (IS_IRONLAKE_M(i915))
1829                 gen5_rps_init(rps);
1830
1831         /* Derive initial user preferences/limits from the hardware limits */
1832         rps->max_freq_softlimit = rps->max_freq;
1833         rps->min_freq_softlimit = rps->min_freq;
1834
1835         /* After setting max-softlimit, find the overclock max freq */
1836         if (IS_GEN(i915, 6) || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1837                 u32 params = 0;
1838
1839                 sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS,
1840                                        &params, NULL);
1841                 if (params & BIT(31)) { /* OC supported */
1842                         drm_dbg(&i915->drm,
1843                                 "Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1844                                 (rps->max_freq & 0xff) * 50,
1845                                 (params & 0xff) * 50);
1846                         rps->max_freq = params & 0xff;
1847                 }
1848         }
1849
1850         /* Finally allow us to boost to max by default */
1851         rps->boost_freq = rps->max_freq;
1852         rps->idle_freq = rps->min_freq;
1853
1854         /* Start in the middle, from here we will autotune based on workload */
1855         rps->cur_freq = rps->efficient_freq;
1856
1857         rps->pm_intrmsk_mbz = 0;
1858
1859         /*
1860          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
1861          * if GEN6_PM_UP_EI_EXPIRED is masked.
1862          *
1863          * TODO: verify if this can be reproduced on VLV,CHV.
1864          */
1865         if (INTEL_GEN(i915) <= 7)
1866                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
1867
1868         if (INTEL_GEN(i915) >= 8 && INTEL_GEN(i915) < 11)
1869                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1870 }
1871
1872 void intel_rps_sanitize(struct intel_rps *rps)
1873 {
1874         if (INTEL_GEN(rps_to_i915(rps)) >= 6)
1875                 rps_disable_interrupts(rps);
1876 }
1877
1878 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1879 {
1880         struct drm_i915_private *i915 = rps_to_i915(rps);
1881         u32 cagf;
1882
1883         if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
1884                 cagf = (rpstat >> 8) & 0xff;
1885         else if (INTEL_GEN(i915) >= 9)
1886                 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1887         else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
1888                 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1889         else if (INTEL_GEN(i915) >= 6)
1890                 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1891         else
1892                 cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
1893                                         MEMSTAT_PSTATE_SHIFT);
1894
1895         return cagf;
1896 }
1897
1898 static u32 read_cagf(struct intel_rps *rps)
1899 {
1900         struct drm_i915_private *i915 = rps_to_i915(rps);
1901         struct intel_uncore *uncore = rps_to_uncore(rps);
1902         u32 freq;
1903
1904         if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
1905                 vlv_punit_get(i915);
1906                 freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1907                 vlv_punit_put(i915);
1908         } else if (INTEL_GEN(i915) >= 6) {
1909                 freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
1910         } else {
1911                 freq = intel_uncore_read(uncore, MEMSTAT_ILK);
1912         }
1913
1914         return intel_rps_get_cagf(rps, freq);
1915 }
1916
1917 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
1918 {
1919         struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
1920         intel_wakeref_t wakeref;
1921         u32 freq = 0;
1922
1923         with_intel_runtime_pm_if_in_use(rpm, wakeref)
1924                 freq = intel_gpu_freq(rps, read_cagf(rps));
1925
1926         return freq;
1927 }
1928
1929 /* External interface for intel_ips.ko */
1930
1931 static struct drm_i915_private __rcu *ips_mchdev;
1932
1933 /**
1934  * Tells the intel_ips driver that the i915 driver is now loaded, if
1935  * IPS got loaded first.
1936  *
1937  * This awkward dance is so that neither module has to depend on the
1938  * other in order for IPS to do the appropriate communication of
1939  * GPU turbo limits to i915.
1940  */
1941 static void
1942 ips_ping_for_i915_load(void)
1943 {
1944         void (*link)(void);
1945
1946         link = symbol_get(ips_link_to_i915_driver);
1947         if (link) {
1948                 link();
1949                 symbol_put(ips_link_to_i915_driver);
1950         }
1951 }
1952
1953 void intel_rps_driver_register(struct intel_rps *rps)
1954 {
1955         struct intel_gt *gt = rps_to_gt(rps);
1956
1957         /*
1958          * We only register the i915 ips part with intel-ips once everything is
1959          * set up, to avoid intel-ips sneaking in and reading bogus values.
1960          */
1961         if (IS_GEN(gt->i915, 5)) {
1962                 GEM_BUG_ON(ips_mchdev);
1963                 rcu_assign_pointer(ips_mchdev, gt->i915);
1964                 ips_ping_for_i915_load();
1965         }
1966 }
1967
1968 void intel_rps_driver_unregister(struct intel_rps *rps)
1969 {
1970         if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
1971                 rcu_assign_pointer(ips_mchdev, NULL);
1972 }
1973
1974 static struct drm_i915_private *mchdev_get(void)
1975 {
1976         struct drm_i915_private *i915;
1977
1978         rcu_read_lock();
1979         i915 = rcu_dereference(ips_mchdev);
1980         if (i915 && !kref_get_unless_zero(&i915->drm.ref))
1981                 i915 = NULL;
1982         rcu_read_unlock();
1983
1984         return i915;
1985 }
1986
1987 /**
1988  * i915_read_mch_val - return value for IPS use
1989  *
1990  * Calculate and return a value for the IPS driver to use when deciding whether
1991  * we have thermal and power headroom to increase CPU or GPU power budget.
1992  */
1993 unsigned long i915_read_mch_val(void)
1994 {
1995         struct drm_i915_private *i915;
1996         unsigned long chipset_val = 0;
1997         unsigned long graphics_val = 0;
1998         intel_wakeref_t wakeref;
1999
2000         i915 = mchdev_get();
2001         if (!i915)
2002                 return 0;
2003
2004         with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2005                 struct intel_ips *ips = &i915->gt.rps.ips;
2006
2007                 spin_lock_irq(&mchdev_lock);
2008                 chipset_val = __ips_chipset_val(ips);
2009                 graphics_val = __ips_gfx_val(ips);
2010                 spin_unlock_irq(&mchdev_lock);
2011         }
2012
2013         drm_dev_put(&i915->drm);
2014         return chipset_val + graphics_val;
2015 }
2016 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2017
2018 /**
2019  * i915_gpu_raise - raise GPU frequency limit
2020  *
2021  * Raise the limit; IPS indicates we have thermal headroom.
2022  */
2023 bool i915_gpu_raise(void)
2024 {
2025         struct drm_i915_private *i915;
2026         struct intel_rps *rps;
2027
2028         i915 = mchdev_get();
2029         if (!i915)
2030                 return false;
2031
2032         rps = &i915->gt.rps;
2033
2034         spin_lock_irq(&mchdev_lock);
2035         if (rps->max_freq_softlimit < rps->max_freq)
2036                 rps->max_freq_softlimit++;
2037         spin_unlock_irq(&mchdev_lock);
2038
2039         drm_dev_put(&i915->drm);
2040         return true;
2041 }
2042 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2043
2044 /**
2045  * i915_gpu_lower - lower GPU frequency limit
2046  *
2047  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2048  * frequency maximum.
2049  */
2050 bool i915_gpu_lower(void)
2051 {
2052         struct drm_i915_private *i915;
2053         struct intel_rps *rps;
2054
2055         i915 = mchdev_get();
2056         if (!i915)
2057                 return false;
2058
2059         rps = &i915->gt.rps;
2060
2061         spin_lock_irq(&mchdev_lock);
2062         if (rps->max_freq_softlimit > rps->min_freq)
2063                 rps->max_freq_softlimit--;
2064         spin_unlock_irq(&mchdev_lock);
2065
2066         drm_dev_put(&i915->drm);
2067         return true;
2068 }
2069 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2070
2071 /**
2072  * i915_gpu_busy - indicate GPU business to IPS
2073  *
2074  * Tell the IPS driver whether or not the GPU is busy.
2075  */
2076 bool i915_gpu_busy(void)
2077 {
2078         struct drm_i915_private *i915;
2079         bool ret;
2080
2081         i915 = mchdev_get();
2082         if (!i915)
2083                 return false;
2084
2085         ret = i915->gt.awake;
2086
2087         drm_dev_put(&i915->drm);
2088         return ret;
2089 }
2090 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2091
2092 /**
2093  * i915_gpu_turbo_disable - disable graphics turbo
2094  *
2095  * Disable graphics turbo by resetting the max frequency and setting the
2096  * current frequency to the default.
2097  */
2098 bool i915_gpu_turbo_disable(void)
2099 {
2100         struct drm_i915_private *i915;
2101         struct intel_rps *rps;
2102         bool ret;
2103
2104         i915 = mchdev_get();
2105         if (!i915)
2106                 return false;
2107
2108         rps = &i915->gt.rps;
2109
2110         spin_lock_irq(&mchdev_lock);
2111         rps->max_freq_softlimit = rps->min_freq;
2112         ret = gen5_rps_set(&i915->gt.rps, rps->min_freq);
2113         spin_unlock_irq(&mchdev_lock);
2114
2115         drm_dev_put(&i915->drm);
2116         return ret;
2117 }
2118 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2119
2120 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2121 #include "selftest_rps.c"
2122 #endif
This page took 0.157576 seconds and 4 git commands to generate.