1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2008-2013 Solarflare Communications Inc.
7 #include <linux/delay.h>
8 #include <linux/moduleparam.h>
9 #include <linux/atomic.h>
10 #include "net_driver.h"
13 #include "farch_regs.h"
14 #include "mcdi_pcol.h"
16 /**************************************************************************
18 * Management-Controller-to-Driver Interface
20 **************************************************************************
23 #define MCDI_RPC_TIMEOUT (10 * HZ)
25 /* A reboot/assertion causes the MCDI status word to be set after the
26 * command word is set or a REBOOT event is sent. If we notice a reboot
27 * via these mechanisms then wait 250ms for the status word to be set.
29 #define MCDI_STATUS_DELAY_US 100
30 #define MCDI_STATUS_DELAY_COUNT 2500
31 #define MCDI_STATUS_SLEEP_MS \
32 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
35 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
37 struct efx_mcdi_async_param {
38 struct list_head list;
43 efx_mcdi_async_completer *complete;
45 /* followed by request/response buffer */
48 static void efx_mcdi_timeout_async(struct timer_list *t);
49 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
50 bool *was_attached_out);
51 static bool efx_mcdi_poll_once(struct efx_nic *efx);
52 static void efx_mcdi_abandon(struct efx_nic *efx);
54 #ifdef CONFIG_SFC_MCDI_LOGGING
55 static bool mcdi_logging_default;
56 module_param(mcdi_logging_default, bool, 0644);
57 MODULE_PARM_DESC(mcdi_logging_default,
58 "Enable MCDI logging on newly-probed functions");
61 int efx_mcdi_init(struct efx_nic *efx)
63 struct efx_mcdi_iface *mcdi;
64 bool already_attached;
67 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
73 #ifdef CONFIG_SFC_MCDI_LOGGING
74 /* consuming code assumes buffer is page-sized */
75 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
76 if (!mcdi->logging_buffer)
78 mcdi->logging_enabled = mcdi_logging_default;
80 init_waitqueue_head(&mcdi->wq);
81 init_waitqueue_head(&mcdi->proxy_rx_wq);
82 spin_lock_init(&mcdi->iface_lock);
83 mcdi->state = MCDI_STATE_QUIESCENT;
84 mcdi->mode = MCDI_MODE_POLL;
85 spin_lock_init(&mcdi->async_lock);
86 INIT_LIST_HEAD(&mcdi->async_list);
87 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
89 (void) efx_mcdi_poll_reboot(efx);
90 mcdi->new_epoch = true;
92 /* Recover from a failed assertion before probing */
93 rc = efx_mcdi_handle_assertion(efx);
97 /* Let the MC (and BMC, if this is a LOM) know that the driver
98 * is loaded. We should do this before we reset the NIC.
100 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
102 netif_err(efx, probe, efx->net_dev,
103 "Unable to register driver with MCPU\n");
106 if (already_attached)
107 /* Not a fatal error */
108 netif_err(efx, probe, efx->net_dev,
109 "Host already registered with MCPU\n");
111 if (efx->mcdi->fn_flags &
112 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
117 #ifdef CONFIG_SFC_MCDI_LOGGING
118 free_page((unsigned long)mcdi->logging_buffer);
127 void efx_mcdi_detach(struct efx_nic *efx)
132 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
134 /* Relinquish the device (back to the BMC, if this is a LOM) */
135 efx_mcdi_drv_attach(efx, false, NULL);
138 void efx_mcdi_fini(struct efx_nic *efx)
143 #ifdef CONFIG_SFC_MCDI_LOGGING
144 free_page((unsigned long)efx->mcdi->iface.logging_buffer);
150 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
151 const efx_dword_t *inbuf, size_t inlen)
153 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
154 #ifdef CONFIG_SFC_MCDI_LOGGING
155 char *buf = mcdi->logging_buffer; /* page-sized */
161 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
163 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
164 spin_lock_bh(&mcdi->iface_lock);
166 spin_unlock_bh(&mcdi->iface_lock);
168 seqno = mcdi->seqno & SEQ_MASK;
170 if (mcdi->mode == MCDI_MODE_EVENTS)
171 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
173 if (efx->type->mcdi_max_ver == 1) {
175 EFX_POPULATE_DWORD_7(hdr[0],
176 MCDI_HEADER_RESPONSE, 0,
177 MCDI_HEADER_RESYNC, 1,
178 MCDI_HEADER_CODE, cmd,
179 MCDI_HEADER_DATALEN, inlen,
180 MCDI_HEADER_SEQ, seqno,
181 MCDI_HEADER_XFLAGS, xflags,
182 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
186 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
187 EFX_POPULATE_DWORD_7(hdr[0],
188 MCDI_HEADER_RESPONSE, 0,
189 MCDI_HEADER_RESYNC, 1,
190 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
191 MCDI_HEADER_DATALEN, 0,
192 MCDI_HEADER_SEQ, seqno,
193 MCDI_HEADER_XFLAGS, xflags,
194 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
195 EFX_POPULATE_DWORD_2(hdr[1],
196 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
197 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
201 #ifdef CONFIG_SFC_MCDI_LOGGING
202 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
205 /* Lengths should always be a whole number of dwords, so scream
208 WARN_ON_ONCE(hdr_len % 4);
209 WARN_ON_ONCE(inlen % 4);
211 /* We own the logging buffer, as only one MCDI can be in
212 * progress on a NIC at any one time. So no need for locking.
214 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
215 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
217 le32_to_cpu(hdr[i].u32[0]));
219 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
220 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
222 le32_to_cpu(inbuf[i].u32[0]));
224 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
228 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
230 mcdi->new_epoch = false;
233 static int efx_mcdi_errno(unsigned int mcdi_err)
238 #define TRANSLATE_ERROR(name) \
239 case MC_CMD_ERR_ ## name: \
241 TRANSLATE_ERROR(EPERM);
242 TRANSLATE_ERROR(ENOENT);
243 TRANSLATE_ERROR(EINTR);
244 TRANSLATE_ERROR(EAGAIN);
245 TRANSLATE_ERROR(EACCES);
246 TRANSLATE_ERROR(EBUSY);
247 TRANSLATE_ERROR(EINVAL);
248 TRANSLATE_ERROR(EDEADLK);
249 TRANSLATE_ERROR(ENOSYS);
250 TRANSLATE_ERROR(ETIME);
251 TRANSLATE_ERROR(EALREADY);
252 TRANSLATE_ERROR(ENOSPC);
253 #undef TRANSLATE_ERROR
254 case MC_CMD_ERR_ENOTSUP:
256 case MC_CMD_ERR_ALLOC_FAIL:
258 case MC_CMD_ERR_MAC_EXIST:
265 static void efx_mcdi_read_response_header(struct efx_nic *efx)
267 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
268 unsigned int respseq, respcmd, error;
269 #ifdef CONFIG_SFC_MCDI_LOGGING
270 char *buf = mcdi->logging_buffer; /* page-sized */
274 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
275 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
276 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
277 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
279 if (respcmd != MC_CMD_V2_EXTN) {
280 mcdi->resp_hdr_len = 4;
281 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
283 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
284 mcdi->resp_hdr_len = 8;
285 mcdi->resp_data_len =
286 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
289 #ifdef CONFIG_SFC_MCDI_LOGGING
290 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
291 size_t hdr_len, data_len;
295 WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
296 hdr_len = mcdi->resp_hdr_len / 4;
297 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
298 * to dword size, and the MCDI buffer is always dword size
300 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
302 /* We own the logging buffer, as only one MCDI can be in
303 * progress on a NIC at any one time. So no need for locking.
305 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
306 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
307 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
308 " %08x", le32_to_cpu(hdr.u32[0]));
311 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
312 efx->type->mcdi_read_response(efx, &hdr,
313 mcdi->resp_hdr_len + (i * 4), 4);
314 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
315 " %08x", le32_to_cpu(hdr.u32[0]));
318 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
322 mcdi->resprc_raw = 0;
323 if (error && mcdi->resp_data_len == 0) {
324 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
326 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
327 netif_err(efx, hw, efx->net_dev,
328 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
329 respseq, mcdi->seqno);
332 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
333 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
334 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
340 static bool efx_mcdi_poll_once(struct efx_nic *efx)
342 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
345 if (!efx->type->mcdi_poll_response(efx))
348 spin_lock_bh(&mcdi->iface_lock);
349 efx_mcdi_read_response_header(efx);
350 spin_unlock_bh(&mcdi->iface_lock);
355 static int efx_mcdi_poll(struct efx_nic *efx)
357 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
358 unsigned long time, finish;
362 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
363 rc = efx_mcdi_poll_reboot(efx);
365 spin_lock_bh(&mcdi->iface_lock);
367 mcdi->resp_hdr_len = 0;
368 mcdi->resp_data_len = 0;
369 spin_unlock_bh(&mcdi->iface_lock);
373 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
374 * because generally mcdi responses are fast. After that, back off
375 * and poll once a jiffy (approximately)
377 spins = USER_TICK_USEC;
378 finish = jiffies + MCDI_RPC_TIMEOUT;
385 schedule_timeout_uninterruptible(1);
390 if (efx_mcdi_poll_once(efx))
393 if (time_after(time, finish))
397 /* Return rc=0 like wait_event_timeout() */
401 /* Test and clear MC-rebooted flag for this port/function; reset
402 * software state as necessary.
404 int efx_mcdi_poll_reboot(struct efx_nic *efx)
409 return efx->type->mcdi_poll_reboot(efx);
412 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
414 return cmpxchg(&mcdi->state,
415 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
416 MCDI_STATE_QUIESCENT;
419 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
421 /* Wait until the interface becomes QUIESCENT and we win the race
422 * to mark it RUNNING_SYNC.
425 cmpxchg(&mcdi->state,
426 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
427 MCDI_STATE_QUIESCENT);
430 static int efx_mcdi_await_completion(struct efx_nic *efx)
432 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
434 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
435 MCDI_RPC_TIMEOUT) == 0)
438 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
439 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
440 * completed the request first, then we'll just end up completing the
441 * request again, which is safe.
443 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
444 * wait_event_timeout() implicitly provides.
446 if (mcdi->mode == MCDI_MODE_POLL)
447 return efx_mcdi_poll(efx);
452 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
453 * requester. Return whether this was done. Does not take any locks.
455 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
457 if (cmpxchg(&mcdi->state,
458 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
459 MCDI_STATE_RUNNING_SYNC) {
467 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
469 if (mcdi->mode == MCDI_MODE_EVENTS) {
470 struct efx_mcdi_async_param *async;
471 struct efx_nic *efx = mcdi->efx;
473 /* Process the asynchronous request queue */
474 spin_lock_bh(&mcdi->async_lock);
475 async = list_first_entry_or_null(
476 &mcdi->async_list, struct efx_mcdi_async_param, list);
478 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
479 efx_mcdi_send_request(efx, async->cmd,
480 (const efx_dword_t *)(async + 1),
482 mod_timer(&mcdi->async_timer,
483 jiffies + MCDI_RPC_TIMEOUT);
485 spin_unlock_bh(&mcdi->async_lock);
491 mcdi->state = MCDI_STATE_QUIESCENT;
495 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
496 * asynchronous completion function, and release the interface.
497 * Return whether this was done. Must be called in bh-disabled
498 * context. Will take iface_lock and async_lock.
500 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
502 struct efx_nic *efx = mcdi->efx;
503 struct efx_mcdi_async_param *async;
504 size_t hdr_len, data_len, err_len;
506 MCDI_DECLARE_BUF_ERR(errbuf);
509 if (cmpxchg(&mcdi->state,
510 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
511 MCDI_STATE_RUNNING_ASYNC)
514 spin_lock(&mcdi->iface_lock);
516 /* Ensure that if the completion event arrives later,
517 * the seqno check in efx_mcdi_ev_cpl() will fail
526 hdr_len = mcdi->resp_hdr_len;
527 data_len = mcdi->resp_data_len;
529 spin_unlock(&mcdi->iface_lock);
531 /* Stop the timer. In case the timer function is running, we
532 * must wait for it to return so that there is no possibility
533 * of it aborting the next request.
536 del_timer_sync(&mcdi->async_timer);
538 spin_lock(&mcdi->async_lock);
539 async = list_first_entry(&mcdi->async_list,
540 struct efx_mcdi_async_param, list);
541 list_del(&async->list);
542 spin_unlock(&mcdi->async_lock);
544 outbuf = (efx_dword_t *)(async + 1);
545 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
546 min(async->outlen, data_len));
547 if (!timeout && rc && !async->quiet) {
548 err_len = min(sizeof(errbuf), data_len);
549 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
551 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
556 async->complete(efx, async->cookie, rc, outbuf,
557 min(async->outlen, data_len));
560 efx_mcdi_release(mcdi);
565 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
566 unsigned int datalen, unsigned int mcdi_err)
568 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
571 spin_lock(&mcdi->iface_lock);
573 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
575 /* The request has been cancelled */
578 netif_err(efx, hw, efx->net_dev,
579 "MC response mismatch tx seq 0x%x rx "
580 "seq 0x%x\n", seqno, mcdi->seqno);
582 if (efx->type->mcdi_max_ver >= 2) {
583 /* MCDI v2 responses don't fit in an event */
584 efx_mcdi_read_response_header(efx);
586 mcdi->resprc = efx_mcdi_errno(mcdi_err);
587 mcdi->resp_hdr_len = 4;
588 mcdi->resp_data_len = datalen;
594 spin_unlock(&mcdi->iface_lock);
597 if (!efx_mcdi_complete_async(mcdi, false))
598 (void) efx_mcdi_complete_sync(mcdi);
600 /* If the interface isn't RUNNING_ASYNC or
601 * RUNNING_SYNC then we've received a duplicate
602 * completion after we've already transitioned back to
603 * QUIESCENT. [A subsequent invocation would increment
604 * seqno, so would have failed the seqno check].
609 static void efx_mcdi_timeout_async(struct timer_list *t)
611 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
613 efx_mcdi_complete_async(mcdi, true);
617 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
619 if (efx->type->mcdi_max_ver < 0 ||
620 (efx->type->mcdi_max_ver < 2 &&
621 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
624 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
625 (efx->type->mcdi_max_ver < 2 &&
626 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
632 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
633 size_t hdr_len, size_t data_len,
636 MCDI_DECLARE_BUF_ERR(testbuf);
637 const size_t buflen = sizeof(testbuf);
639 if (!proxy_handle || data_len < buflen)
642 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
643 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
644 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
651 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
653 efx_dword_t *outbuf, size_t outlen,
654 size_t *outlen_actual, bool quiet,
655 u32 *proxy_handle, int *raw_rc)
657 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
658 MCDI_DECLARE_BUF_ERR(errbuf);
661 if (mcdi->mode == MCDI_MODE_POLL)
662 rc = efx_mcdi_poll(efx);
664 rc = efx_mcdi_await_completion(efx);
667 netif_err(efx, hw, efx->net_dev,
668 "MC command 0x%x inlen %d mode %d timed out\n",
669 cmd, (int)inlen, mcdi->mode);
671 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
672 netif_err(efx, hw, efx->net_dev,
673 "MCDI request was completed without an event\n");
677 efx_mcdi_abandon(efx);
679 /* Close the race with efx_mcdi_ev_cpl() executing just too late
680 * and completing a request we've just cancelled, by ensuring
681 * that the seqno check therein fails.
683 spin_lock_bh(&mcdi->iface_lock);
686 spin_unlock_bh(&mcdi->iface_lock);
696 size_t hdr_len, data_len, err_len;
698 /* At the very least we need a memory barrier here to ensure
699 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
700 * a spurious efx_mcdi_ev_cpl() running concurrently by
701 * acquiring the iface_lock. */
702 spin_lock_bh(&mcdi->iface_lock);
705 *raw_rc = mcdi->resprc_raw;
706 hdr_len = mcdi->resp_hdr_len;
707 data_len = mcdi->resp_data_len;
708 err_len = min(sizeof(errbuf), data_len);
709 spin_unlock_bh(&mcdi->iface_lock);
713 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
714 min(outlen, data_len));
716 *outlen_actual = data_len;
718 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
720 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
721 /* Don't reset if MC_CMD_REBOOT returns EIO */
722 } else if (rc == -EIO || rc == -EINTR) {
723 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
724 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
726 if (efx->type->mcdi_reboot_detected)
727 efx->type->mcdi_reboot_detected(efx);
728 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
729 } else if (proxy_handle && (rc == -EPROTO) &&
730 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
732 mcdi->proxy_rx_status = 0;
733 mcdi->proxy_rx_handle = 0;
734 mcdi->state = MCDI_STATE_PROXY_WAIT;
735 } else if (rc && !quiet) {
736 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
740 if (rc == -EIO || rc == -EINTR) {
741 msleep(MCDI_STATUS_SLEEP_MS);
742 efx_mcdi_poll_reboot(efx);
743 mcdi->new_epoch = true;
747 if (!proxy_handle || !*proxy_handle)
748 efx_mcdi_release(mcdi);
752 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
754 if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
755 /* Interrupt the proxy wait. */
756 mcdi->proxy_rx_status = -EINTR;
757 wake_up(&mcdi->proxy_rx_wq);
761 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
762 u32 handle, int status)
764 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
766 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
768 mcdi->proxy_rx_status = efx_mcdi_errno(status);
769 /* Ensure the status is written before we update the handle, since the
770 * latter is used to check if we've finished.
773 mcdi->proxy_rx_handle = handle;
774 wake_up(&mcdi->proxy_rx_wq);
777 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
779 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
782 /* Wait for a proxy event, or timeout. */
783 rc = wait_event_timeout(mcdi->proxy_rx_wq,
784 mcdi->proxy_rx_handle != 0 ||
785 mcdi->proxy_rx_status == -EINTR,
789 netif_dbg(efx, hw, efx->net_dev,
790 "MCDI proxy timeout %d\n", handle);
792 } else if (mcdi->proxy_rx_handle != handle) {
793 netif_warn(efx, hw, efx->net_dev,
794 "MCDI proxy unexpected handle %d (expected %d)\n",
795 mcdi->proxy_rx_handle, handle);
799 return mcdi->proxy_rx_status;
802 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
803 const efx_dword_t *inbuf, size_t inlen,
804 efx_dword_t *outbuf, size_t outlen,
805 size_t *outlen_actual, bool quiet, int *raw_rc)
807 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
810 if (inbuf && inlen && (inbuf == outbuf)) {
811 /* The input buffer can't be aliased with the output. */
816 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
820 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
821 outlen_actual, quiet, &proxy_handle, raw_rc);
824 /* Handle proxy authorisation. This allows approval of MCDI
825 * operations to be delegated to the admin function, allowing
826 * fine control over (eg) multicast subscriptions.
828 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
830 netif_dbg(efx, hw, efx->net_dev,
831 "MCDI waiting for proxy auth %d\n",
833 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
836 netif_dbg(efx, hw, efx->net_dev,
837 "MCDI proxy retry %d\n", proxy_handle);
839 /* We now retry the original request. */
840 mcdi->state = MCDI_STATE_RUNNING_SYNC;
841 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
843 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
844 outbuf, outlen, outlen_actual,
845 quiet, NULL, raw_rc);
847 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
848 "MC command 0x%x failed after proxy auth rc=%d\n",
851 if (rc == -EINTR || rc == -EIO)
852 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
853 efx_mcdi_release(mcdi);
860 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
861 const efx_dword_t *inbuf, size_t inlen,
862 efx_dword_t *outbuf, size_t outlen,
863 size_t *outlen_actual, bool quiet)
868 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
869 outbuf, outlen, outlen_actual, true, &raw_rc);
871 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
873 /* If the EVB port isn't available within a VF this may
874 * mean the PF is still bringing the switch up. We should
875 * retry our request shortly.
877 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
878 unsigned int delay_us = 10000;
880 netif_dbg(efx, hw, efx->net_dev,
881 "%s: NO_EVB_PORT; will retry request\n",
885 usleep_range(delay_us, delay_us + 10000);
886 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
887 outbuf, outlen, outlen_actual,
889 if (delay_us < 100000)
891 } while ((rc == -EPROTO) &&
892 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
893 time_before(jiffies, abort_time));
896 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
897 efx_mcdi_display_error(efx, cmd, inlen,
904 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
905 * @efx: NIC through which to issue the command
906 * @cmd: Command type number
907 * @inbuf: Command parameters
908 * @inlen: Length of command parameters, in bytes. Must be a multiple
909 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
910 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
911 * @outlen: Length of response buffer, in bytes. If the actual
912 * response is longer than @outlen & ~3, it will be truncated
914 * @outlen_actual: Pointer through which to return the actual response
915 * length. May be %NULL if this is not needed.
917 * This function may sleep and therefore must be called in an appropriate
920 * Return: A negative error code, or zero if successful. The error
921 * code may come from the MCDI response or may indicate a failure
922 * to communicate with the MC. In the former case, the response
923 * will still be copied to @outbuf and *@outlen_actual will be
924 * set accordingly. In the latter case, *@outlen_actual will be
927 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
928 const efx_dword_t *inbuf, size_t inlen,
929 efx_dword_t *outbuf, size_t outlen,
930 size_t *outlen_actual)
932 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
933 outlen_actual, false);
936 /* Normally, on receiving an error code in the MCDI response,
937 * efx_mcdi_rpc will log an error message containing (among other
938 * things) the raw error code, by means of efx_mcdi_display_error.
939 * This _quiet version suppresses that; if the caller wishes to log
940 * the error conditionally on the return code, it should call this
941 * function and is then responsible for calling efx_mcdi_display_error
944 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
945 const efx_dword_t *inbuf, size_t inlen,
946 efx_dword_t *outbuf, size_t outlen,
947 size_t *outlen_actual)
949 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
950 outlen_actual, true);
953 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
954 const efx_dword_t *inbuf, size_t inlen)
956 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
959 rc = efx_mcdi_check_supported(efx, cmd, inlen);
963 if (efx->mc_bist_for_other_fn)
966 if (mcdi->mode == MCDI_MODE_FAIL)
969 efx_mcdi_acquire_sync(mcdi);
970 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
974 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
975 const efx_dword_t *inbuf, size_t inlen,
977 efx_mcdi_async_completer *complete,
978 unsigned long cookie, bool quiet)
980 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
981 struct efx_mcdi_async_param *async;
984 rc = efx_mcdi_check_supported(efx, cmd, inlen);
988 if (efx->mc_bist_for_other_fn)
991 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
997 async->inlen = inlen;
998 async->outlen = outlen;
999 async->quiet = quiet;
1000 async->complete = complete;
1001 async->cookie = cookie;
1002 memcpy(async + 1, inbuf, inlen);
1004 spin_lock_bh(&mcdi->async_lock);
1006 if (mcdi->mode == MCDI_MODE_EVENTS) {
1007 list_add_tail(&async->list, &mcdi->async_list);
1009 /* If this is at the front of the queue, try to start it
1012 if (mcdi->async_list.next == &async->list &&
1013 efx_mcdi_acquire_async(mcdi)) {
1014 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1015 mod_timer(&mcdi->async_timer,
1016 jiffies + MCDI_RPC_TIMEOUT);
1023 spin_unlock_bh(&mcdi->async_lock);
1029 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1030 * @efx: NIC through which to issue the command
1031 * @cmd: Command type number
1032 * @inbuf: Command parameters
1033 * @inlen: Length of command parameters, in bytes
1034 * @outlen: Length to allocate for response buffer, in bytes
1035 * @complete: Function to be called on completion or cancellation.
1036 * @cookie: Arbitrary value to be passed to @complete.
1038 * This function does not sleep and therefore may be called in atomic
1039 * context. It will fail if event queues are disabled or if MCDI
1040 * event completions have been disabled due to an error.
1042 * If it succeeds, the @complete function will be called exactly once
1043 * in atomic context, when one of the following occurs:
1044 * (a) the completion event is received (in NAPI context)
1045 * (b) event queues are disabled (in the process that disables them)
1046 * (c) the request times-out (in timer context)
1049 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1050 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1051 efx_mcdi_async_completer *complete, unsigned long cookie)
1053 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1057 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1058 const efx_dword_t *inbuf, size_t inlen,
1059 size_t outlen, efx_mcdi_async_completer *complete,
1060 unsigned long cookie)
1062 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1066 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1067 efx_dword_t *outbuf, size_t outlen,
1068 size_t *outlen_actual)
1070 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1071 outlen_actual, false, NULL, NULL);
1074 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1075 efx_dword_t *outbuf, size_t outlen,
1076 size_t *outlen_actual)
1078 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1079 outlen_actual, true, NULL, NULL);
1082 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1083 size_t inlen, efx_dword_t *outbuf,
1084 size_t outlen, int rc)
1086 int code = 0, err_arg = 0;
1088 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1089 code = MCDI_DWORD(outbuf, ERR_CODE);
1090 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1091 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1092 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1093 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1094 cmd, inlen, rc, code, err_arg);
1097 /* Switch to polled MCDI completions. This can be called in various
1098 * error conditions with various locks held, so it must be lockless.
1099 * Caller is responsible for flushing asynchronous requests later.
1101 void efx_mcdi_mode_poll(struct efx_nic *efx)
1103 struct efx_mcdi_iface *mcdi;
1108 mcdi = efx_mcdi(efx);
1109 /* If already in polling mode, nothing to do.
1110 * If in fail-fast state, don't switch to polled completion.
1111 * FLR recovery will do that later.
1113 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1116 /* We can switch from event completion to polled completion, because
1117 * mcdi requests are always completed in shared memory. We do this by
1118 * switching the mode to POLL'd then completing the request.
1119 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1121 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1122 * which efx_mcdi_complete_sync() provides for us.
1124 mcdi->mode = MCDI_MODE_POLL;
1126 efx_mcdi_complete_sync(mcdi);
1129 /* Flush any running or queued asynchronous requests, after event processing
1132 void efx_mcdi_flush_async(struct efx_nic *efx)
1134 struct efx_mcdi_async_param *async, *next;
1135 struct efx_mcdi_iface *mcdi;
1140 mcdi = efx_mcdi(efx);
1142 /* We must be in poll or fail mode so no more requests can be queued */
1143 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1145 del_timer_sync(&mcdi->async_timer);
1147 /* If a request is still running, make sure we give the MC
1148 * time to complete it so that the response won't overwrite our
1151 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1153 mcdi->state = MCDI_STATE_QUIESCENT;
1156 /* Nothing else will access the async list now, so it is safe
1157 * to walk it without holding async_lock. If we hold it while
1158 * calling a completer then lockdep may warn that we have
1159 * acquired locks in the wrong order.
1161 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1162 if (async->complete)
1163 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1164 list_del(&async->list);
1169 void efx_mcdi_mode_event(struct efx_nic *efx)
1171 struct efx_mcdi_iface *mcdi;
1176 mcdi = efx_mcdi(efx);
1177 /* If already in event completion mode, nothing to do.
1178 * If in fail-fast state, don't switch to event completion. FLR
1179 * recovery will do that later.
1181 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1184 /* We can't switch from polled to event completion in the middle of a
1185 * request, because the completion method is specified in the request.
1186 * So acquire the interface to serialise the requestors. We don't need
1187 * to acquire the iface_lock to change the mode here, but we do need a
1188 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1189 * efx_mcdi_acquire() provides.
1191 efx_mcdi_acquire_sync(mcdi);
1192 mcdi->mode = MCDI_MODE_EVENTS;
1193 efx_mcdi_release(mcdi);
1196 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1198 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1200 /* If there is an outstanding MCDI request, it has been terminated
1201 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1202 * in polled mode, then do nothing because the MC reboot handler will
1203 * set the header correctly. However, if the mcdi interface is waiting
1204 * for a CMDDONE event it won't receive it [and since all MCDI events
1205 * are sent to the same queue, we can't be racing with
1206 * efx_mcdi_ev_cpl()]
1208 * If there is an outstanding asynchronous request, we can't
1209 * complete it now (efx_mcdi_complete() would deadlock). The
1210 * reset process will take care of this.
1212 * There's a race here with efx_mcdi_send_request(), because
1213 * we might receive a REBOOT event *before* the request has
1214 * been copied out. In polled mode (during startup) this is
1215 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1216 * event mode, this condition is just an edge-case of
1217 * receiving a REBOOT event after posting the MCDI
1218 * request. Did the mc reboot before or after the copyout? The
1219 * best we can do always is just return failure.
1221 * If there is an outstanding proxy response expected it is not going
1222 * to arrive. We should thus abort it.
1224 spin_lock(&mcdi->iface_lock);
1225 efx_mcdi_proxy_abort(mcdi);
1227 if (efx_mcdi_complete_sync(mcdi)) {
1228 if (mcdi->mode == MCDI_MODE_EVENTS) {
1230 mcdi->resp_hdr_len = 0;
1231 mcdi->resp_data_len = 0;
1237 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1238 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1239 rc = efx_mcdi_poll_reboot(efx);
1242 udelay(MCDI_STATUS_DELAY_US);
1245 /* On EF10, a CODE_MC_REBOOT event can be received without the
1246 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1247 * If zero was returned from the final call to
1248 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1249 * MC has definitely rebooted so prepare for the reset.
1251 if (!rc && efx->type->mcdi_reboot_detected)
1252 efx->type->mcdi_reboot_detected(efx);
1254 mcdi->new_epoch = true;
1256 /* Nobody was waiting for an MCDI request, so trigger a reset */
1257 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1260 spin_unlock(&mcdi->iface_lock);
1263 /* The MC is going down in to BIST mode. set the BIST flag to block
1264 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1265 * (which doesn't actually execute a reset, it waits for the controlling
1266 * function to reset it).
1268 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1270 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1272 spin_lock(&mcdi->iface_lock);
1273 efx->mc_bist_for_other_fn = true;
1274 efx_mcdi_proxy_abort(mcdi);
1276 if (efx_mcdi_complete_sync(mcdi)) {
1277 if (mcdi->mode == MCDI_MODE_EVENTS) {
1278 mcdi->resprc = -EIO;
1279 mcdi->resp_hdr_len = 0;
1280 mcdi->resp_data_len = 0;
1284 mcdi->new_epoch = true;
1285 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1286 spin_unlock(&mcdi->iface_lock);
1289 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1292 static void efx_mcdi_abandon(struct efx_nic *efx)
1294 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1296 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1297 return; /* it had already been done */
1298 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1299 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1302 static void efx_handle_drain_event(struct efx_nic *efx)
1304 if (atomic_dec_and_test(&efx->active_queues))
1305 wake_up(&efx->flush_wq);
1307 WARN_ON(atomic_read(&efx->active_queues) < 0);
1310 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1311 void efx_mcdi_process_event(struct efx_channel *channel,
1314 struct efx_nic *efx = channel->efx;
1315 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1316 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1319 case MCDI_EVENT_CODE_BADSSERT:
1320 netif_err(efx, hw, efx->net_dev,
1321 "MC watchdog or assertion failure at 0x%x\n", data);
1322 efx_mcdi_ev_death(efx, -EINTR);
1325 case MCDI_EVENT_CODE_PMNOTICE:
1326 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1329 case MCDI_EVENT_CODE_CMDDONE:
1330 efx_mcdi_ev_cpl(efx,
1331 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1332 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1333 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1336 case MCDI_EVENT_CODE_LINKCHANGE:
1337 efx_mcdi_process_link_change(efx, event);
1339 case MCDI_EVENT_CODE_SENSOREVT:
1340 efx_sensor_event(efx, event);
1342 case MCDI_EVENT_CODE_SCHEDERR:
1343 netif_dbg(efx, hw, efx->net_dev,
1344 "MC Scheduler alert (0x%x)\n", data);
1346 case MCDI_EVENT_CODE_REBOOT:
1347 case MCDI_EVENT_CODE_MC_REBOOT:
1348 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1349 efx_mcdi_ev_death(efx, -EIO);
1351 case MCDI_EVENT_CODE_MC_BIST:
1352 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1353 efx_mcdi_ev_bist(efx);
1355 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1356 /* MAC stats are gather lazily. We can ignore this. */
1358 case MCDI_EVENT_CODE_FLR:
1359 if (efx->type->sriov_flr)
1360 efx->type->sriov_flr(efx,
1361 MCDI_EVENT_FIELD(*event, FLR_VF));
1363 case MCDI_EVENT_CODE_PTP_RX:
1364 case MCDI_EVENT_CODE_PTP_FAULT:
1365 case MCDI_EVENT_CODE_PTP_PPS:
1366 efx_ptp_event(efx, event);
1368 case MCDI_EVENT_CODE_PTP_TIME:
1369 efx_time_sync_event(channel, event);
1371 case MCDI_EVENT_CODE_TX_FLUSH:
1372 case MCDI_EVENT_CODE_RX_FLUSH:
1373 /* Two flush events will be sent: one to the same event
1374 * queue as completions, and one to event queue 0.
1375 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1376 * flag will be set, and we should ignore the event
1377 * because we want to wait for all completions.
1379 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1380 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1381 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1382 efx_handle_drain_event(efx);
1384 case MCDI_EVENT_CODE_TX_ERR:
1385 case MCDI_EVENT_CODE_RX_ERR:
1386 netif_err(efx, hw, efx->net_dev,
1387 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1388 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1389 EFX_QWORD_VAL(*event));
1390 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1392 case MCDI_EVENT_CODE_PROXY_RESPONSE:
1393 efx_mcdi_ev_proxy_response(efx,
1394 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1395 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1398 netif_err(efx, hw, efx->net_dev,
1399 "Unknown MCDI event " EFX_QWORD_FMT "\n",
1400 EFX_QWORD_VAL(*event));
1404 /**************************************************************************
1406 * Specific request functions
1408 **************************************************************************
1411 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1413 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1415 const __le16 *ver_words;
1419 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1420 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1421 outbuf, sizeof(outbuf), &outlength);
1424 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1429 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1430 offset = scnprintf(buf, len, "%u.%u.%u.%u",
1431 le16_to_cpu(ver_words[0]),
1432 le16_to_cpu(ver_words[1]),
1433 le16_to_cpu(ver_words[2]),
1434 le16_to_cpu(ver_words[3]));
1436 if (efx->type->print_additional_fwver)
1437 offset += efx->type->print_additional_fwver(efx, buf + offset,
1440 /* It's theoretically possible for the string to exceed 31
1441 * characters, though in practice the first three version
1442 * components are short enough that this doesn't happen.
1444 if (WARN_ON(offset >= len))
1450 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1454 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1457 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1458 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1462 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1463 driver_operating ? 1 : 0);
1464 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1465 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1467 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1468 outbuf, sizeof(outbuf), &outlen);
1469 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1470 * specified will fail with EPERM, and we have to tell the MC we don't
1471 * care what firmware we get.
1474 netif_dbg(efx, probe, efx->net_dev,
1475 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1476 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1477 MC_CMD_FW_DONT_CARE);
1478 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1479 sizeof(inbuf), outbuf, sizeof(outbuf),
1483 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1484 outbuf, outlen, rc);
1487 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1492 if (driver_operating) {
1493 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1494 efx->mcdi->fn_flags =
1496 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1498 /* Synthesise flags for Siena */
1499 efx->mcdi->fn_flags =
1500 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1501 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1502 (efx_port_num(efx) == 0) <<
1503 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1507 /* We currently assume we have control of the external link
1508 * and are completely trusted by firmware. Abort probing
1509 * if that's not true for this function.
1512 if (was_attached != NULL)
1513 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1517 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1521 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1522 u16 *fw_subtype_list, u32 *capabilities)
1524 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1526 int port_num = efx_port_num(efx);
1529 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1530 /* we need __aligned(2) for ether_addr_copy */
1531 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1532 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1534 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1535 outbuf, sizeof(outbuf), &outlen);
1539 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1545 ether_addr_copy(mac_address,
1547 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1548 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1549 if (fw_subtype_list) {
1551 i < MCDI_VAR_ARRAY_LEN(outlen,
1552 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1554 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1555 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1556 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1557 fw_subtype_list[i] = 0;
1561 *capabilities = MCDI_DWORD(outbuf,
1562 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1564 *capabilities = MCDI_DWORD(outbuf,
1565 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1571 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1572 __func__, rc, (int)outlen);
1577 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1579 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1584 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1586 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1588 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1589 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1591 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1593 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1598 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1600 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1604 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1606 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1607 outbuf, sizeof(outbuf), &outlen);
1610 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1615 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1619 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1624 /* This function finds types using the new NVRAM_PARTITIONS mcdi. */
1625 static int efx_new_mcdi_nvram_types(struct efx_nic *efx, u32 *number,
1628 efx_dword_t *outbuf = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
1636 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
1638 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
1639 outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, &outlen);
1643 *number = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
1645 memcpy(nvram_types, MCDI_PTR(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID),
1646 *number * sizeof(u32));
1653 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1654 size_t *size_out, size_t *erase_size_out,
1655 bool *protected_out)
1657 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1658 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1662 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1664 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1665 outbuf, sizeof(outbuf), &outlen);
1668 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1673 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1674 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1675 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1676 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1680 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1684 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1686 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1687 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1690 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1692 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1693 outbuf, sizeof(outbuf), NULL);
1697 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1698 case MC_CMD_NVRAM_TEST_PASS:
1699 case MC_CMD_NVRAM_TEST_NOTSUPP:
1706 /* This function tests nvram partitions using the new mcdi partition lookup scheme */
1707 int efx_new_mcdi_nvram_test_all(struct efx_nic *efx)
1709 u32 *nvram_types = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
1711 unsigned int number;
1717 rc = efx_new_mcdi_nvram_types(efx, &number, nvram_types);
1721 /* Require at least one check */
1724 for (i = 0; i < number; i++) {
1725 if (nvram_types[i] == NVRAM_PARTITION_TYPE_PARTITION_MAP ||
1726 nvram_types[i] == NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG)
1729 rc = efx_mcdi_nvram_test(efx, nvram_types[i]);
1739 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1745 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1750 while (nvram_types != 0) {
1751 if (nvram_types & 1) {
1752 rc = efx_mcdi_nvram_test(efx, type);
1763 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1766 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1770 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1771 * negative on error.
1773 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1775 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1776 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1777 unsigned int flags, index;
1783 /* Attempt to read any stored assertion state before we reboot
1784 * the mcfw out of the assertion handler. Retry twice, once
1785 * because a boot-time assertion might cause this command to fail
1786 * with EINTR. And once again because GET_ASSERTS can race with
1787 * MC_CMD_REBOOT running on the other port. */
1790 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1791 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1792 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1793 outbuf, sizeof(outbuf), &outlen);
1796 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1799 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1800 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1804 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1807 /* Print out any recorded assertion state */
1808 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1809 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1812 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1813 ? "system-level assertion"
1814 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1815 ? "thread-level assertion"
1816 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1818 : "unknown assertion";
1819 netif_err(efx, hw, efx->net_dev,
1820 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1821 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1822 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1824 /* Print out the registers */
1826 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1828 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1830 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1836 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1838 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1841 /* If the MC is running debug firmware, it might now be
1842 * waiting for a debugger to attach, but we just want it to
1843 * reboot. We set a flag that makes the command a no-op if it
1844 * has already done so.
1845 * The MCDI will thus return either 0 or -EIO.
1847 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1848 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1849 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1850 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1855 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1860 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1864 rc = efx_mcdi_read_assertion(efx);
1868 return efx_mcdi_exit_assertion(efx);
1871 int efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1873 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1875 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1876 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1877 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1879 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1881 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1883 return efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), NULL, 0, NULL);
1886 static int efx_mcdi_reset_func(struct efx_nic *efx)
1888 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1891 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1892 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1893 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1894 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1899 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1901 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1904 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1905 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1906 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1908 /* White is black, and up is down */
1916 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1918 return RESET_TYPE_RECOVER_OR_ALL;
1921 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1925 /* If MCDI is down, we can't handle_assertion */
1926 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1927 rc = pci_reset_function(efx->pci_dev);
1930 /* Re-enable polled MCDI completion */
1932 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1933 mcdi->mode = MCDI_MODE_POLL;
1938 /* Recover from a failed assertion pre-reset */
1939 rc = efx_mcdi_handle_assertion(efx);
1943 if (method == RESET_TYPE_DATAPATH)
1945 else if (method == RESET_TYPE_WORLD)
1946 return efx_mcdi_reset_mc(efx);
1948 return efx_mcdi_reset_func(efx);
1951 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1952 const u8 *mac, int *id_out)
1954 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1955 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1959 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1960 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1961 MC_CMD_FILTER_MODE_SIMPLE);
1962 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1964 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1965 outbuf, sizeof(outbuf), &outlen);
1969 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1974 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1980 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1987 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1989 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1993 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1995 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1999 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
2000 outbuf, sizeof(outbuf), &outlen);
2004 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
2009 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
2015 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2020 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
2022 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
2025 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
2027 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
2032 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
2034 struct efx_channel *channel;
2035 struct efx_rx_queue *rx_queue;
2036 MCDI_DECLARE_BUF(inbuf,
2037 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
2040 BUILD_BUG_ON(EFX_MAX_CHANNELS >
2041 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
2044 efx_for_each_channel(channel, efx) {
2045 efx_for_each_channel_rx_queue(rx_queue, channel) {
2046 if (rx_queue->flush_pending) {
2047 rx_queue->flush_pending = false;
2048 atomic_dec(&efx->rxq_flush_pending);
2049 MCDI_SET_ARRAY_DWORD(
2050 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
2051 count, efx_rx_queue_index(rx_queue));
2057 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
2058 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
2064 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
2068 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2072 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2073 unsigned int *flags)
2075 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2076 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2080 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2081 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2082 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2083 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2084 outbuf, sizeof(outbuf), &outlen);
2091 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2092 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2099 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2100 unsigned int *enabled_out)
2102 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2106 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2107 outbuf, sizeof(outbuf), &outlen);
2111 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2117 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2120 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2125 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2126 * terrifying. The call site will have to deal with it though.
2128 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2129 "%s: failed rc=%d\n", __func__, rc);
2133 #ifdef CONFIG_SFC_MTD
2135 #define EFX_MCDI_NVRAM_LEN_MAX 128
2137 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2139 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN);
2142 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2143 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS,
2144 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2147 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2149 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2155 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2156 loff_t offset, u8 *buffer, size_t length)
2158 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN);
2159 MCDI_DECLARE_BUF(outbuf,
2160 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2164 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2165 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2166 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2167 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE,
2168 MC_CMD_NVRAM_READ_IN_V2_DEFAULT);
2170 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2171 outbuf, sizeof(outbuf), &outlen);
2175 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2179 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2180 loff_t offset, const u8 *buffer, size_t length)
2182 MCDI_DECLARE_BUF(inbuf,
2183 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2186 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2187 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2188 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2189 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2191 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2193 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2194 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2199 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2200 loff_t offset, size_t length)
2202 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2205 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2206 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2207 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2209 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2211 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2216 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2218 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN);
2219 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN);
2223 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2224 /* Always set this flag. Old firmware ignores it */
2225 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
2226 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2229 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2230 outbuf, sizeof(outbuf), &outlen);
2231 if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
2232 rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
2233 if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)
2234 netif_err(efx, drv, efx->net_dev,
2235 "NVRAM update failed verification with code 0x%x\n",
2238 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS:
2240 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED:
2241 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED:
2242 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED:
2243 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED:
2244 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED:
2247 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT:
2248 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST:
2251 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES:
2252 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS:
2253 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH:
2257 netif_err(efx, drv, efx->net_dev,
2258 "Unknown response to NVRAM_UPDATE_FINISH\n");
2266 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2267 size_t len, size_t *retlen, u8 *buffer)
2269 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2270 struct efx_nic *efx = mtd->priv;
2271 loff_t offset = start;
2272 loff_t end = min_t(loff_t, start + len, mtd->size);
2276 while (offset < end) {
2277 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2278 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2286 *retlen = offset - start;
2290 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2292 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2293 struct efx_nic *efx = mtd->priv;
2294 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2295 loff_t end = min_t(loff_t, start + len, mtd->size);
2296 size_t chunk = part->common.mtd.erasesize;
2299 if (!part->updating) {
2300 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2303 part->updating = true;
2306 /* The MCDI interface can in fact do multiple erase blocks at once;
2307 * but erasing may be slow, so we make multiple calls here to avoid
2308 * tripping the MCDI RPC timeout. */
2309 while (offset < end) {
2310 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2320 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2321 size_t len, size_t *retlen, const u8 *buffer)
2323 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2324 struct efx_nic *efx = mtd->priv;
2325 loff_t offset = start;
2326 loff_t end = min_t(loff_t, start + len, mtd->size);
2330 if (!part->updating) {
2331 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2334 part->updating = true;
2337 while (offset < end) {
2338 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2339 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2347 *retlen = offset - start;
2351 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2353 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2354 struct efx_nic *efx = mtd->priv;
2357 if (part->updating) {
2358 part->updating = false;
2359 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2365 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2367 struct efx_mcdi_mtd_partition *mcdi_part =
2368 container_of(part, struct efx_mcdi_mtd_partition, common);
2369 struct efx_nic *efx = part->mtd.priv;
2371 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2372 efx->name, part->type_name, mcdi_part->fw_subtype);
2375 #endif /* CONFIG_SFC_MTD */