1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_health.h"
29 #include <linux/iversion.h>
31 /* Radix tree tags for incore inode tree. */
33 /* inode is to be reclaimed */
34 #define XFS_ICI_RECLAIM_TAG 0
35 /* Inode has speculative preallocations (posteof or cow) to clean. */
36 #define XFS_ICI_BLOCKGC_TAG 1
39 * The goal for walking incore inodes. These can correspond with incore inode
40 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
42 enum xfs_icwalk_goal {
43 /* Goals directly associated with tagged inodes. */
44 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG,
45 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG,
48 static int xfs_icwalk(struct xfs_mount *mp,
49 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
50 static int xfs_icwalk_ag(struct xfs_perag *pag,
51 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
54 * Private inode cache walk flags for struct xfs_icwalk. Must not
55 * coincide with XFS_ICWALK_FLAGS_VALID.
58 /* Stop scanning after icw_scan_limit inodes. */
59 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
61 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
62 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
64 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \
65 XFS_ICWALK_FLAG_RECLAIM_SICK | \
66 XFS_ICWALK_FLAG_UNION)
69 * Allocate and initialise an xfs_inode.
79 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
80 * and return NULL here on ENOMEM.
82 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
84 if (inode_init_always(mp->m_super, VFS_I(ip))) {
85 kmem_cache_free(xfs_inode_cache, ip);
89 /* VFS doesn't initialise i_mode! */
90 VFS_I(ip)->i_mode = 0;
91 mapping_set_large_folios(VFS_I(ip)->i_mapping);
93 XFS_STATS_INC(mp, vn_active);
94 ASSERT(atomic_read(&ip->i_pincount) == 0);
95 ASSERT(ip->i_ino == 0);
97 /* initialise the xfs inode */
100 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
102 memset(&ip->i_af, 0, sizeof(ip->i_af));
103 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
104 memset(&ip->i_df, 0, sizeof(ip->i_df));
106 ip->i_delayed_blks = 0;
107 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
112 INIT_WORK(&ip->i_ioend_work, xfs_end_io);
113 INIT_LIST_HEAD(&ip->i_ioend_list);
114 spin_lock_init(&ip->i_ioend_lock);
115 ip->i_next_unlinked = NULLAGINO;
116 ip->i_prev_unlinked = 0;
122 xfs_inode_free_callback(
123 struct rcu_head *head)
125 struct inode *inode = container_of(head, struct inode, i_rcu);
126 struct xfs_inode *ip = XFS_I(inode);
128 switch (VFS_I(ip)->i_mode & S_IFMT) {
132 xfs_idestroy_fork(&ip->i_df);
136 xfs_ifork_zap_attr(ip);
139 xfs_idestroy_fork(ip->i_cowfp);
140 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
143 ASSERT(!test_bit(XFS_LI_IN_AIL,
144 &ip->i_itemp->ili_item.li_flags));
145 xfs_inode_item_destroy(ip);
149 kmem_cache_free(xfs_inode_cache, ip);
154 struct xfs_inode *ip)
156 /* asserts to verify all state is correct here */
157 ASSERT(atomic_read(&ip->i_pincount) == 0);
158 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
159 XFS_STATS_DEC(ip->i_mount, vn_active);
161 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
166 struct xfs_inode *ip)
168 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
171 * Because we use RCU freeing we need to ensure the inode always
172 * appears to be reclaimed with an invalid inode number when in the
173 * free state. The ip->i_flags_lock provides the barrier against lookup
176 spin_lock(&ip->i_flags_lock);
177 ip->i_flags = XFS_IRECLAIM;
179 spin_unlock(&ip->i_flags_lock);
181 __xfs_inode_free(ip);
185 * Queue background inode reclaim work if there are reclaimable inodes and there
186 * isn't reclaim work already scheduled or in progress.
189 xfs_reclaim_work_queue(
190 struct xfs_mount *mp)
194 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
195 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
196 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
202 * Background scanning to trim preallocated space. This is queued based on the
203 * 'speculative_prealloc_lifetime' tunable (5m by default).
207 struct xfs_perag *pag)
209 struct xfs_mount *mp = pag->pag_mount;
211 if (!xfs_is_blockgc_enabled(mp))
215 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
216 queue_delayed_work(pag->pag_mount->m_blockgc_wq,
217 &pag->pag_blockgc_work,
218 msecs_to_jiffies(xfs_blockgc_secs * 1000));
222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
224 xfs_perag_set_inode_tag(
225 struct xfs_perag *pag,
229 struct xfs_mount *mp = pag->pag_mount;
232 lockdep_assert_held(&pag->pag_ici_lock);
234 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
235 radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
237 if (tag == XFS_ICI_RECLAIM_TAG)
238 pag->pag_ici_reclaimable++;
243 /* propagate the tag up into the perag radix tree */
244 spin_lock(&mp->m_perag_lock);
245 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
246 spin_unlock(&mp->m_perag_lock);
248 /* start background work */
250 case XFS_ICI_RECLAIM_TAG:
251 xfs_reclaim_work_queue(mp);
253 case XFS_ICI_BLOCKGC_TAG:
254 xfs_blockgc_queue(pag);
258 trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
263 xfs_perag_clear_inode_tag(
264 struct xfs_perag *pag,
268 struct xfs_mount *mp = pag->pag_mount;
270 lockdep_assert_held(&pag->pag_ici_lock);
273 * Reclaim can signal (with a null agino) that it cleared its own tag
274 * by removing the inode from the radix tree.
276 if (agino != NULLAGINO)
277 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
279 ASSERT(tag == XFS_ICI_RECLAIM_TAG);
281 if (tag == XFS_ICI_RECLAIM_TAG)
282 pag->pag_ici_reclaimable--;
284 if (radix_tree_tagged(&pag->pag_ici_root, tag))
287 /* clear the tag from the perag radix tree */
288 spin_lock(&mp->m_perag_lock);
289 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
290 spin_unlock(&mp->m_perag_lock);
292 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
296 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
297 * part of the structure. This is made more complex by the fact we store
298 * information about the on-disk values in the VFS inode and so we can't just
299 * overwrite the values unconditionally. Hence we save the parameters we
300 * need to retain across reinitialisation, and rewrite them into the VFS inode
301 * after reinitialisation even if it fails.
305 struct xfs_mount *mp,
309 uint32_t nlink = inode->i_nlink;
310 uint32_t generation = inode->i_generation;
311 uint64_t version = inode_peek_iversion(inode);
312 umode_t mode = inode->i_mode;
313 dev_t dev = inode->i_rdev;
314 kuid_t uid = inode->i_uid;
315 kgid_t gid = inode->i_gid;
316 unsigned long state = inode->i_state;
318 error = inode_init_always(mp->m_super, inode);
320 set_nlink(inode, nlink);
321 inode->i_generation = generation;
322 inode_set_iversion_queried(inode, version);
323 inode->i_mode = mode;
327 inode->i_state = state;
328 mapping_set_large_folios(inode->i_mapping);
333 * Carefully nudge an inode whose VFS state has been torn down back into a
334 * usable state. Drops the i_flags_lock and the rcu read lock.
338 struct xfs_perag *pag,
339 struct xfs_inode *ip) __releases(&ip->i_flags_lock)
341 struct xfs_mount *mp = ip->i_mount;
342 struct inode *inode = VFS_I(ip);
345 trace_xfs_iget_recycle(ip);
347 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
351 * We need to make it look like the inode is being reclaimed to prevent
352 * the actual reclaim workers from stomping over us while we recycle
353 * the inode. We can't clear the radix tree tag yet as it requires
354 * pag_ici_lock to be held exclusive.
356 ip->i_flags |= XFS_IRECLAIM;
358 spin_unlock(&ip->i_flags_lock);
361 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
362 error = xfs_reinit_inode(mp, inode);
363 xfs_iunlock(ip, XFS_ILOCK_EXCL);
366 * Re-initializing the inode failed, and we are in deep
367 * trouble. Try to re-add it to the reclaim list.
370 spin_lock(&ip->i_flags_lock);
371 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
372 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
373 spin_unlock(&ip->i_flags_lock);
376 trace_xfs_iget_recycle_fail(ip);
380 spin_lock(&pag->pag_ici_lock);
381 spin_lock(&ip->i_flags_lock);
384 * Clear the per-lifetime state in the inode as we are now effectively
385 * a new inode and need to return to the initial state before reuse
388 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
389 ip->i_flags |= XFS_INEW;
390 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
391 XFS_ICI_RECLAIM_TAG);
392 inode->i_state = I_NEW;
393 spin_unlock(&ip->i_flags_lock);
394 spin_unlock(&pag->pag_ici_lock);
400 * If we are allocating a new inode, then check what was returned is
401 * actually a free, empty inode. If we are not allocating an inode,
402 * then check we didn't find a free inode.
405 * 0 if the inode free state matches the lookup context
406 * -ENOENT if the inode is free and we are not allocating
407 * -EFSCORRUPTED if there is any state mismatch at all
410 xfs_iget_check_free_state(
411 struct xfs_inode *ip,
414 if (flags & XFS_IGET_CREATE) {
415 /* should be a free inode */
416 if (VFS_I(ip)->i_mode != 0) {
417 xfs_warn(ip->i_mount,
418 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
419 ip->i_ino, VFS_I(ip)->i_mode);
420 xfs_agno_mark_sick(ip->i_mount,
421 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
423 return -EFSCORRUPTED;
426 if (ip->i_nblocks != 0) {
427 xfs_warn(ip->i_mount,
428 "Corruption detected! Free inode 0x%llx has blocks allocated!",
430 xfs_agno_mark_sick(ip->i_mount,
431 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
433 return -EFSCORRUPTED;
438 /* should be an allocated inode */
439 if (VFS_I(ip)->i_mode == 0)
445 /* Make all pending inactivation work start immediately. */
447 xfs_inodegc_queue_all(
448 struct xfs_mount *mp)
450 struct xfs_inodegc *gc;
454 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
455 gc = per_cpu_ptr(mp->m_inodegc, cpu);
456 if (!llist_empty(&gc->list)) {
457 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
465 /* Wait for all queued work and collect errors */
467 xfs_inodegc_wait_all(
468 struct xfs_mount *mp)
473 flush_workqueue(mp->m_inodegc_wq);
474 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
475 struct xfs_inodegc *gc;
477 gc = per_cpu_ptr(mp->m_inodegc, cpu);
478 if (gc->error && !error)
487 * Check the validity of the inode we just found it the cache
491 struct xfs_perag *pag,
492 struct xfs_inode *ip,
495 int lock_flags) __releases(RCU)
497 struct inode *inode = VFS_I(ip);
498 struct xfs_mount *mp = ip->i_mount;
502 * check for re-use of an inode within an RCU grace period due to the
503 * radix tree nodes not being updated yet. We monitor for this by
504 * setting the inode number to zero before freeing the inode structure.
505 * If the inode has been reallocated and set up, then the inode number
506 * will not match, so check for that, too.
508 spin_lock(&ip->i_flags_lock);
509 if (ip->i_ino != ino)
513 * If we are racing with another cache hit that is currently
514 * instantiating this inode or currently recycling it out of
515 * reclaimable state, wait for the initialisation to complete
518 * If we're racing with the inactivation worker we also want to wait.
519 * If we're creating a new file, it's possible that the worker
520 * previously marked the inode as free on disk but hasn't finished
521 * updating the incore state yet. The AGI buffer will be dirty and
522 * locked to the icreate transaction, so a synchronous push of the
523 * inodegc workers would result in deadlock. For a regular iget, the
524 * worker is running already, so we might as well wait.
526 * XXX(hch): eventually we should do something equivalent to
527 * wait_on_inode to wait for these flags to be cleared
528 * instead of polling for it.
530 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
533 if (ip->i_flags & XFS_NEED_INACTIVE) {
534 /* Unlinked inodes cannot be re-grabbed. */
535 if (VFS_I(ip)->i_nlink == 0) {
539 goto out_inodegc_flush;
543 * Check the inode free state is valid. This also detects lookup
544 * racing with unlinks.
546 error = xfs_iget_check_free_state(ip, flags);
550 /* Skip inodes that have no vfs state. */
551 if ((flags & XFS_IGET_INCORE) &&
552 (ip->i_flags & XFS_IRECLAIMABLE))
555 /* The inode fits the selection criteria; process it. */
556 if (ip->i_flags & XFS_IRECLAIMABLE) {
557 /* Drops i_flags_lock and RCU read lock. */
558 error = xfs_iget_recycle(pag, ip);
559 if (error == -EAGAIN)
564 /* If the VFS inode is being torn down, pause and try again. */
568 /* We've got a live one. */
569 spin_unlock(&ip->i_flags_lock);
571 trace_xfs_iget_hit(ip);
575 xfs_ilock(ip, lock_flags);
577 if (!(flags & XFS_IGET_INCORE))
578 xfs_iflags_clear(ip, XFS_ISTALE);
579 XFS_STATS_INC(mp, xs_ig_found);
584 trace_xfs_iget_skip(ip);
585 XFS_STATS_INC(mp, xs_ig_frecycle);
588 spin_unlock(&ip->i_flags_lock);
593 spin_unlock(&ip->i_flags_lock);
596 * Do not wait for the workers, because the caller could hold an AGI
597 * buffer lock. We're just going to sleep in a loop anyway.
599 if (xfs_is_inodegc_enabled(mp))
600 xfs_inodegc_queue_all(mp);
606 struct xfs_mount *mp,
607 struct xfs_perag *pag,
610 struct xfs_inode **ipp,
614 struct xfs_inode *ip;
616 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
618 ip = xfs_inode_alloc(mp, ino);
622 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
627 * For version 5 superblocks, if we are initialising a new inode and we
628 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
629 * simply build the new inode core with a random generation number.
631 * For version 4 (and older) superblocks, log recovery is dependent on
632 * the i_flushiter field being initialised from the current on-disk
633 * value and hence we must also read the inode off disk even when
634 * initializing new inodes.
636 if (xfs_has_v3inodes(mp) &&
637 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
638 VFS_I(ip)->i_generation = get_random_u32();
642 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
646 error = xfs_inode_from_disk(ip,
647 xfs_buf_offset(bp, ip->i_imap.im_boffset));
649 xfs_buf_set_ref(bp, XFS_INO_REF);
651 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
652 xfs_trans_brelse(tp, bp);
658 trace_xfs_iget_miss(ip);
661 * Check the inode free state is valid. This also detects lookup
662 * racing with unlinks.
664 error = xfs_iget_check_free_state(ip, flags);
669 * Preload the radix tree so we can insert safely under the
670 * write spinlock. Note that we cannot sleep inside the preload
673 if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
679 * Because the inode hasn't been added to the radix-tree yet it can't
680 * be found by another thread, so we can do the non-sleeping lock here.
683 if (!xfs_ilock_nowait(ip, lock_flags))
688 * These values must be set before inserting the inode into the radix
689 * tree as the moment it is inserted a concurrent lookup (allowed by the
690 * RCU locking mechanism) can find it and that lookup must see that this
691 * is an inode currently under construction (i.e. that XFS_INEW is set).
692 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
693 * memory barrier that ensures this detection works correctly at lookup
696 if (flags & XFS_IGET_DONTCACHE)
697 d_mark_dontcache(VFS_I(ip));
701 xfs_iflags_set(ip, XFS_INEW);
703 /* insert the new inode */
704 spin_lock(&pag->pag_ici_lock);
705 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
706 if (unlikely(error)) {
707 WARN_ON(error != -EEXIST);
708 XFS_STATS_INC(mp, xs_ig_dup);
710 goto out_preload_end;
712 spin_unlock(&pag->pag_ici_lock);
713 radix_tree_preload_end();
719 spin_unlock(&pag->pag_ici_lock);
720 radix_tree_preload_end();
722 xfs_iunlock(ip, lock_flags);
724 __destroy_inode(VFS_I(ip));
730 * Look up an inode by number in the given file system. The inode is looked up
731 * in the cache held in each AG. If the inode is found in the cache, initialise
732 * the vfs inode if necessary.
734 * If it is not in core, read it in from the file system's device, add it to the
735 * cache and initialise the vfs inode.
737 * The inode is locked according to the value of the lock_flags parameter.
738 * Inode lookup is only done during metadata operations and not as part of the
739 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
743 struct xfs_mount *mp,
744 struct xfs_trans *tp,
748 struct xfs_inode **ipp)
750 struct xfs_inode *ip;
751 struct xfs_perag *pag;
755 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
757 /* reject inode numbers outside existing AGs */
758 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
761 XFS_STATS_INC(mp, xs_ig_attempts);
763 /* get the perag structure and ensure that it's inode capable */
764 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
765 agino = XFS_INO_TO_AGINO(mp, ino);
770 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
773 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
775 goto out_error_or_again;
778 if (flags & XFS_IGET_INCORE) {
780 goto out_error_or_again;
782 XFS_STATS_INC(mp, xs_ig_missed);
784 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
787 goto out_error_or_again;
794 * If we have a real type for an on-disk inode, we can setup the inode
795 * now. If it's a new inode being created, xfs_init_new_inode will
798 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
799 xfs_setup_existing_inode(ip);
803 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
813 * Grab the inode for reclaim exclusively.
815 * We have found this inode via a lookup under RCU, so the inode may have
816 * already been freed, or it may be in the process of being recycled by
817 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
818 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
819 * will not be set. Hence we need to check for both these flag conditions to
820 * avoid inodes that are no longer reclaim candidates.
822 * Note: checking for other state flags here, under the i_flags_lock or not, is
823 * racy and should be avoided. Those races should be resolved only after we have
824 * ensured that we are able to reclaim this inode and the world can see that we
825 * are going to reclaim it.
827 * Return true if we grabbed it, false otherwise.
831 struct xfs_inode *ip,
832 struct xfs_icwalk *icw)
834 ASSERT(rcu_read_lock_held());
836 spin_lock(&ip->i_flags_lock);
837 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
838 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
839 /* not a reclaim candidate. */
840 spin_unlock(&ip->i_flags_lock);
844 /* Don't reclaim a sick inode unless the caller asked for it. */
846 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
847 spin_unlock(&ip->i_flags_lock);
851 __xfs_iflags_set(ip, XFS_IRECLAIM);
852 spin_unlock(&ip->i_flags_lock);
857 * Inode reclaim is non-blocking, so the default action if progress cannot be
858 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
859 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
860 * blocking anymore and hence we can wait for the inode to be able to reclaim
863 * We do no IO here - if callers require inodes to be cleaned they must push the
864 * AIL first to trigger writeback of dirty inodes. This enables writeback to be
865 * done in the background in a non-blocking manner, and enables memory reclaim
866 * to make progress without blocking.
870 struct xfs_inode *ip,
871 struct xfs_perag *pag)
873 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
875 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
877 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
881 * Check for log shutdown because aborting the inode can move the log
882 * tail and corrupt in memory state. This is fine if the log is shut
883 * down, but if the log is still active and only the mount is shut down
884 * then the in-memory log tail movement caused by the abort can be
885 * incorrectly propagated to disk.
887 if (xlog_is_shutdown(ip->i_mount->m_log)) {
889 xfs_iflush_shutdown_abort(ip);
892 if (xfs_ipincount(ip))
893 goto out_clear_flush;
894 if (!xfs_inode_clean(ip))
895 goto out_clear_flush;
897 xfs_iflags_clear(ip, XFS_IFLUSHING);
899 trace_xfs_inode_reclaiming(ip);
902 * Because we use RCU freeing we need to ensure the inode always appears
903 * to be reclaimed with an invalid inode number when in the free state.
904 * We do this as early as possible under the ILOCK so that
905 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
906 * detect races with us here. By doing this, we guarantee that once
907 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
908 * it will see either a valid inode that will serialise correctly, or it
909 * will see an invalid inode that it can skip.
911 spin_lock(&ip->i_flags_lock);
912 ip->i_flags = XFS_IRECLAIM;
916 spin_unlock(&ip->i_flags_lock);
918 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
919 xfs_iunlock(ip, XFS_ILOCK_EXCL);
921 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
923 * Remove the inode from the per-AG radix tree.
925 * Because radix_tree_delete won't complain even if the item was never
926 * added to the tree assert that it's been there before to catch
927 * problems with the inode life time early on.
929 spin_lock(&pag->pag_ici_lock);
930 if (!radix_tree_delete(&pag->pag_ici_root,
931 XFS_INO_TO_AGINO(ip->i_mount, ino)))
933 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
934 spin_unlock(&pag->pag_ici_lock);
937 * Here we do an (almost) spurious inode lock in order to coordinate
938 * with inode cache radix tree lookups. This is because the lookup
939 * can reference the inodes in the cache without taking references.
941 * We make that OK here by ensuring that we wait until the inode is
942 * unlocked after the lookup before we go ahead and free it.
944 xfs_ilock(ip, XFS_ILOCK_EXCL);
945 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
946 xfs_iunlock(ip, XFS_ILOCK_EXCL);
947 ASSERT(xfs_inode_clean(ip));
949 __xfs_inode_free(ip);
953 xfs_iflags_clear(ip, XFS_IFLUSHING);
955 xfs_iunlock(ip, XFS_ILOCK_EXCL);
957 xfs_iflags_clear(ip, XFS_IRECLAIM);
960 /* Reclaim sick inodes if we're unmounting or the fs went down. */
962 xfs_want_reclaim_sick(
963 struct xfs_mount *mp)
965 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
971 struct xfs_mount *mp)
973 struct xfs_icwalk icw = {
977 if (xfs_want_reclaim_sick(mp))
978 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
980 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
981 xfs_ail_push_all_sync(mp->m_ail);
982 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
987 * The shrinker infrastructure determines how many inodes we should scan for
988 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
989 * push the AIL here. We also want to proactively free up memory if we can to
990 * minimise the amount of work memory reclaim has to do so we kick the
991 * background reclaim if it isn't already scheduled.
994 xfs_reclaim_inodes_nr(
995 struct xfs_mount *mp,
996 unsigned long nr_to_scan)
998 struct xfs_icwalk icw = {
999 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT,
1000 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
1003 if (xfs_want_reclaim_sick(mp))
1004 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1006 /* kick background reclaimer and push the AIL */
1007 xfs_reclaim_work_queue(mp);
1008 xfs_ail_push_all(mp->m_ail);
1010 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1015 * Return the number of reclaimable inodes in the filesystem for
1016 * the shrinker to determine how much to reclaim.
1019 xfs_reclaim_inodes_count(
1020 struct xfs_mount *mp)
1022 struct xfs_perag *pag;
1023 xfs_agnumber_t ag = 0;
1024 long reclaimable = 0;
1026 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1027 ag = pag->pag_agno + 1;
1028 reclaimable += pag->pag_ici_reclaimable;
1035 xfs_icwalk_match_id(
1036 struct xfs_inode *ip,
1037 struct xfs_icwalk *icw)
1039 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1040 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1043 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1044 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1047 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1048 ip->i_projid != icw->icw_prid)
1055 * A union-based inode filtering algorithm. Process the inode if any of the
1056 * criteria match. This is for global/internal scans only.
1059 xfs_icwalk_match_id_union(
1060 struct xfs_inode *ip,
1061 struct xfs_icwalk *icw)
1063 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1064 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1067 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1068 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1071 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1072 ip->i_projid == icw->icw_prid)
1079 * Is this inode @ip eligible for eof/cow block reclamation, given some
1080 * filtering parameters @icw? The inode is eligible if @icw is null or
1081 * if the predicate functions match.
1085 struct xfs_inode *ip,
1086 struct xfs_icwalk *icw)
1093 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1094 match = xfs_icwalk_match_id_union(ip, icw);
1096 match = xfs_icwalk_match_id(ip, icw);
1100 /* skip the inode if the file size is too small */
1101 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1102 XFS_ISIZE(ip) < icw->icw_min_file_size)
1109 * This is a fast pass over the inode cache to try to get reclaim moving on as
1110 * many inodes as possible in a short period of time. It kicks itself every few
1111 * seconds, as well as being kicked by the inode cache shrinker when memory
1116 struct work_struct *work)
1118 struct xfs_mount *mp = container_of(to_delayed_work(work),
1119 struct xfs_mount, m_reclaim_work);
1121 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1122 xfs_reclaim_work_queue(mp);
1126 xfs_inode_free_eofblocks(
1127 struct xfs_inode *ip,
1128 struct xfs_icwalk *icw,
1129 unsigned int *lockflags)
1133 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1135 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1139 * If the mapping is dirty the operation can block and wait for some
1140 * time. Unless we are waiting, skip it.
1142 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1145 if (!xfs_icwalk_match(ip, icw))
1149 * If the caller is waiting, return -EAGAIN to keep the background
1150 * scanner moving and revisit the inode in a subsequent pass.
1152 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1157 *lockflags |= XFS_IOLOCK_EXCL;
1159 if (xfs_can_free_eofblocks(ip, false))
1160 return xfs_free_eofblocks(ip);
1162 /* inode could be preallocated or append-only */
1163 trace_xfs_inode_free_eofblocks_invalid(ip);
1164 xfs_inode_clear_eofblocks_tag(ip);
1169 xfs_blockgc_set_iflag(
1170 struct xfs_inode *ip,
1171 unsigned long iflag)
1173 struct xfs_mount *mp = ip->i_mount;
1174 struct xfs_perag *pag;
1176 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1179 * Don't bother locking the AG and looking up in the radix trees
1180 * if we already know that we have the tag set.
1182 if (ip->i_flags & iflag)
1184 spin_lock(&ip->i_flags_lock);
1185 ip->i_flags |= iflag;
1186 spin_unlock(&ip->i_flags_lock);
1188 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1189 spin_lock(&pag->pag_ici_lock);
1191 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1192 XFS_ICI_BLOCKGC_TAG);
1194 spin_unlock(&pag->pag_ici_lock);
1199 xfs_inode_set_eofblocks_tag(
1202 trace_xfs_inode_set_eofblocks_tag(ip);
1203 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1207 xfs_blockgc_clear_iflag(
1208 struct xfs_inode *ip,
1209 unsigned long iflag)
1211 struct xfs_mount *mp = ip->i_mount;
1212 struct xfs_perag *pag;
1215 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1217 spin_lock(&ip->i_flags_lock);
1218 ip->i_flags &= ~iflag;
1219 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1220 spin_unlock(&ip->i_flags_lock);
1225 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1226 spin_lock(&pag->pag_ici_lock);
1228 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1229 XFS_ICI_BLOCKGC_TAG);
1231 spin_unlock(&pag->pag_ici_lock);
1236 xfs_inode_clear_eofblocks_tag(
1239 trace_xfs_inode_clear_eofblocks_tag(ip);
1240 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1244 * Set ourselves up to free CoW blocks from this file. If it's already clean
1245 * then we can bail out quickly, but otherwise we must back off if the file
1246 * is undergoing some kind of write.
1249 xfs_prep_free_cowblocks(
1250 struct xfs_inode *ip)
1253 * Just clear the tag if we have an empty cow fork or none at all. It's
1254 * possible the inode was fully unshared since it was originally tagged.
1256 if (!xfs_inode_has_cow_data(ip)) {
1257 trace_xfs_inode_free_cowblocks_invalid(ip);
1258 xfs_inode_clear_cowblocks_tag(ip);
1263 * If the mapping is dirty or under writeback we cannot touch the
1264 * CoW fork. Leave it alone if we're in the midst of a directio.
1266 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1267 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1268 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1269 atomic_read(&VFS_I(ip)->i_dio_count))
1276 * Automatic CoW Reservation Freeing
1278 * These functions automatically garbage collect leftover CoW reservations
1279 * that were made on behalf of a cowextsize hint when we start to run out
1280 * of quota or when the reservations sit around for too long. If the file
1281 * has dirty pages or is undergoing writeback, its CoW reservations will
1284 * The actual garbage collection piggybacks off the same code that runs
1285 * the speculative EOF preallocation garbage collector.
1288 xfs_inode_free_cowblocks(
1289 struct xfs_inode *ip,
1290 struct xfs_icwalk *icw,
1291 unsigned int *lockflags)
1296 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1298 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1301 if (!xfs_prep_free_cowblocks(ip))
1304 if (!xfs_icwalk_match(ip, icw))
1308 * If the caller is waiting, return -EAGAIN to keep the background
1309 * scanner moving and revisit the inode in a subsequent pass.
1311 if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1312 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1317 *lockflags |= XFS_IOLOCK_EXCL;
1319 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1324 *lockflags |= XFS_MMAPLOCK_EXCL;
1327 * Check again, nobody else should be able to dirty blocks or change
1328 * the reflink iflag now that we have the first two locks held.
1330 if (xfs_prep_free_cowblocks(ip))
1331 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1336 xfs_inode_set_cowblocks_tag(
1339 trace_xfs_inode_set_cowblocks_tag(ip);
1340 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1344 xfs_inode_clear_cowblocks_tag(
1347 trace_xfs_inode_clear_cowblocks_tag(ip);
1348 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1351 /* Disable post-EOF and CoW block auto-reclamation. */
1354 struct xfs_mount *mp)
1356 struct xfs_perag *pag;
1357 xfs_agnumber_t agno;
1359 if (!xfs_clear_blockgc_enabled(mp))
1362 for_each_perag(mp, agno, pag)
1363 cancel_delayed_work_sync(&pag->pag_blockgc_work);
1364 trace_xfs_blockgc_stop(mp, __return_address);
1367 /* Enable post-EOF and CoW block auto-reclamation. */
1370 struct xfs_mount *mp)
1372 struct xfs_perag *pag;
1373 xfs_agnumber_t agno;
1375 if (xfs_set_blockgc_enabled(mp))
1378 trace_xfs_blockgc_start(mp, __return_address);
1379 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1380 xfs_blockgc_queue(pag);
1383 /* Don't try to run block gc on an inode that's in any of these states. */
1384 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
1385 XFS_NEED_INACTIVE | \
1386 XFS_INACTIVATING | \
1387 XFS_IRECLAIMABLE | \
1390 * Decide if the given @ip is eligible for garbage collection of speculative
1391 * preallocations, and grab it if so. Returns true if it's ready to go or
1392 * false if we should just ignore it.
1396 struct xfs_inode *ip)
1398 struct inode *inode = VFS_I(ip);
1400 ASSERT(rcu_read_lock_held());
1402 /* Check for stale RCU freed inode */
1403 spin_lock(&ip->i_flags_lock);
1405 goto out_unlock_noent;
1407 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1408 goto out_unlock_noent;
1409 spin_unlock(&ip->i_flags_lock);
1411 /* nothing to sync during shutdown */
1412 if (xfs_is_shutdown(ip->i_mount))
1415 /* If we can't grab the inode, it must on it's way to reclaim. */
1419 /* inode is valid */
1423 spin_unlock(&ip->i_flags_lock);
1427 /* Scan one incore inode for block preallocations that we can remove. */
1429 xfs_blockgc_scan_inode(
1430 struct xfs_inode *ip,
1431 struct xfs_icwalk *icw)
1433 unsigned int lockflags = 0;
1436 error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1440 error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1443 xfs_iunlock(ip, lockflags);
1448 /* Background worker that trims preallocated space. */
1451 struct work_struct *work)
1453 struct xfs_perag *pag = container_of(to_delayed_work(work),
1454 struct xfs_perag, pag_blockgc_work);
1455 struct xfs_mount *mp = pag->pag_mount;
1458 trace_xfs_blockgc_worker(mp, __return_address);
1460 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1462 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1463 pag->pag_agno, error);
1464 xfs_blockgc_queue(pag);
1468 * Try to free space in the filesystem by purging inactive inodes, eofblocks
1472 xfs_blockgc_free_space(
1473 struct xfs_mount *mp,
1474 struct xfs_icwalk *icw)
1478 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1480 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1484 return xfs_inodegc_flush(mp);
1488 * Reclaim all the free space that we can by scheduling the background blockgc
1489 * and inodegc workers immediately and waiting for them all to clear.
1492 xfs_blockgc_flush_all(
1493 struct xfs_mount *mp)
1495 struct xfs_perag *pag;
1496 xfs_agnumber_t agno;
1498 trace_xfs_blockgc_flush_all(mp, __return_address);
1501 * For each blockgc worker, move its queue time up to now. If it
1502 * wasn't queued, it will not be requeued. Then flush whatever's
1505 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1506 mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1507 &pag->pag_blockgc_work, 0);
1509 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1510 flush_delayed_work(&pag->pag_blockgc_work);
1512 return xfs_inodegc_flush(mp);
1516 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
1517 * quota caused an allocation failure, so we make a best effort by including
1518 * each quota under low free space conditions (less than 1% free space) in the
1521 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan
1522 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1526 xfs_blockgc_free_dquots(
1527 struct xfs_mount *mp,
1528 struct xfs_dquot *udqp,
1529 struct xfs_dquot *gdqp,
1530 struct xfs_dquot *pdqp,
1531 unsigned int iwalk_flags)
1533 struct xfs_icwalk icw = {0};
1534 bool do_work = false;
1536 if (!udqp && !gdqp && !pdqp)
1540 * Run a scan to free blocks using the union filter to cover all
1541 * applicable quotas in a single scan.
1543 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1545 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1546 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1547 icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1551 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1552 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1553 icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1557 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1558 icw.icw_prid = pdqp->q_id;
1559 icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1566 return xfs_blockgc_free_space(mp, &icw);
1569 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1571 xfs_blockgc_free_quota(
1572 struct xfs_inode *ip,
1573 unsigned int iwalk_flags)
1575 return xfs_blockgc_free_dquots(ip->i_mount,
1576 xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1577 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1578 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1581 /* XFS Inode Cache Walking Code */
1584 * The inode lookup is done in batches to keep the amount of lock traffic and
1585 * radix tree lookups to a minimum. The batch size is a trade off between
1586 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1589 #define XFS_LOOKUP_BATCH 32
1593 * Decide if we want to grab this inode in anticipation of doing work towards
1598 enum xfs_icwalk_goal goal,
1599 struct xfs_inode *ip,
1600 struct xfs_icwalk *icw)
1603 case XFS_ICWALK_BLOCKGC:
1604 return xfs_blockgc_igrab(ip);
1605 case XFS_ICWALK_RECLAIM:
1606 return xfs_reclaim_igrab(ip, icw);
1613 * Process an inode. Each processing function must handle any state changes
1614 * made by the icwalk igrab function. Return -EAGAIN to skip an inode.
1617 xfs_icwalk_process_inode(
1618 enum xfs_icwalk_goal goal,
1619 struct xfs_inode *ip,
1620 struct xfs_perag *pag,
1621 struct xfs_icwalk *icw)
1626 case XFS_ICWALK_BLOCKGC:
1627 error = xfs_blockgc_scan_inode(ip, icw);
1629 case XFS_ICWALK_RECLAIM:
1630 xfs_reclaim_inode(ip, pag);
1637 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1638 * process them in some manner.
1642 struct xfs_perag *pag,
1643 enum xfs_icwalk_goal goal,
1644 struct xfs_icwalk *icw)
1646 struct xfs_mount *mp = pag->pag_mount;
1647 uint32_t first_index;
1656 if (goal == XFS_ICWALK_RECLAIM)
1657 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1662 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1668 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1669 (void **) batch, first_index,
1670 XFS_LOOKUP_BATCH, goal);
1678 * Grab the inodes before we drop the lock. if we found
1679 * nothing, nr == 0 and the loop will be skipped.
1681 for (i = 0; i < nr_found; i++) {
1682 struct xfs_inode *ip = batch[i];
1684 if (done || !xfs_icwalk_igrab(goal, ip, icw))
1688 * Update the index for the next lookup. Catch
1689 * overflows into the next AG range which can occur if
1690 * we have inodes in the last block of the AG and we
1691 * are currently pointing to the last inode.
1693 * Because we may see inodes that are from the wrong AG
1694 * due to RCU freeing and reallocation, only update the
1695 * index if it lies in this AG. It was a race that lead
1696 * us to see this inode, so another lookup from the
1697 * same index will not find it again.
1699 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1701 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1702 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1706 /* unlock now we've grabbed the inodes. */
1709 for (i = 0; i < nr_found; i++) {
1712 error = xfs_icwalk_process_inode(goal, batch[i], pag,
1714 if (error == -EAGAIN) {
1718 if (error && last_error != -EFSCORRUPTED)
1722 /* bail out if the filesystem is corrupted. */
1723 if (error == -EFSCORRUPTED)
1728 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1729 icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1730 if (icw->icw_scan_limit <= 0)
1733 } while (nr_found && !done);
1735 if (goal == XFS_ICWALK_RECLAIM) {
1738 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1748 /* Walk all incore inodes to achieve a given goal. */
1751 struct xfs_mount *mp,
1752 enum xfs_icwalk_goal goal,
1753 struct xfs_icwalk *icw)
1755 struct xfs_perag *pag;
1758 xfs_agnumber_t agno;
1760 for_each_perag_tag(mp, agno, pag, goal) {
1761 error = xfs_icwalk_ag(pag, goal, icw);
1764 if (error == -EFSCORRUPTED) {
1765 xfs_perag_rele(pag);
1771 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1777 struct xfs_inode *ip,
1780 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
1781 struct xfs_bmbt_irec got;
1782 struct xfs_iext_cursor icur;
1784 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1787 if (isnullstartblock(got.br_startblock)) {
1788 xfs_warn(ip->i_mount,
1789 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1791 whichfork == XFS_DATA_FORK ? "data" : "cow",
1792 got.br_startoff, got.br_blockcount);
1794 } while (xfs_iext_next_extent(ifp, &icur, &got));
1797 #define xfs_check_delalloc(ip, whichfork) do { } while (0)
1800 /* Schedule the inode for reclaim. */
1802 xfs_inodegc_set_reclaimable(
1803 struct xfs_inode *ip)
1805 struct xfs_mount *mp = ip->i_mount;
1806 struct xfs_perag *pag;
1808 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1809 xfs_check_delalloc(ip, XFS_DATA_FORK);
1810 xfs_check_delalloc(ip, XFS_COW_FORK);
1814 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1815 spin_lock(&pag->pag_ici_lock);
1816 spin_lock(&ip->i_flags_lock);
1818 trace_xfs_inode_set_reclaimable(ip);
1819 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1820 ip->i_flags |= XFS_IRECLAIMABLE;
1821 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1822 XFS_ICI_RECLAIM_TAG);
1824 spin_unlock(&ip->i_flags_lock);
1825 spin_unlock(&pag->pag_ici_lock);
1830 * Free all speculative preallocations and possibly even the inode itself.
1831 * This is the last chance to make changes to an otherwise unreferenced file
1832 * before incore reclamation happens.
1835 xfs_inodegc_inactivate(
1836 struct xfs_inode *ip)
1840 trace_xfs_inode_inactivating(ip);
1841 error = xfs_inactive(ip);
1842 xfs_inodegc_set_reclaimable(ip);
1849 struct work_struct *work)
1851 struct xfs_inodegc *gc = container_of(to_delayed_work(work),
1852 struct xfs_inodegc, work);
1853 struct llist_node *node = llist_del_all(&gc->list);
1854 struct xfs_inode *ip, *n;
1855 struct xfs_mount *mp = gc->mp;
1856 unsigned int nofs_flag;
1859 * Clear the cpu mask bit and ensure that we have seen the latest
1860 * update of the gc structure associated with this CPU. This matches
1861 * with the release semantics used when setting the cpumask bit in
1862 * xfs_inodegc_queue.
1864 cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1865 smp_mb__after_atomic();
1867 WRITE_ONCE(gc->items, 0);
1873 * We can allocate memory here while doing writeback on behalf of
1874 * memory reclaim. To avoid memory allocation deadlocks set the
1875 * task-wide nofs context for the following operations.
1877 nofs_flag = memalloc_nofs_save();
1879 ip = llist_entry(node, struct xfs_inode, i_gclist);
1880 trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1882 WRITE_ONCE(gc->shrinker_hits, 0);
1883 llist_for_each_entry_safe(ip, n, node, i_gclist) {
1886 xfs_iflags_set(ip, XFS_INACTIVATING);
1887 error = xfs_inodegc_inactivate(ip);
1888 if (error && !gc->error)
1892 memalloc_nofs_restore(nofs_flag);
1896 * Expedite all pending inodegc work to run immediately. This does not wait for
1897 * completion of the work.
1901 struct xfs_mount *mp)
1903 if (!xfs_is_inodegc_enabled(mp))
1905 trace_xfs_inodegc_push(mp, __return_address);
1906 xfs_inodegc_queue_all(mp);
1910 * Force all currently queued inode inactivation work to run immediately and
1911 * wait for the work to finish.
1915 struct xfs_mount *mp)
1917 xfs_inodegc_push(mp);
1918 trace_xfs_inodegc_flush(mp, __return_address);
1919 return xfs_inodegc_wait_all(mp);
1923 * Flush all the pending work and then disable the inode inactivation background
1924 * workers and wait for them to stop. Caller must hold sb->s_umount to
1925 * coordinate changes in the inodegc_enabled state.
1929 struct xfs_mount *mp)
1933 if (!xfs_clear_inodegc_enabled(mp))
1937 * Drain all pending inodegc work, including inodes that could be
1938 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1939 * threads that sample the inodegc state just prior to us clearing it.
1940 * The inodegc flag state prevents new threads from queuing more
1941 * inodes, so we queue pending work items and flush the workqueue until
1942 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue
1943 * here because it does not allow other unserialized mechanisms to
1944 * reschedule inodegc work while this draining is in progress.
1946 xfs_inodegc_queue_all(mp);
1948 flush_workqueue(mp->m_inodegc_wq);
1949 rerun = xfs_inodegc_queue_all(mp);
1952 trace_xfs_inodegc_stop(mp, __return_address);
1956 * Enable the inode inactivation background workers and schedule deferred inode
1957 * inactivation work if there is any. Caller must hold sb->s_umount to
1958 * coordinate changes in the inodegc_enabled state.
1962 struct xfs_mount *mp)
1964 if (xfs_set_inodegc_enabled(mp))
1967 trace_xfs_inodegc_start(mp, __return_address);
1968 xfs_inodegc_queue_all(mp);
1971 #ifdef CONFIG_XFS_RT
1973 xfs_inodegc_want_queue_rt_file(
1974 struct xfs_inode *ip)
1976 struct xfs_mount *mp = ip->i_mount;
1978 if (!XFS_IS_REALTIME_INODE(ip))
1981 if (__percpu_counter_compare(&mp->m_frextents,
1982 mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1983 XFS_FDBLOCKS_BATCH) < 0)
1989 # define xfs_inodegc_want_queue_rt_file(ip) (false)
1990 #endif /* CONFIG_XFS_RT */
1993 * Schedule the inactivation worker when:
1995 * - We've accumulated more than one inode cluster buffer's worth of inodes.
1996 * - There is less than 5% free space left.
1997 * - Any of the quotas for this inode are near an enforcement limit.
2000 xfs_inodegc_want_queue_work(
2001 struct xfs_inode *ip,
2004 struct xfs_mount *mp = ip->i_mount;
2006 if (items > mp->m_ino_geo.inodes_per_cluster)
2009 if (__percpu_counter_compare(&mp->m_fdblocks,
2010 mp->m_low_space[XFS_LOWSP_5_PCNT],
2011 XFS_FDBLOCKS_BATCH) < 0)
2014 if (xfs_inodegc_want_queue_rt_file(ip))
2017 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2020 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2023 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2030 * Upper bound on the number of inodes in each AG that can be queued for
2031 * inactivation at any given time, to avoid monopolizing the workqueue.
2033 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK)
2036 * Make the frontend wait for inactivations when:
2038 * - Memory shrinkers queued the inactivation worker and it hasn't finished.
2039 * - The queue depth exceeds the maximum allowable percpu backlog.
2041 * Note: If we are in a NOFS context here (e.g. current thread is running a
2042 * transaction) the we don't want to block here as inodegc progress may require
2043 * filesystem resources we hold to make progress and that could result in a
2044 * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2047 xfs_inodegc_want_flush_work(
2048 struct xfs_inode *ip,
2050 unsigned int shrinker_hits)
2052 if (current->flags & PF_MEMALLOC_NOFS)
2055 if (shrinker_hits > 0)
2058 if (items > XFS_INODEGC_MAX_BACKLOG)
2065 * Queue a background inactivation worker if there are inodes that need to be
2066 * inactivated and higher level xfs code hasn't disabled the background
2071 struct xfs_inode *ip)
2073 struct xfs_mount *mp = ip->i_mount;
2074 struct xfs_inodegc *gc;
2076 unsigned int shrinker_hits;
2077 unsigned int cpu_nr;
2078 unsigned long queue_delay = 1;
2080 trace_xfs_inode_set_need_inactive(ip);
2081 spin_lock(&ip->i_flags_lock);
2082 ip->i_flags |= XFS_NEED_INACTIVE;
2083 spin_unlock(&ip->i_flags_lock);
2086 gc = this_cpu_ptr(mp->m_inodegc);
2087 llist_add(&ip->i_gclist, &gc->list);
2088 items = READ_ONCE(gc->items);
2089 WRITE_ONCE(gc->items, items + 1);
2090 shrinker_hits = READ_ONCE(gc->shrinker_hits);
2093 * Ensure the list add is always seen by anyone who finds the cpumask
2094 * bit set. This effectively gives the cpumask bit set operation
2095 * release ordering semantics.
2097 smp_mb__before_atomic();
2098 if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2099 cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2102 * We queue the work while holding the current CPU so that the work
2103 * is scheduled to run on this CPU.
2105 if (!xfs_is_inodegc_enabled(mp)) {
2110 if (xfs_inodegc_want_queue_work(ip, items))
2113 trace_xfs_inodegc_queue(mp, __return_address);
2114 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2118 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2119 trace_xfs_inodegc_throttle(mp, __return_address);
2120 flush_delayed_work(&gc->work);
2125 * We set the inode flag atomically with the radix tree tag. Once we get tag
2126 * lookups on the radix tree, this inode flag can go away.
2128 * We always use background reclaim here because even if the inode is clean, it
2129 * still may be under IO and hence we have wait for IO completion to occur
2130 * before we can reclaim the inode. The background reclaim path handles this
2131 * more efficiently than we can here, so simply let background reclaim tear down
2135 xfs_inode_mark_reclaimable(
2136 struct xfs_inode *ip)
2138 struct xfs_mount *mp = ip->i_mount;
2141 XFS_STATS_INC(mp, vn_reclaim);
2144 * We should never get here with any of the reclaim flags already set.
2146 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2148 need_inactive = xfs_inode_needs_inactive(ip);
2149 if (need_inactive) {
2150 xfs_inodegc_queue(ip);
2154 /* Going straight to reclaim, so drop the dquots. */
2155 xfs_qm_dqdetach(ip);
2156 xfs_inodegc_set_reclaimable(ip);
2160 * Register a phony shrinker so that we can run background inodegc sooner when
2161 * there's memory pressure. Inactivation does not itself free any memory but
2162 * it does make inodes reclaimable, which eventually frees memory.
2164 * The count function, seek value, and batch value are crafted to trigger the
2165 * scan function during the second round of scanning. Hopefully this means
2166 * that we reclaimed enough memory that initiating metadata transactions won't
2167 * make things worse.
2169 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY)
2170 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2172 static unsigned long
2173 xfs_inodegc_shrinker_count(
2174 struct shrinker *shrink,
2175 struct shrink_control *sc)
2177 struct xfs_mount *mp = shrink->private_data;
2178 struct xfs_inodegc *gc;
2181 if (!xfs_is_inodegc_enabled(mp))
2184 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2185 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2186 if (!llist_empty(&gc->list))
2187 return XFS_INODEGC_SHRINKER_COUNT;
2193 static unsigned long
2194 xfs_inodegc_shrinker_scan(
2195 struct shrinker *shrink,
2196 struct shrink_control *sc)
2198 struct xfs_mount *mp = shrink->private_data;
2199 struct xfs_inodegc *gc;
2201 bool no_items = true;
2203 if (!xfs_is_inodegc_enabled(mp))
2206 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2208 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2209 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2210 if (!llist_empty(&gc->list)) {
2211 unsigned int h = READ_ONCE(gc->shrinker_hits);
2213 WRITE_ONCE(gc->shrinker_hits, h + 1);
2214 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2220 * If there are no inodes to inactivate, we don't want the shrinker
2221 * to think there's deferred work to call us back about.
2229 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2231 xfs_inodegc_register_shrinker(
2232 struct xfs_mount *mp)
2234 mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
2237 if (!mp->m_inodegc_shrinker)
2240 mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
2241 mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
2242 mp->m_inodegc_shrinker->seeks = 0;
2243 mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
2244 mp->m_inodegc_shrinker->private_data = mp;
2246 shrinker_register(mp->m_inodegc_shrinker);