]> Git Repo - J-linux.git/blob - arch/x86/include/asm/processor.h
Merge tag 'x86-cpu-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[J-linux.git] / arch / x86 / include / asm / processor.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4
5 #include <asm/processor-flags.h>
6
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct io_bitmap;
11 struct vm86;
12
13 #include <asm/math_emu.h>
14 #include <asm/segment.h>
15 #include <asm/types.h>
16 #include <uapi/asm/sigcontext.h>
17 #include <asm/current.h>
18 #include <asm/cpufeatures.h>
19 #include <asm/cpuid.h>
20 #include <asm/page.h>
21 #include <asm/pgtable_types.h>
22 #include <asm/percpu.h>
23 #include <asm/desc_defs.h>
24 #include <asm/nops.h>
25 #include <asm/special_insns.h>
26 #include <asm/fpu/types.h>
27 #include <asm/unwind_hints.h>
28 #include <asm/vmxfeatures.h>
29 #include <asm/vdso/processor.h>
30 #include <asm/shstk.h>
31
32 #include <linux/personality.h>
33 #include <linux/cache.h>
34 #include <linux/threads.h>
35 #include <linux/math64.h>
36 #include <linux/err.h>
37 #include <linux/irqflags.h>
38 #include <linux/mem_encrypt.h>
39
40 /*
41  * We handle most unaligned accesses in hardware.  On the other hand
42  * unaligned DMA can be quite expensive on some Nehalem processors.
43  *
44  * Based on this we disable the IP header alignment in network drivers.
45  */
46 #define NET_IP_ALIGN    0
47
48 #define HBP_NUM 4
49
50 /*
51  * These alignment constraints are for performance in the vSMP case,
52  * but in the task_struct case we must also meet hardware imposed
53  * alignment requirements of the FPU state:
54  */
55 #ifdef CONFIG_X86_VSMP
56 # define ARCH_MIN_TASKALIGN             (1 << INTERNODE_CACHE_SHIFT)
57 # define ARCH_MIN_MMSTRUCT_ALIGN        (1 << INTERNODE_CACHE_SHIFT)
58 #else
59 # define ARCH_MIN_TASKALIGN             __alignof__(union fpregs_state)
60 # define ARCH_MIN_MMSTRUCT_ALIGN        0
61 #endif
62
63 enum tlb_infos {
64         ENTRIES,
65         NR_INFO
66 };
67
68 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
69 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
70 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
71 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
72 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
73 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
74 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
75
76 /*
77  * CPU type and hardware bug flags. Kept separately for each CPU.
78  */
79
80 struct cpuinfo_topology {
81         // Real APIC ID read from the local APIC
82         u32                     apicid;
83         // The initial APIC ID provided by CPUID
84         u32                     initial_apicid;
85
86         // Physical package ID
87         u32                     pkg_id;
88
89         // Physical die ID on AMD, Relative on Intel
90         u32                     die_id;
91
92         // Compute unit ID - AMD specific
93         u32                     cu_id;
94
95         // Core ID relative to the package
96         u32                     core_id;
97
98         // Logical ID mappings
99         u32                     logical_pkg_id;
100         u32                     logical_die_id;
101
102         // AMD Node ID and Nodes per Package info
103         u32                     amd_node_id;
104
105         // Cache level topology IDs
106         u32                     llc_id;
107         u32                     l2c_id;
108 };
109
110 struct cpuinfo_x86 {
111         union {
112                 /*
113                  * The particular ordering (low-to-high) of (vendor,
114                  * family, model) is done in case range of models, like
115                  * it is usually done on AMD, need to be compared.
116                  */
117                 struct {
118                         __u8    x86_model;
119                         /* CPU family */
120                         __u8    x86;
121                         /* CPU vendor */
122                         __u8    x86_vendor;
123                         __u8    x86_reserved;
124                 };
125                 /* combined vendor, family, model */
126                 __u32           x86_vfm;
127         };
128         __u8                    x86_stepping;
129 #ifdef CONFIG_X86_64
130         /* Number of 4K pages in DTLB/ITLB combined(in pages): */
131         int                     x86_tlbsize;
132 #endif
133 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
134         __u32                   vmx_capability[NVMXINTS];
135 #endif
136         __u8                    x86_virt_bits;
137         __u8                    x86_phys_bits;
138         /* Max extended CPUID function supported: */
139         __u32                   extended_cpuid_level;
140         /* Maximum supported CPUID level, -1=no CPUID: */
141         int                     cpuid_level;
142         /*
143          * Align to size of unsigned long because the x86_capability array
144          * is passed to bitops which require the alignment. Use unnamed
145          * union to enforce the array is aligned to size of unsigned long.
146          */
147         union {
148                 __u32           x86_capability[NCAPINTS + NBUGINTS];
149                 unsigned long   x86_capability_alignment;
150         };
151         char                    x86_vendor_id[16];
152         char                    x86_model_id[64];
153         struct cpuinfo_topology topo;
154         /* in KB - valid for CPUS which support this call: */
155         unsigned int            x86_cache_size;
156         int                     x86_cache_alignment;    /* In bytes */
157         /* Cache QoS architectural values, valid only on the BSP: */
158         int                     x86_cache_max_rmid;     /* max index */
159         int                     x86_cache_occ_scale;    /* scale to bytes */
160         int                     x86_cache_mbm_width_offset;
161         int                     x86_power;
162         unsigned long           loops_per_jiffy;
163         /* protected processor identification number */
164         u64                     ppin;
165         u16                     x86_clflush_size;
166         /* number of cores as seen by the OS: */
167         u16                     booted_cores;
168         /* Index into per_cpu list: */
169         u16                     cpu_index;
170         /*  Is SMT active on this core? */
171         bool                    smt_active;
172         u32                     microcode;
173         /* Address space bits used by the cache internally */
174         u8                      x86_cache_bits;
175         unsigned                initialized : 1;
176 } __randomize_layout;
177
178 #define X86_VENDOR_INTEL        0
179 #define X86_VENDOR_CYRIX        1
180 #define X86_VENDOR_AMD          2
181 #define X86_VENDOR_UMC          3
182 #define X86_VENDOR_CENTAUR      5
183 #define X86_VENDOR_TRANSMETA    7
184 #define X86_VENDOR_NSC          8
185 #define X86_VENDOR_HYGON        9
186 #define X86_VENDOR_ZHAOXIN      10
187 #define X86_VENDOR_VORTEX       11
188 #define X86_VENDOR_NUM          12
189
190 #define X86_VENDOR_UNKNOWN      0xff
191
192 /*
193  * capabilities of CPUs
194  */
195 extern struct cpuinfo_x86       boot_cpu_data;
196 extern struct cpuinfo_x86       new_cpu_data;
197
198 extern __u32                    cpu_caps_cleared[NCAPINTS + NBUGINTS];
199 extern __u32                    cpu_caps_set[NCAPINTS + NBUGINTS];
200
201 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
202 #define cpu_data(cpu)           per_cpu(cpu_info, cpu)
203
204 extern const struct seq_operations cpuinfo_op;
205
206 #define cache_line_size()       (boot_cpu_data.x86_cache_alignment)
207
208 extern void cpu_detect(struct cpuinfo_x86 *c);
209
210 static inline unsigned long long l1tf_pfn_limit(void)
211 {
212         return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
213 }
214
215 extern void early_cpu_init(void);
216 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
217 extern void print_cpu_info(struct cpuinfo_x86 *);
218 void print_cpu_msr(struct cpuinfo_x86 *);
219
220 /*
221  * Friendlier CR3 helpers.
222  */
223 static inline unsigned long read_cr3_pa(void)
224 {
225         return __read_cr3() & CR3_ADDR_MASK;
226 }
227
228 static inline unsigned long native_read_cr3_pa(void)
229 {
230         return __native_read_cr3() & CR3_ADDR_MASK;
231 }
232
233 static inline void load_cr3(pgd_t *pgdir)
234 {
235         write_cr3(__sme_pa(pgdir));
236 }
237
238 /*
239  * Note that while the legacy 'TSS' name comes from 'Task State Segment',
240  * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
241  * unrelated to the task-switch mechanism:
242  */
243 #ifdef CONFIG_X86_32
244 /* This is the TSS defined by the hardware. */
245 struct x86_hw_tss {
246         unsigned short          back_link, __blh;
247         unsigned long           sp0;
248         unsigned short          ss0, __ss0h;
249         unsigned long           sp1;
250
251         /*
252          * We don't use ring 1, so ss1 is a convenient scratch space in
253          * the same cacheline as sp0.  We use ss1 to cache the value in
254          * MSR_IA32_SYSENTER_CS.  When we context switch
255          * MSR_IA32_SYSENTER_CS, we first check if the new value being
256          * written matches ss1, and, if it's not, then we wrmsr the new
257          * value and update ss1.
258          *
259          * The only reason we context switch MSR_IA32_SYSENTER_CS is
260          * that we set it to zero in vm86 tasks to avoid corrupting the
261          * stack if we were to go through the sysenter path from vm86
262          * mode.
263          */
264         unsigned short          ss1;    /* MSR_IA32_SYSENTER_CS */
265
266         unsigned short          __ss1h;
267         unsigned long           sp2;
268         unsigned short          ss2, __ss2h;
269         unsigned long           __cr3;
270         unsigned long           ip;
271         unsigned long           flags;
272         unsigned long           ax;
273         unsigned long           cx;
274         unsigned long           dx;
275         unsigned long           bx;
276         unsigned long           sp;
277         unsigned long           bp;
278         unsigned long           si;
279         unsigned long           di;
280         unsigned short          es, __esh;
281         unsigned short          cs, __csh;
282         unsigned short          ss, __ssh;
283         unsigned short          ds, __dsh;
284         unsigned short          fs, __fsh;
285         unsigned short          gs, __gsh;
286         unsigned short          ldt, __ldth;
287         unsigned short          trace;
288         unsigned short          io_bitmap_base;
289
290 } __attribute__((packed));
291 #else
292 struct x86_hw_tss {
293         u32                     reserved1;
294         u64                     sp0;
295         u64                     sp1;
296
297         /*
298          * Since Linux does not use ring 2, the 'sp2' slot is unused by
299          * hardware.  entry_SYSCALL_64 uses it as scratch space to stash
300          * the user RSP value.
301          */
302         u64                     sp2;
303
304         u64                     reserved2;
305         u64                     ist[7];
306         u32                     reserved3;
307         u32                     reserved4;
308         u16                     reserved5;
309         u16                     io_bitmap_base;
310
311 } __attribute__((packed));
312 #endif
313
314 /*
315  * IO-bitmap sizes:
316  */
317 #define IO_BITMAP_BITS                  65536
318 #define IO_BITMAP_BYTES                 (IO_BITMAP_BITS / BITS_PER_BYTE)
319 #define IO_BITMAP_LONGS                 (IO_BITMAP_BYTES / sizeof(long))
320
321 #define IO_BITMAP_OFFSET_VALID_MAP                              \
322         (offsetof(struct tss_struct, io_bitmap.bitmap) -        \
323          offsetof(struct tss_struct, x86_tss))
324
325 #define IO_BITMAP_OFFSET_VALID_ALL                              \
326         (offsetof(struct tss_struct, io_bitmap.mapall) -        \
327          offsetof(struct tss_struct, x86_tss))
328
329 #ifdef CONFIG_X86_IOPL_IOPERM
330 /*
331  * sizeof(unsigned long) coming from an extra "long" at the end of the
332  * iobitmap. The limit is inclusive, i.e. the last valid byte.
333  */
334 # define __KERNEL_TSS_LIMIT     \
335         (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
336          sizeof(unsigned long) - 1)
337 #else
338 # define __KERNEL_TSS_LIMIT     \
339         (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
340 #endif
341
342 /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
343 #define IO_BITMAP_OFFSET_INVALID        (__KERNEL_TSS_LIMIT + 1)
344
345 struct entry_stack {
346         char    stack[PAGE_SIZE];
347 };
348
349 struct entry_stack_page {
350         struct entry_stack stack;
351 } __aligned(PAGE_SIZE);
352
353 /*
354  * All IO bitmap related data stored in the TSS:
355  */
356 struct x86_io_bitmap {
357         /* The sequence number of the last active bitmap. */
358         u64                     prev_sequence;
359
360         /*
361          * Store the dirty size of the last io bitmap offender. The next
362          * one will have to do the cleanup as the switch out to a non io
363          * bitmap user will just set x86_tss.io_bitmap_base to a value
364          * outside of the TSS limit. So for sane tasks there is no need to
365          * actually touch the io_bitmap at all.
366          */
367         unsigned int            prev_max;
368
369         /*
370          * The extra 1 is there because the CPU will access an
371          * additional byte beyond the end of the IO permission
372          * bitmap. The extra byte must be all 1 bits, and must
373          * be within the limit.
374          */
375         unsigned long           bitmap[IO_BITMAP_LONGS + 1];
376
377         /*
378          * Special I/O bitmap to emulate IOPL(3). All bytes zero,
379          * except the additional byte at the end.
380          */
381         unsigned long           mapall[IO_BITMAP_LONGS + 1];
382 };
383
384 struct tss_struct {
385         /*
386          * The fixed hardware portion.  This must not cross a page boundary
387          * at risk of violating the SDM's advice and potentially triggering
388          * errata.
389          */
390         struct x86_hw_tss       x86_tss;
391
392         struct x86_io_bitmap    io_bitmap;
393 } __aligned(PAGE_SIZE);
394
395 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
396
397 /* Per CPU interrupt stacks */
398 struct irq_stack {
399         char            stack[IRQ_STACK_SIZE];
400 } __aligned(IRQ_STACK_SIZE);
401
402 #ifdef CONFIG_X86_64
403 struct fixed_percpu_data {
404         /*
405          * GCC hardcodes the stack canary as %gs:40.  Since the
406          * irq_stack is the object at %gs:0, we reserve the bottom
407          * 48 bytes of the irq stack for the canary.
408          *
409          * Once we are willing to require -mstack-protector-guard-symbol=
410          * support for x86_64 stackprotector, we can get rid of this.
411          */
412         char            gs_base[40];
413         unsigned long   stack_canary;
414 };
415
416 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
417 DECLARE_INIT_PER_CPU(fixed_percpu_data);
418
419 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
420 {
421         return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
422 }
423
424 extern asmlinkage void entry_SYSCALL32_ignore(void);
425
426 /* Save actual FS/GS selectors and bases to current->thread */
427 void current_save_fsgs(void);
428 #else   /* X86_64 */
429 #ifdef CONFIG_STACKPROTECTOR
430 DECLARE_PER_CPU(unsigned long, __stack_chk_guard);
431 #endif
432 #endif  /* !X86_64 */
433
434 struct perf_event;
435
436 struct thread_struct {
437         /* Cached TLS descriptors: */
438         struct desc_struct      tls_array[GDT_ENTRY_TLS_ENTRIES];
439 #ifdef CONFIG_X86_32
440         unsigned long           sp0;
441 #endif
442         unsigned long           sp;
443 #ifdef CONFIG_X86_32
444         unsigned long           sysenter_cs;
445 #else
446         unsigned short          es;
447         unsigned short          ds;
448         unsigned short          fsindex;
449         unsigned short          gsindex;
450 #endif
451
452 #ifdef CONFIG_X86_64
453         unsigned long           fsbase;
454         unsigned long           gsbase;
455 #else
456         /*
457          * XXX: this could presumably be unsigned short.  Alternatively,
458          * 32-bit kernels could be taught to use fsindex instead.
459          */
460         unsigned long fs;
461         unsigned long gs;
462 #endif
463
464         /* Save middle states of ptrace breakpoints */
465         struct perf_event       *ptrace_bps[HBP_NUM];
466         /* Debug status used for traps, single steps, etc... */
467         unsigned long           virtual_dr6;
468         /* Keep track of the exact dr7 value set by the user */
469         unsigned long           ptrace_dr7;
470         /* Fault info: */
471         unsigned long           cr2;
472         unsigned long           trap_nr;
473         unsigned long           error_code;
474 #ifdef CONFIG_VM86
475         /* Virtual 86 mode info */
476         struct vm86             *vm86;
477 #endif
478         /* IO permissions: */
479         struct io_bitmap        *io_bitmap;
480
481         /*
482          * IOPL. Privilege level dependent I/O permission which is
483          * emulated via the I/O bitmap to prevent user space from disabling
484          * interrupts.
485          */
486         unsigned long           iopl_emul;
487
488         unsigned int            iopl_warn:1;
489
490         /*
491          * Protection Keys Register for Userspace.  Loaded immediately on
492          * context switch. Store it in thread_struct to avoid a lookup in
493          * the tasks's FPU xstate buffer. This value is only valid when a
494          * task is scheduled out. For 'current' the authoritative source of
495          * PKRU is the hardware itself.
496          */
497         u32                     pkru;
498
499 #ifdef CONFIG_X86_USER_SHADOW_STACK
500         unsigned long           features;
501         unsigned long           features_locked;
502
503         struct thread_shstk     shstk;
504 #endif
505
506         /* Floating point and extended processor state */
507         struct fpu              fpu;
508         /*
509          * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
510          * the end.
511          */
512 };
513
514 extern void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size);
515
516 static inline void arch_thread_struct_whitelist(unsigned long *offset,
517                                                 unsigned long *size)
518 {
519         fpu_thread_struct_whitelist(offset, size);
520 }
521
522 static inline void
523 native_load_sp0(unsigned long sp0)
524 {
525         this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
526 }
527
528 static __always_inline void native_swapgs(void)
529 {
530 #ifdef CONFIG_X86_64
531         asm volatile("swapgs" ::: "memory");
532 #endif
533 }
534
535 static __always_inline unsigned long current_top_of_stack(void)
536 {
537         /*
538          *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
539          *  and around vm86 mode and sp0 on x86_64 is special because of the
540          *  entry trampoline.
541          */
542         if (IS_ENABLED(CONFIG_USE_X86_SEG_SUPPORT))
543                 return this_cpu_read_const(const_pcpu_hot.top_of_stack);
544
545         return this_cpu_read_stable(pcpu_hot.top_of_stack);
546 }
547
548 static __always_inline bool on_thread_stack(void)
549 {
550         return (unsigned long)(current_top_of_stack() -
551                                current_stack_pointer) < THREAD_SIZE;
552 }
553
554 #ifdef CONFIG_PARAVIRT_XXL
555 #include <asm/paravirt.h>
556 #else
557
558 static inline void load_sp0(unsigned long sp0)
559 {
560         native_load_sp0(sp0);
561 }
562
563 #endif /* CONFIG_PARAVIRT_XXL */
564
565 unsigned long __get_wchan(struct task_struct *p);
566
567 extern void select_idle_routine(void);
568 extern void amd_e400_c1e_apic_setup(void);
569
570 extern unsigned long            boot_option_idle_override;
571
572 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
573                          IDLE_POLL};
574
575 extern void enable_sep_cpu(void);
576
577
578 /* Defined in head.S */
579 extern struct desc_ptr          early_gdt_descr;
580
581 extern void switch_gdt_and_percpu_base(int);
582 extern void load_direct_gdt(int);
583 extern void load_fixmap_gdt(int);
584 extern void cpu_init(void);
585 extern void cpu_init_exception_handling(void);
586 extern void cr4_init(void);
587
588 extern void set_task_blockstep(struct task_struct *task, bool on);
589
590 /* Boot loader type from the setup header: */
591 extern int                      bootloader_type;
592 extern int                      bootloader_version;
593
594 extern char                     ignore_fpu_irq;
595
596 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
597 #define ARCH_HAS_PREFETCHW
598
599 #ifdef CONFIG_X86_32
600 # define BASE_PREFETCH          ""
601 # define ARCH_HAS_PREFETCH
602 #else
603 # define BASE_PREFETCH          "prefetcht0 %1"
604 #endif
605
606 /*
607  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
608  *
609  * It's not worth to care about 3dnow prefetches for the K6
610  * because they are microcoded there and very slow.
611  */
612 static inline void prefetch(const void *x)
613 {
614         alternative_input(BASE_PREFETCH, "prefetchnta %1",
615                           X86_FEATURE_XMM,
616                           "m" (*(const char *)x));
617 }
618
619 /*
620  * 3dnow prefetch to get an exclusive cache line.
621  * Useful for spinlocks to avoid one state transition in the
622  * cache coherency protocol:
623  */
624 static __always_inline void prefetchw(const void *x)
625 {
626         alternative_input(BASE_PREFETCH, "prefetchw %1",
627                           X86_FEATURE_3DNOWPREFETCH,
628                           "m" (*(const char *)x));
629 }
630
631 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
632                            TOP_OF_KERNEL_STACK_PADDING)
633
634 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
635
636 #define task_pt_regs(task) \
637 ({                                                                      \
638         unsigned long __ptr = (unsigned long)task_stack_page(task);     \
639         __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;             \
640         ((struct pt_regs *)__ptr) - 1;                                  \
641 })
642
643 #ifdef CONFIG_X86_32
644 #define INIT_THREAD  {                                                    \
645         .sp0                    = TOP_OF_INIT_STACK,                      \
646         .sysenter_cs            = __KERNEL_CS,                            \
647 }
648
649 #define KSTK_ESP(task)          (task_pt_regs(task)->sp)
650
651 #else
652 extern unsigned long __top_init_kernel_stack[];
653
654 #define INIT_THREAD {                                                   \
655         .sp     = (unsigned long)&__top_init_kernel_stack,              \
656 }
657
658 extern unsigned long KSTK_ESP(struct task_struct *task);
659
660 #endif /* CONFIG_X86_64 */
661
662 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
663                                                unsigned long new_sp);
664
665 /*
666  * This decides where the kernel will search for a free chunk of vm
667  * space during mmap's.
668  */
669 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
670 #define TASK_UNMAPPED_BASE              __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
671
672 #define KSTK_EIP(task)          (task_pt_regs(task)->ip)
673
674 /* Get/set a process' ability to use the timestamp counter instruction */
675 #define GET_TSC_CTL(adr)        get_tsc_mode((adr))
676 #define SET_TSC_CTL(val)        set_tsc_mode((val))
677
678 extern int get_tsc_mode(unsigned long adr);
679 extern int set_tsc_mode(unsigned int val);
680
681 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
682
683 static inline u32 per_cpu_llc_id(unsigned int cpu)
684 {
685         return per_cpu(cpu_info.topo.llc_id, cpu);
686 }
687
688 static inline u32 per_cpu_l2c_id(unsigned int cpu)
689 {
690         return per_cpu(cpu_info.topo.l2c_id, cpu);
691 }
692
693 #ifdef CONFIG_CPU_SUP_AMD
694 extern u32 amd_get_highest_perf(void);
695 extern void amd_clear_divider(void);
696 extern void amd_check_microcode(void);
697 #else
698 static inline u32 amd_get_highest_perf(void)            { return 0; }
699 static inline void amd_clear_divider(void)              { }
700 static inline void amd_check_microcode(void)            { }
701 #endif
702
703 extern unsigned long arch_align_stack(unsigned long sp);
704 void free_init_pages(const char *what, unsigned long begin, unsigned long end);
705 extern void free_kernel_image_pages(const char *what, void *begin, void *end);
706
707 void default_idle(void);
708 #ifdef  CONFIG_XEN
709 bool xen_set_default_idle(void);
710 #else
711 #define xen_set_default_idle 0
712 #endif
713
714 void __noreturn stop_this_cpu(void *dummy);
715 void microcode_check(struct cpuinfo_x86 *prev_info);
716 void store_cpu_caps(struct cpuinfo_x86 *info);
717
718 enum l1tf_mitigations {
719         L1TF_MITIGATION_OFF,
720         L1TF_MITIGATION_FLUSH_NOWARN,
721         L1TF_MITIGATION_FLUSH,
722         L1TF_MITIGATION_FLUSH_NOSMT,
723         L1TF_MITIGATION_FULL,
724         L1TF_MITIGATION_FULL_FORCE
725 };
726
727 extern enum l1tf_mitigations l1tf_mitigation;
728
729 enum mds_mitigations {
730         MDS_MITIGATION_OFF,
731         MDS_MITIGATION_FULL,
732         MDS_MITIGATION_VMWERV,
733 };
734
735 extern bool gds_ucode_mitigated(void);
736
737 /*
738  * Make previous memory operations globally visible before
739  * a WRMSR.
740  *
741  * MFENCE makes writes visible, but only affects load/store
742  * instructions.  WRMSR is unfortunately not a load/store
743  * instruction and is unaffected by MFENCE.  The LFENCE ensures
744  * that the WRMSR is not reordered.
745  *
746  * Most WRMSRs are full serializing instructions themselves and
747  * do not require this barrier.  This is only required for the
748  * IA32_TSC_DEADLINE and X2APIC MSRs.
749  */
750 static inline void weak_wrmsr_fence(void)
751 {
752         alternative("mfence; lfence", "", ALT_NOT(X86_FEATURE_APIC_MSRS_FENCE));
753 }
754
755 #endif /* _ASM_X86_PROCESSOR_H */
This page took 0.074572 seconds and 4 git commands to generate.