]> Git Repo - J-linux.git/blob - fs/udf/super.c
pstore: Remove bogus format string definition
[J-linux.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68         VDS_POS_PRIMARY_VOL_DESC,
69         VDS_POS_UNALLOC_SPACE_DESC,
70         VDS_POS_LOGICAL_VOL_DESC,
71         VDS_POS_IMP_USE_VOL_DESC,
72         VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET         32768
76 #define VSD_MAX_SECTOR_OFFSET           0x800000
77
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96                             struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98                              struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107         struct logicalVolIntegrityDesc *lvid;
108         unsigned int partnum;
109         unsigned int offset;
110
111         if (!UDF_SB(sb)->s_lvid_bh)
112                 return NULL;
113         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114         partnum = le32_to_cpu(lvid->numOfPartitions);
115         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116              offsetof(struct logicalVolIntegrityDesc, impUse)) /
117              (2 * sizeof(uint32_t)) < partnum) {
118                 udf_err(sb, "Logical volume integrity descriptor corrupted "
119                         "(numOfPartitions = %u)!\n", partnum);
120                 return NULL;
121         }
122         /* The offset is to skip freeSpaceTable and sizeTable arrays */
123         offset = partnum * 2 * sizeof(uint32_t);
124         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129                       int flags, const char *dev_name, void *data)
130 {
131         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133
134 static struct file_system_type udf_fstype = {
135         .owner          = THIS_MODULE,
136         .name           = "udf",
137         .mount          = udf_mount,
138         .kill_sb        = kill_block_super,
139         .fs_flags       = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142
143 static struct kmem_cache *udf_inode_cachep;
144
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147         struct udf_inode_info *ei;
148         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149         if (!ei)
150                 return NULL;
151
152         ei->i_unique = 0;
153         ei->i_lenExtents = 0;
154         ei->i_next_alloc_block = 0;
155         ei->i_next_alloc_goal = 0;
156         ei->i_strat4096 = 0;
157         init_rwsem(&ei->i_data_sem);
158         ei->cached_extent.lstart = -1;
159         spin_lock_init(&ei->i_extent_cache_lock);
160
161         return &ei->vfs_inode;
162 }
163
164 static void udf_i_callback(struct rcu_head *head)
165 {
166         struct inode *inode = container_of(head, struct inode, i_rcu);
167         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169
170 static void udf_destroy_inode(struct inode *inode)
171 {
172         call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174
175 static void init_once(void *foo)
176 {
177         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178
179         ei->i_ext.i_data = NULL;
180         inode_init_once(&ei->vfs_inode);
181 }
182
183 static int __init init_inodecache(void)
184 {
185         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186                                              sizeof(struct udf_inode_info),
187                                              0, (SLAB_RECLAIM_ACCOUNT |
188                                                  SLAB_MEM_SPREAD |
189                                                  SLAB_ACCOUNT),
190                                              init_once);
191         if (!udf_inode_cachep)
192                 return -ENOMEM;
193         return 0;
194 }
195
196 static void destroy_inodecache(void)
197 {
198         /*
199          * Make sure all delayed rcu free inodes are flushed before we
200          * destroy cache.
201          */
202         rcu_barrier();
203         kmem_cache_destroy(udf_inode_cachep);
204 }
205
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208         .alloc_inode    = udf_alloc_inode,
209         .destroy_inode  = udf_destroy_inode,
210         .write_inode    = udf_write_inode,
211         .evict_inode    = udf_evict_inode,
212         .put_super      = udf_put_super,
213         .sync_fs        = udf_sync_fs,
214         .statfs         = udf_statfs,
215         .remount_fs     = udf_remount_fs,
216         .show_options   = udf_show_options,
217 };
218
219 struct udf_options {
220         unsigned char novrs;
221         unsigned int blocksize;
222         unsigned int session;
223         unsigned int lastblock;
224         unsigned int anchor;
225         unsigned int flags;
226         umode_t umask;
227         kgid_t gid;
228         kuid_t uid;
229         umode_t fmode;
230         umode_t dmode;
231         struct nls_table *nls_map;
232 };
233
234 static int __init init_udf_fs(void)
235 {
236         int err;
237
238         err = init_inodecache();
239         if (err)
240                 goto out1;
241         err = register_filesystem(&udf_fstype);
242         if (err)
243                 goto out;
244
245         return 0;
246
247 out:
248         destroy_inodecache();
249
250 out1:
251         return err;
252 }
253
254 static void __exit exit_udf_fs(void)
255 {
256         unregister_filesystem(&udf_fstype);
257         destroy_inodecache();
258 }
259
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262         struct udf_sb_info *sbi = UDF_SB(sb);
263
264         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265         if (!sbi->s_partmaps) {
266                 sbi->s_partitions = 0;
267                 return -ENOMEM;
268         }
269
270         sbi->s_partitions = count;
271         return 0;
272 }
273
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276         int i;
277         int nr_groups = bitmap->s_nr_groups;
278
279         for (i = 0; i < nr_groups; i++)
280                 if (bitmap->s_block_bitmap[i])
281                         brelse(bitmap->s_block_bitmap[i]);
282
283         kvfree(bitmap);
284 }
285
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288         int i;
289         struct udf_meta_data *mdata;
290
291         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292                 iput(map->s_uspace.s_table);
293         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
294                 iput(map->s_fspace.s_table);
295         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
296                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
297         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
298                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
299         if (map->s_partition_type == UDF_SPARABLE_MAP15)
300                 for (i = 0; i < 4; i++)
301                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
302         else if (map->s_partition_type == UDF_METADATA_MAP25) {
303                 mdata = &map->s_type_specific.s_metadata;
304                 iput(mdata->s_metadata_fe);
305                 mdata->s_metadata_fe = NULL;
306
307                 iput(mdata->s_mirror_fe);
308                 mdata->s_mirror_fe = NULL;
309
310                 iput(mdata->s_bitmap_fe);
311                 mdata->s_bitmap_fe = NULL;
312         }
313 }
314
315 static void udf_sb_free_partitions(struct super_block *sb)
316 {
317         struct udf_sb_info *sbi = UDF_SB(sb);
318         int i;
319
320         if (!sbi->s_partmaps)
321                 return;
322         for (i = 0; i < sbi->s_partitions; i++)
323                 udf_free_partition(&sbi->s_partmaps[i]);
324         kfree(sbi->s_partmaps);
325         sbi->s_partmaps = NULL;
326 }
327
328 static int udf_show_options(struct seq_file *seq, struct dentry *root)
329 {
330         struct super_block *sb = root->d_sb;
331         struct udf_sb_info *sbi = UDF_SB(sb);
332
333         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
334                 seq_puts(seq, ",nostrict");
335         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
336                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
337         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
338                 seq_puts(seq, ",unhide");
339         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
340                 seq_puts(seq, ",undelete");
341         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
342                 seq_puts(seq, ",noadinicb");
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
344                 seq_puts(seq, ",shortad");
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
346                 seq_puts(seq, ",uid=forget");
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
348                 seq_puts(seq, ",gid=forget");
349         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
350                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
351         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
352                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
353         if (sbi->s_umask != 0)
354                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
355         if (sbi->s_fmode != UDF_INVALID_MODE)
356                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
357         if (sbi->s_dmode != UDF_INVALID_MODE)
358                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
359         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
360                 seq_printf(seq, ",session=%d", sbi->s_session);
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
362                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
363         if (sbi->s_anchor != 0)
364                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
365         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366                 seq_puts(seq, ",utf8");
367         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369
370         return 0;
371 }
372
373 /*
374  * udf_parse_options
375  *
376  * PURPOSE
377  *      Parse mount options.
378  *
379  * DESCRIPTION
380  *      The following mount options are supported:
381  *
382  *      gid=            Set the default group.
383  *      umask=          Set the default umask.
384  *      mode=           Set the default file permissions.
385  *      dmode=          Set the default directory permissions.
386  *      uid=            Set the default user.
387  *      bs=             Set the block size.
388  *      unhide          Show otherwise hidden files.
389  *      undelete        Show deleted files in lists.
390  *      adinicb         Embed data in the inode (default)
391  *      noadinicb       Don't embed data in the inode
392  *      shortad         Use short ad's
393  *      longad          Use long ad's (default)
394  *      nostrict        Unset strict conformance
395  *      iocharset=      Set the NLS character set
396  *
397  *      The remaining are for debugging and disaster recovery:
398  *
399  *      novrs           Skip volume sequence recognition
400  *
401  *      The following expect a offset from 0.
402  *
403  *      session=        Set the CDROM session (default= last session)
404  *      anchor=         Override standard anchor location. (default= 256)
405  *      volume=         Override the VolumeDesc location. (unused)
406  *      partition=      Override the PartitionDesc location. (unused)
407  *      lastblock=      Set the last block of the filesystem/
408  *
409  *      The following expect a offset from the partition root.
410  *
411  *      fileset=        Override the fileset block location. (unused)
412  *      rootdir=        Override the root directory location. (unused)
413  *              WARNING: overriding the rootdir to a non-directory may
414  *              yield highly unpredictable results.
415  *
416  * PRE-CONDITIONS
417  *      options         Pointer to mount options string.
418  *      uopts           Pointer to mount options variable.
419  *
420  * POST-CONDITIONS
421  *      <return>        1       Mount options parsed okay.
422  *      <return>        0       Error parsing mount options.
423  *
424  * HISTORY
425  *      July 1, 1997 - Andrew E. Mileski
426  *      Written, tested, and released.
427  */
428
429 enum {
430         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434         Opt_rootdir, Opt_utf8, Opt_iocharset,
435         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436         Opt_fmode, Opt_dmode
437 };
438
439 static const match_table_t tokens = {
440         {Opt_novrs,     "novrs"},
441         {Opt_nostrict,  "nostrict"},
442         {Opt_bs,        "bs=%u"},
443         {Opt_unhide,    "unhide"},
444         {Opt_undelete,  "undelete"},
445         {Opt_noadinicb, "noadinicb"},
446         {Opt_adinicb,   "adinicb"},
447         {Opt_shortad,   "shortad"},
448         {Opt_longad,    "longad"},
449         {Opt_uforget,   "uid=forget"},
450         {Opt_uignore,   "uid=ignore"},
451         {Opt_gforget,   "gid=forget"},
452         {Opt_gignore,   "gid=ignore"},
453         {Opt_gid,       "gid=%u"},
454         {Opt_uid,       "uid=%u"},
455         {Opt_umask,     "umask=%o"},
456         {Opt_session,   "session=%u"},
457         {Opt_lastblock, "lastblock=%u"},
458         {Opt_anchor,    "anchor=%u"},
459         {Opt_volume,    "volume=%u"},
460         {Opt_partition, "partition=%u"},
461         {Opt_fileset,   "fileset=%u"},
462         {Opt_rootdir,   "rootdir=%u"},
463         {Opt_utf8,      "utf8"},
464         {Opt_iocharset, "iocharset=%s"},
465         {Opt_fmode,     "mode=%o"},
466         {Opt_dmode,     "dmode=%o"},
467         {Opt_err,       NULL}
468 };
469
470 static int udf_parse_options(char *options, struct udf_options *uopt,
471                              bool remount)
472 {
473         char *p;
474         int option;
475
476         uopt->novrs = 0;
477         uopt->session = 0xFFFFFFFF;
478         uopt->lastblock = 0;
479         uopt->anchor = 0;
480
481         if (!options)
482                 return 1;
483
484         while ((p = strsep(&options, ",")) != NULL) {
485                 substring_t args[MAX_OPT_ARGS];
486                 int token;
487                 unsigned n;
488                 if (!*p)
489                         continue;
490
491                 token = match_token(p, tokens, args);
492                 switch (token) {
493                 case Opt_novrs:
494                         uopt->novrs = 1;
495                         break;
496                 case Opt_bs:
497                         if (match_int(&args[0], &option))
498                                 return 0;
499                         n = option;
500                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
501                                 return 0;
502                         uopt->blocksize = n;
503                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
504                         break;
505                 case Opt_unhide:
506                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
507                         break;
508                 case Opt_undelete:
509                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
510                         break;
511                 case Opt_noadinicb:
512                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
513                         break;
514                 case Opt_adinicb:
515                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
516                         break;
517                 case Opt_shortad:
518                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
519                         break;
520                 case Opt_longad:
521                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
522                         break;
523                 case Opt_gid:
524                         if (match_int(args, &option))
525                                 return 0;
526                         uopt->gid = make_kgid(current_user_ns(), option);
527                         if (!gid_valid(uopt->gid))
528                                 return 0;
529                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
530                         break;
531                 case Opt_uid:
532                         if (match_int(args, &option))
533                                 return 0;
534                         uopt->uid = make_kuid(current_user_ns(), option);
535                         if (!uid_valid(uopt->uid))
536                                 return 0;
537                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
538                         break;
539                 case Opt_umask:
540                         if (match_octal(args, &option))
541                                 return 0;
542                         uopt->umask = option;
543                         break;
544                 case Opt_nostrict:
545                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
546                         break;
547                 case Opt_session:
548                         if (match_int(args, &option))
549                                 return 0;
550                         uopt->session = option;
551                         if (!remount)
552                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
553                         break;
554                 case Opt_lastblock:
555                         if (match_int(args, &option))
556                                 return 0;
557                         uopt->lastblock = option;
558                         if (!remount)
559                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
560                         break;
561                 case Opt_anchor:
562                         if (match_int(args, &option))
563                                 return 0;
564                         uopt->anchor = option;
565                         break;
566                 case Opt_volume:
567                 case Opt_partition:
568                 case Opt_fileset:
569                 case Opt_rootdir:
570                         /* Ignored (never implemented properly) */
571                         break;
572                 case Opt_utf8:
573                         uopt->flags |= (1 << UDF_FLAG_UTF8);
574                         break;
575 #ifdef CONFIG_UDF_NLS
576                 case Opt_iocharset:
577                         if (!remount) {
578                                 if (uopt->nls_map)
579                                         unload_nls(uopt->nls_map);
580                                 uopt->nls_map = load_nls(args[0].from);
581                                 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
582                         }
583                         break;
584 #endif
585                 case Opt_uforget:
586                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
587                         break;
588                 case Opt_uignore:
589                 case Opt_gignore:
590                         /* These options are superseeded by uid=<number> */
591                         break;
592                 case Opt_gforget:
593                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
594                         break;
595                 case Opt_fmode:
596                         if (match_octal(args, &option))
597                                 return 0;
598                         uopt->fmode = option & 0777;
599                         break;
600                 case Opt_dmode:
601                         if (match_octal(args, &option))
602                                 return 0;
603                         uopt->dmode = option & 0777;
604                         break;
605                 default:
606                         pr_err("bad mount option \"%s\" or missing value\n", p);
607                         return 0;
608                 }
609         }
610         return 1;
611 }
612
613 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
614 {
615         struct udf_options uopt;
616         struct udf_sb_info *sbi = UDF_SB(sb);
617         int error = 0;
618         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
619
620         sync_filesystem(sb);
621         if (lvidiu) {
622                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
623                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY))
624                         return -EACCES;
625         }
626
627         uopt.flags = sbi->s_flags;
628         uopt.uid   = sbi->s_uid;
629         uopt.gid   = sbi->s_gid;
630         uopt.umask = sbi->s_umask;
631         uopt.fmode = sbi->s_fmode;
632         uopt.dmode = sbi->s_dmode;
633         uopt.nls_map = NULL;
634
635         if (!udf_parse_options(options, &uopt, true))
636                 return -EINVAL;
637
638         write_lock(&sbi->s_cred_lock);
639         sbi->s_flags = uopt.flags;
640         sbi->s_uid   = uopt.uid;
641         sbi->s_gid   = uopt.gid;
642         sbi->s_umask = uopt.umask;
643         sbi->s_fmode = uopt.fmode;
644         sbi->s_dmode = uopt.dmode;
645         write_unlock(&sbi->s_cred_lock);
646
647         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
648                 goto out_unlock;
649
650         if (*flags & SB_RDONLY)
651                 udf_close_lvid(sb);
652         else
653                 udf_open_lvid(sb);
654
655 out_unlock:
656         return error;
657 }
658
659 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
660 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
661 static loff_t udf_check_vsd(struct super_block *sb)
662 {
663         struct volStructDesc *vsd = NULL;
664         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
665         int sectorsize;
666         struct buffer_head *bh = NULL;
667         int nsr02 = 0;
668         int nsr03 = 0;
669         struct udf_sb_info *sbi;
670
671         sbi = UDF_SB(sb);
672         if (sb->s_blocksize < sizeof(struct volStructDesc))
673                 sectorsize = sizeof(struct volStructDesc);
674         else
675                 sectorsize = sb->s_blocksize;
676
677         sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
678
679         udf_debug("Starting at sector %u (%lu byte sectors)\n",
680                   (unsigned int)(sector >> sb->s_blocksize_bits),
681                   sb->s_blocksize);
682         /* Process the sequence (if applicable). The hard limit on the sector
683          * offset is arbitrary, hopefully large enough so that all valid UDF
684          * filesystems will be recognised. There is no mention of an upper
685          * bound to the size of the volume recognition area in the standard.
686          *  The limit will prevent the code to read all the sectors of a
687          * specially crafted image (like a bluray disc full of CD001 sectors),
688          * potentially causing minutes or even hours of uninterruptible I/O
689          * activity. This actually happened with uninitialised SSD partitions
690          * (all 0xFF) before the check for the limit and all valid IDs were
691          * added */
692         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
693              sector += sectorsize) {
694                 /* Read a block */
695                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
696                 if (!bh)
697                         break;
698
699                 /* Look for ISO  descriptors */
700                 vsd = (struct volStructDesc *)(bh->b_data +
701                                               (sector & (sb->s_blocksize - 1)));
702
703                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
704                                     VSD_STD_ID_LEN)) {
705                         switch (vsd->structType) {
706                         case 0:
707                                 udf_debug("ISO9660 Boot Record found\n");
708                                 break;
709                         case 1:
710                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
711                                 break;
712                         case 2:
713                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
714                                 break;
715                         case 3:
716                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
717                                 break;
718                         case 255:
719                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
720                                 break;
721                         default:
722                                 udf_debug("ISO9660 VRS (%u) found\n",
723                                           vsd->structType);
724                                 break;
725                         }
726                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
727                                     VSD_STD_ID_LEN))
728                         ; /* nothing */
729                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
730                                     VSD_STD_ID_LEN)) {
731                         brelse(bh);
732                         break;
733                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
734                                     VSD_STD_ID_LEN))
735                         nsr02 = sector;
736                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
737                                     VSD_STD_ID_LEN))
738                         nsr03 = sector;
739                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
740                                     VSD_STD_ID_LEN))
741                         ; /* nothing */
742                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
743                                     VSD_STD_ID_LEN))
744                         ; /* nothing */
745                 else {
746                         /* invalid id : end of volume recognition area */
747                         brelse(bh);
748                         break;
749                 }
750                 brelse(bh);
751         }
752
753         if (nsr03)
754                 return nsr03;
755         else if (nsr02)
756                 return nsr02;
757         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
758                         VSD_FIRST_SECTOR_OFFSET)
759                 return -1;
760         else
761                 return 0;
762 }
763
764 static int udf_find_fileset(struct super_block *sb,
765                             struct kernel_lb_addr *fileset,
766                             struct kernel_lb_addr *root)
767 {
768         struct buffer_head *bh = NULL;
769         long lastblock;
770         uint16_t ident;
771         struct udf_sb_info *sbi;
772
773         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
774             fileset->partitionReferenceNum != 0xFFFF) {
775                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
776
777                 if (!bh) {
778                         return 1;
779                 } else if (ident != TAG_IDENT_FSD) {
780                         brelse(bh);
781                         return 1;
782                 }
783
784         }
785
786         sbi = UDF_SB(sb);
787         if (!bh) {
788                 /* Search backwards through the partitions */
789                 struct kernel_lb_addr newfileset;
790
791 /* --> cvg: FIXME - is it reasonable? */
792                 return 1;
793
794                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
795                      (newfileset.partitionReferenceNum != 0xFFFF &&
796                       fileset->logicalBlockNum == 0xFFFFFFFF &&
797                       fileset->partitionReferenceNum == 0xFFFF);
798                      newfileset.partitionReferenceNum--) {
799                         lastblock = sbi->s_partmaps
800                                         [newfileset.partitionReferenceNum]
801                                                 .s_partition_len;
802                         newfileset.logicalBlockNum = 0;
803
804                         do {
805                                 bh = udf_read_ptagged(sb, &newfileset, 0,
806                                                       &ident);
807                                 if (!bh) {
808                                         newfileset.logicalBlockNum++;
809                                         continue;
810                                 }
811
812                                 switch (ident) {
813                                 case TAG_IDENT_SBD:
814                                 {
815                                         struct spaceBitmapDesc *sp;
816                                         sp = (struct spaceBitmapDesc *)
817                                                                 bh->b_data;
818                                         newfileset.logicalBlockNum += 1 +
819                                                 ((le32_to_cpu(sp->numOfBytes) +
820                                                   sizeof(struct spaceBitmapDesc)
821                                                   - 1) >> sb->s_blocksize_bits);
822                                         brelse(bh);
823                                         break;
824                                 }
825                                 case TAG_IDENT_FSD:
826                                         *fileset = newfileset;
827                                         break;
828                                 default:
829                                         newfileset.logicalBlockNum++;
830                                         brelse(bh);
831                                         bh = NULL;
832                                         break;
833                                 }
834                         } while (newfileset.logicalBlockNum < lastblock &&
835                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
836                                  fileset->partitionReferenceNum == 0xFFFF);
837                 }
838         }
839
840         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
841              fileset->partitionReferenceNum != 0xFFFF) && bh) {
842                 udf_debug("Fileset at block=%u, partition=%u\n",
843                           fileset->logicalBlockNum,
844                           fileset->partitionReferenceNum);
845
846                 sbi->s_partition = fileset->partitionReferenceNum;
847                 udf_load_fileset(sb, bh, root);
848                 brelse(bh);
849                 return 0;
850         }
851         return 1;
852 }
853
854 /*
855  * Load primary Volume Descriptor Sequence
856  *
857  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
858  * should be tried.
859  */
860 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
861 {
862         struct primaryVolDesc *pvoldesc;
863         uint8_t *outstr;
864         struct buffer_head *bh;
865         uint16_t ident;
866         int ret = -ENOMEM;
867 #ifdef UDFFS_DEBUG
868         struct timestamp *ts;
869 #endif
870
871         outstr = kmalloc(128, GFP_NOFS);
872         if (!outstr)
873                 return -ENOMEM;
874
875         bh = udf_read_tagged(sb, block, block, &ident);
876         if (!bh) {
877                 ret = -EAGAIN;
878                 goto out2;
879         }
880
881         if (ident != TAG_IDENT_PVD) {
882                 ret = -EIO;
883                 goto out_bh;
884         }
885
886         pvoldesc = (struct primaryVolDesc *)bh->b_data;
887
888         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
889                               pvoldesc->recordingDateAndTime);
890 #ifdef UDFFS_DEBUG
891         ts = &pvoldesc->recordingDateAndTime;
892         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
893                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
894                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
895 #endif
896
897
898         ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
899         if (ret < 0)
900                 goto out_bh;
901
902         strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
903         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
904
905         ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
906         if (ret < 0)
907                 goto out_bh;
908
909         outstr[ret] = 0;
910         udf_debug("volSetIdent[] = '%s'\n", outstr);
911
912         ret = 0;
913 out_bh:
914         brelse(bh);
915 out2:
916         kfree(outstr);
917         return ret;
918 }
919
920 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
921                                         u32 meta_file_loc, u32 partition_ref)
922 {
923         struct kernel_lb_addr addr;
924         struct inode *metadata_fe;
925
926         addr.logicalBlockNum = meta_file_loc;
927         addr.partitionReferenceNum = partition_ref;
928
929         metadata_fe = udf_iget_special(sb, &addr);
930
931         if (IS_ERR(metadata_fe)) {
932                 udf_warn(sb, "metadata inode efe not found\n");
933                 return metadata_fe;
934         }
935         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
936                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
937                 iput(metadata_fe);
938                 return ERR_PTR(-EIO);
939         }
940
941         return metadata_fe;
942 }
943
944 static int udf_load_metadata_files(struct super_block *sb, int partition,
945                                    int type1_index)
946 {
947         struct udf_sb_info *sbi = UDF_SB(sb);
948         struct udf_part_map *map;
949         struct udf_meta_data *mdata;
950         struct kernel_lb_addr addr;
951         struct inode *fe;
952
953         map = &sbi->s_partmaps[partition];
954         mdata = &map->s_type_specific.s_metadata;
955         mdata->s_phys_partition_ref = type1_index;
956
957         /* metadata address */
958         udf_debug("Metadata file location: block = %u part = %u\n",
959                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
960
961         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
962                                          mdata->s_phys_partition_ref);
963         if (IS_ERR(fe)) {
964                 /* mirror file entry */
965                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
966                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
967
968                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
969                                                  mdata->s_phys_partition_ref);
970
971                 if (IS_ERR(fe)) {
972                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
973                         return PTR_ERR(fe);
974                 }
975                 mdata->s_mirror_fe = fe;
976         } else
977                 mdata->s_metadata_fe = fe;
978
979
980         /*
981          * bitmap file entry
982          * Note:
983          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
984         */
985         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
986                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
987                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
988
989                 udf_debug("Bitmap file location: block = %u part = %u\n",
990                           addr.logicalBlockNum, addr.partitionReferenceNum);
991
992                 fe = udf_iget_special(sb, &addr);
993                 if (IS_ERR(fe)) {
994                         if (sb_rdonly(sb))
995                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
996                         else {
997                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
998                                 return PTR_ERR(fe);
999                         }
1000                 } else
1001                         mdata->s_bitmap_fe = fe;
1002         }
1003
1004         udf_debug("udf_load_metadata_files Ok\n");
1005         return 0;
1006 }
1007
1008 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1009                              struct kernel_lb_addr *root)
1010 {
1011         struct fileSetDesc *fset;
1012
1013         fset = (struct fileSetDesc *)bh->b_data;
1014
1015         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1016
1017         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1018
1019         udf_debug("Rootdir at block=%u, partition=%u\n",
1020                   root->logicalBlockNum, root->partitionReferenceNum);
1021 }
1022
1023 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1024 {
1025         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1026         return DIV_ROUND_UP(map->s_partition_len +
1027                             (sizeof(struct spaceBitmapDesc) << 3),
1028                             sb->s_blocksize * 8);
1029 }
1030
1031 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1032 {
1033         struct udf_bitmap *bitmap;
1034         int nr_groups;
1035         int size;
1036
1037         nr_groups = udf_compute_nr_groups(sb, index);
1038         size = sizeof(struct udf_bitmap) +
1039                 (sizeof(struct buffer_head *) * nr_groups);
1040
1041         if (size <= PAGE_SIZE)
1042                 bitmap = kzalloc(size, GFP_KERNEL);
1043         else
1044                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1045
1046         if (!bitmap)
1047                 return NULL;
1048
1049         bitmap->s_nr_groups = nr_groups;
1050         return bitmap;
1051 }
1052
1053 static int udf_fill_partdesc_info(struct super_block *sb,
1054                 struct partitionDesc *p, int p_index)
1055 {
1056         struct udf_part_map *map;
1057         struct udf_sb_info *sbi = UDF_SB(sb);
1058         struct partitionHeaderDesc *phd;
1059
1060         map = &sbi->s_partmaps[p_index];
1061
1062         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1063         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1064
1065         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1066                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1067         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1068                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1069         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1070                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1071         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1072                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1073
1074         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1075                   p_index, map->s_partition_type,
1076                   map->s_partition_root, map->s_partition_len);
1077
1078         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1079             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1080                 return 0;
1081
1082         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1083         if (phd->unallocSpaceTable.extLength) {
1084                 struct kernel_lb_addr loc = {
1085                         .logicalBlockNum = le32_to_cpu(
1086                                 phd->unallocSpaceTable.extPosition),
1087                         .partitionReferenceNum = p_index,
1088                 };
1089                 struct inode *inode;
1090
1091                 inode = udf_iget_special(sb, &loc);
1092                 if (IS_ERR(inode)) {
1093                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1094                                   p_index);
1095                         return PTR_ERR(inode);
1096                 }
1097                 map->s_uspace.s_table = inode;
1098                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1099                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1100                           p_index, map->s_uspace.s_table->i_ino);
1101         }
1102
1103         if (phd->unallocSpaceBitmap.extLength) {
1104                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1105                 if (!bitmap)
1106                         return -ENOMEM;
1107                 map->s_uspace.s_bitmap = bitmap;
1108                 bitmap->s_extPosition = le32_to_cpu(
1109                                 phd->unallocSpaceBitmap.extPosition);
1110                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1111                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1112                           p_index, bitmap->s_extPosition);
1113         }
1114
1115         if (phd->partitionIntegrityTable.extLength)
1116                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1117
1118         if (phd->freedSpaceTable.extLength) {
1119                 struct kernel_lb_addr loc = {
1120                         .logicalBlockNum = le32_to_cpu(
1121                                 phd->freedSpaceTable.extPosition),
1122                         .partitionReferenceNum = p_index,
1123                 };
1124                 struct inode *inode;
1125
1126                 inode = udf_iget_special(sb, &loc);
1127                 if (IS_ERR(inode)) {
1128                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1129                                   p_index);
1130                         return PTR_ERR(inode);
1131                 }
1132                 map->s_fspace.s_table = inode;
1133                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1134                 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1135                           p_index, map->s_fspace.s_table->i_ino);
1136         }
1137
1138         if (phd->freedSpaceBitmap.extLength) {
1139                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1140                 if (!bitmap)
1141                         return -ENOMEM;
1142                 map->s_fspace.s_bitmap = bitmap;
1143                 bitmap->s_extPosition = le32_to_cpu(
1144                                 phd->freedSpaceBitmap.extPosition);
1145                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1146                 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1147                           p_index, bitmap->s_extPosition);
1148         }
1149         return 0;
1150 }
1151
1152 static void udf_find_vat_block(struct super_block *sb, int p_index,
1153                                int type1_index, sector_t start_block)
1154 {
1155         struct udf_sb_info *sbi = UDF_SB(sb);
1156         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1157         sector_t vat_block;
1158         struct kernel_lb_addr ino;
1159         struct inode *inode;
1160
1161         /*
1162          * VAT file entry is in the last recorded block. Some broken disks have
1163          * it a few blocks before so try a bit harder...
1164          */
1165         ino.partitionReferenceNum = type1_index;
1166         for (vat_block = start_block;
1167              vat_block >= map->s_partition_root &&
1168              vat_block >= start_block - 3; vat_block--) {
1169                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1170                 inode = udf_iget_special(sb, &ino);
1171                 if (!IS_ERR(inode)) {
1172                         sbi->s_vat_inode = inode;
1173                         break;
1174                 }
1175         }
1176 }
1177
1178 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1179 {
1180         struct udf_sb_info *sbi = UDF_SB(sb);
1181         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1182         struct buffer_head *bh = NULL;
1183         struct udf_inode_info *vati;
1184         uint32_t pos;
1185         struct virtualAllocationTable20 *vat20;
1186         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1187                           sb->s_blocksize_bits;
1188
1189         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1190         if (!sbi->s_vat_inode &&
1191             sbi->s_last_block != blocks - 1) {
1192                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1193                           (unsigned long)sbi->s_last_block,
1194                           (unsigned long)blocks - 1);
1195                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1196         }
1197         if (!sbi->s_vat_inode)
1198                 return -EIO;
1199
1200         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1201                 map->s_type_specific.s_virtual.s_start_offset = 0;
1202                 map->s_type_specific.s_virtual.s_num_entries =
1203                         (sbi->s_vat_inode->i_size - 36) >> 2;
1204         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1205                 vati = UDF_I(sbi->s_vat_inode);
1206                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1207                         pos = udf_block_map(sbi->s_vat_inode, 0);
1208                         bh = sb_bread(sb, pos);
1209                         if (!bh)
1210                                 return -EIO;
1211                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1212                 } else {
1213                         vat20 = (struct virtualAllocationTable20 *)
1214                                                         vati->i_ext.i_data;
1215                 }
1216
1217                 map->s_type_specific.s_virtual.s_start_offset =
1218                         le16_to_cpu(vat20->lengthHeader);
1219                 map->s_type_specific.s_virtual.s_num_entries =
1220                         (sbi->s_vat_inode->i_size -
1221                                 map->s_type_specific.s_virtual.
1222                                         s_start_offset) >> 2;
1223                 brelse(bh);
1224         }
1225         return 0;
1226 }
1227
1228 /*
1229  * Load partition descriptor block
1230  *
1231  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1232  * sequence.
1233  */
1234 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1235 {
1236         struct buffer_head *bh;
1237         struct partitionDesc *p;
1238         struct udf_part_map *map;
1239         struct udf_sb_info *sbi = UDF_SB(sb);
1240         int i, type1_idx;
1241         uint16_t partitionNumber;
1242         uint16_t ident;
1243         int ret;
1244
1245         bh = udf_read_tagged(sb, block, block, &ident);
1246         if (!bh)
1247                 return -EAGAIN;
1248         if (ident != TAG_IDENT_PD) {
1249                 ret = 0;
1250                 goto out_bh;
1251         }
1252
1253         p = (struct partitionDesc *)bh->b_data;
1254         partitionNumber = le16_to_cpu(p->partitionNumber);
1255
1256         /* First scan for TYPE1 and SPARABLE partitions */
1257         for (i = 0; i < sbi->s_partitions; i++) {
1258                 map = &sbi->s_partmaps[i];
1259                 udf_debug("Searching map: (%u == %u)\n",
1260                           map->s_partition_num, partitionNumber);
1261                 if (map->s_partition_num == partitionNumber &&
1262                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1263                      map->s_partition_type == UDF_SPARABLE_MAP15))
1264                         break;
1265         }
1266
1267         if (i >= sbi->s_partitions) {
1268                 udf_debug("Partition (%u) not found in partition map\n",
1269                           partitionNumber);
1270                 ret = 0;
1271                 goto out_bh;
1272         }
1273
1274         ret = udf_fill_partdesc_info(sb, p, i);
1275         if (ret < 0)
1276                 goto out_bh;
1277
1278         /*
1279          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1280          * PHYSICAL partitions are already set up
1281          */
1282         type1_idx = i;
1283 #ifdef UDFFS_DEBUG
1284         map = NULL; /* supress 'maybe used uninitialized' warning */
1285 #endif
1286         for (i = 0; i < sbi->s_partitions; i++) {
1287                 map = &sbi->s_partmaps[i];
1288
1289                 if (map->s_partition_num == partitionNumber &&
1290                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1291                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1292                      map->s_partition_type == UDF_METADATA_MAP25))
1293                         break;
1294         }
1295
1296         if (i >= sbi->s_partitions) {
1297                 ret = 0;
1298                 goto out_bh;
1299         }
1300
1301         ret = udf_fill_partdesc_info(sb, p, i);
1302         if (ret < 0)
1303                 goto out_bh;
1304
1305         if (map->s_partition_type == UDF_METADATA_MAP25) {
1306                 ret = udf_load_metadata_files(sb, i, type1_idx);
1307                 if (ret < 0) {
1308                         udf_err(sb, "error loading MetaData partition map %d\n",
1309                                 i);
1310                         goto out_bh;
1311                 }
1312         } else {
1313                 /*
1314                  * If we have a partition with virtual map, we don't handle
1315                  * writing to it (we overwrite blocks instead of relocating
1316                  * them).
1317                  */
1318                 if (!sb_rdonly(sb)) {
1319                         ret = -EACCES;
1320                         goto out_bh;
1321                 }
1322                 ret = udf_load_vat(sb, i, type1_idx);
1323                 if (ret < 0)
1324                         goto out_bh;
1325         }
1326         ret = 0;
1327 out_bh:
1328         /* In case loading failed, we handle cleanup in udf_fill_super */
1329         brelse(bh);
1330         return ret;
1331 }
1332
1333 static int udf_load_sparable_map(struct super_block *sb,
1334                                  struct udf_part_map *map,
1335                                  struct sparablePartitionMap *spm)
1336 {
1337         uint32_t loc;
1338         uint16_t ident;
1339         struct sparingTable *st;
1340         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1341         int i;
1342         struct buffer_head *bh;
1343
1344         map->s_partition_type = UDF_SPARABLE_MAP15;
1345         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1346         if (!is_power_of_2(sdata->s_packet_len)) {
1347                 udf_err(sb, "error loading logical volume descriptor: "
1348                         "Invalid packet length %u\n",
1349                         (unsigned)sdata->s_packet_len);
1350                 return -EIO;
1351         }
1352         if (spm->numSparingTables > 4) {
1353                 udf_err(sb, "error loading logical volume descriptor: "
1354                         "Too many sparing tables (%d)\n",
1355                         (int)spm->numSparingTables);
1356                 return -EIO;
1357         }
1358
1359         for (i = 0; i < spm->numSparingTables; i++) {
1360                 loc = le32_to_cpu(spm->locSparingTable[i]);
1361                 bh = udf_read_tagged(sb, loc, loc, &ident);
1362                 if (!bh)
1363                         continue;
1364
1365                 st = (struct sparingTable *)bh->b_data;
1366                 if (ident != 0 ||
1367                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1368                             strlen(UDF_ID_SPARING)) ||
1369                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1370                                                         sb->s_blocksize) {
1371                         brelse(bh);
1372                         continue;
1373                 }
1374
1375                 sdata->s_spar_map[i] = bh;
1376         }
1377         map->s_partition_func = udf_get_pblock_spar15;
1378         return 0;
1379 }
1380
1381 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1382                                struct kernel_lb_addr *fileset)
1383 {
1384         struct logicalVolDesc *lvd;
1385         int i, offset;
1386         uint8_t type;
1387         struct udf_sb_info *sbi = UDF_SB(sb);
1388         struct genericPartitionMap *gpm;
1389         uint16_t ident;
1390         struct buffer_head *bh;
1391         unsigned int table_len;
1392         int ret;
1393
1394         bh = udf_read_tagged(sb, block, block, &ident);
1395         if (!bh)
1396                 return -EAGAIN;
1397         BUG_ON(ident != TAG_IDENT_LVD);
1398         lvd = (struct logicalVolDesc *)bh->b_data;
1399         table_len = le32_to_cpu(lvd->mapTableLength);
1400         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1401                 udf_err(sb, "error loading logical volume descriptor: "
1402                         "Partition table too long (%u > %lu)\n", table_len,
1403                         sb->s_blocksize - sizeof(*lvd));
1404                 ret = -EIO;
1405                 goto out_bh;
1406         }
1407
1408         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1409         if (ret)
1410                 goto out_bh;
1411
1412         for (i = 0, offset = 0;
1413              i < sbi->s_partitions && offset < table_len;
1414              i++, offset += gpm->partitionMapLength) {
1415                 struct udf_part_map *map = &sbi->s_partmaps[i];
1416                 gpm = (struct genericPartitionMap *)
1417                                 &(lvd->partitionMaps[offset]);
1418                 type = gpm->partitionMapType;
1419                 if (type == 1) {
1420                         struct genericPartitionMap1 *gpm1 =
1421                                 (struct genericPartitionMap1 *)gpm;
1422                         map->s_partition_type = UDF_TYPE1_MAP15;
1423                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1424                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1425                         map->s_partition_func = NULL;
1426                 } else if (type == 2) {
1427                         struct udfPartitionMap2 *upm2 =
1428                                                 (struct udfPartitionMap2 *)gpm;
1429                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1430                                                 strlen(UDF_ID_VIRTUAL))) {
1431                                 u16 suf =
1432                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1433                                                         identSuffix)[0]);
1434                                 if (suf < 0x0200) {
1435                                         map->s_partition_type =
1436                                                         UDF_VIRTUAL_MAP15;
1437                                         map->s_partition_func =
1438                                                         udf_get_pblock_virt15;
1439                                 } else {
1440                                         map->s_partition_type =
1441                                                         UDF_VIRTUAL_MAP20;
1442                                         map->s_partition_func =
1443                                                         udf_get_pblock_virt20;
1444                                 }
1445                         } else if (!strncmp(upm2->partIdent.ident,
1446                                                 UDF_ID_SPARABLE,
1447                                                 strlen(UDF_ID_SPARABLE))) {
1448                                 ret = udf_load_sparable_map(sb, map,
1449                                         (struct sparablePartitionMap *)gpm);
1450                                 if (ret < 0)
1451                                         goto out_bh;
1452                         } else if (!strncmp(upm2->partIdent.ident,
1453                                                 UDF_ID_METADATA,
1454                                                 strlen(UDF_ID_METADATA))) {
1455                                 struct udf_meta_data *mdata =
1456                                         &map->s_type_specific.s_metadata;
1457                                 struct metadataPartitionMap *mdm =
1458                                                 (struct metadataPartitionMap *)
1459                                                 &(lvd->partitionMaps[offset]);
1460                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1461                                           i, type, UDF_ID_METADATA);
1462
1463                                 map->s_partition_type = UDF_METADATA_MAP25;
1464                                 map->s_partition_func = udf_get_pblock_meta25;
1465
1466                                 mdata->s_meta_file_loc   =
1467                                         le32_to_cpu(mdm->metadataFileLoc);
1468                                 mdata->s_mirror_file_loc =
1469                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1470                                 mdata->s_bitmap_file_loc =
1471                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1472                                 mdata->s_alloc_unit_size =
1473                                         le32_to_cpu(mdm->allocUnitSize);
1474                                 mdata->s_align_unit_size =
1475                                         le16_to_cpu(mdm->alignUnitSize);
1476                                 if (mdm->flags & 0x01)
1477                                         mdata->s_flags |= MF_DUPLICATE_MD;
1478
1479                                 udf_debug("Metadata Ident suffix=0x%x\n",
1480                                           le16_to_cpu(*(__le16 *)
1481                                                       mdm->partIdent.identSuffix));
1482                                 udf_debug("Metadata part num=%u\n",
1483                                           le16_to_cpu(mdm->partitionNum));
1484                                 udf_debug("Metadata part alloc unit size=%u\n",
1485                                           le32_to_cpu(mdm->allocUnitSize));
1486                                 udf_debug("Metadata file loc=%u\n",
1487                                           le32_to_cpu(mdm->metadataFileLoc));
1488                                 udf_debug("Mirror file loc=%u\n",
1489                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1490                                 udf_debug("Bitmap file loc=%u\n",
1491                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1492                                 udf_debug("Flags: %d %u\n",
1493                                           mdata->s_flags, mdm->flags);
1494                         } else {
1495                                 udf_debug("Unknown ident: %s\n",
1496                                           upm2->partIdent.ident);
1497                                 continue;
1498                         }
1499                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1500                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1501                 }
1502                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1503                           i, map->s_partition_num, type, map->s_volumeseqnum);
1504         }
1505
1506         if (fileset) {
1507                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1508
1509                 *fileset = lelb_to_cpu(la->extLocation);
1510                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1511                           fileset->logicalBlockNum,
1512                           fileset->partitionReferenceNum);
1513         }
1514         if (lvd->integritySeqExt.extLength)
1515                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1516         ret = 0;
1517 out_bh:
1518         brelse(bh);
1519         return ret;
1520 }
1521
1522 /*
1523  * Find the prevailing Logical Volume Integrity Descriptor.
1524  */
1525 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1526 {
1527         struct buffer_head *bh, *final_bh;
1528         uint16_t ident;
1529         struct udf_sb_info *sbi = UDF_SB(sb);
1530         struct logicalVolIntegrityDesc *lvid;
1531         int indirections = 0;
1532
1533         while (++indirections <= UDF_MAX_LVID_NESTING) {
1534                 final_bh = NULL;
1535                 while (loc.extLength > 0 &&
1536                         (bh = udf_read_tagged(sb, loc.extLocation,
1537                                         loc.extLocation, &ident))) {
1538                         if (ident != TAG_IDENT_LVID) {
1539                                 brelse(bh);
1540                                 break;
1541                         }
1542
1543                         brelse(final_bh);
1544                         final_bh = bh;
1545
1546                         loc.extLength -= sb->s_blocksize;
1547                         loc.extLocation++;
1548                 }
1549
1550                 if (!final_bh)
1551                         return;
1552
1553                 brelse(sbi->s_lvid_bh);
1554                 sbi->s_lvid_bh = final_bh;
1555
1556                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1557                 if (lvid->nextIntegrityExt.extLength == 0)
1558                         return;
1559
1560                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1561         }
1562
1563         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1564                 UDF_MAX_LVID_NESTING);
1565         brelse(sbi->s_lvid_bh);
1566         sbi->s_lvid_bh = NULL;
1567 }
1568
1569 /*
1570  * Step for reallocation of table of partition descriptor sequence numbers.
1571  * Must be power of 2.
1572  */
1573 #define PART_DESC_ALLOC_STEP 32
1574
1575 struct desc_seq_scan_data {
1576         struct udf_vds_record vds[VDS_POS_LENGTH];
1577         unsigned int size_part_descs;
1578         struct udf_vds_record *part_descs_loc;
1579 };
1580
1581 static struct udf_vds_record *handle_partition_descriptor(
1582                                 struct buffer_head *bh,
1583                                 struct desc_seq_scan_data *data)
1584 {
1585         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1586         int partnum;
1587
1588         partnum = le16_to_cpu(desc->partitionNumber);
1589         if (partnum >= data->size_part_descs) {
1590                 struct udf_vds_record *new_loc;
1591                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1592
1593                 new_loc = kzalloc(sizeof(*new_loc) * new_size, GFP_KERNEL);
1594                 if (!new_loc)
1595                         return ERR_PTR(-ENOMEM);
1596                 memcpy(new_loc, data->part_descs_loc,
1597                        data->size_part_descs * sizeof(*new_loc));
1598                 kfree(data->part_descs_loc);
1599                 data->part_descs_loc = new_loc;
1600                 data->size_part_descs = new_size;
1601         }
1602         return &(data->part_descs_loc[partnum]);
1603 }
1604
1605
1606 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1607                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1608 {
1609         switch (ident) {
1610         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1611                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1612         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1613                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1614         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1615                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1616         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1617                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1618         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1619                 return handle_partition_descriptor(bh, data);
1620         }
1621         return NULL;
1622 }
1623
1624 /*
1625  * Process a main/reserve volume descriptor sequence.
1626  *   @block             First block of first extent of the sequence.
1627  *   @lastblock         Lastblock of first extent of the sequence.
1628  *   @fileset           There we store extent containing root fileset
1629  *
1630  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1631  * sequence
1632  */
1633 static noinline int udf_process_sequence(
1634                 struct super_block *sb,
1635                 sector_t block, sector_t lastblock,
1636                 struct kernel_lb_addr *fileset)
1637 {
1638         struct buffer_head *bh = NULL;
1639         struct udf_vds_record *curr;
1640         struct generic_desc *gd;
1641         struct volDescPtr *vdp;
1642         bool done = false;
1643         uint32_t vdsn;
1644         uint16_t ident;
1645         int ret;
1646         unsigned int indirections = 0;
1647         struct desc_seq_scan_data data;
1648         unsigned int i;
1649
1650         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1651         data.size_part_descs = PART_DESC_ALLOC_STEP;
1652         data.part_descs_loc = kzalloc(sizeof(*data.part_descs_loc) *
1653                                         data.size_part_descs, GFP_KERNEL);
1654         if (!data.part_descs_loc)
1655                 return -ENOMEM;
1656
1657         /*
1658          * Read the main descriptor sequence and find which descriptors
1659          * are in it.
1660          */
1661         for (; (!done && block <= lastblock); block++) {
1662
1663                 bh = udf_read_tagged(sb, block, block, &ident);
1664                 if (!bh)
1665                         break;
1666
1667                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1668                 gd = (struct generic_desc *)bh->b_data;
1669                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1670                 switch (ident) {
1671                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1672                         if (++indirections > UDF_MAX_TD_NESTING) {
1673                                 udf_err(sb, "too many Volume Descriptor "
1674                                         "Pointers (max %u supported)\n",
1675                                         UDF_MAX_TD_NESTING);
1676                                 brelse(bh);
1677                                 return -EIO;
1678                         }
1679
1680                         vdp = (struct volDescPtr *)bh->b_data;
1681                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1682                         lastblock = le32_to_cpu(
1683                                 vdp->nextVolDescSeqExt.extLength) >>
1684                                 sb->s_blocksize_bits;
1685                         lastblock += block - 1;
1686                         /* For loop is going to increment 'block' again */
1687                         block--;
1688                         break;
1689                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1690                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1691                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1692                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1693                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1694                         curr = get_volume_descriptor_record(ident, bh, &data);
1695                         if (IS_ERR(curr)) {
1696                                 brelse(bh);
1697                                 return PTR_ERR(curr);
1698                         }
1699                         /* Descriptor we don't care about? */
1700                         if (!curr)
1701                                 break;
1702                         if (vdsn >= curr->volDescSeqNum) {
1703                                 curr->volDescSeqNum = vdsn;
1704                                 curr->block = block;
1705                         }
1706                         break;
1707                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1708                         done = true;
1709                         break;
1710                 }
1711                 brelse(bh);
1712         }
1713         /*
1714          * Now read interesting descriptors again and process them
1715          * in a suitable order
1716          */
1717         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1718                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1719                 return -EAGAIN;
1720         }
1721         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1722         if (ret < 0)
1723                 return ret;
1724
1725         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1726                 ret = udf_load_logicalvol(sb,
1727                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1728                                 fileset);
1729                 if (ret < 0)
1730                         return ret;
1731         }
1732
1733         /* Now handle prevailing Partition Descriptors */
1734         for (i = 0; i < data.size_part_descs; i++) {
1735                 if (data.part_descs_loc[i].block) {
1736                         ret = udf_load_partdesc(sb,
1737                                                 data.part_descs_loc[i].block);
1738                         if (ret < 0)
1739                                 return ret;
1740                 }
1741         }
1742
1743         return 0;
1744 }
1745
1746 /*
1747  * Load Volume Descriptor Sequence described by anchor in bh
1748  *
1749  * Returns <0 on error, 0 on success
1750  */
1751 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1752                              struct kernel_lb_addr *fileset)
1753 {
1754         struct anchorVolDescPtr *anchor;
1755         sector_t main_s, main_e, reserve_s, reserve_e;
1756         int ret;
1757
1758         anchor = (struct anchorVolDescPtr *)bh->b_data;
1759
1760         /* Locate the main sequence */
1761         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1762         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1763         main_e = main_e >> sb->s_blocksize_bits;
1764         main_e += main_s - 1;
1765
1766         /* Locate the reserve sequence */
1767         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1768         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1769         reserve_e = reserve_e >> sb->s_blocksize_bits;
1770         reserve_e += reserve_s - 1;
1771
1772         /* Process the main & reserve sequences */
1773         /* responsible for finding the PartitionDesc(s) */
1774         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1775         if (ret != -EAGAIN)
1776                 return ret;
1777         udf_sb_free_partitions(sb);
1778         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1779         if (ret < 0) {
1780                 udf_sb_free_partitions(sb);
1781                 /* No sequence was OK, return -EIO */
1782                 if (ret == -EAGAIN)
1783                         ret = -EIO;
1784         }
1785         return ret;
1786 }
1787
1788 /*
1789  * Check whether there is an anchor block in the given block and
1790  * load Volume Descriptor Sequence if so.
1791  *
1792  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1793  * block
1794  */
1795 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1796                                   struct kernel_lb_addr *fileset)
1797 {
1798         struct buffer_head *bh;
1799         uint16_t ident;
1800         int ret;
1801
1802         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1803             udf_fixed_to_variable(block) >=
1804             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1805                 return -EAGAIN;
1806
1807         bh = udf_read_tagged(sb, block, block, &ident);
1808         if (!bh)
1809                 return -EAGAIN;
1810         if (ident != TAG_IDENT_AVDP) {
1811                 brelse(bh);
1812                 return -EAGAIN;
1813         }
1814         ret = udf_load_sequence(sb, bh, fileset);
1815         brelse(bh);
1816         return ret;
1817 }
1818
1819 /*
1820  * Search for an anchor volume descriptor pointer.
1821  *
1822  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1823  * of anchors.
1824  */
1825 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1826                             struct kernel_lb_addr *fileset)
1827 {
1828         sector_t last[6];
1829         int i;
1830         struct udf_sb_info *sbi = UDF_SB(sb);
1831         int last_count = 0;
1832         int ret;
1833
1834         /* First try user provided anchor */
1835         if (sbi->s_anchor) {
1836                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1837                 if (ret != -EAGAIN)
1838                         return ret;
1839         }
1840         /*
1841          * according to spec, anchor is in either:
1842          *     block 256
1843          *     lastblock-256
1844          *     lastblock
1845          *  however, if the disc isn't closed, it could be 512.
1846          */
1847         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1848         if (ret != -EAGAIN)
1849                 return ret;
1850         /*
1851          * The trouble is which block is the last one. Drives often misreport
1852          * this so we try various possibilities.
1853          */
1854         last[last_count++] = *lastblock;
1855         if (*lastblock >= 1)
1856                 last[last_count++] = *lastblock - 1;
1857         last[last_count++] = *lastblock + 1;
1858         if (*lastblock >= 2)
1859                 last[last_count++] = *lastblock - 2;
1860         if (*lastblock >= 150)
1861                 last[last_count++] = *lastblock - 150;
1862         if (*lastblock >= 152)
1863                 last[last_count++] = *lastblock - 152;
1864
1865         for (i = 0; i < last_count; i++) {
1866                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1867                                 sb->s_blocksize_bits)
1868                         continue;
1869                 ret = udf_check_anchor_block(sb, last[i], fileset);
1870                 if (ret != -EAGAIN) {
1871                         if (!ret)
1872                                 *lastblock = last[i];
1873                         return ret;
1874                 }
1875                 if (last[i] < 256)
1876                         continue;
1877                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1878                 if (ret != -EAGAIN) {
1879                         if (!ret)
1880                                 *lastblock = last[i];
1881                         return ret;
1882                 }
1883         }
1884
1885         /* Finally try block 512 in case media is open */
1886         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1887 }
1888
1889 /*
1890  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1891  * area specified by it. The function expects sbi->s_lastblock to be the last
1892  * block on the media.
1893  *
1894  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1895  * was not found.
1896  */
1897 static int udf_find_anchor(struct super_block *sb,
1898                            struct kernel_lb_addr *fileset)
1899 {
1900         struct udf_sb_info *sbi = UDF_SB(sb);
1901         sector_t lastblock = sbi->s_last_block;
1902         int ret;
1903
1904         ret = udf_scan_anchors(sb, &lastblock, fileset);
1905         if (ret != -EAGAIN)
1906                 goto out;
1907
1908         /* No anchor found? Try VARCONV conversion of block numbers */
1909         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1910         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1911         /* Firstly, we try to not convert number of the last block */
1912         ret = udf_scan_anchors(sb, &lastblock, fileset);
1913         if (ret != -EAGAIN)
1914                 goto out;
1915
1916         lastblock = sbi->s_last_block;
1917         /* Secondly, we try with converted number of the last block */
1918         ret = udf_scan_anchors(sb, &lastblock, fileset);
1919         if (ret < 0) {
1920                 /* VARCONV didn't help. Clear it. */
1921                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1922         }
1923 out:
1924         if (ret == 0)
1925                 sbi->s_last_block = lastblock;
1926         return ret;
1927 }
1928
1929 /*
1930  * Check Volume Structure Descriptor, find Anchor block and load Volume
1931  * Descriptor Sequence.
1932  *
1933  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1934  * block was not found.
1935  */
1936 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1937                         int silent, struct kernel_lb_addr *fileset)
1938 {
1939         struct udf_sb_info *sbi = UDF_SB(sb);
1940         loff_t nsr_off;
1941         int ret;
1942
1943         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1944                 if (!silent)
1945                         udf_warn(sb, "Bad block size\n");
1946                 return -EINVAL;
1947         }
1948         sbi->s_last_block = uopt->lastblock;
1949         if (!uopt->novrs) {
1950                 /* Check that it is NSR02 compliant */
1951                 nsr_off = udf_check_vsd(sb);
1952                 if (!nsr_off) {
1953                         if (!silent)
1954                                 udf_warn(sb, "No VRS found\n");
1955                         return -EINVAL;
1956                 }
1957                 if (nsr_off == -1)
1958                         udf_debug("Failed to read sector at offset %d. "
1959                                   "Assuming open disc. Skipping validity "
1960                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1961                 if (!sbi->s_last_block)
1962                         sbi->s_last_block = udf_get_last_block(sb);
1963         } else {
1964                 udf_debug("Validity check skipped because of novrs option\n");
1965         }
1966
1967         /* Look for anchor block and load Volume Descriptor Sequence */
1968         sbi->s_anchor = uopt->anchor;
1969         ret = udf_find_anchor(sb, fileset);
1970         if (ret < 0) {
1971                 if (!silent && ret == -EAGAIN)
1972                         udf_warn(sb, "No anchor found\n");
1973                 return ret;
1974         }
1975         return 0;
1976 }
1977
1978 static void udf_open_lvid(struct super_block *sb)
1979 {
1980         struct udf_sb_info *sbi = UDF_SB(sb);
1981         struct buffer_head *bh = sbi->s_lvid_bh;
1982         struct logicalVolIntegrityDesc *lvid;
1983         struct logicalVolIntegrityDescImpUse *lvidiu;
1984         struct timespec ts;
1985
1986         if (!bh)
1987                 return;
1988         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1989         lvidiu = udf_sb_lvidiu(sb);
1990         if (!lvidiu)
1991                 return;
1992
1993         mutex_lock(&sbi->s_alloc_mutex);
1994         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1995         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1996         ktime_get_real_ts(&ts);
1997         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1998         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1999                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2000         else
2001                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2002
2003         lvid->descTag.descCRC = cpu_to_le16(
2004                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2005                         le16_to_cpu(lvid->descTag.descCRCLength)));
2006
2007         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2008         mark_buffer_dirty(bh);
2009         sbi->s_lvid_dirty = 0;
2010         mutex_unlock(&sbi->s_alloc_mutex);
2011         /* Make opening of filesystem visible on the media immediately */
2012         sync_dirty_buffer(bh);
2013 }
2014
2015 static void udf_close_lvid(struct super_block *sb)
2016 {
2017         struct udf_sb_info *sbi = UDF_SB(sb);
2018         struct buffer_head *bh = sbi->s_lvid_bh;
2019         struct logicalVolIntegrityDesc *lvid;
2020         struct logicalVolIntegrityDescImpUse *lvidiu;
2021         struct timespec ts;
2022
2023         if (!bh)
2024                 return;
2025         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2026         lvidiu = udf_sb_lvidiu(sb);
2027         if (!lvidiu)
2028                 return;
2029
2030         mutex_lock(&sbi->s_alloc_mutex);
2031         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2032         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2033         ktime_get_real_ts(&ts);
2034         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2035         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2036                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2037         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2038                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2039         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2040                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2041         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2042                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2043
2044         lvid->descTag.descCRC = cpu_to_le16(
2045                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2046                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2047
2048         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2049         /*
2050          * We set buffer uptodate unconditionally here to avoid spurious
2051          * warnings from mark_buffer_dirty() when previous EIO has marked
2052          * the buffer as !uptodate
2053          */
2054         set_buffer_uptodate(bh);
2055         mark_buffer_dirty(bh);
2056         sbi->s_lvid_dirty = 0;
2057         mutex_unlock(&sbi->s_alloc_mutex);
2058         /* Make closing of filesystem visible on the media immediately */
2059         sync_dirty_buffer(bh);
2060 }
2061
2062 u64 lvid_get_unique_id(struct super_block *sb)
2063 {
2064         struct buffer_head *bh;
2065         struct udf_sb_info *sbi = UDF_SB(sb);
2066         struct logicalVolIntegrityDesc *lvid;
2067         struct logicalVolHeaderDesc *lvhd;
2068         u64 uniqueID;
2069         u64 ret;
2070
2071         bh = sbi->s_lvid_bh;
2072         if (!bh)
2073                 return 0;
2074
2075         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2076         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2077
2078         mutex_lock(&sbi->s_alloc_mutex);
2079         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2080         if (!(++uniqueID & 0xFFFFFFFF))
2081                 uniqueID += 16;
2082         lvhd->uniqueID = cpu_to_le64(uniqueID);
2083         mutex_unlock(&sbi->s_alloc_mutex);
2084         mark_buffer_dirty(bh);
2085
2086         return ret;
2087 }
2088
2089 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2090 {
2091         int ret = -EINVAL;
2092         struct inode *inode = NULL;
2093         struct udf_options uopt;
2094         struct kernel_lb_addr rootdir, fileset;
2095         struct udf_sb_info *sbi;
2096         bool lvid_open = false;
2097
2098         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2099         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2100         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2101         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2102         uopt.umask = 0;
2103         uopt.fmode = UDF_INVALID_MODE;
2104         uopt.dmode = UDF_INVALID_MODE;
2105         uopt.nls_map = NULL;
2106
2107         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2108         if (!sbi)
2109                 return -ENOMEM;
2110
2111         sb->s_fs_info = sbi;
2112
2113         mutex_init(&sbi->s_alloc_mutex);
2114
2115         if (!udf_parse_options((char *)options, &uopt, false))
2116                 goto parse_options_failure;
2117
2118         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2119             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2120                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2121                 goto parse_options_failure;
2122         }
2123 #ifdef CONFIG_UDF_NLS
2124         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2125                 uopt.nls_map = load_nls_default();
2126                 if (!uopt.nls_map)
2127                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2128                 else
2129                         udf_debug("Using default NLS map\n");
2130         }
2131 #endif
2132         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2133                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2134
2135         fileset.logicalBlockNum = 0xFFFFFFFF;
2136         fileset.partitionReferenceNum = 0xFFFF;
2137
2138         sbi->s_flags = uopt.flags;
2139         sbi->s_uid = uopt.uid;
2140         sbi->s_gid = uopt.gid;
2141         sbi->s_umask = uopt.umask;
2142         sbi->s_fmode = uopt.fmode;
2143         sbi->s_dmode = uopt.dmode;
2144         sbi->s_nls_map = uopt.nls_map;
2145         rwlock_init(&sbi->s_cred_lock);
2146
2147         if (uopt.session == 0xFFFFFFFF)
2148                 sbi->s_session = udf_get_last_session(sb);
2149         else
2150                 sbi->s_session = uopt.session;
2151
2152         udf_debug("Multi-session=%d\n", sbi->s_session);
2153
2154         /* Fill in the rest of the superblock */
2155         sb->s_op = &udf_sb_ops;
2156         sb->s_export_op = &udf_export_ops;
2157
2158         sb->s_magic = UDF_SUPER_MAGIC;
2159         sb->s_time_gran = 1000;
2160
2161         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2162                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2163         } else {
2164                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2165                 while (uopt.blocksize <= 4096) {
2166                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2167                         if (ret < 0) {
2168                                 if (!silent && ret != -EACCES) {
2169                                         pr_notice("Scanning with blocksize %u failed\n",
2170                                                   uopt.blocksize);
2171                                 }
2172                                 brelse(sbi->s_lvid_bh);
2173                                 sbi->s_lvid_bh = NULL;
2174                                 /*
2175                                  * EACCES is special - we want to propagate to
2176                                  * upper layers that we cannot handle RW mount.
2177                                  */
2178                                 if (ret == -EACCES)
2179                                         break;
2180                         } else
2181                                 break;
2182
2183                         uopt.blocksize <<= 1;
2184                 }
2185         }
2186         if (ret < 0) {
2187                 if (ret == -EAGAIN) {
2188                         udf_warn(sb, "No partition found (1)\n");
2189                         ret = -EINVAL;
2190                 }
2191                 goto error_out;
2192         }
2193
2194         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2195
2196         if (sbi->s_lvid_bh) {
2197                 struct logicalVolIntegrityDescImpUse *lvidiu =
2198                                                         udf_sb_lvidiu(sb);
2199                 uint16_t minUDFReadRev;
2200                 uint16_t minUDFWriteRev;
2201
2202                 if (!lvidiu) {
2203                         ret = -EINVAL;
2204                         goto error_out;
2205                 }
2206                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2207                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2208                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2209                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2210                                 minUDFReadRev,
2211                                 UDF_MAX_READ_VERSION);
2212                         ret = -EINVAL;
2213                         goto error_out;
2214                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2215                            !sb_rdonly(sb)) {
2216                         ret = -EACCES;
2217                         goto error_out;
2218                 }
2219
2220                 sbi->s_udfrev = minUDFWriteRev;
2221
2222                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2223                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2224                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2225                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2226         }
2227
2228         if (!sbi->s_partitions) {
2229                 udf_warn(sb, "No partition found (2)\n");
2230                 ret = -EINVAL;
2231                 goto error_out;
2232         }
2233
2234         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2235                         UDF_PART_FLAG_READ_ONLY &&
2236             !sb_rdonly(sb)) {
2237                 ret = -EACCES;
2238                 goto error_out;
2239         }
2240
2241         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2242                 udf_warn(sb, "No fileset found\n");
2243                 ret = -EINVAL;
2244                 goto error_out;
2245         }
2246
2247         if (!silent) {
2248                 struct timestamp ts;
2249                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2250                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2251                          sbi->s_volume_ident,
2252                          le16_to_cpu(ts.year), ts.month, ts.day,
2253                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2254         }
2255         if (!sb_rdonly(sb)) {
2256                 udf_open_lvid(sb);
2257                 lvid_open = true;
2258         }
2259
2260         /* Assign the root inode */
2261         /* assign inodes by physical block number */
2262         /* perhaps it's not extensible enough, but for now ... */
2263         inode = udf_iget(sb, &rootdir);
2264         if (IS_ERR(inode)) {
2265                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2266                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2267                 ret = PTR_ERR(inode);
2268                 goto error_out;
2269         }
2270
2271         /* Allocate a dentry for the root inode */
2272         sb->s_root = d_make_root(inode);
2273         if (!sb->s_root) {
2274                 udf_err(sb, "Couldn't allocate root dentry\n");
2275                 ret = -ENOMEM;
2276                 goto error_out;
2277         }
2278         sb->s_maxbytes = MAX_LFS_FILESIZE;
2279         sb->s_max_links = UDF_MAX_LINKS;
2280         return 0;
2281
2282 error_out:
2283         iput(sbi->s_vat_inode);
2284 parse_options_failure:
2285 #ifdef CONFIG_UDF_NLS
2286         if (uopt.nls_map)
2287                 unload_nls(uopt.nls_map);
2288 #endif
2289         if (lvid_open)
2290                 udf_close_lvid(sb);
2291         brelse(sbi->s_lvid_bh);
2292         udf_sb_free_partitions(sb);
2293         kfree(sbi);
2294         sb->s_fs_info = NULL;
2295
2296         return ret;
2297 }
2298
2299 void _udf_err(struct super_block *sb, const char *function,
2300               const char *fmt, ...)
2301 {
2302         struct va_format vaf;
2303         va_list args;
2304
2305         va_start(args, fmt);
2306
2307         vaf.fmt = fmt;
2308         vaf.va = &args;
2309
2310         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2311
2312         va_end(args);
2313 }
2314
2315 void _udf_warn(struct super_block *sb, const char *function,
2316                const char *fmt, ...)
2317 {
2318         struct va_format vaf;
2319         va_list args;
2320
2321         va_start(args, fmt);
2322
2323         vaf.fmt = fmt;
2324         vaf.va = &args;
2325
2326         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2327
2328         va_end(args);
2329 }
2330
2331 static void udf_put_super(struct super_block *sb)
2332 {
2333         struct udf_sb_info *sbi;
2334
2335         sbi = UDF_SB(sb);
2336
2337         iput(sbi->s_vat_inode);
2338 #ifdef CONFIG_UDF_NLS
2339         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2340                 unload_nls(sbi->s_nls_map);
2341 #endif
2342         if (!sb_rdonly(sb))
2343                 udf_close_lvid(sb);
2344         brelse(sbi->s_lvid_bh);
2345         udf_sb_free_partitions(sb);
2346         mutex_destroy(&sbi->s_alloc_mutex);
2347         kfree(sb->s_fs_info);
2348         sb->s_fs_info = NULL;
2349 }
2350
2351 static int udf_sync_fs(struct super_block *sb, int wait)
2352 {
2353         struct udf_sb_info *sbi = UDF_SB(sb);
2354
2355         mutex_lock(&sbi->s_alloc_mutex);
2356         if (sbi->s_lvid_dirty) {
2357                 /*
2358                  * Blockdevice will be synced later so we don't have to submit
2359                  * the buffer for IO
2360                  */
2361                 mark_buffer_dirty(sbi->s_lvid_bh);
2362                 sbi->s_lvid_dirty = 0;
2363         }
2364         mutex_unlock(&sbi->s_alloc_mutex);
2365
2366         return 0;
2367 }
2368
2369 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2370 {
2371         struct super_block *sb = dentry->d_sb;
2372         struct udf_sb_info *sbi = UDF_SB(sb);
2373         struct logicalVolIntegrityDescImpUse *lvidiu;
2374         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2375
2376         lvidiu = udf_sb_lvidiu(sb);
2377         buf->f_type = UDF_SUPER_MAGIC;
2378         buf->f_bsize = sb->s_blocksize;
2379         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2380         buf->f_bfree = udf_count_free(sb);
2381         buf->f_bavail = buf->f_bfree;
2382         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2383                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2384                         + buf->f_bfree;
2385         buf->f_ffree = buf->f_bfree;
2386         buf->f_namelen = UDF_NAME_LEN;
2387         buf->f_fsid.val[0] = (u32)id;
2388         buf->f_fsid.val[1] = (u32)(id >> 32);
2389
2390         return 0;
2391 }
2392
2393 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2394                                           struct udf_bitmap *bitmap)
2395 {
2396         struct buffer_head *bh = NULL;
2397         unsigned int accum = 0;
2398         int index;
2399         udf_pblk_t block = 0, newblock;
2400         struct kernel_lb_addr loc;
2401         uint32_t bytes;
2402         uint8_t *ptr;
2403         uint16_t ident;
2404         struct spaceBitmapDesc *bm;
2405
2406         loc.logicalBlockNum = bitmap->s_extPosition;
2407         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2408         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2409
2410         if (!bh) {
2411                 udf_err(sb, "udf_count_free failed\n");
2412                 goto out;
2413         } else if (ident != TAG_IDENT_SBD) {
2414                 brelse(bh);
2415                 udf_err(sb, "udf_count_free failed\n");
2416                 goto out;
2417         }
2418
2419         bm = (struct spaceBitmapDesc *)bh->b_data;
2420         bytes = le32_to_cpu(bm->numOfBytes);
2421         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2422         ptr = (uint8_t *)bh->b_data;
2423
2424         while (bytes > 0) {
2425                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2426                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2427                                         cur_bytes * 8);
2428                 bytes -= cur_bytes;
2429                 if (bytes) {
2430                         brelse(bh);
2431                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2432                         bh = udf_tread(sb, newblock);
2433                         if (!bh) {
2434                                 udf_debug("read failed\n");
2435                                 goto out;
2436                         }
2437                         index = 0;
2438                         ptr = (uint8_t *)bh->b_data;
2439                 }
2440         }
2441         brelse(bh);
2442 out:
2443         return accum;
2444 }
2445
2446 static unsigned int udf_count_free_table(struct super_block *sb,
2447                                          struct inode *table)
2448 {
2449         unsigned int accum = 0;
2450         uint32_t elen;
2451         struct kernel_lb_addr eloc;
2452         int8_t etype;
2453         struct extent_position epos;
2454
2455         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2456         epos.block = UDF_I(table)->i_location;
2457         epos.offset = sizeof(struct unallocSpaceEntry);
2458         epos.bh = NULL;
2459
2460         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2461                 accum += (elen >> table->i_sb->s_blocksize_bits);
2462
2463         brelse(epos.bh);
2464         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2465
2466         return accum;
2467 }
2468
2469 static unsigned int udf_count_free(struct super_block *sb)
2470 {
2471         unsigned int accum = 0;
2472         struct udf_sb_info *sbi;
2473         struct udf_part_map *map;
2474
2475         sbi = UDF_SB(sb);
2476         if (sbi->s_lvid_bh) {
2477                 struct logicalVolIntegrityDesc *lvid =
2478                         (struct logicalVolIntegrityDesc *)
2479                         sbi->s_lvid_bh->b_data;
2480                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2481                         accum = le32_to_cpu(
2482                                         lvid->freeSpaceTable[sbi->s_partition]);
2483                         if (accum == 0xFFFFFFFF)
2484                                 accum = 0;
2485                 }
2486         }
2487
2488         if (accum)
2489                 return accum;
2490
2491         map = &sbi->s_partmaps[sbi->s_partition];
2492         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2493                 accum += udf_count_free_bitmap(sb,
2494                                                map->s_uspace.s_bitmap);
2495         }
2496         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2497                 accum += udf_count_free_bitmap(sb,
2498                                                map->s_fspace.s_bitmap);
2499         }
2500         if (accum)
2501                 return accum;
2502
2503         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2504                 accum += udf_count_free_table(sb,
2505                                               map->s_uspace.s_table);
2506         }
2507         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2508                 accum += udf_count_free_table(sb,
2509                                               map->s_fspace.s_table);
2510         }
2511
2512         return accum;
2513 }
2514
2515 MODULE_AUTHOR("Ben Fennema");
2516 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2517 MODULE_LICENSE("GPL");
2518 module_init(init_udf_fs)
2519 module_exit(exit_udf_fs)
This page took 0.192753 seconds and 4 git commands to generate.