5 * Super block routines for the OSTA-UDF(tm) filesystem.
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
68 VDS_POS_PRIMARY_VOL_DESC,
69 VDS_POS_UNALLOC_SPACE_DESC,
70 VDS_POS_LOGICAL_VOL_DESC,
71 VDS_POS_IMP_USE_VOL_DESC,
75 #define VSD_FIRST_SECTOR_OFFSET 32768
76 #define VSD_MAX_SECTOR_OFFSET 0x800000
79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
81 * hopefully don't limit any real use of rewritten inode on write-once media
82 * but avoid looping for too long on corrupted media.
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
87 enum { UDF_MAX_LINKS = 0xffff };
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96 struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98 struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
107 struct logicalVolIntegrityDesc *lvid;
108 unsigned int partnum;
111 if (!UDF_SB(sb)->s_lvid_bh)
113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 partnum = le32_to_cpu(lvid->numOfPartitions);
115 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116 offsetof(struct logicalVolIntegrityDesc, impUse)) /
117 (2 * sizeof(uint32_t)) < partnum) {
118 udf_err(sb, "Logical volume integrity descriptor corrupted "
119 "(numOfPartitions = %u)!\n", partnum);
122 /* The offset is to skip freeSpaceTable and sizeTable arrays */
123 offset = partnum * 2 * sizeof(uint32_t);
124 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129 int flags, const char *dev_name, void *data)
131 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
134 static struct file_system_type udf_fstype = {
135 .owner = THIS_MODULE,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
141 MODULE_ALIAS_FS("udf");
143 static struct kmem_cache *udf_inode_cachep;
145 static struct inode *udf_alloc_inode(struct super_block *sb)
147 struct udf_inode_info *ei;
148 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
153 ei->i_lenExtents = 0;
154 ei->i_next_alloc_block = 0;
155 ei->i_next_alloc_goal = 0;
157 init_rwsem(&ei->i_data_sem);
158 ei->cached_extent.lstart = -1;
159 spin_lock_init(&ei->i_extent_cache_lock);
161 return &ei->vfs_inode;
164 static void udf_i_callback(struct rcu_head *head)
166 struct inode *inode = container_of(head, struct inode, i_rcu);
167 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
170 static void udf_destroy_inode(struct inode *inode)
172 call_rcu(&inode->i_rcu, udf_i_callback);
175 static void init_once(void *foo)
177 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
179 ei->i_ext.i_data = NULL;
180 inode_init_once(&ei->vfs_inode);
183 static int __init init_inodecache(void)
185 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186 sizeof(struct udf_inode_info),
187 0, (SLAB_RECLAIM_ACCOUNT |
191 if (!udf_inode_cachep)
196 static void destroy_inodecache(void)
199 * Make sure all delayed rcu free inodes are flushed before we
203 kmem_cache_destroy(udf_inode_cachep);
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208 .alloc_inode = udf_alloc_inode,
209 .destroy_inode = udf_destroy_inode,
210 .write_inode = udf_write_inode,
211 .evict_inode = udf_evict_inode,
212 .put_super = udf_put_super,
213 .sync_fs = udf_sync_fs,
214 .statfs = udf_statfs,
215 .remount_fs = udf_remount_fs,
216 .show_options = udf_show_options,
221 unsigned int blocksize;
222 unsigned int session;
223 unsigned int lastblock;
231 struct nls_table *nls_map;
234 static int __init init_udf_fs(void)
238 err = init_inodecache();
241 err = register_filesystem(&udf_fstype);
248 destroy_inodecache();
254 static void __exit exit_udf_fs(void)
256 unregister_filesystem(&udf_fstype);
257 destroy_inodecache();
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262 struct udf_sb_info *sbi = UDF_SB(sb);
264 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265 if (!sbi->s_partmaps) {
266 sbi->s_partitions = 0;
270 sbi->s_partitions = count;
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
277 int nr_groups = bitmap->s_nr_groups;
279 for (i = 0; i < nr_groups; i++)
280 if (bitmap->s_block_bitmap[i])
281 brelse(bitmap->s_block_bitmap[i]);
286 static void udf_free_partition(struct udf_part_map *map)
289 struct udf_meta_data *mdata;
291 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292 iput(map->s_uspace.s_table);
293 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
294 iput(map->s_fspace.s_table);
295 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
296 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
297 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
298 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
299 if (map->s_partition_type == UDF_SPARABLE_MAP15)
300 for (i = 0; i < 4; i++)
301 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
302 else if (map->s_partition_type == UDF_METADATA_MAP25) {
303 mdata = &map->s_type_specific.s_metadata;
304 iput(mdata->s_metadata_fe);
305 mdata->s_metadata_fe = NULL;
307 iput(mdata->s_mirror_fe);
308 mdata->s_mirror_fe = NULL;
310 iput(mdata->s_bitmap_fe);
311 mdata->s_bitmap_fe = NULL;
315 static void udf_sb_free_partitions(struct super_block *sb)
317 struct udf_sb_info *sbi = UDF_SB(sb);
320 if (!sbi->s_partmaps)
322 for (i = 0; i < sbi->s_partitions; i++)
323 udf_free_partition(&sbi->s_partmaps[i]);
324 kfree(sbi->s_partmaps);
325 sbi->s_partmaps = NULL;
328 static int udf_show_options(struct seq_file *seq, struct dentry *root)
330 struct super_block *sb = root->d_sb;
331 struct udf_sb_info *sbi = UDF_SB(sb);
333 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
334 seq_puts(seq, ",nostrict");
335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
336 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
338 seq_puts(seq, ",unhide");
339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
340 seq_puts(seq, ",undelete");
341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
342 seq_puts(seq, ",noadinicb");
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
344 seq_puts(seq, ",shortad");
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
346 seq_puts(seq, ",uid=forget");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
348 seq_puts(seq, ",gid=forget");
349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
350 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
352 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
353 if (sbi->s_umask != 0)
354 seq_printf(seq, ",umask=%ho", sbi->s_umask);
355 if (sbi->s_fmode != UDF_INVALID_MODE)
356 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
357 if (sbi->s_dmode != UDF_INVALID_MODE)
358 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
360 seq_printf(seq, ",session=%d", sbi->s_session);
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
362 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
363 if (sbi->s_anchor != 0)
364 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366 seq_puts(seq, ",utf8");
367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
377 * Parse mount options.
380 * The following mount options are supported:
382 * gid= Set the default group.
383 * umask= Set the default umask.
384 * mode= Set the default file permissions.
385 * dmode= Set the default directory permissions.
386 * uid= Set the default user.
387 * bs= Set the block size.
388 * unhide Show otherwise hidden files.
389 * undelete Show deleted files in lists.
390 * adinicb Embed data in the inode (default)
391 * noadinicb Don't embed data in the inode
392 * shortad Use short ad's
393 * longad Use long ad's (default)
394 * nostrict Unset strict conformance
395 * iocharset= Set the NLS character set
397 * The remaining are for debugging and disaster recovery:
399 * novrs Skip volume sequence recognition
401 * The following expect a offset from 0.
403 * session= Set the CDROM session (default= last session)
404 * anchor= Override standard anchor location. (default= 256)
405 * volume= Override the VolumeDesc location. (unused)
406 * partition= Override the PartitionDesc location. (unused)
407 * lastblock= Set the last block of the filesystem/
409 * The following expect a offset from the partition root.
411 * fileset= Override the fileset block location. (unused)
412 * rootdir= Override the root directory location. (unused)
413 * WARNING: overriding the rootdir to a non-directory may
414 * yield highly unpredictable results.
417 * options Pointer to mount options string.
418 * uopts Pointer to mount options variable.
421 * <return> 1 Mount options parsed okay.
422 * <return> 0 Error parsing mount options.
425 * July 1, 1997 - Andrew E. Mileski
426 * Written, tested, and released.
430 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434 Opt_rootdir, Opt_utf8, Opt_iocharset,
435 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
439 static const match_table_t tokens = {
440 {Opt_novrs, "novrs"},
441 {Opt_nostrict, "nostrict"},
443 {Opt_unhide, "unhide"},
444 {Opt_undelete, "undelete"},
445 {Opt_noadinicb, "noadinicb"},
446 {Opt_adinicb, "adinicb"},
447 {Opt_shortad, "shortad"},
448 {Opt_longad, "longad"},
449 {Opt_uforget, "uid=forget"},
450 {Opt_uignore, "uid=ignore"},
451 {Opt_gforget, "gid=forget"},
452 {Opt_gignore, "gid=ignore"},
455 {Opt_umask, "umask=%o"},
456 {Opt_session, "session=%u"},
457 {Opt_lastblock, "lastblock=%u"},
458 {Opt_anchor, "anchor=%u"},
459 {Opt_volume, "volume=%u"},
460 {Opt_partition, "partition=%u"},
461 {Opt_fileset, "fileset=%u"},
462 {Opt_rootdir, "rootdir=%u"},
464 {Opt_iocharset, "iocharset=%s"},
465 {Opt_fmode, "mode=%o"},
466 {Opt_dmode, "dmode=%o"},
470 static int udf_parse_options(char *options, struct udf_options *uopt,
477 uopt->session = 0xFFFFFFFF;
484 while ((p = strsep(&options, ",")) != NULL) {
485 substring_t args[MAX_OPT_ARGS];
491 token = match_token(p, tokens, args);
497 if (match_int(&args[0], &option))
500 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
503 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
506 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
509 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
512 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
515 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
518 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
521 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
524 if (match_int(args, &option))
526 uopt->gid = make_kgid(current_user_ns(), option);
527 if (!gid_valid(uopt->gid))
529 uopt->flags |= (1 << UDF_FLAG_GID_SET);
532 if (match_int(args, &option))
534 uopt->uid = make_kuid(current_user_ns(), option);
535 if (!uid_valid(uopt->uid))
537 uopt->flags |= (1 << UDF_FLAG_UID_SET);
540 if (match_octal(args, &option))
542 uopt->umask = option;
545 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
548 if (match_int(args, &option))
550 uopt->session = option;
552 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
555 if (match_int(args, &option))
557 uopt->lastblock = option;
559 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
562 if (match_int(args, &option))
564 uopt->anchor = option;
570 /* Ignored (never implemented properly) */
573 uopt->flags |= (1 << UDF_FLAG_UTF8);
575 #ifdef CONFIG_UDF_NLS
579 unload_nls(uopt->nls_map);
580 uopt->nls_map = load_nls(args[0].from);
581 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
586 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
590 /* These options are superseeded by uid=<number> */
593 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
596 if (match_octal(args, &option))
598 uopt->fmode = option & 0777;
601 if (match_octal(args, &option))
603 uopt->dmode = option & 0777;
606 pr_err("bad mount option \"%s\" or missing value\n", p);
613 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
615 struct udf_options uopt;
616 struct udf_sb_info *sbi = UDF_SB(sb);
618 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
622 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
623 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY))
627 uopt.flags = sbi->s_flags;
628 uopt.uid = sbi->s_uid;
629 uopt.gid = sbi->s_gid;
630 uopt.umask = sbi->s_umask;
631 uopt.fmode = sbi->s_fmode;
632 uopt.dmode = sbi->s_dmode;
635 if (!udf_parse_options(options, &uopt, true))
638 write_lock(&sbi->s_cred_lock);
639 sbi->s_flags = uopt.flags;
640 sbi->s_uid = uopt.uid;
641 sbi->s_gid = uopt.gid;
642 sbi->s_umask = uopt.umask;
643 sbi->s_fmode = uopt.fmode;
644 sbi->s_dmode = uopt.dmode;
645 write_unlock(&sbi->s_cred_lock);
647 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
650 if (*flags & SB_RDONLY)
659 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
660 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
661 static loff_t udf_check_vsd(struct super_block *sb)
663 struct volStructDesc *vsd = NULL;
664 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
666 struct buffer_head *bh = NULL;
669 struct udf_sb_info *sbi;
672 if (sb->s_blocksize < sizeof(struct volStructDesc))
673 sectorsize = sizeof(struct volStructDesc);
675 sectorsize = sb->s_blocksize;
677 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
679 udf_debug("Starting at sector %u (%lu byte sectors)\n",
680 (unsigned int)(sector >> sb->s_blocksize_bits),
682 /* Process the sequence (if applicable). The hard limit on the sector
683 * offset is arbitrary, hopefully large enough so that all valid UDF
684 * filesystems will be recognised. There is no mention of an upper
685 * bound to the size of the volume recognition area in the standard.
686 * The limit will prevent the code to read all the sectors of a
687 * specially crafted image (like a bluray disc full of CD001 sectors),
688 * potentially causing minutes or even hours of uninterruptible I/O
689 * activity. This actually happened with uninitialised SSD partitions
690 * (all 0xFF) before the check for the limit and all valid IDs were
692 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
693 sector += sectorsize) {
695 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
699 /* Look for ISO descriptors */
700 vsd = (struct volStructDesc *)(bh->b_data +
701 (sector & (sb->s_blocksize - 1)));
703 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
705 switch (vsd->structType) {
707 udf_debug("ISO9660 Boot Record found\n");
710 udf_debug("ISO9660 Primary Volume Descriptor found\n");
713 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
716 udf_debug("ISO9660 Volume Partition Descriptor found\n");
719 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
722 udf_debug("ISO9660 VRS (%u) found\n",
726 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
729 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
733 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
736 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
739 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
742 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
746 /* invalid id : end of volume recognition area */
757 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
758 VSD_FIRST_SECTOR_OFFSET)
764 static int udf_find_fileset(struct super_block *sb,
765 struct kernel_lb_addr *fileset,
766 struct kernel_lb_addr *root)
768 struct buffer_head *bh = NULL;
771 struct udf_sb_info *sbi;
773 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
774 fileset->partitionReferenceNum != 0xFFFF) {
775 bh = udf_read_ptagged(sb, fileset, 0, &ident);
779 } else if (ident != TAG_IDENT_FSD) {
788 /* Search backwards through the partitions */
789 struct kernel_lb_addr newfileset;
791 /* --> cvg: FIXME - is it reasonable? */
794 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
795 (newfileset.partitionReferenceNum != 0xFFFF &&
796 fileset->logicalBlockNum == 0xFFFFFFFF &&
797 fileset->partitionReferenceNum == 0xFFFF);
798 newfileset.partitionReferenceNum--) {
799 lastblock = sbi->s_partmaps
800 [newfileset.partitionReferenceNum]
802 newfileset.logicalBlockNum = 0;
805 bh = udf_read_ptagged(sb, &newfileset, 0,
808 newfileset.logicalBlockNum++;
815 struct spaceBitmapDesc *sp;
816 sp = (struct spaceBitmapDesc *)
818 newfileset.logicalBlockNum += 1 +
819 ((le32_to_cpu(sp->numOfBytes) +
820 sizeof(struct spaceBitmapDesc)
821 - 1) >> sb->s_blocksize_bits);
826 *fileset = newfileset;
829 newfileset.logicalBlockNum++;
834 } while (newfileset.logicalBlockNum < lastblock &&
835 fileset->logicalBlockNum == 0xFFFFFFFF &&
836 fileset->partitionReferenceNum == 0xFFFF);
840 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
841 fileset->partitionReferenceNum != 0xFFFF) && bh) {
842 udf_debug("Fileset at block=%u, partition=%u\n",
843 fileset->logicalBlockNum,
844 fileset->partitionReferenceNum);
846 sbi->s_partition = fileset->partitionReferenceNum;
847 udf_load_fileset(sb, bh, root);
855 * Load primary Volume Descriptor Sequence
857 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
860 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
862 struct primaryVolDesc *pvoldesc;
864 struct buffer_head *bh;
868 struct timestamp *ts;
871 outstr = kmalloc(128, GFP_NOFS);
875 bh = udf_read_tagged(sb, block, block, &ident);
881 if (ident != TAG_IDENT_PVD) {
886 pvoldesc = (struct primaryVolDesc *)bh->b_data;
888 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
889 pvoldesc->recordingDateAndTime);
891 ts = &pvoldesc->recordingDateAndTime;
892 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
893 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
894 ts->minute, le16_to_cpu(ts->typeAndTimezone));
898 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
902 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
903 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
905 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
910 udf_debug("volSetIdent[] = '%s'\n", outstr);
920 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
921 u32 meta_file_loc, u32 partition_ref)
923 struct kernel_lb_addr addr;
924 struct inode *metadata_fe;
926 addr.logicalBlockNum = meta_file_loc;
927 addr.partitionReferenceNum = partition_ref;
929 metadata_fe = udf_iget_special(sb, &addr);
931 if (IS_ERR(metadata_fe)) {
932 udf_warn(sb, "metadata inode efe not found\n");
935 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
936 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
938 return ERR_PTR(-EIO);
944 static int udf_load_metadata_files(struct super_block *sb, int partition,
947 struct udf_sb_info *sbi = UDF_SB(sb);
948 struct udf_part_map *map;
949 struct udf_meta_data *mdata;
950 struct kernel_lb_addr addr;
953 map = &sbi->s_partmaps[partition];
954 mdata = &map->s_type_specific.s_metadata;
955 mdata->s_phys_partition_ref = type1_index;
957 /* metadata address */
958 udf_debug("Metadata file location: block = %u part = %u\n",
959 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
961 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
962 mdata->s_phys_partition_ref);
964 /* mirror file entry */
965 udf_debug("Mirror metadata file location: block = %u part = %u\n",
966 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
968 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
969 mdata->s_phys_partition_ref);
972 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
975 mdata->s_mirror_fe = fe;
977 mdata->s_metadata_fe = fe;
983 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
985 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
986 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
987 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
989 udf_debug("Bitmap file location: block = %u part = %u\n",
990 addr.logicalBlockNum, addr.partitionReferenceNum);
992 fe = udf_iget_special(sb, &addr);
995 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
997 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1001 mdata->s_bitmap_fe = fe;
1004 udf_debug("udf_load_metadata_files Ok\n");
1008 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1009 struct kernel_lb_addr *root)
1011 struct fileSetDesc *fset;
1013 fset = (struct fileSetDesc *)bh->b_data;
1015 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1017 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1019 udf_debug("Rootdir at block=%u, partition=%u\n",
1020 root->logicalBlockNum, root->partitionReferenceNum);
1023 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1025 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1026 return DIV_ROUND_UP(map->s_partition_len +
1027 (sizeof(struct spaceBitmapDesc) << 3),
1028 sb->s_blocksize * 8);
1031 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1033 struct udf_bitmap *bitmap;
1037 nr_groups = udf_compute_nr_groups(sb, index);
1038 size = sizeof(struct udf_bitmap) +
1039 (sizeof(struct buffer_head *) * nr_groups);
1041 if (size <= PAGE_SIZE)
1042 bitmap = kzalloc(size, GFP_KERNEL);
1044 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1049 bitmap->s_nr_groups = nr_groups;
1053 static int udf_fill_partdesc_info(struct super_block *sb,
1054 struct partitionDesc *p, int p_index)
1056 struct udf_part_map *map;
1057 struct udf_sb_info *sbi = UDF_SB(sb);
1058 struct partitionHeaderDesc *phd;
1060 map = &sbi->s_partmaps[p_index];
1062 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1063 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1065 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1066 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1067 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1068 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1069 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1070 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1071 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1072 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1074 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1075 p_index, map->s_partition_type,
1076 map->s_partition_root, map->s_partition_len);
1078 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1079 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1082 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1083 if (phd->unallocSpaceTable.extLength) {
1084 struct kernel_lb_addr loc = {
1085 .logicalBlockNum = le32_to_cpu(
1086 phd->unallocSpaceTable.extPosition),
1087 .partitionReferenceNum = p_index,
1089 struct inode *inode;
1091 inode = udf_iget_special(sb, &loc);
1092 if (IS_ERR(inode)) {
1093 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1095 return PTR_ERR(inode);
1097 map->s_uspace.s_table = inode;
1098 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1099 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1100 p_index, map->s_uspace.s_table->i_ino);
1103 if (phd->unallocSpaceBitmap.extLength) {
1104 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1107 map->s_uspace.s_bitmap = bitmap;
1108 bitmap->s_extPosition = le32_to_cpu(
1109 phd->unallocSpaceBitmap.extPosition);
1110 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1111 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1112 p_index, bitmap->s_extPosition);
1115 if (phd->partitionIntegrityTable.extLength)
1116 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1118 if (phd->freedSpaceTable.extLength) {
1119 struct kernel_lb_addr loc = {
1120 .logicalBlockNum = le32_to_cpu(
1121 phd->freedSpaceTable.extPosition),
1122 .partitionReferenceNum = p_index,
1124 struct inode *inode;
1126 inode = udf_iget_special(sb, &loc);
1127 if (IS_ERR(inode)) {
1128 udf_debug("cannot load freedSpaceTable (part %d)\n",
1130 return PTR_ERR(inode);
1132 map->s_fspace.s_table = inode;
1133 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1134 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1135 p_index, map->s_fspace.s_table->i_ino);
1138 if (phd->freedSpaceBitmap.extLength) {
1139 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1142 map->s_fspace.s_bitmap = bitmap;
1143 bitmap->s_extPosition = le32_to_cpu(
1144 phd->freedSpaceBitmap.extPosition);
1145 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1146 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1147 p_index, bitmap->s_extPosition);
1152 static void udf_find_vat_block(struct super_block *sb, int p_index,
1153 int type1_index, sector_t start_block)
1155 struct udf_sb_info *sbi = UDF_SB(sb);
1156 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1158 struct kernel_lb_addr ino;
1159 struct inode *inode;
1162 * VAT file entry is in the last recorded block. Some broken disks have
1163 * it a few blocks before so try a bit harder...
1165 ino.partitionReferenceNum = type1_index;
1166 for (vat_block = start_block;
1167 vat_block >= map->s_partition_root &&
1168 vat_block >= start_block - 3; vat_block--) {
1169 ino.logicalBlockNum = vat_block - map->s_partition_root;
1170 inode = udf_iget_special(sb, &ino);
1171 if (!IS_ERR(inode)) {
1172 sbi->s_vat_inode = inode;
1178 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1180 struct udf_sb_info *sbi = UDF_SB(sb);
1181 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1182 struct buffer_head *bh = NULL;
1183 struct udf_inode_info *vati;
1185 struct virtualAllocationTable20 *vat20;
1186 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1187 sb->s_blocksize_bits;
1189 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1190 if (!sbi->s_vat_inode &&
1191 sbi->s_last_block != blocks - 1) {
1192 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1193 (unsigned long)sbi->s_last_block,
1194 (unsigned long)blocks - 1);
1195 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1197 if (!sbi->s_vat_inode)
1200 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1201 map->s_type_specific.s_virtual.s_start_offset = 0;
1202 map->s_type_specific.s_virtual.s_num_entries =
1203 (sbi->s_vat_inode->i_size - 36) >> 2;
1204 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1205 vati = UDF_I(sbi->s_vat_inode);
1206 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1207 pos = udf_block_map(sbi->s_vat_inode, 0);
1208 bh = sb_bread(sb, pos);
1211 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1213 vat20 = (struct virtualAllocationTable20 *)
1217 map->s_type_specific.s_virtual.s_start_offset =
1218 le16_to_cpu(vat20->lengthHeader);
1219 map->s_type_specific.s_virtual.s_num_entries =
1220 (sbi->s_vat_inode->i_size -
1221 map->s_type_specific.s_virtual.
1222 s_start_offset) >> 2;
1229 * Load partition descriptor block
1231 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1234 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1236 struct buffer_head *bh;
1237 struct partitionDesc *p;
1238 struct udf_part_map *map;
1239 struct udf_sb_info *sbi = UDF_SB(sb);
1241 uint16_t partitionNumber;
1245 bh = udf_read_tagged(sb, block, block, &ident);
1248 if (ident != TAG_IDENT_PD) {
1253 p = (struct partitionDesc *)bh->b_data;
1254 partitionNumber = le16_to_cpu(p->partitionNumber);
1256 /* First scan for TYPE1 and SPARABLE partitions */
1257 for (i = 0; i < sbi->s_partitions; i++) {
1258 map = &sbi->s_partmaps[i];
1259 udf_debug("Searching map: (%u == %u)\n",
1260 map->s_partition_num, partitionNumber);
1261 if (map->s_partition_num == partitionNumber &&
1262 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1263 map->s_partition_type == UDF_SPARABLE_MAP15))
1267 if (i >= sbi->s_partitions) {
1268 udf_debug("Partition (%u) not found in partition map\n",
1274 ret = udf_fill_partdesc_info(sb, p, i);
1279 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1280 * PHYSICAL partitions are already set up
1284 map = NULL; /* supress 'maybe used uninitialized' warning */
1286 for (i = 0; i < sbi->s_partitions; i++) {
1287 map = &sbi->s_partmaps[i];
1289 if (map->s_partition_num == partitionNumber &&
1290 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1291 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1292 map->s_partition_type == UDF_METADATA_MAP25))
1296 if (i >= sbi->s_partitions) {
1301 ret = udf_fill_partdesc_info(sb, p, i);
1305 if (map->s_partition_type == UDF_METADATA_MAP25) {
1306 ret = udf_load_metadata_files(sb, i, type1_idx);
1308 udf_err(sb, "error loading MetaData partition map %d\n",
1314 * If we have a partition with virtual map, we don't handle
1315 * writing to it (we overwrite blocks instead of relocating
1318 if (!sb_rdonly(sb)) {
1322 ret = udf_load_vat(sb, i, type1_idx);
1328 /* In case loading failed, we handle cleanup in udf_fill_super */
1333 static int udf_load_sparable_map(struct super_block *sb,
1334 struct udf_part_map *map,
1335 struct sparablePartitionMap *spm)
1339 struct sparingTable *st;
1340 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1342 struct buffer_head *bh;
1344 map->s_partition_type = UDF_SPARABLE_MAP15;
1345 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1346 if (!is_power_of_2(sdata->s_packet_len)) {
1347 udf_err(sb, "error loading logical volume descriptor: "
1348 "Invalid packet length %u\n",
1349 (unsigned)sdata->s_packet_len);
1352 if (spm->numSparingTables > 4) {
1353 udf_err(sb, "error loading logical volume descriptor: "
1354 "Too many sparing tables (%d)\n",
1355 (int)spm->numSparingTables);
1359 for (i = 0; i < spm->numSparingTables; i++) {
1360 loc = le32_to_cpu(spm->locSparingTable[i]);
1361 bh = udf_read_tagged(sb, loc, loc, &ident);
1365 st = (struct sparingTable *)bh->b_data;
1367 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1368 strlen(UDF_ID_SPARING)) ||
1369 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1375 sdata->s_spar_map[i] = bh;
1377 map->s_partition_func = udf_get_pblock_spar15;
1381 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1382 struct kernel_lb_addr *fileset)
1384 struct logicalVolDesc *lvd;
1387 struct udf_sb_info *sbi = UDF_SB(sb);
1388 struct genericPartitionMap *gpm;
1390 struct buffer_head *bh;
1391 unsigned int table_len;
1394 bh = udf_read_tagged(sb, block, block, &ident);
1397 BUG_ON(ident != TAG_IDENT_LVD);
1398 lvd = (struct logicalVolDesc *)bh->b_data;
1399 table_len = le32_to_cpu(lvd->mapTableLength);
1400 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1401 udf_err(sb, "error loading logical volume descriptor: "
1402 "Partition table too long (%u > %lu)\n", table_len,
1403 sb->s_blocksize - sizeof(*lvd));
1408 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1412 for (i = 0, offset = 0;
1413 i < sbi->s_partitions && offset < table_len;
1414 i++, offset += gpm->partitionMapLength) {
1415 struct udf_part_map *map = &sbi->s_partmaps[i];
1416 gpm = (struct genericPartitionMap *)
1417 &(lvd->partitionMaps[offset]);
1418 type = gpm->partitionMapType;
1420 struct genericPartitionMap1 *gpm1 =
1421 (struct genericPartitionMap1 *)gpm;
1422 map->s_partition_type = UDF_TYPE1_MAP15;
1423 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1424 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1425 map->s_partition_func = NULL;
1426 } else if (type == 2) {
1427 struct udfPartitionMap2 *upm2 =
1428 (struct udfPartitionMap2 *)gpm;
1429 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1430 strlen(UDF_ID_VIRTUAL))) {
1432 le16_to_cpu(((__le16 *)upm2->partIdent.
1435 map->s_partition_type =
1437 map->s_partition_func =
1438 udf_get_pblock_virt15;
1440 map->s_partition_type =
1442 map->s_partition_func =
1443 udf_get_pblock_virt20;
1445 } else if (!strncmp(upm2->partIdent.ident,
1447 strlen(UDF_ID_SPARABLE))) {
1448 ret = udf_load_sparable_map(sb, map,
1449 (struct sparablePartitionMap *)gpm);
1452 } else if (!strncmp(upm2->partIdent.ident,
1454 strlen(UDF_ID_METADATA))) {
1455 struct udf_meta_data *mdata =
1456 &map->s_type_specific.s_metadata;
1457 struct metadataPartitionMap *mdm =
1458 (struct metadataPartitionMap *)
1459 &(lvd->partitionMaps[offset]);
1460 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1461 i, type, UDF_ID_METADATA);
1463 map->s_partition_type = UDF_METADATA_MAP25;
1464 map->s_partition_func = udf_get_pblock_meta25;
1466 mdata->s_meta_file_loc =
1467 le32_to_cpu(mdm->metadataFileLoc);
1468 mdata->s_mirror_file_loc =
1469 le32_to_cpu(mdm->metadataMirrorFileLoc);
1470 mdata->s_bitmap_file_loc =
1471 le32_to_cpu(mdm->metadataBitmapFileLoc);
1472 mdata->s_alloc_unit_size =
1473 le32_to_cpu(mdm->allocUnitSize);
1474 mdata->s_align_unit_size =
1475 le16_to_cpu(mdm->alignUnitSize);
1476 if (mdm->flags & 0x01)
1477 mdata->s_flags |= MF_DUPLICATE_MD;
1479 udf_debug("Metadata Ident suffix=0x%x\n",
1480 le16_to_cpu(*(__le16 *)
1481 mdm->partIdent.identSuffix));
1482 udf_debug("Metadata part num=%u\n",
1483 le16_to_cpu(mdm->partitionNum));
1484 udf_debug("Metadata part alloc unit size=%u\n",
1485 le32_to_cpu(mdm->allocUnitSize));
1486 udf_debug("Metadata file loc=%u\n",
1487 le32_to_cpu(mdm->metadataFileLoc));
1488 udf_debug("Mirror file loc=%u\n",
1489 le32_to_cpu(mdm->metadataMirrorFileLoc));
1490 udf_debug("Bitmap file loc=%u\n",
1491 le32_to_cpu(mdm->metadataBitmapFileLoc));
1492 udf_debug("Flags: %d %u\n",
1493 mdata->s_flags, mdm->flags);
1495 udf_debug("Unknown ident: %s\n",
1496 upm2->partIdent.ident);
1499 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1500 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1502 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1503 i, map->s_partition_num, type, map->s_volumeseqnum);
1507 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1509 *fileset = lelb_to_cpu(la->extLocation);
1510 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1511 fileset->logicalBlockNum,
1512 fileset->partitionReferenceNum);
1514 if (lvd->integritySeqExt.extLength)
1515 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1523 * Find the prevailing Logical Volume Integrity Descriptor.
1525 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1527 struct buffer_head *bh, *final_bh;
1529 struct udf_sb_info *sbi = UDF_SB(sb);
1530 struct logicalVolIntegrityDesc *lvid;
1531 int indirections = 0;
1533 while (++indirections <= UDF_MAX_LVID_NESTING) {
1535 while (loc.extLength > 0 &&
1536 (bh = udf_read_tagged(sb, loc.extLocation,
1537 loc.extLocation, &ident))) {
1538 if (ident != TAG_IDENT_LVID) {
1546 loc.extLength -= sb->s_blocksize;
1553 brelse(sbi->s_lvid_bh);
1554 sbi->s_lvid_bh = final_bh;
1556 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1557 if (lvid->nextIntegrityExt.extLength == 0)
1560 loc = leea_to_cpu(lvid->nextIntegrityExt);
1563 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1564 UDF_MAX_LVID_NESTING);
1565 brelse(sbi->s_lvid_bh);
1566 sbi->s_lvid_bh = NULL;
1570 * Step for reallocation of table of partition descriptor sequence numbers.
1571 * Must be power of 2.
1573 #define PART_DESC_ALLOC_STEP 32
1575 struct desc_seq_scan_data {
1576 struct udf_vds_record vds[VDS_POS_LENGTH];
1577 unsigned int size_part_descs;
1578 struct udf_vds_record *part_descs_loc;
1581 static struct udf_vds_record *handle_partition_descriptor(
1582 struct buffer_head *bh,
1583 struct desc_seq_scan_data *data)
1585 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1588 partnum = le16_to_cpu(desc->partitionNumber);
1589 if (partnum >= data->size_part_descs) {
1590 struct udf_vds_record *new_loc;
1591 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1593 new_loc = kzalloc(sizeof(*new_loc) * new_size, GFP_KERNEL);
1595 return ERR_PTR(-ENOMEM);
1596 memcpy(new_loc, data->part_descs_loc,
1597 data->size_part_descs * sizeof(*new_loc));
1598 kfree(data->part_descs_loc);
1599 data->part_descs_loc = new_loc;
1600 data->size_part_descs = new_size;
1602 return &(data->part_descs_loc[partnum]);
1606 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1607 struct buffer_head *bh, struct desc_seq_scan_data *data)
1610 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1611 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1612 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1613 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1614 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1615 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1616 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1617 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1618 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1619 return handle_partition_descriptor(bh, data);
1625 * Process a main/reserve volume descriptor sequence.
1626 * @block First block of first extent of the sequence.
1627 * @lastblock Lastblock of first extent of the sequence.
1628 * @fileset There we store extent containing root fileset
1630 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1633 static noinline int udf_process_sequence(
1634 struct super_block *sb,
1635 sector_t block, sector_t lastblock,
1636 struct kernel_lb_addr *fileset)
1638 struct buffer_head *bh = NULL;
1639 struct udf_vds_record *curr;
1640 struct generic_desc *gd;
1641 struct volDescPtr *vdp;
1646 unsigned int indirections = 0;
1647 struct desc_seq_scan_data data;
1650 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1651 data.size_part_descs = PART_DESC_ALLOC_STEP;
1652 data.part_descs_loc = kzalloc(sizeof(*data.part_descs_loc) *
1653 data.size_part_descs, GFP_KERNEL);
1654 if (!data.part_descs_loc)
1658 * Read the main descriptor sequence and find which descriptors
1661 for (; (!done && block <= lastblock); block++) {
1663 bh = udf_read_tagged(sb, block, block, &ident);
1667 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1668 gd = (struct generic_desc *)bh->b_data;
1669 vdsn = le32_to_cpu(gd->volDescSeqNum);
1671 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1672 if (++indirections > UDF_MAX_TD_NESTING) {
1673 udf_err(sb, "too many Volume Descriptor "
1674 "Pointers (max %u supported)\n",
1675 UDF_MAX_TD_NESTING);
1680 vdp = (struct volDescPtr *)bh->b_data;
1681 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1682 lastblock = le32_to_cpu(
1683 vdp->nextVolDescSeqExt.extLength) >>
1684 sb->s_blocksize_bits;
1685 lastblock += block - 1;
1686 /* For loop is going to increment 'block' again */
1689 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1690 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1691 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1692 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1693 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1694 curr = get_volume_descriptor_record(ident, bh, &data);
1697 return PTR_ERR(curr);
1699 /* Descriptor we don't care about? */
1702 if (vdsn >= curr->volDescSeqNum) {
1703 curr->volDescSeqNum = vdsn;
1704 curr->block = block;
1707 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1714 * Now read interesting descriptors again and process them
1715 * in a suitable order
1717 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1718 udf_err(sb, "Primary Volume Descriptor not found!\n");
1721 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1725 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1726 ret = udf_load_logicalvol(sb,
1727 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1733 /* Now handle prevailing Partition Descriptors */
1734 for (i = 0; i < data.size_part_descs; i++) {
1735 if (data.part_descs_loc[i].block) {
1736 ret = udf_load_partdesc(sb,
1737 data.part_descs_loc[i].block);
1747 * Load Volume Descriptor Sequence described by anchor in bh
1749 * Returns <0 on error, 0 on success
1751 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1752 struct kernel_lb_addr *fileset)
1754 struct anchorVolDescPtr *anchor;
1755 sector_t main_s, main_e, reserve_s, reserve_e;
1758 anchor = (struct anchorVolDescPtr *)bh->b_data;
1760 /* Locate the main sequence */
1761 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1762 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1763 main_e = main_e >> sb->s_blocksize_bits;
1764 main_e += main_s - 1;
1766 /* Locate the reserve sequence */
1767 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1768 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1769 reserve_e = reserve_e >> sb->s_blocksize_bits;
1770 reserve_e += reserve_s - 1;
1772 /* Process the main & reserve sequences */
1773 /* responsible for finding the PartitionDesc(s) */
1774 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1777 udf_sb_free_partitions(sb);
1778 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1780 udf_sb_free_partitions(sb);
1781 /* No sequence was OK, return -EIO */
1789 * Check whether there is an anchor block in the given block and
1790 * load Volume Descriptor Sequence if so.
1792 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1795 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1796 struct kernel_lb_addr *fileset)
1798 struct buffer_head *bh;
1802 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1803 udf_fixed_to_variable(block) >=
1804 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1807 bh = udf_read_tagged(sb, block, block, &ident);
1810 if (ident != TAG_IDENT_AVDP) {
1814 ret = udf_load_sequence(sb, bh, fileset);
1820 * Search for an anchor volume descriptor pointer.
1822 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1825 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1826 struct kernel_lb_addr *fileset)
1830 struct udf_sb_info *sbi = UDF_SB(sb);
1834 /* First try user provided anchor */
1835 if (sbi->s_anchor) {
1836 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1841 * according to spec, anchor is in either:
1845 * however, if the disc isn't closed, it could be 512.
1847 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1851 * The trouble is which block is the last one. Drives often misreport
1852 * this so we try various possibilities.
1854 last[last_count++] = *lastblock;
1855 if (*lastblock >= 1)
1856 last[last_count++] = *lastblock - 1;
1857 last[last_count++] = *lastblock + 1;
1858 if (*lastblock >= 2)
1859 last[last_count++] = *lastblock - 2;
1860 if (*lastblock >= 150)
1861 last[last_count++] = *lastblock - 150;
1862 if (*lastblock >= 152)
1863 last[last_count++] = *lastblock - 152;
1865 for (i = 0; i < last_count; i++) {
1866 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1867 sb->s_blocksize_bits)
1869 ret = udf_check_anchor_block(sb, last[i], fileset);
1870 if (ret != -EAGAIN) {
1872 *lastblock = last[i];
1877 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1878 if (ret != -EAGAIN) {
1880 *lastblock = last[i];
1885 /* Finally try block 512 in case media is open */
1886 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1890 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1891 * area specified by it. The function expects sbi->s_lastblock to be the last
1892 * block on the media.
1894 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1897 static int udf_find_anchor(struct super_block *sb,
1898 struct kernel_lb_addr *fileset)
1900 struct udf_sb_info *sbi = UDF_SB(sb);
1901 sector_t lastblock = sbi->s_last_block;
1904 ret = udf_scan_anchors(sb, &lastblock, fileset);
1908 /* No anchor found? Try VARCONV conversion of block numbers */
1909 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1910 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1911 /* Firstly, we try to not convert number of the last block */
1912 ret = udf_scan_anchors(sb, &lastblock, fileset);
1916 lastblock = sbi->s_last_block;
1917 /* Secondly, we try with converted number of the last block */
1918 ret = udf_scan_anchors(sb, &lastblock, fileset);
1920 /* VARCONV didn't help. Clear it. */
1921 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1925 sbi->s_last_block = lastblock;
1930 * Check Volume Structure Descriptor, find Anchor block and load Volume
1931 * Descriptor Sequence.
1933 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1934 * block was not found.
1936 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1937 int silent, struct kernel_lb_addr *fileset)
1939 struct udf_sb_info *sbi = UDF_SB(sb);
1943 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1945 udf_warn(sb, "Bad block size\n");
1948 sbi->s_last_block = uopt->lastblock;
1950 /* Check that it is NSR02 compliant */
1951 nsr_off = udf_check_vsd(sb);
1954 udf_warn(sb, "No VRS found\n");
1958 udf_debug("Failed to read sector at offset %d. "
1959 "Assuming open disc. Skipping validity "
1960 "check\n", VSD_FIRST_SECTOR_OFFSET);
1961 if (!sbi->s_last_block)
1962 sbi->s_last_block = udf_get_last_block(sb);
1964 udf_debug("Validity check skipped because of novrs option\n");
1967 /* Look for anchor block and load Volume Descriptor Sequence */
1968 sbi->s_anchor = uopt->anchor;
1969 ret = udf_find_anchor(sb, fileset);
1971 if (!silent && ret == -EAGAIN)
1972 udf_warn(sb, "No anchor found\n");
1978 static void udf_open_lvid(struct super_block *sb)
1980 struct udf_sb_info *sbi = UDF_SB(sb);
1981 struct buffer_head *bh = sbi->s_lvid_bh;
1982 struct logicalVolIntegrityDesc *lvid;
1983 struct logicalVolIntegrityDescImpUse *lvidiu;
1988 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1989 lvidiu = udf_sb_lvidiu(sb);
1993 mutex_lock(&sbi->s_alloc_mutex);
1994 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1995 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1996 ktime_get_real_ts(&ts);
1997 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1998 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1999 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2001 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2003 lvid->descTag.descCRC = cpu_to_le16(
2004 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2005 le16_to_cpu(lvid->descTag.descCRCLength)));
2007 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2008 mark_buffer_dirty(bh);
2009 sbi->s_lvid_dirty = 0;
2010 mutex_unlock(&sbi->s_alloc_mutex);
2011 /* Make opening of filesystem visible on the media immediately */
2012 sync_dirty_buffer(bh);
2015 static void udf_close_lvid(struct super_block *sb)
2017 struct udf_sb_info *sbi = UDF_SB(sb);
2018 struct buffer_head *bh = sbi->s_lvid_bh;
2019 struct logicalVolIntegrityDesc *lvid;
2020 struct logicalVolIntegrityDescImpUse *lvidiu;
2025 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2026 lvidiu = udf_sb_lvidiu(sb);
2030 mutex_lock(&sbi->s_alloc_mutex);
2031 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2032 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2033 ktime_get_real_ts(&ts);
2034 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2035 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2036 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2037 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2038 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2039 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2040 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2041 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2042 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2044 lvid->descTag.descCRC = cpu_to_le16(
2045 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2046 le16_to_cpu(lvid->descTag.descCRCLength)));
2048 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2050 * We set buffer uptodate unconditionally here to avoid spurious
2051 * warnings from mark_buffer_dirty() when previous EIO has marked
2052 * the buffer as !uptodate
2054 set_buffer_uptodate(bh);
2055 mark_buffer_dirty(bh);
2056 sbi->s_lvid_dirty = 0;
2057 mutex_unlock(&sbi->s_alloc_mutex);
2058 /* Make closing of filesystem visible on the media immediately */
2059 sync_dirty_buffer(bh);
2062 u64 lvid_get_unique_id(struct super_block *sb)
2064 struct buffer_head *bh;
2065 struct udf_sb_info *sbi = UDF_SB(sb);
2066 struct logicalVolIntegrityDesc *lvid;
2067 struct logicalVolHeaderDesc *lvhd;
2071 bh = sbi->s_lvid_bh;
2075 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2076 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2078 mutex_lock(&sbi->s_alloc_mutex);
2079 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2080 if (!(++uniqueID & 0xFFFFFFFF))
2082 lvhd->uniqueID = cpu_to_le64(uniqueID);
2083 mutex_unlock(&sbi->s_alloc_mutex);
2084 mark_buffer_dirty(bh);
2089 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2092 struct inode *inode = NULL;
2093 struct udf_options uopt;
2094 struct kernel_lb_addr rootdir, fileset;
2095 struct udf_sb_info *sbi;
2096 bool lvid_open = false;
2098 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2099 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2100 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2101 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2103 uopt.fmode = UDF_INVALID_MODE;
2104 uopt.dmode = UDF_INVALID_MODE;
2105 uopt.nls_map = NULL;
2107 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2111 sb->s_fs_info = sbi;
2113 mutex_init(&sbi->s_alloc_mutex);
2115 if (!udf_parse_options((char *)options, &uopt, false))
2116 goto parse_options_failure;
2118 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2119 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2120 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2121 goto parse_options_failure;
2123 #ifdef CONFIG_UDF_NLS
2124 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2125 uopt.nls_map = load_nls_default();
2127 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2129 udf_debug("Using default NLS map\n");
2132 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2133 uopt.flags |= (1 << UDF_FLAG_UTF8);
2135 fileset.logicalBlockNum = 0xFFFFFFFF;
2136 fileset.partitionReferenceNum = 0xFFFF;
2138 sbi->s_flags = uopt.flags;
2139 sbi->s_uid = uopt.uid;
2140 sbi->s_gid = uopt.gid;
2141 sbi->s_umask = uopt.umask;
2142 sbi->s_fmode = uopt.fmode;
2143 sbi->s_dmode = uopt.dmode;
2144 sbi->s_nls_map = uopt.nls_map;
2145 rwlock_init(&sbi->s_cred_lock);
2147 if (uopt.session == 0xFFFFFFFF)
2148 sbi->s_session = udf_get_last_session(sb);
2150 sbi->s_session = uopt.session;
2152 udf_debug("Multi-session=%d\n", sbi->s_session);
2154 /* Fill in the rest of the superblock */
2155 sb->s_op = &udf_sb_ops;
2156 sb->s_export_op = &udf_export_ops;
2158 sb->s_magic = UDF_SUPER_MAGIC;
2159 sb->s_time_gran = 1000;
2161 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2162 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2164 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2165 while (uopt.blocksize <= 4096) {
2166 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2168 if (!silent && ret != -EACCES) {
2169 pr_notice("Scanning with blocksize %u failed\n",
2172 brelse(sbi->s_lvid_bh);
2173 sbi->s_lvid_bh = NULL;
2175 * EACCES is special - we want to propagate to
2176 * upper layers that we cannot handle RW mount.
2183 uopt.blocksize <<= 1;
2187 if (ret == -EAGAIN) {
2188 udf_warn(sb, "No partition found (1)\n");
2194 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2196 if (sbi->s_lvid_bh) {
2197 struct logicalVolIntegrityDescImpUse *lvidiu =
2199 uint16_t minUDFReadRev;
2200 uint16_t minUDFWriteRev;
2206 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2207 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2208 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2209 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2211 UDF_MAX_READ_VERSION);
2214 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2220 sbi->s_udfrev = minUDFWriteRev;
2222 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2223 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2224 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2225 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2228 if (!sbi->s_partitions) {
2229 udf_warn(sb, "No partition found (2)\n");
2234 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2235 UDF_PART_FLAG_READ_ONLY &&
2241 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2242 udf_warn(sb, "No fileset found\n");
2248 struct timestamp ts;
2249 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2250 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2251 sbi->s_volume_ident,
2252 le16_to_cpu(ts.year), ts.month, ts.day,
2253 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2255 if (!sb_rdonly(sb)) {
2260 /* Assign the root inode */
2261 /* assign inodes by physical block number */
2262 /* perhaps it's not extensible enough, but for now ... */
2263 inode = udf_iget(sb, &rootdir);
2264 if (IS_ERR(inode)) {
2265 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2266 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2267 ret = PTR_ERR(inode);
2271 /* Allocate a dentry for the root inode */
2272 sb->s_root = d_make_root(inode);
2274 udf_err(sb, "Couldn't allocate root dentry\n");
2278 sb->s_maxbytes = MAX_LFS_FILESIZE;
2279 sb->s_max_links = UDF_MAX_LINKS;
2283 iput(sbi->s_vat_inode);
2284 parse_options_failure:
2285 #ifdef CONFIG_UDF_NLS
2287 unload_nls(uopt.nls_map);
2291 brelse(sbi->s_lvid_bh);
2292 udf_sb_free_partitions(sb);
2294 sb->s_fs_info = NULL;
2299 void _udf_err(struct super_block *sb, const char *function,
2300 const char *fmt, ...)
2302 struct va_format vaf;
2305 va_start(args, fmt);
2310 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2315 void _udf_warn(struct super_block *sb, const char *function,
2316 const char *fmt, ...)
2318 struct va_format vaf;
2321 va_start(args, fmt);
2326 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2331 static void udf_put_super(struct super_block *sb)
2333 struct udf_sb_info *sbi;
2337 iput(sbi->s_vat_inode);
2338 #ifdef CONFIG_UDF_NLS
2339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2340 unload_nls(sbi->s_nls_map);
2344 brelse(sbi->s_lvid_bh);
2345 udf_sb_free_partitions(sb);
2346 mutex_destroy(&sbi->s_alloc_mutex);
2347 kfree(sb->s_fs_info);
2348 sb->s_fs_info = NULL;
2351 static int udf_sync_fs(struct super_block *sb, int wait)
2353 struct udf_sb_info *sbi = UDF_SB(sb);
2355 mutex_lock(&sbi->s_alloc_mutex);
2356 if (sbi->s_lvid_dirty) {
2358 * Blockdevice will be synced later so we don't have to submit
2361 mark_buffer_dirty(sbi->s_lvid_bh);
2362 sbi->s_lvid_dirty = 0;
2364 mutex_unlock(&sbi->s_alloc_mutex);
2369 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2371 struct super_block *sb = dentry->d_sb;
2372 struct udf_sb_info *sbi = UDF_SB(sb);
2373 struct logicalVolIntegrityDescImpUse *lvidiu;
2374 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2376 lvidiu = udf_sb_lvidiu(sb);
2377 buf->f_type = UDF_SUPER_MAGIC;
2378 buf->f_bsize = sb->s_blocksize;
2379 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2380 buf->f_bfree = udf_count_free(sb);
2381 buf->f_bavail = buf->f_bfree;
2382 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2383 le32_to_cpu(lvidiu->numDirs)) : 0)
2385 buf->f_ffree = buf->f_bfree;
2386 buf->f_namelen = UDF_NAME_LEN;
2387 buf->f_fsid.val[0] = (u32)id;
2388 buf->f_fsid.val[1] = (u32)(id >> 32);
2393 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2394 struct udf_bitmap *bitmap)
2396 struct buffer_head *bh = NULL;
2397 unsigned int accum = 0;
2399 udf_pblk_t block = 0, newblock;
2400 struct kernel_lb_addr loc;
2404 struct spaceBitmapDesc *bm;
2406 loc.logicalBlockNum = bitmap->s_extPosition;
2407 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2408 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2411 udf_err(sb, "udf_count_free failed\n");
2413 } else if (ident != TAG_IDENT_SBD) {
2415 udf_err(sb, "udf_count_free failed\n");
2419 bm = (struct spaceBitmapDesc *)bh->b_data;
2420 bytes = le32_to_cpu(bm->numOfBytes);
2421 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2422 ptr = (uint8_t *)bh->b_data;
2425 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2426 accum += bitmap_weight((const unsigned long *)(ptr + index),
2431 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2432 bh = udf_tread(sb, newblock);
2434 udf_debug("read failed\n");
2438 ptr = (uint8_t *)bh->b_data;
2446 static unsigned int udf_count_free_table(struct super_block *sb,
2447 struct inode *table)
2449 unsigned int accum = 0;
2451 struct kernel_lb_addr eloc;
2453 struct extent_position epos;
2455 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2456 epos.block = UDF_I(table)->i_location;
2457 epos.offset = sizeof(struct unallocSpaceEntry);
2460 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2461 accum += (elen >> table->i_sb->s_blocksize_bits);
2464 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2469 static unsigned int udf_count_free(struct super_block *sb)
2471 unsigned int accum = 0;
2472 struct udf_sb_info *sbi;
2473 struct udf_part_map *map;
2476 if (sbi->s_lvid_bh) {
2477 struct logicalVolIntegrityDesc *lvid =
2478 (struct logicalVolIntegrityDesc *)
2479 sbi->s_lvid_bh->b_data;
2480 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2481 accum = le32_to_cpu(
2482 lvid->freeSpaceTable[sbi->s_partition]);
2483 if (accum == 0xFFFFFFFF)
2491 map = &sbi->s_partmaps[sbi->s_partition];
2492 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2493 accum += udf_count_free_bitmap(sb,
2494 map->s_uspace.s_bitmap);
2496 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2497 accum += udf_count_free_bitmap(sb,
2498 map->s_fspace.s_bitmap);
2503 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2504 accum += udf_count_free_table(sb,
2505 map->s_uspace.s_table);
2507 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2508 accum += udf_count_free_table(sb,
2509 map->s_fspace.s_table);
2515 MODULE_AUTHOR("Ben Fennema");
2516 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2517 MODULE_LICENSE("GPL");
2518 module_init(init_udf_fs)
2519 module_exit(exit_udf_fs)