1 /* SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2005 David Brownell
9 #include <linux/acpi.h>
10 #include <linux/bits.h>
11 #include <linux/completion.h>
12 #include <linux/device.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/kthread.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/overflow.h>
17 #include <linux/scatterlist.h>
18 #include <linux/slab.h>
19 #include <linux/u64_stats_sync.h>
21 #include <uapi/linux/spi/spi.h>
23 /* Max no. of CS supported per spi device */
24 #define SPI_CS_CNT_MAX 16
28 struct ptp_system_timestamp;
29 struct spi_controller;
31 struct spi_controller_mem_ops;
32 struct spi_controller_mem_caps;
36 * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
37 * and SPI infrastructure.
39 extern const struct bus_type spi_bus_type;
42 * struct spi_statistics - statistics for spi transfers
43 * @syncp: seqcount to protect members in this struct for per-cpu update
46 * @messages: number of spi-messages handled
47 * @transfers: number of spi_transfers handled
48 * @errors: number of errors during spi_transfer
49 * @timedout: number of timeouts during spi_transfer
51 * @spi_sync: number of times spi_sync is used
52 * @spi_sync_immediate:
53 * number of times spi_sync is executed immediately
54 * in calling context without queuing and scheduling
55 * @spi_async: number of times spi_async is used
57 * @bytes: number of bytes transferred to/from device
58 * @bytes_tx: number of bytes sent to device
59 * @bytes_rx: number of bytes received from device
61 * @transfer_bytes_histo:
62 * transfer bytes histogram
64 * @transfers_split_maxsize:
65 * number of transfers that have been split because of
68 struct spi_statistics {
69 struct u64_stats_sync syncp;
72 u64_stats_t transfers;
77 u64_stats_t spi_sync_immediate;
78 u64_stats_t spi_async;
84 #define SPI_STATISTICS_HISTO_SIZE 17
85 u64_stats_t transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
87 u64_stats_t transfers_split_maxsize;
90 #define SPI_STATISTICS_ADD_TO_FIELD(pcpu_stats, field, count) \
92 struct spi_statistics *__lstats; \
94 __lstats = this_cpu_ptr(pcpu_stats); \
95 u64_stats_update_begin(&__lstats->syncp); \
96 u64_stats_add(&__lstats->field, count); \
97 u64_stats_update_end(&__lstats->syncp); \
101 #define SPI_STATISTICS_INCREMENT_FIELD(pcpu_stats, field) \
103 struct spi_statistics *__lstats; \
105 __lstats = this_cpu_ptr(pcpu_stats); \
106 u64_stats_update_begin(&__lstats->syncp); \
107 u64_stats_inc(&__lstats->field); \
108 u64_stats_update_end(&__lstats->syncp); \
113 * struct spi_delay - SPI delay information
114 * @value: Value for the delay
115 * @unit: Unit for the delay
118 #define SPI_DELAY_UNIT_USECS 0
119 #define SPI_DELAY_UNIT_NSECS 1
120 #define SPI_DELAY_UNIT_SCK 2
125 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
126 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
127 extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
128 struct spi_transfer *xfer);
131 * struct spi_device - Controller side proxy for an SPI slave device
132 * @dev: Driver model representation of the device.
133 * @controller: SPI controller used with the device.
134 * @max_speed_hz: Maximum clock rate to be used with this chip
135 * (on this board); may be changed by the device's driver.
136 * The spi_transfer.speed_hz can override this for each transfer.
137 * @chip_select: Array of physical chipselect, spi->chipselect[i] gives
138 * the corresponding physical CS for logical CS i.
139 * @mode: The spi mode defines how data is clocked out and in.
140 * This may be changed by the device's driver.
141 * The "active low" default for chipselect mode can be overridden
142 * (by specifying SPI_CS_HIGH) as can the "MSB first" default for
143 * each word in a transfer (by specifying SPI_LSB_FIRST).
144 * @bits_per_word: Data transfers involve one or more words; word sizes
145 * like eight or 12 bits are common. In-memory wordsizes are
146 * powers of two bytes (e.g. 20 bit samples use 32 bits).
147 * This may be changed by the device's driver, or left at the
148 * default (0) indicating protocol words are eight bit bytes.
149 * The spi_transfer.bits_per_word can override this for each transfer.
150 * @rt: Make the pump thread real time priority.
151 * @irq: Negative, or the number passed to request_irq() to receive
152 * interrupts from this device.
153 * @controller_state: Controller's runtime state
154 * @controller_data: Board-specific definitions for controller, such as
155 * FIFO initialization parameters; from board_info.controller_data
156 * @modalias: Name of the driver to use with this device, or an alias
157 * for that name. This appears in the sysfs "modalias" attribute
158 * for driver coldplugging, and in uevents used for hotplugging
159 * @driver_override: If the name of a driver is written to this attribute, then
160 * the device will bind to the named driver and only the named driver.
161 * Do not set directly, because core frees it; use driver_set_override() to
163 * @cs_gpiod: Array of GPIO descriptors of the corresponding chipselect lines
164 * (optional, NULL when not using a GPIO line)
165 * @word_delay: delay to be inserted between consecutive
166 * words of a transfer
167 * @cs_setup: delay to be introduced by the controller after CS is asserted
168 * @cs_hold: delay to be introduced by the controller before CS is deasserted
169 * @cs_inactive: delay to be introduced by the controller after CS is
170 * deasserted. If @cs_change_delay is used from @spi_transfer, then the
171 * two delays will be added up.
172 * @pcpu_statistics: statistics for the spi_device
173 * @cs_index_mask: Bit mask of the active chipselect(s) in the chipselect array
175 * A @spi_device is used to interchange data between an SPI slave
176 * (usually a discrete chip) and CPU memory.
178 * In @dev, the platform_data is used to hold information about this
179 * device that's meaningful to the device's protocol driver, but not
180 * to its controller. One example might be an identifier for a chip
181 * variant with slightly different functionality; another might be
182 * information about how this particular board wires the chip's pins.
186 struct spi_controller *controller;
188 u8 chip_select[SPI_CS_CNT_MAX];
191 #define SPI_NO_TX BIT(31) /* No transmit wire */
192 #define SPI_NO_RX BIT(30) /* No receive wire */
194 * TPM specification defines flow control over SPI. Client device
195 * can insert a wait state on MISO when address is transmitted by
196 * controller on MOSI. Detecting the wait state in software is only
197 * possible for full duplex controllers. For controllers that support
198 * only half-duplex, the wait state detection needs to be implemented
199 * in hardware. TPM devices would set this flag when hardware flow
200 * control is expected from SPI controller.
202 #define SPI_TPM_HW_FLOW BIT(29) /* TPM HW flow control */
204 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
205 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
206 * which is defined in 'include/uapi/linux/spi/spi.h'.
207 * The bits defined here are from bit 31 downwards, while in
208 * SPI_MODE_USER_MASK are from 0 upwards.
209 * These bits must not overlap. A static assert check should make sure of that.
210 * If adding extra bits, make sure to decrease the bit index below as well.
212 #define SPI_MODE_KERNEL_MASK (~(BIT(29) - 1))
215 void *controller_state;
216 void *controller_data;
217 char modalias[SPI_NAME_SIZE];
218 const char *driver_override;
219 struct gpio_desc *cs_gpiod[SPI_CS_CNT_MAX]; /* Chip select gpio desc */
220 struct spi_delay word_delay; /* Inter-word delay */
222 struct spi_delay cs_setup;
223 struct spi_delay cs_hold;
224 struct spi_delay cs_inactive;
227 struct spi_statistics __percpu *pcpu_statistics;
229 /* Bit mask of the chipselect(s) that the driver need to use from
230 * the chipselect array.When the controller is capable to handle
231 * multiple chip selects & memories are connected in parallel
232 * then more than one bit need to be set in cs_index_mask.
234 u32 cs_index_mask : SPI_CS_CNT_MAX;
237 * Likely need more hooks for more protocol options affecting how
238 * the controller talks to each chip, like:
239 * - memory packing (12 bit samples into low bits, others zeroed)
241 * - chipselect delays
246 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
247 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
248 "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
250 static inline struct spi_device *to_spi_device(const struct device *dev)
252 return dev ? container_of(dev, struct spi_device, dev) : NULL;
255 /* Most drivers won't need to care about device refcounting */
256 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
258 return (spi && get_device(&spi->dev)) ? spi : NULL;
261 static inline void spi_dev_put(struct spi_device *spi)
264 put_device(&spi->dev);
267 /* ctldata is for the bus_controller driver's runtime state */
268 static inline void *spi_get_ctldata(const struct spi_device *spi)
270 return spi->controller_state;
273 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
275 spi->controller_state = state;
278 /* Device driver data */
280 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
282 dev_set_drvdata(&spi->dev, data);
285 static inline void *spi_get_drvdata(const struct spi_device *spi)
287 return dev_get_drvdata(&spi->dev);
290 static inline u8 spi_get_chipselect(const struct spi_device *spi, u8 idx)
292 return spi->chip_select[idx];
295 static inline void spi_set_chipselect(struct spi_device *spi, u8 idx, u8 chipselect)
297 spi->chip_select[idx] = chipselect;
300 static inline struct gpio_desc *spi_get_csgpiod(const struct spi_device *spi, u8 idx)
302 return spi->cs_gpiod[idx];
305 static inline void spi_set_csgpiod(struct spi_device *spi, u8 idx, struct gpio_desc *csgpiod)
307 spi->cs_gpiod[idx] = csgpiod;
310 static inline bool spi_is_csgpiod(struct spi_device *spi)
314 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
315 if (spi_get_csgpiod(spi, idx))
322 * struct spi_driver - Host side "protocol" driver
323 * @id_table: List of SPI devices supported by this driver
324 * @probe: Binds this driver to the SPI device. Drivers can verify
325 * that the device is actually present, and may need to configure
326 * characteristics (such as bits_per_word) which weren't needed for
327 * the initial configuration done during system setup.
328 * @remove: Unbinds this driver from the SPI device
329 * @shutdown: Standard shutdown callback used during system state
330 * transitions such as powerdown/halt and kexec
331 * @driver: SPI device drivers should initialize the name and owner
332 * field of this structure.
334 * This represents the kind of device driver that uses SPI messages to
335 * interact with the hardware at the other end of a SPI link. It's called
336 * a "protocol" driver because it works through messages rather than talking
337 * directly to SPI hardware (which is what the underlying SPI controller
338 * driver does to pass those messages). These protocols are defined in the
339 * specification for the device(s) supported by the driver.
341 * As a rule, those device protocols represent the lowest level interface
342 * supported by a driver, and it will support upper level interfaces too.
343 * Examples of such upper levels include frameworks like MTD, networking,
344 * MMC, RTC, filesystem character device nodes, and hardware monitoring.
347 const struct spi_device_id *id_table;
348 int (*probe)(struct spi_device *spi);
349 void (*remove)(struct spi_device *spi);
350 void (*shutdown)(struct spi_device *spi);
351 struct device_driver driver;
354 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
356 return drv ? container_of(drv, struct spi_driver, driver) : NULL;
359 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
362 * spi_unregister_driver - reverse effect of spi_register_driver
363 * @sdrv: the driver to unregister
366 static inline void spi_unregister_driver(struct spi_driver *sdrv)
369 driver_unregister(&sdrv->driver);
372 extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select);
374 /* Use a define to avoid include chaining to get THIS_MODULE */
375 #define spi_register_driver(driver) \
376 __spi_register_driver(THIS_MODULE, driver)
379 * module_spi_driver() - Helper macro for registering a SPI driver
380 * @__spi_driver: spi_driver struct
382 * Helper macro for SPI drivers which do not do anything special in module
383 * init/exit. This eliminates a lot of boilerplate. Each module may only
384 * use this macro once, and calling it replaces module_init() and module_exit()
386 #define module_spi_driver(__spi_driver) \
387 module_driver(__spi_driver, spi_register_driver, \
388 spi_unregister_driver)
391 * struct spi_controller - interface to SPI master or slave controller
392 * @dev: device interface to this driver
393 * @list: link with the global spi_controller list
394 * @bus_num: board-specific (and often SOC-specific) identifier for a
395 * given SPI controller.
396 * @num_chipselect: chipselects are used to distinguish individual
397 * SPI slaves, and are numbered from zero to num_chipselects.
398 * each slave has a chipselect signal, but it's common that not
399 * every chipselect is connected to a slave.
400 * @dma_alignment: SPI controller constraint on DMA buffers alignment.
401 * @mode_bits: flags understood by this controller driver
402 * @buswidth_override_bits: flags to override for this controller driver
403 * @bits_per_word_mask: A mask indicating which values of bits_per_word are
404 * supported by the driver. Bit n indicates that a bits_per_word n+1 is
405 * supported. If set, the SPI core will reject any transfer with an
406 * unsupported bits_per_word. If not set, this value is simply ignored,
407 * and it's up to the individual driver to perform any validation.
408 * @min_speed_hz: Lowest supported transfer speed
409 * @max_speed_hz: Highest supported transfer speed
410 * @flags: other constraints relevant to this driver
411 * @slave: indicates that this is an SPI slave controller
412 * @target: indicates that this is an SPI target controller
413 * @devm_allocated: whether the allocation of this struct is devres-managed
414 * @max_transfer_size: function that returns the max transfer size for
415 * a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
416 * @max_message_size: function that returns the max message size for
417 * a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
418 * @io_mutex: mutex for physical bus access
419 * @add_lock: mutex to avoid adding devices to the same chipselect
420 * @bus_lock_spinlock: spinlock for SPI bus locking
421 * @bus_lock_mutex: mutex for exclusion of multiple callers
422 * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
423 * @setup: updates the device mode and clocking records used by a
424 * device's SPI controller; protocol code may call this. This
425 * must fail if an unrecognized or unsupported mode is requested.
426 * It's always safe to call this unless transfers are pending on
427 * the device whose settings are being modified.
428 * @set_cs_timing: optional hook for SPI devices to request SPI master
429 * controller for configuring specific CS setup time, hold time and inactive
430 * delay interms of clock counts
431 * @transfer: adds a message to the controller's transfer queue.
432 * @cleanup: frees controller-specific state
433 * @can_dma: determine whether this controller supports DMA
434 * @dma_map_dev: device which can be used for DMA mapping
435 * @cur_rx_dma_dev: device which is currently used for RX DMA mapping
436 * @cur_tx_dma_dev: device which is currently used for TX DMA mapping
437 * @queued: whether this controller is providing an internal message queue
438 * @kworker: pointer to thread struct for message pump
439 * @pump_messages: work struct for scheduling work to the message pump
440 * @queue_lock: spinlock to synchronise access to message queue
441 * @queue: message queue
442 * @cur_msg: the currently in-flight message
443 * @cur_msg_completion: a completion for the current in-flight message
444 * @cur_msg_incomplete: Flag used internally to opportunistically skip
445 * the @cur_msg_completion. This flag is used to check if the driver has
446 * already called spi_finalize_current_message().
447 * @cur_msg_need_completion: Flag used internally to opportunistically skip
448 * the @cur_msg_completion. This flag is used to signal the context that
449 * is running spi_finalize_current_message() that it needs to complete()
450 * @fallback: fallback to PIO if DMA transfer return failure with
451 * SPI_TRANS_FAIL_NO_START.
452 * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
453 * @last_cs: the last chip_select that is recorded by set_cs, -1 on non chip
455 * @last_cs_index_mask: bit mask the last chip selects that were used
456 * @xfer_completion: used by core transfer_one_message()
457 * @busy: message pump is busy
458 * @running: message pump is running
459 * @rt: whether this queue is set to run as a realtime task
460 * @auto_runtime_pm: the core should ensure a runtime PM reference is held
461 * while the hardware is prepared, using the parent
462 * device for the spidev
463 * @max_dma_len: Maximum length of a DMA transfer for the device.
464 * @prepare_transfer_hardware: a message will soon arrive from the queue
465 * so the subsystem requests the driver to prepare the transfer hardware
466 * by issuing this call
467 * @transfer_one_message: the subsystem calls the driver to transfer a single
468 * message while queuing transfers that arrive in the meantime. When the
469 * driver is finished with this message, it must call
470 * spi_finalize_current_message() so the subsystem can issue the next
472 * @unprepare_transfer_hardware: there are currently no more messages on the
473 * queue so the subsystem notifies the driver that it may relax the
474 * hardware by issuing this call
476 * @set_cs: set the logic level of the chip select line. May be called
477 * from interrupt context.
478 * @optimize_message: optimize the message for reuse
479 * @unoptimize_message: release resources allocated by optimize_message
480 * @prepare_message: set up the controller to transfer a single message,
481 * for example doing DMA mapping. Called from threaded
483 * @transfer_one: transfer a single spi_transfer.
485 * - return 0 if the transfer is finished,
486 * - return 1 if the transfer is still in progress. When
487 * the driver is finished with this transfer it must
488 * call spi_finalize_current_transfer() so the subsystem
489 * can issue the next transfer. If the transfer fails, the
490 * driver must set the flag SPI_TRANS_FAIL_IO to
491 * spi_transfer->error first, before calling
492 * spi_finalize_current_transfer().
493 * Note: transfer_one and transfer_one_message are mutually
494 * exclusive; when both are set, the generic subsystem does
495 * not call your transfer_one callback.
496 * @handle_err: the subsystem calls the driver to handle an error that occurs
497 * in the generic implementation of transfer_one_message().
498 * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
499 * This field is optional and should only be implemented if the
500 * controller has native support for memory like operations.
501 * @mem_caps: controller capabilities for the handling of memory operations.
502 * @unprepare_message: undo any work done by prepare_message().
503 * @slave_abort: abort the ongoing transfer request on an SPI slave controller
504 * @target_abort: abort the ongoing transfer request on an SPI target controller
505 * @cs_gpiods: Array of GPIO descriptors to use as chip select lines; one per CS
506 * number. Any individual value may be NULL for CS lines that
507 * are not GPIOs (driven by the SPI controller itself).
508 * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
509 * GPIO descriptors. This will fill in @cs_gpiods and SPI devices will have
510 * the cs_gpiod assigned if a GPIO line is found for the chipselect.
511 * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
512 * fill in this field with the first unused native CS, to be used by SPI
513 * controller drivers that need to drive a native CS when using GPIO CS.
514 * @max_native_cs: When cs_gpiods is used, and this field is filled in,
515 * spi_register_controller() will validate all native CS (including the
516 * unused native CS) against this value.
517 * @pcpu_statistics: statistics for the spi_controller
518 * @dma_tx: DMA transmit channel
519 * @dma_rx: DMA receive channel
520 * @dummy_rx: dummy receive buffer for full-duplex devices
521 * @dummy_tx: dummy transmit buffer for full-duplex devices
522 * @fw_translate_cs: If the boot firmware uses different numbering scheme
523 * what Linux expects, this optional hook can be used to translate
525 * @ptp_sts_supported: If the driver sets this to true, it must provide a
526 * time snapshot in @spi_transfer->ptp_sts as close as possible to the
527 * moment in time when @spi_transfer->ptp_sts_word_pre and
528 * @spi_transfer->ptp_sts_word_post were transmitted.
529 * If the driver does not set this, the SPI core takes the snapshot as
530 * close to the driver hand-over as possible.
531 * @irq_flags: Interrupt enable state during PTP system timestamping
532 * @queue_empty: signal green light for opportunistically skipping the queue
533 * for spi_sync transfers.
534 * @must_async: disable all fast paths in the core
535 * @defer_optimize_message: set to true if controller cannot pre-optimize messages
536 * and needs to defer the optimization step until the message is actually
539 * Each SPI controller can communicate with one or more @spi_device
540 * children. These make a small bus, sharing MOSI, MISO and SCK signals
541 * but not chip select signals. Each device may be configured to use a
542 * different clock rate, since those shared signals are ignored unless
543 * the chip is selected.
545 * The driver for an SPI controller manages access to those devices through
546 * a queue of spi_message transactions, copying data between CPU memory and
547 * an SPI slave device. For each such message it queues, it calls the
548 * message's completion function when the transaction completes.
550 struct spi_controller {
553 struct list_head list;
556 * Other than negative (== assign one dynamically), bus_num is fully
557 * board-specific. Usually that simplifies to being SoC-specific.
558 * example: one SoC has three SPI controllers, numbered 0..2,
559 * and one board's schematics might show it using SPI-2. Software
560 * would normally use bus_num=2 for that controller.
565 * Chipselects will be integral to many controllers; some others
566 * might use board-specific GPIOs.
570 /* Some SPI controllers pose alignment requirements on DMAable
571 * buffers; let protocol drivers know about these requirements.
575 /* spi_device.mode flags understood by this controller driver */
578 /* spi_device.mode flags override flags for this controller */
579 u32 buswidth_override_bits;
581 /* Bitmask of supported bits_per_word for transfers */
582 u32 bits_per_word_mask;
583 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
584 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
586 /* Limits on transfer speed */
590 /* Other constraints relevant to this driver */
592 #define SPI_CONTROLLER_HALF_DUPLEX BIT(0) /* Can't do full duplex */
593 #define SPI_CONTROLLER_NO_RX BIT(1) /* Can't do buffer read */
594 #define SPI_CONTROLLER_NO_TX BIT(2) /* Can't do buffer write */
595 #define SPI_CONTROLLER_MUST_RX BIT(3) /* Requires rx */
596 #define SPI_CONTROLLER_MUST_TX BIT(4) /* Requires tx */
597 #define SPI_CONTROLLER_GPIO_SS BIT(5) /* GPIO CS must select slave */
598 #define SPI_CONTROLLER_SUSPENDED BIT(6) /* Currently suspended */
600 * The spi-controller has multi chip select capability and can
601 * assert/de-assert more than one chip select at once.
603 #define SPI_CONTROLLER_MULTI_CS BIT(7)
605 /* Flag indicating if the allocation of this struct is devres-managed */
609 /* Flag indicating this is an SPI slave controller */
611 /* Flag indicating this is an SPI target controller */
616 * On some hardware transfer / message size may be constrained
617 * the limit may depend on device transfer settings.
619 size_t (*max_transfer_size)(struct spi_device *spi);
620 size_t (*max_message_size)(struct spi_device *spi);
623 struct mutex io_mutex;
625 /* Used to avoid adding the same CS twice */
626 struct mutex add_lock;
628 /* Lock and mutex for SPI bus locking */
629 spinlock_t bus_lock_spinlock;
630 struct mutex bus_lock_mutex;
632 /* Flag indicating that the SPI bus is locked for exclusive use */
636 * Setup mode and clock, etc (SPI driver may call many times).
638 * IMPORTANT: this may be called when transfers to another
639 * device are active. DO NOT UPDATE SHARED REGISTERS in ways
640 * which could break those transfers.
642 int (*setup)(struct spi_device *spi);
645 * set_cs_timing() method is for SPI controllers that supports
646 * configuring CS timing.
648 * This hook allows SPI client drivers to request SPI controllers
649 * to configure specific CS timing through spi_set_cs_timing() after
652 int (*set_cs_timing)(struct spi_device *spi);
655 * Bidirectional bulk transfers
657 * + The transfer() method may not sleep; its main role is
658 * just to add the message to the queue.
659 * + For now there's no remove-from-queue operation, or
660 * any other request management
661 * + To a given spi_device, message queueing is pure FIFO
663 * + The controller's main job is to process its message queue,
664 * selecting a chip (for masters), then transferring data
665 * + If there are multiple spi_device children, the i/o queue
666 * arbitration algorithm is unspecified (round robin, FIFO,
667 * priority, reservations, preemption, etc)
669 * + Chipselect stays active during the entire message
670 * (unless modified by spi_transfer.cs_change != 0).
671 * + The message transfers use clock and SPI mode parameters
672 * previously established by setup() for this device
674 int (*transfer)(struct spi_device *spi,
675 struct spi_message *mesg);
677 /* Called on release() to free memory provided by spi_controller */
678 void (*cleanup)(struct spi_device *spi);
681 * Used to enable core support for DMA handling, if can_dma()
682 * exists and returns true then the transfer will be mapped
683 * prior to transfer_one() being called. The driver should
684 * not modify or store xfer and dma_tx and dma_rx must be set
685 * while the device is prepared.
687 bool (*can_dma)(struct spi_controller *ctlr,
688 struct spi_device *spi,
689 struct spi_transfer *xfer);
690 struct device *dma_map_dev;
691 struct device *cur_rx_dma_dev;
692 struct device *cur_tx_dma_dev;
695 * These hooks are for drivers that want to use the generic
696 * controller transfer queueing mechanism. If these are used, the
697 * transfer() function above must NOT be specified by the driver.
698 * Over time we expect SPI drivers to be phased over to this API.
701 struct kthread_worker *kworker;
702 struct kthread_work pump_messages;
703 spinlock_t queue_lock;
704 struct list_head queue;
705 struct spi_message *cur_msg;
706 struct completion cur_msg_completion;
707 bool cur_msg_incomplete;
708 bool cur_msg_need_completion;
712 bool auto_runtime_pm;
714 bool last_cs_mode_high;
715 s8 last_cs[SPI_CS_CNT_MAX];
716 u32 last_cs_index_mask : SPI_CS_CNT_MAX;
717 struct completion xfer_completion;
720 int (*optimize_message)(struct spi_message *msg);
721 int (*unoptimize_message)(struct spi_message *msg);
722 int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
723 int (*transfer_one_message)(struct spi_controller *ctlr,
724 struct spi_message *mesg);
725 int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
726 int (*prepare_message)(struct spi_controller *ctlr,
727 struct spi_message *message);
728 int (*unprepare_message)(struct spi_controller *ctlr,
729 struct spi_message *message);
731 int (*slave_abort)(struct spi_controller *ctlr);
732 int (*target_abort)(struct spi_controller *ctlr);
736 * These hooks are for drivers that use a generic implementation
737 * of transfer_one_message() provided by the core.
739 void (*set_cs)(struct spi_device *spi, bool enable);
740 int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
741 struct spi_transfer *transfer);
742 void (*handle_err)(struct spi_controller *ctlr,
743 struct spi_message *message);
745 /* Optimized handlers for SPI memory-like operations. */
746 const struct spi_controller_mem_ops *mem_ops;
747 const struct spi_controller_mem_caps *mem_caps;
749 /* GPIO chip select */
750 struct gpio_desc **cs_gpiods;
751 bool use_gpio_descriptors;
756 struct spi_statistics __percpu *pcpu_statistics;
758 /* DMA channels for use with core dmaengine helpers */
759 struct dma_chan *dma_tx;
760 struct dma_chan *dma_rx;
762 /* Dummy data for full duplex devices */
766 int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
769 * Driver sets this field to indicate it is able to snapshot SPI
770 * transfers (needed e.g. for reading the time of POSIX clocks)
772 bool ptp_sts_supported;
774 /* Interrupt enable state during PTP system timestamping */
775 unsigned long irq_flags;
777 /* Flag for enabling opportunistic skipping of the queue in spi_sync */
780 bool defer_optimize_message;
783 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
785 return dev_get_drvdata(&ctlr->dev);
788 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
791 dev_set_drvdata(&ctlr->dev, data);
794 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
796 if (!ctlr || !get_device(&ctlr->dev))
801 static inline void spi_controller_put(struct spi_controller *ctlr)
804 put_device(&ctlr->dev);
807 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
809 return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
812 static inline bool spi_controller_is_target(struct spi_controller *ctlr)
814 return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->target;
817 /* PM calls that need to be issued by the driver */
818 extern int spi_controller_suspend(struct spi_controller *ctlr);
819 extern int spi_controller_resume(struct spi_controller *ctlr);
821 /* Calls the driver make to interact with the message queue */
822 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
823 extern void spi_finalize_current_message(struct spi_controller *ctlr);
824 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
826 /* Helper calls for driver to timestamp transfer */
827 void spi_take_timestamp_pre(struct spi_controller *ctlr,
828 struct spi_transfer *xfer,
829 size_t progress, bool irqs_off);
830 void spi_take_timestamp_post(struct spi_controller *ctlr,
831 struct spi_transfer *xfer,
832 size_t progress, bool irqs_off);
834 /* The SPI driver core manages memory for the spi_controller classdev */
835 extern struct spi_controller *__spi_alloc_controller(struct device *host,
836 unsigned int size, bool slave);
838 static inline struct spi_controller *spi_alloc_master(struct device *host,
841 return __spi_alloc_controller(host, size, false);
844 static inline struct spi_controller *spi_alloc_slave(struct device *host,
847 if (!IS_ENABLED(CONFIG_SPI_SLAVE))
850 return __spi_alloc_controller(host, size, true);
853 static inline struct spi_controller *spi_alloc_host(struct device *dev,
856 return __spi_alloc_controller(dev, size, false);
859 static inline struct spi_controller *spi_alloc_target(struct device *dev,
862 if (!IS_ENABLED(CONFIG_SPI_SLAVE))
865 return __spi_alloc_controller(dev, size, true);
868 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
872 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
875 return __devm_spi_alloc_controller(dev, size, false);
878 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
881 if (!IS_ENABLED(CONFIG_SPI_SLAVE))
884 return __devm_spi_alloc_controller(dev, size, true);
887 static inline struct spi_controller *devm_spi_alloc_host(struct device *dev,
890 return __devm_spi_alloc_controller(dev, size, false);
893 static inline struct spi_controller *devm_spi_alloc_target(struct device *dev,
896 if (!IS_ENABLED(CONFIG_SPI_SLAVE))
899 return __devm_spi_alloc_controller(dev, size, true);
902 extern int spi_register_controller(struct spi_controller *ctlr);
903 extern int devm_spi_register_controller(struct device *dev,
904 struct spi_controller *ctlr);
905 extern void spi_unregister_controller(struct spi_controller *ctlr);
907 #if IS_ENABLED(CONFIG_ACPI)
908 extern struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
909 extern struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
910 struct acpi_device *adev,
912 int acpi_spi_count_resources(struct acpi_device *adev);
916 * SPI resource management while processing a SPI message
919 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
920 struct spi_message *msg,
924 * struct spi_res - SPI resource management structure
926 * @release: release code called prior to freeing this resource
927 * @data: extra data allocated for the specific use-case
929 * This is based on ideas from devres, but focused on life-cycle
930 * management during spi_message processing.
933 struct list_head entry;
934 spi_res_release_t release;
935 unsigned long long data[]; /* Guarantee ull alignment */
938 /*---------------------------------------------------------------------------*/
941 * I/O INTERFACE between SPI controller and protocol drivers
943 * Protocol drivers use a queue of spi_messages, each transferring data
944 * between the controller and memory buffers.
946 * The spi_messages themselves consist of a series of read+write transfer
947 * segments. Those segments always read the same number of bits as they
948 * write; but one or the other is easily ignored by passing a NULL buffer
949 * pointer. (This is unlike most types of I/O API, because SPI hardware
952 * NOTE: Allocation of spi_transfer and spi_message memory is entirely
953 * up to the protocol driver, which guarantees the integrity of both (as
954 * well as the data buffers) for as long as the message is queued.
958 * struct spi_transfer - a read/write buffer pair
959 * @tx_buf: data to be written (DMA-safe memory), or NULL
960 * @rx_buf: data to be read (DMA-safe memory), or NULL
961 * @tx_dma: DMA address of tx_buf, currently not for client use
962 * @rx_dma: DMA address of rx_buf, currently not for client use
963 * @tx_nbits: number of bits used for writing. If 0 the default
964 * (SPI_NBITS_SINGLE) is used.
965 * @rx_nbits: number of bits used for reading. If 0 the default
966 * (SPI_NBITS_SINGLE) is used.
967 * @len: size of rx and tx buffers (in bytes)
968 * @speed_hz: Select a speed other than the device default for this
969 * transfer. If 0 the default (from @spi_device) is used.
970 * @bits_per_word: select a bits_per_word other than the device default
971 * for this transfer. If 0 the default (from @spi_device) is used.
972 * @dummy_data: indicates transfer is dummy bytes transfer.
973 * @cs_off: performs the transfer with chipselect off.
974 * @cs_change: affects chipselect after this transfer completes
975 * @cs_change_delay: delay between cs deassert and assert when
976 * @cs_change is set and @spi_transfer is not the last in @spi_message
977 * @delay: delay to be introduced after this transfer before
978 * (optionally) changing the chipselect status, then starting
979 * the next transfer or completing this @spi_message.
980 * @word_delay: inter word delay to be introduced after each word size
981 * (set by bits_per_word) transmission.
982 * @effective_speed_hz: the effective SCK-speed that was used to
983 * transfer this transfer. Set to 0 if the SPI bus driver does
985 * @transfer_list: transfers are sequenced through @spi_message.transfers
986 * @tx_sg_mapped: If true, the @tx_sg is mapped for DMA
987 * @rx_sg_mapped: If true, the @rx_sg is mapped for DMA
988 * @tx_sg: Scatterlist for transmit, currently not for client use
989 * @rx_sg: Scatterlist for receive, currently not for client use
990 * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
991 * within @tx_buf for which the SPI device is requesting that the time
992 * snapshot for this transfer begins. Upon completing the SPI transfer,
993 * this value may have changed compared to what was requested, depending
994 * on the available snapshotting resolution (DMA transfer,
995 * @ptp_sts_supported is false, etc).
996 * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
997 * that a single byte should be snapshotted).
998 * If the core takes care of the timestamp (if @ptp_sts_supported is false
999 * for this controller), it will set @ptp_sts_word_pre to 0, and
1000 * @ptp_sts_word_post to the length of the transfer. This is done
1001 * purposefully (instead of setting to spi_transfer->len - 1) to denote
1002 * that a transfer-level snapshot taken from within the driver may still
1003 * be of higher quality.
1004 * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
1005 * PTP system timestamp structure may lie. If drivers use PIO or their
1006 * hardware has some sort of assist for retrieving exact transfer timing,
1007 * they can (and should) assert @ptp_sts_supported and populate this
1008 * structure using the ptp_read_system_*ts helper functions.
1009 * The timestamp must represent the time at which the SPI slave device has
1010 * processed the word, i.e. the "pre" timestamp should be taken before
1011 * transmitting the "pre" word, and the "post" timestamp after receiving
1012 * transmit confirmation from the controller for the "post" word.
1013 * @timestamped: true if the transfer has been timestamped
1014 * @error: Error status logged by SPI controller driver.
1016 * SPI transfers always write the same number of bytes as they read.
1017 * Protocol drivers should always provide @rx_buf and/or @tx_buf.
1018 * In some cases, they may also want to provide DMA addresses for
1019 * the data being transferred; that may reduce overhead, when the
1020 * underlying driver uses DMA.
1022 * If the transmit buffer is NULL, zeroes will be shifted out
1023 * while filling @rx_buf. If the receive buffer is NULL, the data
1024 * shifted in will be discarded. Only "len" bytes shift out (or in).
1025 * It's an error to try to shift out a partial word. (For example, by
1026 * shifting out three bytes with word size of sixteen or twenty bits;
1027 * the former uses two bytes per word, the latter uses four bytes.)
1029 * In-memory data values are always in native CPU byte order, translated
1030 * from the wire byte order (big-endian except with SPI_LSB_FIRST). So
1031 * for example when bits_per_word is sixteen, buffers are 2N bytes long
1032 * (@len = 2N) and hold N sixteen bit words in CPU byte order.
1034 * When the word size of the SPI transfer is not a power-of-two multiple
1035 * of eight bits, those in-memory words include extra bits. In-memory
1036 * words are always seen by protocol drivers as right-justified, so the
1037 * undefined (rx) or unused (tx) bits are always the most significant bits.
1039 * All SPI transfers start with the relevant chipselect active. Normally
1040 * it stays selected until after the last transfer in a message. Drivers
1041 * can affect the chipselect signal using cs_change.
1043 * (i) If the transfer isn't the last one in the message, this flag is
1044 * used to make the chipselect briefly go inactive in the middle of the
1045 * message. Toggling chipselect in this way may be needed to terminate
1046 * a chip command, letting a single spi_message perform all of group of
1047 * chip transactions together.
1049 * (ii) When the transfer is the last one in the message, the chip may
1050 * stay selected until the next transfer. On multi-device SPI busses
1051 * with nothing blocking messages going to other devices, this is just
1052 * a performance hint; starting a message to another device deselects
1053 * this one. But in other cases, this can be used to ensure correctness.
1054 * Some devices need protocol transactions to be built from a series of
1055 * spi_message submissions, where the content of one message is determined
1056 * by the results of previous messages and where the whole transaction
1057 * ends when the chipselect goes inactive.
1059 * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
1060 * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
1061 * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
1062 * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
1064 * The code that submits an spi_message (and its spi_transfers)
1065 * to the lower layers is responsible for managing its memory.
1066 * Zero-initialize every field you don't set up explicitly, to
1067 * insulate against future API updates. After you submit a message
1068 * and its transfers, ignore them until its completion callback.
1070 struct spi_transfer {
1072 * It's okay if tx_buf == rx_buf (right?).
1073 * For MicroWire, one buffer must be NULL.
1074 * Buffers must work with dma_*map_single() calls.
1080 #define SPI_TRANS_FAIL_NO_START BIT(0)
1081 #define SPI_TRANS_FAIL_IO BIT(1)
1087 struct sg_table tx_sg;
1088 struct sg_table rx_sg;
1092 unsigned dummy_data:1;
1094 unsigned cs_change:1;
1095 unsigned tx_nbits:4;
1096 unsigned rx_nbits:4;
1097 unsigned timestamped:1;
1098 #define SPI_NBITS_SINGLE 0x01 /* 1-bit transfer */
1099 #define SPI_NBITS_DUAL 0x02 /* 2-bit transfer */
1100 #define SPI_NBITS_QUAD 0x04 /* 4-bit transfer */
1101 #define SPI_NBITS_OCTAL 0x08 /* 8-bit transfer */
1103 struct spi_delay delay;
1104 struct spi_delay cs_change_delay;
1105 struct spi_delay word_delay;
1108 u32 effective_speed_hz;
1110 unsigned int ptp_sts_word_pre;
1111 unsigned int ptp_sts_word_post;
1113 struct ptp_system_timestamp *ptp_sts;
1115 struct list_head transfer_list;
1119 * struct spi_message - one multi-segment SPI transaction
1120 * @transfers: list of transfer segments in this transaction
1121 * @spi: SPI device to which the transaction is queued
1122 * @pre_optimized: peripheral driver pre-optimized the message
1123 * @optimized: the message is in the optimized state
1124 * @prepared: spi_prepare_message was called for the this message
1125 * @status: zero for success, else negative errno
1126 * @complete: called to report transaction completions
1127 * @context: the argument to complete() when it's called
1128 * @frame_length: the total number of bytes in the message
1129 * @actual_length: the total number of bytes that were transferred in all
1130 * successful segments
1131 * @queue: for use by whichever driver currently owns the message
1132 * @state: for use by whichever driver currently owns the message
1133 * @opt_state: for use by whichever driver currently owns the message
1134 * @resources: for resource management when the SPI message is processed
1136 * A @spi_message is used to execute an atomic sequence of data transfers,
1137 * each represented by a struct spi_transfer. The sequence is "atomic"
1138 * in the sense that no other spi_message may use that SPI bus until that
1139 * sequence completes. On some systems, many such sequences can execute as
1140 * a single programmed DMA transfer. On all systems, these messages are
1141 * queued, and might complete after transactions to other devices. Messages
1142 * sent to a given spi_device are always executed in FIFO order.
1144 * The code that submits an spi_message (and its spi_transfers)
1145 * to the lower layers is responsible for managing its memory.
1146 * Zero-initialize every field you don't set up explicitly, to
1147 * insulate against future API updates. After you submit a message
1148 * and its transfers, ignore them until its completion callback.
1150 struct spi_message {
1151 struct list_head transfers;
1153 struct spi_device *spi;
1155 /* spi_optimize_message() was called for this message */
1157 /* __spi_optimize_message() was called for this message */
1160 /* spi_prepare_message() was called for this message */
1164 * REVISIT: we might want a flag affecting the behavior of the
1165 * last transfer ... allowing things like "read 16 bit length L"
1166 * immediately followed by "read L bytes". Basically imposing
1167 * a specific message scheduling algorithm.
1169 * Some controller drivers (message-at-a-time queue processing)
1170 * could provide that as their default scheduling algorithm. But
1171 * others (with multi-message pipelines) could need a flag to
1172 * tell them about such special cases.
1175 /* Completion is reported through a callback */
1177 void (*complete)(void *context);
1179 unsigned frame_length;
1180 unsigned actual_length;
1183 * For optional use by whatever driver currently owns the
1184 * spi_message ... between calls to spi_async and then later
1185 * complete(), that's the spi_controller controller driver.
1187 struct list_head queue;
1190 * Optional state for use by controller driver between calls to
1191 * __spi_optimize_message() and __spi_unoptimize_message().
1195 /* List of spi_res resources when the SPI message is processed */
1196 struct list_head resources;
1199 static inline void spi_message_init_no_memset(struct spi_message *m)
1201 INIT_LIST_HEAD(&m->transfers);
1202 INIT_LIST_HEAD(&m->resources);
1205 static inline void spi_message_init(struct spi_message *m)
1207 memset(m, 0, sizeof *m);
1208 spi_message_init_no_memset(m);
1212 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1214 list_add_tail(&t->transfer_list, &m->transfers);
1218 spi_transfer_del(struct spi_transfer *t)
1220 list_del(&t->transfer_list);
1224 spi_transfer_delay_exec(struct spi_transfer *t)
1226 return spi_delay_exec(&t->delay, t);
1230 * spi_message_init_with_transfers - Initialize spi_message and append transfers
1231 * @m: spi_message to be initialized
1232 * @xfers: An array of SPI transfers
1233 * @num_xfers: Number of items in the xfer array
1235 * This function initializes the given spi_message and adds each spi_transfer in
1236 * the given array to the message.
1239 spi_message_init_with_transfers(struct spi_message *m,
1240 struct spi_transfer *xfers, unsigned int num_xfers)
1244 spi_message_init(m);
1245 for (i = 0; i < num_xfers; ++i)
1246 spi_message_add_tail(&xfers[i], m);
1250 * It's fine to embed message and transaction structures in other data
1251 * structures so long as you don't free them while they're in use.
1253 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1255 struct spi_message_with_transfers {
1256 struct spi_message m;
1257 struct spi_transfer t[];
1261 mwt = kzalloc(struct_size(mwt, t, ntrans), flags);
1265 spi_message_init_no_memset(&mwt->m);
1266 for (i = 0; i < ntrans; i++)
1267 spi_message_add_tail(&mwt->t[i], &mwt->m);
1272 static inline void spi_message_free(struct spi_message *m)
1277 extern int spi_optimize_message(struct spi_device *spi, struct spi_message *msg);
1278 extern void spi_unoptimize_message(struct spi_message *msg);
1279 extern int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
1280 struct spi_message *msg);
1282 extern int spi_setup(struct spi_device *spi);
1283 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1284 extern int spi_slave_abort(struct spi_device *spi);
1285 extern int spi_target_abort(struct spi_device *spi);
1287 static inline size_t
1288 spi_max_message_size(struct spi_device *spi)
1290 struct spi_controller *ctlr = spi->controller;
1292 if (!ctlr->max_message_size)
1294 return ctlr->max_message_size(spi);
1297 static inline size_t
1298 spi_max_transfer_size(struct spi_device *spi)
1300 struct spi_controller *ctlr = spi->controller;
1301 size_t tr_max = SIZE_MAX;
1302 size_t msg_max = spi_max_message_size(spi);
1304 if (ctlr->max_transfer_size)
1305 tr_max = ctlr->max_transfer_size(spi);
1307 /* Transfer size limit must not be greater than message size limit */
1308 return min(tr_max, msg_max);
1312 * spi_is_bpw_supported - Check if bits per word is supported
1314 * @bpw: Bits per word
1316 * This function checks to see if the SPI controller supports @bpw.
1319 * True if @bpw is supported, false otherwise.
1321 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1323 u32 bpw_mask = spi->controller->bits_per_word_mask;
1325 if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1332 * spi_controller_xfer_timeout - Compute a suitable timeout value
1334 * @xfer: Transfer descriptor
1336 * Compute a relevant timeout value for the given transfer. We derive the time
1337 * that it would take on a single data line and take twice this amount of time
1338 * with a minimum of 500ms to avoid false positives on loaded systems.
1340 * Returns: Transfer timeout value in milliseconds.
1342 static inline unsigned int spi_controller_xfer_timeout(struct spi_controller *ctlr,
1343 struct spi_transfer *xfer)
1345 return max(xfer->len * 8 * 2 / (xfer->speed_hz / 1000), 500U);
1348 /*---------------------------------------------------------------------------*/
1350 /* SPI transfer replacement methods which make use of spi_res */
1352 struct spi_replaced_transfers;
1353 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1354 struct spi_message *msg,
1355 struct spi_replaced_transfers *res);
1357 * struct spi_replaced_transfers - structure describing the spi_transfer
1358 * replacements that have occurred
1359 * so that they can get reverted
1360 * @release: some extra release code to get executed prior to
1361 * releasing this structure
1362 * @extradata: pointer to some extra data if requested or NULL
1363 * @replaced_transfers: transfers that have been replaced and which need
1365 * @replaced_after: the transfer after which the @replaced_transfers
1366 * are to get re-inserted
1367 * @inserted: number of transfers inserted
1368 * @inserted_transfers: array of spi_transfers of array-size @inserted,
1369 * that have been replacing replaced_transfers
1371 * Note: that @extradata will point to @inserted_transfers[@inserted]
1372 * if some extra allocation is requested, so alignment will be the same
1373 * as for spi_transfers.
1375 struct spi_replaced_transfers {
1376 spi_replaced_release_t release;
1378 struct list_head replaced_transfers;
1379 struct list_head *replaced_after;
1381 struct spi_transfer inserted_transfers[];
1384 /*---------------------------------------------------------------------------*/
1386 /* SPI transfer transformation methods */
1388 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1389 struct spi_message *msg,
1391 extern int spi_split_transfers_maxwords(struct spi_controller *ctlr,
1392 struct spi_message *msg,
1395 /*---------------------------------------------------------------------------*/
1398 * All these synchronous SPI transfer routines are utilities layered
1399 * over the core async transfer primitive. Here, "synchronous" means
1400 * they will sleep uninterruptibly until the async transfer completes.
1403 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1404 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1405 extern int spi_bus_lock(struct spi_controller *ctlr);
1406 extern int spi_bus_unlock(struct spi_controller *ctlr);
1409 * spi_sync_transfer - synchronous SPI data transfer
1410 * @spi: device with which data will be exchanged
1411 * @xfers: An array of spi_transfers
1412 * @num_xfers: Number of items in the xfer array
1413 * Context: can sleep
1415 * Does a synchronous SPI data transfer of the given spi_transfer array.
1417 * For more specific semantics see spi_sync().
1419 * Return: zero on success, else a negative error code.
1422 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1423 unsigned int num_xfers)
1425 struct spi_message msg;
1427 spi_message_init_with_transfers(&msg, xfers, num_xfers);
1429 return spi_sync(spi, &msg);
1433 * spi_write - SPI synchronous write
1434 * @spi: device to which data will be written
1436 * @len: data buffer size
1437 * Context: can sleep
1439 * This function writes the buffer @buf.
1440 * Callable only from contexts that can sleep.
1442 * Return: zero on success, else a negative error code.
1445 spi_write(struct spi_device *spi, const void *buf, size_t len)
1447 struct spi_transfer t = {
1452 return spi_sync_transfer(spi, &t, 1);
1456 * spi_read - SPI synchronous read
1457 * @spi: device from which data will be read
1459 * @len: data buffer size
1460 * Context: can sleep
1462 * This function reads the buffer @buf.
1463 * Callable only from contexts that can sleep.
1465 * Return: zero on success, else a negative error code.
1468 spi_read(struct spi_device *spi, void *buf, size_t len)
1470 struct spi_transfer t = {
1475 return spi_sync_transfer(spi, &t, 1);
1478 /* This copies txbuf and rxbuf data; for small transfers only! */
1479 extern int spi_write_then_read(struct spi_device *spi,
1480 const void *txbuf, unsigned n_tx,
1481 void *rxbuf, unsigned n_rx);
1484 * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1485 * @spi: device with which data will be exchanged
1486 * @cmd: command to be written before data is read back
1487 * Context: can sleep
1489 * Callable only from contexts that can sleep.
1491 * Return: the (unsigned) eight bit number returned by the
1492 * device, or else a negative error code.
1494 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1499 status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1501 /* Return negative errno or unsigned value */
1502 return (status < 0) ? status : result;
1506 * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1507 * @spi: device with which data will be exchanged
1508 * @cmd: command to be written before data is read back
1509 * Context: can sleep
1511 * The number is returned in wire-order, which is at least sometimes
1514 * Callable only from contexts that can sleep.
1516 * Return: the (unsigned) sixteen bit number returned by the
1517 * device, or else a negative error code.
1519 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1524 status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1526 /* Return negative errno or unsigned value */
1527 return (status < 0) ? status : result;
1531 * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1532 * @spi: device with which data will be exchanged
1533 * @cmd: command to be written before data is read back
1534 * Context: can sleep
1536 * This function is similar to spi_w8r16, with the exception that it will
1537 * convert the read 16 bit data word from big-endian to native endianness.
1539 * Callable only from contexts that can sleep.
1541 * Return: the (unsigned) sixteen bit number returned by the device in CPU
1542 * endianness, or else a negative error code.
1544 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1550 status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1554 return be16_to_cpu(result);
1557 /*---------------------------------------------------------------------------*/
1560 * INTERFACE between board init code and SPI infrastructure.
1562 * No SPI driver ever sees these SPI device table segments, but
1563 * it's how the SPI core (or adapters that get hotplugged) grows
1564 * the driver model tree.
1566 * As a rule, SPI devices can't be probed. Instead, board init code
1567 * provides a table listing the devices which are present, with enough
1568 * information to bind and set up the device's driver. There's basic
1569 * support for non-static configurations too; enough to handle adding
1570 * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1574 * struct spi_board_info - board-specific template for a SPI device
1575 * @modalias: Initializes spi_device.modalias; identifies the driver.
1576 * @platform_data: Initializes spi_device.platform_data; the particular
1577 * data stored there is driver-specific.
1578 * @swnode: Software node for the device.
1579 * @controller_data: Initializes spi_device.controller_data; some
1580 * controllers need hints about hardware setup, e.g. for DMA.
1581 * @irq: Initializes spi_device.irq; depends on how the board is wired.
1582 * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1583 * from the chip datasheet and board-specific signal quality issues.
1584 * @bus_num: Identifies which spi_controller parents the spi_device; unused
1585 * by spi_new_device(), and otherwise depends on board wiring.
1586 * @chip_select: Initializes spi_device.chip_select; depends on how
1587 * the board is wired.
1588 * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1589 * wiring (some devices support both 3WIRE and standard modes), and
1590 * possibly presence of an inverter in the chipselect path.
1592 * When adding new SPI devices to the device tree, these structures serve
1593 * as a partial device template. They hold information which can't always
1594 * be determined by drivers. Information that probe() can establish (such
1595 * as the default transfer wordsize) is not included here.
1597 * These structures are used in two places. Their primary role is to
1598 * be stored in tables of board-specific device descriptors, which are
1599 * declared early in board initialization and then used (much later) to
1600 * populate a controller's device tree after the that controller's driver
1601 * initializes. A secondary (and atypical) role is as a parameter to
1602 * spi_new_device() call, which happens after those controller drivers
1603 * are active in some dynamic board configuration models.
1605 struct spi_board_info {
1607 * The device name and module name are coupled, like platform_bus;
1608 * "modalias" is normally the driver name.
1610 * platform_data goes to spi_device.dev.platform_data,
1611 * controller_data goes to spi_device.controller_data,
1612 * IRQ is copied too.
1614 char modalias[SPI_NAME_SIZE];
1615 const void *platform_data;
1616 const struct software_node *swnode;
1617 void *controller_data;
1620 /* Slower signaling on noisy or low voltage boards */
1625 * bus_num is board specific and matches the bus_num of some
1626 * spi_controller that will probably be registered later.
1628 * chip_select reflects how this chip is wired to that master;
1629 * it's less than num_chipselect.
1635 * mode becomes spi_device.mode, and is essential for chips
1636 * where the default of SPI_CS_HIGH = 0 is wrong.
1641 * ... may need additional spi_device chip config data here.
1642 * avoid stuff protocol drivers can set; but include stuff
1643 * needed to behave without being bound to a driver:
1644 * - quirks like clock rate mattering when not selected
1650 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1652 /* Board init code may ignore whether SPI is configured or not */
1654 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1659 * If you're hotplugging an adapter with devices (parport, USB, etc)
1660 * use spi_new_device() to describe each device. You can also call
1661 * spi_unregister_device() to start making that device vanish, but
1662 * normally that would be handled by spi_unregister_controller().
1664 * You can also use spi_alloc_device() and spi_add_device() to use a two
1665 * stage registration sequence for each spi_device. This gives the caller
1666 * some more control over the spi_device structure before it is registered,
1667 * but requires that caller to initialize fields that would otherwise
1668 * be defined using the board info.
1670 extern struct spi_device *
1671 spi_alloc_device(struct spi_controller *ctlr);
1674 spi_add_device(struct spi_device *spi);
1676 extern struct spi_device *
1677 spi_new_device(struct spi_controller *, struct spi_board_info *);
1679 extern void spi_unregister_device(struct spi_device *spi);
1681 extern const struct spi_device_id *
1682 spi_get_device_id(const struct spi_device *sdev);
1685 spi_get_device_match_data(const struct spi_device *sdev);
1688 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1690 return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1693 #endif /* __LINUX_SPI_H */