1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
5 #include "ice_vf_lib_private.h"
9 #include "ice_dcb_lib.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
18 * ice_free_vf_entries - Free all VF entries from the hash table
19 * @pf: pointer to the PF structure
21 * Iterate over the VF hash table, removing and releasing all VF entries.
22 * Called during VF teardown or as cleanup during failed VF initialization.
24 static void ice_free_vf_entries(struct ice_pf *pf)
26 struct ice_vfs *vfs = &pf->vfs;
27 struct hlist_node *tmp;
31 /* Remove all VFs from the hash table and release their main
32 * reference. Once all references to the VF are dropped, ice_put_vf()
33 * will call ice_release_vf which will remove the VF memory.
35 lockdep_assert_held(&vfs->table_lock);
37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 hash_del_rcu(&vf->entry);
44 * ice_free_vf_res - Free a VF's resources
45 * @vf: pointer to the VF info
47 static void ice_free_vf_res(struct ice_vf *vf)
49 struct ice_pf *pf = vf->pf;
50 int i, last_vector_idx;
52 /* First, disable VF's configuration API to prevent OS from
53 * accessing the VF's VSI after it's freed or invalidated.
55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
57 /* free VF control VSI */
58 if (vf->ctrl_vsi_idx != ICE_NO_VSI)
59 ice_vf_ctrl_vsi_release(vf);
61 /* free VSI and disconnect it from the parent uplink */
62 if (vf->lan_vsi_idx != ICE_NO_VSI) {
63 ice_vf_vsi_release(vf);
67 last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1;
69 /* clear VF MDD event information */
70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
73 /* Disable interrupts so that VF starts in a known state */
74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
78 /* reset some of the state variables keeping track of the resources */
79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
85 * @vf: pointer to the VF structure
87 static void ice_dis_vf_mappings(struct ice_vf *vf)
89 struct ice_pf *pf = vf->pf;
96 vsi = ice_get_vf_vsi(vf);
100 dev = ice_pf_to_dev(pf);
101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
104 first = vf->first_vector_idx;
105 last = first + pf->vfs.num_msix_per - 1;
106 for (v = first; v <= last; v++) {
109 reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
110 GLINT_VECT2FUNC_IS_PF_M) |
111 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
112 GLINT_VECT2FUNC_PF_NUM_M));
113 wr32(hw, GLINT_VECT2FUNC(v), reg);
116 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
117 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
119 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
121 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
122 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
124 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
128 * ice_sriov_free_msix_res - Reset/free any used MSIX resources
129 * @pf: pointer to the PF structure
131 * Since no MSIX entries are taken from the pf->irq_tracker then just clear
132 * the pf->sriov_base_vector.
134 * Returns 0 on success, and -EINVAL on error.
136 static int ice_sriov_free_msix_res(struct ice_pf *pf)
141 pf->sriov_base_vector = 0;
147 * ice_free_vfs - Free all VFs
148 * @pf: pointer to the PF structure
150 void ice_free_vfs(struct ice_pf *pf)
152 struct device *dev = ice_pf_to_dev(pf);
153 struct ice_vfs *vfs = &pf->vfs;
154 struct ice_hw *hw = &pf->hw;
158 if (!ice_has_vfs(pf))
161 while (test_and_set_bit(ICE_VF_DIS, pf->state))
162 usleep_range(1000, 2000);
164 /* Disable IOV before freeing resources. This lets any VF drivers
165 * running in the host get themselves cleaned up before we yank
166 * the carpet out from underneath their feet.
168 if (!pci_vfs_assigned(pf->pdev))
169 pci_disable_sriov(pf->pdev);
171 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
173 mutex_lock(&vfs->table_lock);
175 ice_eswitch_release(pf);
177 ice_for_each_vf(pf, bkt, vf) {
178 mutex_lock(&vf->cfg_lock);
182 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
183 /* disable VF qp mappings and set VF disable state */
184 ice_dis_vf_mappings(vf);
185 set_bit(ICE_VF_STATE_DIS, vf->vf_states);
189 if (!pci_vfs_assigned(pf->pdev)) {
190 u32 reg_idx, bit_idx;
192 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
193 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
194 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
197 /* clear malicious info since the VF is getting released */
198 list_del(&vf->mbx_info.list_entry);
200 mutex_unlock(&vf->cfg_lock);
203 if (ice_sriov_free_msix_res(pf))
204 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
206 vfs->num_qps_per = 0;
207 ice_free_vf_entries(pf);
209 mutex_unlock(&vfs->table_lock);
211 clear_bit(ICE_VF_DIS, pf->state);
212 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
216 * ice_vf_vsi_setup - Set up a VF VSI
217 * @vf: VF to setup VSI for
219 * Returns pointer to the successfully allocated VSI struct on success,
220 * otherwise returns NULL on failure.
222 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
224 struct ice_vsi_cfg_params params = {};
225 struct ice_pf *pf = vf->pf;
228 params.type = ICE_VSI_VF;
229 params.pi = ice_vf_get_port_info(vf);
231 params.flags = ICE_VSI_FLAG_INIT;
233 vsi = ice_vsi_setup(pf, ¶ms);
236 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
237 ice_vf_invalidate_vsi(vf);
241 vf->lan_vsi_idx = vsi->idx;
242 vf->lan_vsi_num = vsi->vsi_num;
248 * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
249 * @pf: pointer to PF structure
250 * @vf: pointer to VF that the first MSIX vector index is being calculated for
252 * This returns the first MSIX vector index in PF space that is used by this VF.
253 * This index is used when accessing PF relative registers such as
254 * GLINT_VECT2FUNC and GLINT_DYN_CTL.
255 * This will always be the OICR index in the AVF driver so any functionality
256 * using vf->first_vector_idx for queue configuration will have to increment by
257 * 1 to avoid meddling with the OICR index.
259 static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
261 return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per;
265 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
266 * @vf: VF to enable MSIX mappings for
268 * Some of the registers need to be indexed/configured using hardware global
269 * device values and other registers need 0-based values, which represent PF
272 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
274 int device_based_first_msix, device_based_last_msix;
275 int pf_based_first_msix, pf_based_last_msix, v;
276 struct ice_pf *pf = vf->pf;
277 int device_based_vf_id;
282 pf_based_first_msix = vf->first_vector_idx;
283 pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1;
285 device_based_first_msix = pf_based_first_msix +
286 pf->hw.func_caps.common_cap.msix_vector_first_id;
287 device_based_last_msix =
288 (device_based_first_msix + pf->vfs.num_msix_per) - 1;
289 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
291 reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
292 VPINT_ALLOC_FIRST_M) |
293 ((device_based_last_msix << VPINT_ALLOC_LAST_S) &
294 VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
295 wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
297 reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
298 & VPINT_ALLOC_PCI_FIRST_M) |
299 ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
300 VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
301 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
303 /* map the interrupts to its functions */
304 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
305 reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
306 GLINT_VECT2FUNC_VF_NUM_M) |
307 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
308 GLINT_VECT2FUNC_PF_NUM_M));
309 wr32(hw, GLINT_VECT2FUNC(v), reg);
312 /* Map mailbox interrupt to VF MSI-X vector 0 */
313 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
317 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
318 * @vf: VF to enable the mappings for
319 * @max_txq: max Tx queues allowed on the VF's VSI
320 * @max_rxq: max Rx queues allowed on the VF's VSI
322 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
324 struct device *dev = ice_pf_to_dev(vf->pf);
325 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
326 struct ice_hw *hw = &vf->pf->hw;
332 /* set regardless of mapping mode */
333 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
335 /* VF Tx queues allocation */
336 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
337 /* set the VF PF Tx queue range
338 * VFNUMQ value should be set to (number of queues - 1). A value
339 * of 0 means 1 queue and a value of 255 means 256 queues
341 reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
342 VPLAN_TX_QBASE_VFFIRSTQ_M) |
343 (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
344 VPLAN_TX_QBASE_VFNUMQ_M));
345 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
347 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
350 /* set regardless of mapping mode */
351 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
353 /* VF Rx queues allocation */
354 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
355 /* set the VF PF Rx queue range
356 * VFNUMQ value should be set to (number of queues - 1). A value
357 * of 0 means 1 queue and a value of 255 means 256 queues
359 reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
360 VPLAN_RX_QBASE_VFFIRSTQ_M) |
361 (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
362 VPLAN_RX_QBASE_VFNUMQ_M));
363 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
365 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
370 * ice_ena_vf_mappings - enable VF MSIX and queue mapping
371 * @vf: pointer to the VF structure
373 static void ice_ena_vf_mappings(struct ice_vf *vf)
375 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
380 ice_ena_vf_msix_mappings(vf);
381 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
385 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
386 * @vf: VF to calculate the register index for
387 * @q_vector: a q_vector associated to the VF
389 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
393 if (!vf || !q_vector)
398 /* always add one to account for the OICR being the first MSIX */
399 return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id +
404 * ice_sriov_set_msix_res - Set any used MSIX resources
405 * @pf: pointer to PF structure
406 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
408 * This function allows SR-IOV resources to be taken from the end of the PF's
409 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
410 * just set the pf->sriov_base_vector and return success.
412 * If there are not enough resources available, return an error. This should
413 * always be caught by ice_set_per_vf_res().
415 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
416 * in the PF's space available for SR-IOV.
418 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
420 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
421 int vectors_used = ice_get_max_used_msix_vector(pf);
422 int sriov_base_vector;
424 sriov_base_vector = total_vectors - num_msix_needed;
426 /* make sure we only grab irq_tracker entries from the list end and
427 * that we have enough available MSIX vectors
429 if (sriov_base_vector < vectors_used)
432 pf->sriov_base_vector = sriov_base_vector;
438 * ice_set_per_vf_res - check if vectors and queues are available
439 * @pf: pointer to the PF structure
440 * @num_vfs: the number of SR-IOV VFs being configured
442 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
443 * get more vectors and can enable more queues per VF. Note that this does not
444 * grab any vectors from the SW pool already allocated. Also note, that all
445 * vector counts include one for each VF's miscellaneous interrupt vector
448 * Minimum VFs - 2 vectors, 1 queue pair
449 * Small VFs - 5 vectors, 4 queue pairs
450 * Medium VFs - 17 vectors, 16 queue pairs
452 * Second, determine number of queue pairs per VF by starting with a pre-defined
453 * maximum each VF supports. If this is not possible, then we adjust based on
454 * queue pairs available on the device.
456 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
457 * by each VF during VF initialization and reset.
459 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
461 int vectors_used = ice_get_max_used_msix_vector(pf);
462 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
463 int msix_avail_per_vf, msix_avail_for_sriov;
464 struct device *dev = ice_pf_to_dev(pf);
467 lockdep_assert_held(&pf->vfs.table_lock);
472 /* determine MSI-X resources per VF */
473 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
475 msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
476 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
477 num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
478 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
479 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
480 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
481 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
482 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
483 num_msix_per_vf = ICE_MIN_INTR_PER_VF;
485 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
486 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
491 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
492 ICE_MAX_RSS_QS_PER_VF);
493 avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
496 else if (num_txq > avail_qs)
497 num_txq = rounddown_pow_of_two(avail_qs);
499 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
500 ICE_MAX_RSS_QS_PER_VF);
501 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
504 else if (num_rxq > avail_qs)
505 num_rxq = rounddown_pow_of_two(avail_qs);
507 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
508 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
509 ICE_MIN_QS_PER_VF, num_vfs);
513 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
515 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
520 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */
521 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
522 pf->vfs.num_msix_per = num_msix_per_vf;
523 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
524 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
530 * ice_init_vf_vsi_res - initialize/setup VF VSI resources
531 * @vf: VF to initialize/setup the VSI for
533 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
534 * VF VSI's broadcast filter and is only used during initial VF creation.
536 static int ice_init_vf_vsi_res(struct ice_vf *vf)
538 struct ice_pf *pf = vf->pf;
542 vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
544 vsi = ice_vf_vsi_setup(vf);
548 err = ice_vf_init_host_cfg(vf, vsi);
555 ice_vf_vsi_release(vf);
560 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
561 * @pf: PF the VFs are associated with
563 static int ice_start_vfs(struct ice_pf *pf)
565 struct ice_hw *hw = &pf->hw;
566 unsigned int bkt, it_cnt;
570 lockdep_assert_held(&pf->vfs.table_lock);
573 ice_for_each_vf(pf, bkt, vf) {
574 vf->vf_ops->clear_reset_trigger(vf);
576 retval = ice_init_vf_vsi_res(vf);
578 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
583 set_bit(ICE_VF_STATE_INIT, vf->vf_states);
584 ice_ena_vf_mappings(vf);
585 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
593 ice_for_each_vf(pf, bkt, vf) {
597 ice_dis_vf_mappings(vf);
598 ice_vf_vsi_release(vf);
606 * ice_sriov_free_vf - Free VF memory after all references are dropped
607 * @vf: pointer to VF to free
609 * Called by ice_put_vf through ice_release_vf once the last reference to a VF
610 * structure has been dropped.
612 static void ice_sriov_free_vf(struct ice_vf *vf)
614 mutex_destroy(&vf->cfg_lock);
620 * ice_sriov_clear_reset_state - clears VF Reset status register
621 * @vf: the vf to configure
623 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
625 struct ice_hw *hw = &vf->pf->hw;
627 /* Clear the reset status register so that VF immediately sees that
628 * the device is resetting, even if hardware hasn't yet gotten around
629 * to clearing VFGEN_RSTAT for us.
631 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
635 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
636 * @vf: the vf to configure
638 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
640 struct ice_pf *pf = vf->pf;
642 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
643 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
647 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
648 * @vf: pointer to VF structure
649 * @is_vflr: true if reset occurred due to VFLR
651 * Trigger and cleanup after a VF reset for a SR-IOV VF.
653 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
655 struct ice_pf *pf = vf->pf;
656 u32 reg, reg_idx, bit_idx;
657 unsigned int vf_abs_id, i;
661 dev = ice_pf_to_dev(pf);
663 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
665 /* In the case of a VFLR, HW has already reset the VF and we just need
666 * to clean up. Otherwise we must first trigger the reset using the
670 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
671 reg |= VPGEN_VFRTRIG_VFSWR_M;
672 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
675 /* clear the VFLR bit in GLGEN_VFLRSTAT */
676 reg_idx = (vf_abs_id) / 32;
677 bit_idx = (vf_abs_id) % 32;
678 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
681 wr32(hw, PF_PCI_CIAA,
682 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
683 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
684 reg = rd32(hw, PF_PCI_CIAD);
685 /* no transactions pending so stop polling */
686 if ((reg & VF_TRANS_PENDING_M) == 0)
689 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
690 udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
695 * ice_sriov_poll_reset_status - poll SRIOV VF reset status
696 * @vf: pointer to VF structure
698 * Returns true when reset is successful, else returns false
700 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
702 struct ice_pf *pf = vf->pf;
706 for (i = 0; i < 10; i++) {
707 /* VF reset requires driver to first reset the VF and then
708 * poll the status register to make sure that the reset
709 * completed successfully.
711 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
712 if (reg & VPGEN_VFRSTAT_VFRD_M)
715 /* only sleep if the reset is not done */
716 usleep_range(10, 20);
722 * ice_sriov_clear_reset_trigger - enable VF to access hardware
723 * @vf: VF to enabled hardware access for
725 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
727 struct ice_hw *hw = &vf->pf->hw;
730 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
731 reg &= ~VPGEN_VFRTRIG_VFSWR_M;
732 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
737 * ice_sriov_create_vsi - Create a new VSI for a VF
738 * @vf: VF to create the VSI for
740 * This is called by ice_vf_recreate_vsi to create the new VSI after the old
741 * VSI has been released.
743 static int ice_sriov_create_vsi(struct ice_vf *vf)
747 vsi = ice_vf_vsi_setup(vf);
755 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
756 * @vf: VF to perform tasks on
758 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
760 ice_ena_vf_mappings(vf);
761 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
764 static const struct ice_vf_ops ice_sriov_vf_ops = {
765 .reset_type = ICE_VF_RESET,
766 .free = ice_sriov_free_vf,
767 .clear_reset_state = ice_sriov_clear_reset_state,
768 .clear_mbx_register = ice_sriov_clear_mbx_register,
769 .trigger_reset_register = ice_sriov_trigger_reset_register,
770 .poll_reset_status = ice_sriov_poll_reset_status,
771 .clear_reset_trigger = ice_sriov_clear_reset_trigger,
773 .create_vsi = ice_sriov_create_vsi,
774 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
778 * ice_create_vf_entries - Allocate and insert VF entries
779 * @pf: pointer to the PF structure
780 * @num_vfs: the number of VFs to allocate
782 * Allocate new VF entries and insert them into the hash table. Set some
783 * basic default fields for initializing the new VFs.
785 * After this function exits, the hash table will have num_vfs entries
788 * Returns 0 on success or an integer error code on failure.
790 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
792 struct ice_vfs *vfs = &pf->vfs;
797 lockdep_assert_held(&vfs->table_lock);
799 for (vf_id = 0; vf_id < num_vfs; vf_id++) {
800 vf = kzalloc(sizeof(*vf), GFP_KERNEL);
803 goto err_free_entries;
805 kref_init(&vf->refcnt);
810 /* set sriov vf ops for VFs created during SRIOV flow */
811 vf->vf_ops = &ice_sriov_vf_ops;
813 ice_initialize_vf_entry(vf);
815 vf->vf_sw_id = pf->first_sw;
817 hash_add_rcu(vfs->table, &vf->entry, vf_id);
823 ice_free_vf_entries(pf);
828 * ice_ena_vfs - enable VFs so they are ready to be used
829 * @pf: pointer to the PF structure
830 * @num_vfs: number of VFs to enable
832 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
834 struct device *dev = ice_pf_to_dev(pf);
835 struct ice_hw *hw = &pf->hw;
838 /* Disable global interrupt 0 so we don't try to handle the VFLR. */
839 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
840 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
841 set_bit(ICE_OICR_INTR_DIS, pf->state);
844 ret = pci_enable_sriov(pf->pdev, num_vfs);
846 goto err_unroll_intr;
848 mutex_lock(&pf->vfs.table_lock);
850 ret = ice_set_per_vf_res(pf, num_vfs);
852 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
854 goto err_unroll_sriov;
857 ret = ice_create_vf_entries(pf, num_vfs);
859 dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
861 goto err_unroll_sriov;
864 ret = ice_start_vfs(pf);
866 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
868 goto err_unroll_vf_entries;
871 clear_bit(ICE_VF_DIS, pf->state);
873 ret = ice_eswitch_configure(pf);
875 dev_err(dev, "Failed to configure eswitch, err %d\n", ret);
876 goto err_unroll_sriov;
879 /* rearm global interrupts */
880 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
881 ice_irq_dynamic_ena(hw, NULL, NULL);
883 mutex_unlock(&pf->vfs.table_lock);
887 err_unroll_vf_entries:
888 ice_free_vf_entries(pf);
890 mutex_unlock(&pf->vfs.table_lock);
891 pci_disable_sriov(pf->pdev);
893 /* rearm interrupts here */
894 ice_irq_dynamic_ena(hw, NULL, NULL);
895 clear_bit(ICE_OICR_INTR_DIS, pf->state);
900 * ice_pci_sriov_ena - Enable or change number of VFs
901 * @pf: pointer to the PF structure
902 * @num_vfs: number of VFs to allocate
904 * Returns 0 on success and negative on failure
906 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
908 struct device *dev = ice_pf_to_dev(pf);
916 if (num_vfs > pf->vfs.num_supported) {
917 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
918 num_vfs, pf->vfs.num_supported);
922 dev_info(dev, "Enabling %d VFs\n", num_vfs);
923 err = ice_ena_vfs(pf, num_vfs);
925 dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
929 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
934 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
935 * @pf: PF to enabled SR-IOV on
937 static int ice_check_sriov_allowed(struct ice_pf *pf)
939 struct device *dev = ice_pf_to_dev(pf);
941 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
942 dev_err(dev, "This device is not capable of SR-IOV\n");
946 if (ice_is_safe_mode(pf)) {
947 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
951 if (!ice_pf_state_is_nominal(pf)) {
952 dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
960 * ice_sriov_configure - Enable or change number of VFs via sysfs
961 * @pdev: pointer to a pci_dev structure
962 * @num_vfs: number of VFs to allocate or 0 to free VFs
964 * This function is called when the user updates the number of VFs in sysfs. On
965 * success return whatever num_vfs was set to by the caller. Return negative on
968 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
970 struct ice_pf *pf = pci_get_drvdata(pdev);
971 struct device *dev = ice_pf_to_dev(pf);
974 err = ice_check_sriov_allowed(pf);
979 if (!pci_vfs_assigned(pdev)) {
984 dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
988 err = ice_pci_sriov_ena(pf, num_vfs);
996 * ice_process_vflr_event - Free VF resources via IRQ calls
997 * @pf: pointer to the PF structure
999 * called from the VFLR IRQ handler to
1000 * free up VF resources and state variables
1002 void ice_process_vflr_event(struct ice_pf *pf)
1004 struct ice_hw *hw = &pf->hw;
1009 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1013 mutex_lock(&pf->vfs.table_lock);
1014 ice_for_each_vf(pf, bkt, vf) {
1015 u32 reg_idx, bit_idx;
1017 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1018 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1019 /* read GLGEN_VFLRSTAT register to find out the flr VFs */
1020 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1021 if (reg & BIT(bit_idx))
1022 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1023 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1025 mutex_unlock(&pf->vfs.table_lock);
1029 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1030 * @pf: PF used to index all VFs
1031 * @pfq: queue index relative to the PF's function space
1033 * If no VF is found who owns the pfq then return NULL, otherwise return a
1034 * pointer to the VF who owns the pfq
1036 * If this function returns non-NULL, it acquires a reference count of the VF
1037 * structure. The caller is responsible for calling ice_put_vf() to drop this
1040 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1046 ice_for_each_vf_rcu(pf, bkt, vf) {
1047 struct ice_vsi *vsi;
1050 vsi = ice_get_vf_vsi(vf);
1054 ice_for_each_rxq(vsi, rxq_idx)
1055 if (vsi->rxq_map[rxq_idx] == pfq) {
1056 struct ice_vf *found;
1058 if (kref_get_unless_zero(&vf->refcnt))
1072 * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1073 * @pf: PF used for conversion
1074 * @globalq: global queue index used to convert to PF space queue index
1076 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1078 return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1082 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1083 * @pf: PF that the LAN overflow event happened on
1084 * @event: structure holding the event information for the LAN overflow event
1086 * Determine if the LAN overflow event was caused by a VF queue. If it was not
1087 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1088 * reset on the offending VF.
1091 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1093 u32 gldcb_rtctq, queue;
1096 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1097 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1099 /* event returns device global Rx queue number */
1100 queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
1101 GLDCB_RTCTQ_RXQNUM_S;
1103 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1107 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1112 * ice_set_vf_spoofchk
1113 * @netdev: network interface device structure
1114 * @vf_id: VF identifier
1115 * @ena: flag to enable or disable feature
1117 * Enable or disable VF spoof checking
1119 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1121 struct ice_netdev_priv *np = netdev_priv(netdev);
1122 struct ice_pf *pf = np->vsi->back;
1123 struct ice_vsi *vf_vsi;
1128 dev = ice_pf_to_dev(pf);
1130 vf = ice_get_vf_by_id(pf, vf_id);
1134 ret = ice_check_vf_ready_for_reset(vf);
1138 vf_vsi = ice_get_vf_vsi(vf);
1140 netdev_err(netdev, "VSI %d for VF %d is null\n",
1141 vf->lan_vsi_idx, vf->vf_id);
1146 if (vf_vsi->type != ICE_VSI_VF) {
1147 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1148 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1153 if (ena == vf->spoofchk) {
1154 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1159 ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1161 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1162 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1173 * @netdev: network interface device structure
1174 * @vf_id: VF identifier
1175 * @ivi: VF configuration structure
1177 * return VF configuration
1180 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1182 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1186 vf = ice_get_vf_by_id(pf, vf_id);
1190 ret = ice_check_vf_ready_for_cfg(vf);
1195 ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1197 /* VF configuration for VLAN and applicable QoS */
1198 ivi->vlan = ice_vf_get_port_vlan_id(vf);
1199 ivi->qos = ice_vf_get_port_vlan_prio(vf);
1200 if (ice_vf_is_port_vlan_ena(vf))
1201 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1203 ivi->trusted = vf->trusted;
1204 ivi->spoofchk = vf->spoofchk;
1205 if (!vf->link_forced)
1206 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1207 else if (vf->link_up)
1208 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1210 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1211 ivi->max_tx_rate = vf->max_tx_rate;
1212 ivi->min_tx_rate = vf->min_tx_rate;
1221 * @netdev: network interface device structure
1222 * @vf_id: VF identifier
1225 * program VF MAC address
1227 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1229 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1233 if (is_multicast_ether_addr(mac)) {
1234 netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1238 vf = ice_get_vf_by_id(pf, vf_id);
1242 /* nothing left to do, unicast MAC already set */
1243 if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1244 ether_addr_equal(vf->hw_lan_addr, mac)) {
1249 ret = ice_check_vf_ready_for_reset(vf);
1253 mutex_lock(&vf->cfg_lock);
1255 /* VF is notified of its new MAC via the PF's response to the
1256 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1258 ether_addr_copy(vf->dev_lan_addr, mac);
1259 ether_addr_copy(vf->hw_lan_addr, mac);
1260 if (is_zero_ether_addr(mac)) {
1261 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1262 vf->pf_set_mac = false;
1263 netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1266 /* PF will add MAC rule for the VF */
1267 vf->pf_set_mac = true;
1268 netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1272 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1273 mutex_unlock(&vf->cfg_lock);
1282 * @netdev: network interface device structure
1283 * @vf_id: VF identifier
1284 * @trusted: Boolean value to enable/disable trusted VF
1286 * Enable or disable a given VF as trusted
1288 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1290 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1294 vf = ice_get_vf_by_id(pf, vf_id);
1298 if (ice_is_eswitch_mode_switchdev(pf)) {
1299 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1303 ret = ice_check_vf_ready_for_reset(vf);
1307 /* Check if already trusted */
1308 if (trusted == vf->trusted) {
1313 mutex_lock(&vf->cfg_lock);
1315 vf->trusted = trusted;
1316 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1317 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1318 vf_id, trusted ? "" : "un");
1320 mutex_unlock(&vf->cfg_lock);
1328 * ice_set_vf_link_state
1329 * @netdev: network interface device structure
1330 * @vf_id: VF identifier
1331 * @link_state: required link state
1333 * Set VF's link state, irrespective of physical link state status
1335 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1337 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1341 vf = ice_get_vf_by_id(pf, vf_id);
1345 ret = ice_check_vf_ready_for_cfg(vf);
1349 switch (link_state) {
1350 case IFLA_VF_LINK_STATE_AUTO:
1351 vf->link_forced = false;
1353 case IFLA_VF_LINK_STATE_ENABLE:
1354 vf->link_forced = true;
1357 case IFLA_VF_LINK_STATE_DISABLE:
1358 vf->link_forced = true;
1359 vf->link_up = false;
1366 ice_vc_notify_vf_link_state(vf);
1374 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1375 * @pf: PF associated with VFs
1377 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1384 ice_for_each_vf_rcu(pf, bkt, vf)
1385 rate += vf->min_tx_rate;
1392 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1393 * @vf: VF trying to configure min_tx_rate
1394 * @min_tx_rate: min Tx rate in Mbps
1396 * Check if the min_tx_rate being passed in will cause oversubscription of total
1397 * min_tx_rate based on the current link speed and all other VFs configured
1400 * Return true if the passed min_tx_rate would cause oversubscription, else
1404 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1406 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1407 int all_vfs_min_tx_rate;
1408 int link_speed_mbps;
1413 link_speed_mbps = ice_get_link_speed_mbps(vsi);
1414 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1416 /* this VF's previous rate is being overwritten */
1417 all_vfs_min_tx_rate -= vf->min_tx_rate;
1419 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1420 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1421 min_tx_rate, vf->vf_id,
1422 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1431 * ice_set_vf_bw - set min/max VF bandwidth
1432 * @netdev: network interface device structure
1433 * @vf_id: VF identifier
1434 * @min_tx_rate: Minimum Tx rate in Mbps
1435 * @max_tx_rate: Maximum Tx rate in Mbps
1438 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1441 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1442 struct ice_vsi *vsi;
1447 dev = ice_pf_to_dev(pf);
1449 vf = ice_get_vf_by_id(pf, vf_id);
1453 ret = ice_check_vf_ready_for_cfg(vf);
1457 vsi = ice_get_vf_vsi(vf);
1463 if (min_tx_rate && ice_is_dcb_active(pf)) {
1464 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1469 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1474 if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1475 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1477 dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1482 vf->min_tx_rate = min_tx_rate;
1485 if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1486 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1488 dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1493 vf->max_tx_rate = max_tx_rate;
1502 * ice_get_vf_stats - populate some stats for the VF
1503 * @netdev: the netdev of the PF
1504 * @vf_id: the host OS identifier (0-255)
1505 * @vf_stats: pointer to the OS memory to be initialized
1507 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1508 struct ifla_vf_stats *vf_stats)
1510 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1511 struct ice_eth_stats *stats;
1512 struct ice_vsi *vsi;
1516 vf = ice_get_vf_by_id(pf, vf_id);
1520 ret = ice_check_vf_ready_for_cfg(vf);
1524 vsi = ice_get_vf_vsi(vf);
1530 ice_update_eth_stats(vsi);
1531 stats = &vsi->eth_stats;
1533 memset(vf_stats, 0, sizeof(*vf_stats));
1535 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1536 stats->rx_multicast;
1537 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1538 stats->tx_multicast;
1539 vf_stats->rx_bytes = stats->rx_bytes;
1540 vf_stats->tx_bytes = stats->tx_bytes;
1541 vf_stats->broadcast = stats->rx_broadcast;
1542 vf_stats->multicast = stats->rx_multicast;
1543 vf_stats->rx_dropped = stats->rx_discards;
1544 vf_stats->tx_dropped = stats->tx_discards;
1552 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1553 * @hw: hardware structure used to check the VLAN mode
1554 * @vlan_proto: VLAN TPID being checked
1556 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1557 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1558 * Mode (SVM), then only ETH_P_8021Q is supported.
1561 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1563 bool is_supported = false;
1565 switch (vlan_proto) {
1567 is_supported = true;
1570 if (ice_is_dvm_ena(hw))
1571 is_supported = true;
1575 return is_supported;
1579 * ice_set_vf_port_vlan
1580 * @netdev: network interface device structure
1581 * @vf_id: VF identifier
1582 * @vlan_id: VLAN ID being set
1583 * @qos: priority setting
1584 * @vlan_proto: VLAN protocol
1586 * program VF Port VLAN ID and/or QoS
1589 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1592 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1593 u16 local_vlan_proto = ntohs(vlan_proto);
1598 dev = ice_pf_to_dev(pf);
1600 if (vlan_id >= VLAN_N_VID || qos > 7) {
1601 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1602 vf_id, vlan_id, qos);
1606 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1607 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1609 return -EPROTONOSUPPORT;
1612 vf = ice_get_vf_by_id(pf, vf_id);
1616 ret = ice_check_vf_ready_for_reset(vf);
1620 if (ice_vf_get_port_vlan_prio(vf) == qos &&
1621 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1622 ice_vf_get_port_vlan_id(vf) == vlan_id) {
1623 /* duplicate request, so just return success */
1624 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1625 vlan_id, qos, local_vlan_proto);
1630 mutex_lock(&vf->cfg_lock);
1632 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1633 if (ice_vf_is_port_vlan_ena(vf))
1634 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1635 vlan_id, qos, local_vlan_proto, vf_id);
1637 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1639 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1640 mutex_unlock(&vf->cfg_lock);
1648 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1649 * @vf: pointer to the VF structure
1651 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1653 struct ice_pf *pf = vf->pf;
1656 dev = ice_pf_to_dev(pf);
1658 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1659 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1661 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1666 * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1667 * @pf: pointer to the PF structure
1669 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1671 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1673 struct device *dev = ice_pf_to_dev(pf);
1674 struct ice_hw *hw = &pf->hw;
1678 /* check that there are pending MDD events to print */
1679 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1682 /* VF MDD event logs are rate limited to one second intervals */
1683 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1686 pf->vfs.last_printed_mdd_jiffies = jiffies;
1688 mutex_lock(&pf->vfs.table_lock);
1689 ice_for_each_vf(pf, bkt, vf) {
1690 /* only print Rx MDD event message if there are new events */
1691 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1692 vf->mdd_rx_events.last_printed =
1693 vf->mdd_rx_events.count;
1694 ice_print_vf_rx_mdd_event(vf);
1697 /* only print Tx MDD event message if there are new events */
1698 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1699 vf->mdd_tx_events.last_printed =
1700 vf->mdd_tx_events.count;
1702 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1703 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1707 mutex_unlock(&pf->vfs.table_lock);
1711 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1712 * @pdev: pointer to a pci_dev structure
1714 * Called when recovering from a PF FLR to restore interrupt capability to
1717 void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
1722 if (!pci_num_vf(pdev))
1725 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1727 struct pci_dev *vfdev;
1729 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
1731 vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
1733 if (vfdev->is_virtfn && vfdev->physfn == pdev)
1734 pci_restore_msi_state(vfdev);
1735 vfdev = pci_get_device(pdev->vendor, vf_id,