]> Git Repo - J-linux.git/blob - drivers/net/ethernet/sfc/falcon/farch.c
Merge remote-tracking branch 'spi/for-5.14' into spi-linus
[J-linux.git] / drivers / net / ethernet / sfc / falcon / farch.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2006-2013 Solarflare Communications Inc.
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/seq_file.h>
14 #include <linux/crc32.h>
15 #include "net_driver.h"
16 #include "bitfield.h"
17 #include "efx.h"
18 #include "nic.h"
19 #include "farch_regs.h"
20 #include "io.h"
21 #include "workarounds.h"
22
23 /* Falcon-architecture (SFC4000) support */
24
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31
32 /* This is set to 16 for a good reason.  In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding).  This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44
45 /* If EF4_MAX_INT_ERRORS internal errors occur within
46  * EF4_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EF4_INT_ERROR_EXPIRE 3600
50 #define EF4_MAX_INT_ERRORS 5
51
52 /* Depth of RX flush request fifo */
53 #define EF4_RX_FLUSH_COUNT 4
54
55 /* Driver generated events */
56 #define _EF4_CHANNEL_MAGIC_TEST         0x000101
57 #define _EF4_CHANNEL_MAGIC_FILL         0x000102
58 #define _EF4_CHANNEL_MAGIC_RX_DRAIN     0x000103
59 #define _EF4_CHANNEL_MAGIC_TX_DRAIN     0x000104
60
61 #define _EF4_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
62 #define _EF4_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
63
64 #define EF4_CHANNEL_MAGIC_TEST(_channel)                                \
65         _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EF4_CHANNEL_MAGIC_FILL(_rx_queue)                               \
67         _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_FILL,                     \
68                            ef4_rx_queue_index(_rx_queue))
69 #define EF4_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
70         _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_RX_DRAIN,                 \
71                            ef4_rx_queue_index(_rx_queue))
72 #define EF4_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
73         _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TX_DRAIN,                 \
74                            (_tx_queue)->queue)
75
76 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic);
77
78 /**************************************************************************
79  *
80  * Hardware access
81  *
82  **************************************************************************/
83
84 static inline void ef4_write_buf_tbl(struct ef4_nic *efx, ef4_qword_t *value,
85                                      unsigned int index)
86 {
87         ef4_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
88                         value, index);
89 }
90
91 static bool ef4_masked_compare_oword(const ef4_oword_t *a, const ef4_oword_t *b,
92                                      const ef4_oword_t *mask)
93 {
94         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
95                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
96 }
97
98 int ef4_farch_test_registers(struct ef4_nic *efx,
99                              const struct ef4_farch_register_test *regs,
100                              size_t n_regs)
101 {
102         unsigned address = 0;
103         int i, j;
104         ef4_oword_t mask, imask, original, reg, buf;
105
106         for (i = 0; i < n_regs; ++i) {
107                 address = regs[i].address;
108                 mask = imask = regs[i].mask;
109                 EF4_INVERT_OWORD(imask);
110
111                 ef4_reado(efx, &original, address);
112
113                 /* bit sweep on and off */
114                 for (j = 0; j < 128; j++) {
115                         if (!EF4_EXTRACT_OWORD32(mask, j, j))
116                                 continue;
117
118                         /* Test this testable bit can be set in isolation */
119                         EF4_AND_OWORD(reg, original, mask);
120                         EF4_SET_OWORD32(reg, j, j, 1);
121
122                         ef4_writeo(efx, &reg, address);
123                         ef4_reado(efx, &buf, address);
124
125                         if (ef4_masked_compare_oword(&reg, &buf, &mask))
126                                 goto fail;
127
128                         /* Test this testable bit can be cleared in isolation */
129                         EF4_OR_OWORD(reg, original, mask);
130                         EF4_SET_OWORD32(reg, j, j, 0);
131
132                         ef4_writeo(efx, &reg, address);
133                         ef4_reado(efx, &buf, address);
134
135                         if (ef4_masked_compare_oword(&reg, &buf, &mask))
136                                 goto fail;
137                 }
138
139                 ef4_writeo(efx, &original, address);
140         }
141
142         return 0;
143
144 fail:
145         netif_err(efx, hw, efx->net_dev,
146                   "wrote "EF4_OWORD_FMT" read "EF4_OWORD_FMT
147                   " at address 0x%x mask "EF4_OWORD_FMT"\n", EF4_OWORD_VAL(reg),
148                   EF4_OWORD_VAL(buf), address, EF4_OWORD_VAL(mask));
149         return -EIO;
150 }
151
152 /**************************************************************************
153  *
154  * Special buffer handling
155  * Special buffers are used for event queues and the TX and RX
156  * descriptor rings.
157  *
158  *************************************************************************/
159
160 /*
161  * Initialise a special buffer
162  *
163  * This will define a buffer (previously allocated via
164  * ef4_alloc_special_buffer()) in the buffer table, allowing
165  * it to be used for event queues, descriptor rings etc.
166  */
167 static void
168 ef4_init_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
169 {
170         ef4_qword_t buf_desc;
171         unsigned int index;
172         dma_addr_t dma_addr;
173         int i;
174
175         EF4_BUG_ON_PARANOID(!buffer->buf.addr);
176
177         /* Write buffer descriptors to NIC */
178         for (i = 0; i < buffer->entries; i++) {
179                 index = buffer->index + i;
180                 dma_addr = buffer->buf.dma_addr + (i * EF4_BUF_SIZE);
181                 netif_dbg(efx, probe, efx->net_dev,
182                           "mapping special buffer %d at %llx\n",
183                           index, (unsigned long long)dma_addr);
184                 EF4_POPULATE_QWORD_3(buf_desc,
185                                      FRF_AZ_BUF_ADR_REGION, 0,
186                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
187                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
188                 ef4_write_buf_tbl(efx, &buf_desc, index);
189         }
190 }
191
192 /* Unmaps a buffer and clears the buffer table entries */
193 static void
194 ef4_fini_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
195 {
196         ef4_oword_t buf_tbl_upd;
197         unsigned int start = buffer->index;
198         unsigned int end = (buffer->index + buffer->entries - 1);
199
200         if (!buffer->entries)
201                 return;
202
203         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
204                   buffer->index, buffer->index + buffer->entries - 1);
205
206         EF4_POPULATE_OWORD_4(buf_tbl_upd,
207                              FRF_AZ_BUF_UPD_CMD, 0,
208                              FRF_AZ_BUF_CLR_CMD, 1,
209                              FRF_AZ_BUF_CLR_END_ID, end,
210                              FRF_AZ_BUF_CLR_START_ID, start);
211         ef4_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
212 }
213
214 /*
215  * Allocate a new special buffer
216  *
217  * This allocates memory for a new buffer, clears it and allocates a
218  * new buffer ID range.  It does not write into the buffer table.
219  *
220  * This call will allocate 4KB buffers, since 8KB buffers can't be
221  * used for event queues and descriptor rings.
222  */
223 static int ef4_alloc_special_buffer(struct ef4_nic *efx,
224                                     struct ef4_special_buffer *buffer,
225                                     unsigned int len)
226 {
227         len = ALIGN(len, EF4_BUF_SIZE);
228
229         if (ef4_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
230                 return -ENOMEM;
231         buffer->entries = len / EF4_BUF_SIZE;
232         BUG_ON(buffer->buf.dma_addr & (EF4_BUF_SIZE - 1));
233
234         /* Select new buffer ID */
235         buffer->index = efx->next_buffer_table;
236         efx->next_buffer_table += buffer->entries;
237
238         netif_dbg(efx, probe, efx->net_dev,
239                   "allocating special buffers %d-%d at %llx+%x "
240                   "(virt %p phys %llx)\n", buffer->index,
241                   buffer->index + buffer->entries - 1,
242                   (u64)buffer->buf.dma_addr, len,
243                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
244
245         return 0;
246 }
247
248 static void
249 ef4_free_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
250 {
251         if (!buffer->buf.addr)
252                 return;
253
254         netif_dbg(efx, hw, efx->net_dev,
255                   "deallocating special buffers %d-%d at %llx+%x "
256                   "(virt %p phys %llx)\n", buffer->index,
257                   buffer->index + buffer->entries - 1,
258                   (u64)buffer->buf.dma_addr, buffer->buf.len,
259                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
260
261         ef4_nic_free_buffer(efx, &buffer->buf);
262         buffer->entries = 0;
263 }
264
265 /**************************************************************************
266  *
267  * TX path
268  *
269  **************************************************************************/
270
271 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
272 static inline void ef4_farch_notify_tx_desc(struct ef4_tx_queue *tx_queue)
273 {
274         unsigned write_ptr;
275         ef4_dword_t reg;
276
277         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
278         EF4_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
279         ef4_writed_page(tx_queue->efx, &reg,
280                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
281 }
282
283 /* Write pointer and first descriptor for TX descriptor ring */
284 static inline void ef4_farch_push_tx_desc(struct ef4_tx_queue *tx_queue,
285                                           const ef4_qword_t *txd)
286 {
287         unsigned write_ptr;
288         ef4_oword_t reg;
289
290         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
291         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
292
293         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
294         EF4_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
295                              FRF_AZ_TX_DESC_WPTR, write_ptr);
296         reg.qword[0] = *txd;
297         ef4_writeo_page(tx_queue->efx, &reg,
298                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
299 }
300
301
302 /* For each entry inserted into the software descriptor ring, create a
303  * descriptor in the hardware TX descriptor ring (in host memory), and
304  * write a doorbell.
305  */
306 void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue)
307 {
308         struct ef4_tx_buffer *buffer;
309         ef4_qword_t *txd;
310         unsigned write_ptr;
311         unsigned old_write_count = tx_queue->write_count;
312
313         tx_queue->xmit_more_available = false;
314         if (unlikely(tx_queue->write_count == tx_queue->insert_count))
315                 return;
316
317         do {
318                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
319                 buffer = &tx_queue->buffer[write_ptr];
320                 txd = ef4_tx_desc(tx_queue, write_ptr);
321                 ++tx_queue->write_count;
322
323                 EF4_BUG_ON_PARANOID(buffer->flags & EF4_TX_BUF_OPTION);
324
325                 /* Create TX descriptor ring entry */
326                 BUILD_BUG_ON(EF4_TX_BUF_CONT != 1);
327                 EF4_POPULATE_QWORD_4(*txd,
328                                      FSF_AZ_TX_KER_CONT,
329                                      buffer->flags & EF4_TX_BUF_CONT,
330                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
331                                      FSF_AZ_TX_KER_BUF_REGION, 0,
332                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
333         } while (tx_queue->write_count != tx_queue->insert_count);
334
335         wmb(); /* Ensure descriptors are written before they are fetched */
336
337         if (ef4_nic_may_push_tx_desc(tx_queue, old_write_count)) {
338                 txd = ef4_tx_desc(tx_queue,
339                                   old_write_count & tx_queue->ptr_mask);
340                 ef4_farch_push_tx_desc(tx_queue, txd);
341                 ++tx_queue->pushes;
342         } else {
343                 ef4_farch_notify_tx_desc(tx_queue);
344         }
345 }
346
347 unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
348                                     dma_addr_t dma_addr, unsigned int len)
349 {
350         /* Don't cross 4K boundaries with descriptors. */
351         unsigned int limit = (~dma_addr & (EF4_PAGE_SIZE - 1)) + 1;
352
353         len = min(limit, len);
354
355         if (EF4_WORKAROUND_5391(tx_queue->efx) && (dma_addr & 0xf))
356                 len = min_t(unsigned int, len, 512 - (dma_addr & 0xf));
357
358         return len;
359 }
360
361
362 /* Allocate hardware resources for a TX queue */
363 int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue)
364 {
365         struct ef4_nic *efx = tx_queue->efx;
366         unsigned entries;
367
368         entries = tx_queue->ptr_mask + 1;
369         return ef4_alloc_special_buffer(efx, &tx_queue->txd,
370                                         entries * sizeof(ef4_qword_t));
371 }
372
373 void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue)
374 {
375         struct ef4_nic *efx = tx_queue->efx;
376         ef4_oword_t reg;
377
378         /* Pin TX descriptor ring */
379         ef4_init_special_buffer(efx, &tx_queue->txd);
380
381         /* Push TX descriptor ring to card */
382         EF4_POPULATE_OWORD_10(reg,
383                               FRF_AZ_TX_DESCQ_EN, 1,
384                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
385                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
386                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
387                               FRF_AZ_TX_DESCQ_EVQ_ID,
388                               tx_queue->channel->channel,
389                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
390                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
391                               FRF_AZ_TX_DESCQ_SIZE,
392                               __ffs(tx_queue->txd.entries),
393                               FRF_AZ_TX_DESCQ_TYPE, 0,
394                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
395
396         if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
397                 int csum = tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD;
398                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
399                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
400                                     !csum);
401         }
402
403         ef4_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
404                          tx_queue->queue);
405
406         if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
407                 /* Only 128 bits in this register */
408                 BUILD_BUG_ON(EF4_MAX_TX_QUEUES > 128);
409
410                 ef4_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
411                 if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
412                         __clear_bit_le(tx_queue->queue, &reg);
413                 else
414                         __set_bit_le(tx_queue->queue, &reg);
415                 ef4_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
416         }
417
418         if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
419                 EF4_POPULATE_OWORD_1(reg,
420                                      FRF_BZ_TX_PACE,
421                                      (tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
422                                      FFE_BZ_TX_PACE_OFF :
423                                      FFE_BZ_TX_PACE_RESERVED);
424                 ef4_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
425                                  tx_queue->queue);
426         }
427 }
428
429 static void ef4_farch_flush_tx_queue(struct ef4_tx_queue *tx_queue)
430 {
431         struct ef4_nic *efx = tx_queue->efx;
432         ef4_oword_t tx_flush_descq;
433
434         WARN_ON(atomic_read(&tx_queue->flush_outstanding));
435         atomic_set(&tx_queue->flush_outstanding, 1);
436
437         EF4_POPULATE_OWORD_2(tx_flush_descq,
438                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
439                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
440         ef4_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
441 }
442
443 void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue)
444 {
445         struct ef4_nic *efx = tx_queue->efx;
446         ef4_oword_t tx_desc_ptr;
447
448         /* Remove TX descriptor ring from card */
449         EF4_ZERO_OWORD(tx_desc_ptr);
450         ef4_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
451                          tx_queue->queue);
452
453         /* Unpin TX descriptor ring */
454         ef4_fini_special_buffer(efx, &tx_queue->txd);
455 }
456
457 /* Free buffers backing TX queue */
458 void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue)
459 {
460         ef4_free_special_buffer(tx_queue->efx, &tx_queue->txd);
461 }
462
463 /**************************************************************************
464  *
465  * RX path
466  *
467  **************************************************************************/
468
469 /* This creates an entry in the RX descriptor queue */
470 static inline void
471 ef4_farch_build_rx_desc(struct ef4_rx_queue *rx_queue, unsigned index)
472 {
473         struct ef4_rx_buffer *rx_buf;
474         ef4_qword_t *rxd;
475
476         rxd = ef4_rx_desc(rx_queue, index);
477         rx_buf = ef4_rx_buffer(rx_queue, index);
478         EF4_POPULATE_QWORD_3(*rxd,
479                              FSF_AZ_RX_KER_BUF_SIZE,
480                              rx_buf->len -
481                              rx_queue->efx->type->rx_buffer_padding,
482                              FSF_AZ_RX_KER_BUF_REGION, 0,
483                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
484 }
485
486 /* This writes to the RX_DESC_WPTR register for the specified receive
487  * descriptor ring.
488  */
489 void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue)
490 {
491         struct ef4_nic *efx = rx_queue->efx;
492         ef4_dword_t reg;
493         unsigned write_ptr;
494
495         while (rx_queue->notified_count != rx_queue->added_count) {
496                 ef4_farch_build_rx_desc(
497                         rx_queue,
498                         rx_queue->notified_count & rx_queue->ptr_mask);
499                 ++rx_queue->notified_count;
500         }
501
502         wmb();
503         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
504         EF4_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
505         ef4_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
506                         ef4_rx_queue_index(rx_queue));
507 }
508
509 int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue)
510 {
511         struct ef4_nic *efx = rx_queue->efx;
512         unsigned entries;
513
514         entries = rx_queue->ptr_mask + 1;
515         return ef4_alloc_special_buffer(efx, &rx_queue->rxd,
516                                         entries * sizeof(ef4_qword_t));
517 }
518
519 void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue)
520 {
521         ef4_oword_t rx_desc_ptr;
522         struct ef4_nic *efx = rx_queue->efx;
523         bool is_b0 = ef4_nic_rev(efx) >= EF4_REV_FALCON_B0;
524         bool iscsi_digest_en = is_b0;
525         bool jumbo_en;
526
527         /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
528          * DMA to continue after a PCIe page boundary (and scattering
529          * is not possible).  In Falcon B0 and Siena, it enables
530          * scatter.
531          */
532         jumbo_en = !is_b0 || efx->rx_scatter;
533
534         netif_dbg(efx, hw, efx->net_dev,
535                   "RX queue %d ring in special buffers %d-%d\n",
536                   ef4_rx_queue_index(rx_queue), rx_queue->rxd.index,
537                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
538
539         rx_queue->scatter_n = 0;
540
541         /* Pin RX descriptor ring */
542         ef4_init_special_buffer(efx, &rx_queue->rxd);
543
544         /* Push RX descriptor ring to card */
545         EF4_POPULATE_OWORD_10(rx_desc_ptr,
546                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
547                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
548                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
549                               FRF_AZ_RX_DESCQ_EVQ_ID,
550                               ef4_rx_queue_channel(rx_queue)->channel,
551                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
552                               FRF_AZ_RX_DESCQ_LABEL,
553                               ef4_rx_queue_index(rx_queue),
554                               FRF_AZ_RX_DESCQ_SIZE,
555                               __ffs(rx_queue->rxd.entries),
556                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
557                               FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
558                               FRF_AZ_RX_DESCQ_EN, 1);
559         ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
560                          ef4_rx_queue_index(rx_queue));
561 }
562
563 static void ef4_farch_flush_rx_queue(struct ef4_rx_queue *rx_queue)
564 {
565         struct ef4_nic *efx = rx_queue->efx;
566         ef4_oword_t rx_flush_descq;
567
568         EF4_POPULATE_OWORD_2(rx_flush_descq,
569                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
570                              FRF_AZ_RX_FLUSH_DESCQ,
571                              ef4_rx_queue_index(rx_queue));
572         ef4_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
573 }
574
575 void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue)
576 {
577         ef4_oword_t rx_desc_ptr;
578         struct ef4_nic *efx = rx_queue->efx;
579
580         /* Remove RX descriptor ring from card */
581         EF4_ZERO_OWORD(rx_desc_ptr);
582         ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
583                          ef4_rx_queue_index(rx_queue));
584
585         /* Unpin RX descriptor ring */
586         ef4_fini_special_buffer(efx, &rx_queue->rxd);
587 }
588
589 /* Free buffers backing RX queue */
590 void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue)
591 {
592         ef4_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
593 }
594
595 /**************************************************************************
596  *
597  * Flush handling
598  *
599  **************************************************************************/
600
601 /* ef4_farch_flush_queues() must be woken up when all flushes are completed,
602  * or more RX flushes can be kicked off.
603  */
604 static bool ef4_farch_flush_wake(struct ef4_nic *efx)
605 {
606         /* Ensure that all updates are visible to ef4_farch_flush_queues() */
607         smp_mb();
608
609         return (atomic_read(&efx->active_queues) == 0 ||
610                 (atomic_read(&efx->rxq_flush_outstanding) < EF4_RX_FLUSH_COUNT
611                  && atomic_read(&efx->rxq_flush_pending) > 0));
612 }
613
614 static bool ef4_check_tx_flush_complete(struct ef4_nic *efx)
615 {
616         bool i = true;
617         ef4_oword_t txd_ptr_tbl;
618         struct ef4_channel *channel;
619         struct ef4_tx_queue *tx_queue;
620
621         ef4_for_each_channel(channel, efx) {
622                 ef4_for_each_channel_tx_queue(tx_queue, channel) {
623                         ef4_reado_table(efx, &txd_ptr_tbl,
624                                         FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
625                         if (EF4_OWORD_FIELD(txd_ptr_tbl,
626                                             FRF_AZ_TX_DESCQ_FLUSH) ||
627                             EF4_OWORD_FIELD(txd_ptr_tbl,
628                                             FRF_AZ_TX_DESCQ_EN)) {
629                                 netif_dbg(efx, hw, efx->net_dev,
630                                           "flush did not complete on TXQ %d\n",
631                                           tx_queue->queue);
632                                 i = false;
633                         } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
634                                                   1, 0)) {
635                                 /* The flush is complete, but we didn't
636                                  * receive a flush completion event
637                                  */
638                                 netif_dbg(efx, hw, efx->net_dev,
639                                           "flush complete on TXQ %d, so drain "
640                                           "the queue\n", tx_queue->queue);
641                                 /* Don't need to increment active_queues as it
642                                  * has already been incremented for the queues
643                                  * which did not drain
644                                  */
645                                 ef4_farch_magic_event(channel,
646                                                       EF4_CHANNEL_MAGIC_TX_DRAIN(
647                                                               tx_queue));
648                         }
649                 }
650         }
651
652         return i;
653 }
654
655 /* Flush all the transmit queues, and continue flushing receive queues until
656  * they're all flushed. Wait for the DRAIN events to be received so that there
657  * are no more RX and TX events left on any channel. */
658 static int ef4_farch_do_flush(struct ef4_nic *efx)
659 {
660         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
661         struct ef4_channel *channel;
662         struct ef4_rx_queue *rx_queue;
663         struct ef4_tx_queue *tx_queue;
664         int rc = 0;
665
666         ef4_for_each_channel(channel, efx) {
667                 ef4_for_each_channel_tx_queue(tx_queue, channel) {
668                         ef4_farch_flush_tx_queue(tx_queue);
669                 }
670                 ef4_for_each_channel_rx_queue(rx_queue, channel) {
671                         rx_queue->flush_pending = true;
672                         atomic_inc(&efx->rxq_flush_pending);
673                 }
674         }
675
676         while (timeout && atomic_read(&efx->active_queues) > 0) {
677                 /* The hardware supports four concurrent rx flushes, each of
678                  * which may need to be retried if there is an outstanding
679                  * descriptor fetch
680                  */
681                 ef4_for_each_channel(channel, efx) {
682                         ef4_for_each_channel_rx_queue(rx_queue, channel) {
683                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
684                                     EF4_RX_FLUSH_COUNT)
685                                         break;
686
687                                 if (rx_queue->flush_pending) {
688                                         rx_queue->flush_pending = false;
689                                         atomic_dec(&efx->rxq_flush_pending);
690                                         atomic_inc(&efx->rxq_flush_outstanding);
691                                         ef4_farch_flush_rx_queue(rx_queue);
692                                 }
693                         }
694                 }
695
696                 timeout = wait_event_timeout(efx->flush_wq,
697                                              ef4_farch_flush_wake(efx),
698                                              timeout);
699         }
700
701         if (atomic_read(&efx->active_queues) &&
702             !ef4_check_tx_flush_complete(efx)) {
703                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
704                           "(rx %d+%d)\n", atomic_read(&efx->active_queues),
705                           atomic_read(&efx->rxq_flush_outstanding),
706                           atomic_read(&efx->rxq_flush_pending));
707                 rc = -ETIMEDOUT;
708
709                 atomic_set(&efx->active_queues, 0);
710                 atomic_set(&efx->rxq_flush_pending, 0);
711                 atomic_set(&efx->rxq_flush_outstanding, 0);
712         }
713
714         return rc;
715 }
716
717 int ef4_farch_fini_dmaq(struct ef4_nic *efx)
718 {
719         struct ef4_channel *channel;
720         struct ef4_tx_queue *tx_queue;
721         struct ef4_rx_queue *rx_queue;
722         int rc = 0;
723
724         /* Do not attempt to write to the NIC during EEH recovery */
725         if (efx->state != STATE_RECOVERY) {
726                 /* Only perform flush if DMA is enabled */
727                 if (efx->pci_dev->is_busmaster) {
728                         efx->type->prepare_flush(efx);
729                         rc = ef4_farch_do_flush(efx);
730                         efx->type->finish_flush(efx);
731                 }
732
733                 ef4_for_each_channel(channel, efx) {
734                         ef4_for_each_channel_rx_queue(rx_queue, channel)
735                                 ef4_farch_rx_fini(rx_queue);
736                         ef4_for_each_channel_tx_queue(tx_queue, channel)
737                                 ef4_farch_tx_fini(tx_queue);
738                 }
739         }
740
741         return rc;
742 }
743
744 /* Reset queue and flush accounting after FLR
745  *
746  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
747  * mastering was disabled), in which case we don't receive (RXQ) flush
748  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
749  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
750  * events were received, and we didn't go through ef4_check_tx_flush_complete())
751  * If we don't fix this up, on the next call to ef4_realloc_channels() we won't
752  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
753  * for batched flush requests; and the efx->active_queues gets messed up because
754  * we keep incrementing for the newly initialised queues, but it never went to
755  * zero previously.  Then we get a timeout every time we try to restart the
756  * queues, as it doesn't go back to zero when we should be flushing the queues.
757  */
758 void ef4_farch_finish_flr(struct ef4_nic *efx)
759 {
760         atomic_set(&efx->rxq_flush_pending, 0);
761         atomic_set(&efx->rxq_flush_outstanding, 0);
762         atomic_set(&efx->active_queues, 0);
763 }
764
765
766 /**************************************************************************
767  *
768  * Event queue processing
769  * Event queues are processed by per-channel tasklets.
770  *
771  **************************************************************************/
772
773 /* Update a channel's event queue's read pointer (RPTR) register
774  *
775  * This writes the EVQ_RPTR_REG register for the specified channel's
776  * event queue.
777  */
778 void ef4_farch_ev_read_ack(struct ef4_channel *channel)
779 {
780         ef4_dword_t reg;
781         struct ef4_nic *efx = channel->efx;
782
783         EF4_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
784                              channel->eventq_read_ptr & channel->eventq_mask);
785
786         /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
787          * of 4 bytes, but it is really 16 bytes just like later revisions.
788          */
789         ef4_writed(efx, &reg,
790                    efx->type->evq_rptr_tbl_base +
791                    FR_BZ_EVQ_RPTR_STEP * channel->channel);
792 }
793
794 /* Use HW to insert a SW defined event */
795 void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
796                               ef4_qword_t *event)
797 {
798         ef4_oword_t drv_ev_reg;
799
800         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
801                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
802         drv_ev_reg.u32[0] = event->u32[0];
803         drv_ev_reg.u32[1] = event->u32[1];
804         drv_ev_reg.u32[2] = 0;
805         drv_ev_reg.u32[3] = 0;
806         EF4_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
807         ef4_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
808 }
809
810 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic)
811 {
812         ef4_qword_t event;
813
814         EF4_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
815                              FSE_AZ_EV_CODE_DRV_GEN_EV,
816                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
817         ef4_farch_generate_event(channel->efx, channel->channel, &event);
818 }
819
820 /* Handle a transmit completion event
821  *
822  * The NIC batches TX completion events; the message we receive is of
823  * the form "complete all TX events up to this index".
824  */
825 static int
826 ef4_farch_handle_tx_event(struct ef4_channel *channel, ef4_qword_t *event)
827 {
828         unsigned int tx_ev_desc_ptr;
829         unsigned int tx_ev_q_label;
830         struct ef4_tx_queue *tx_queue;
831         struct ef4_nic *efx = channel->efx;
832         int tx_packets = 0;
833
834         if (unlikely(READ_ONCE(efx->reset_pending)))
835                 return 0;
836
837         if (likely(EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
838                 /* Transmit completion */
839                 tx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
840                 tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
841                 tx_queue = ef4_channel_get_tx_queue(
842                         channel, tx_ev_q_label % EF4_TXQ_TYPES);
843                 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
844                               tx_queue->ptr_mask);
845                 ef4_xmit_done(tx_queue, tx_ev_desc_ptr);
846         } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
847                 /* Rewrite the FIFO write pointer */
848                 tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
849                 tx_queue = ef4_channel_get_tx_queue(
850                         channel, tx_ev_q_label % EF4_TXQ_TYPES);
851
852                 netif_tx_lock(efx->net_dev);
853                 ef4_farch_notify_tx_desc(tx_queue);
854                 netif_tx_unlock(efx->net_dev);
855         } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
856                 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
857         } else {
858                 netif_err(efx, tx_err, efx->net_dev,
859                           "channel %d unexpected TX event "
860                           EF4_QWORD_FMT"\n", channel->channel,
861                           EF4_QWORD_VAL(*event));
862         }
863
864         return tx_packets;
865 }
866
867 /* Detect errors included in the rx_evt_pkt_ok bit. */
868 static u16 ef4_farch_handle_rx_not_ok(struct ef4_rx_queue *rx_queue,
869                                       const ef4_qword_t *event)
870 {
871         struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
872         struct ef4_nic *efx = rx_queue->efx;
873         bool __maybe_unused rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
874         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
875         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
876         bool rx_ev_pause_frm;
877
878         rx_ev_tobe_disc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
879         rx_ev_buf_owner_id_err = EF4_QWORD_FIELD(*event,
880                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
881         rx_ev_ip_hdr_chksum_err = EF4_QWORD_FIELD(*event,
882                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
883         rx_ev_tcp_udp_chksum_err = EF4_QWORD_FIELD(*event,
884                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
885         rx_ev_eth_crc_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
886         rx_ev_frm_trunc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
887         rx_ev_drib_nib = ((ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) ?
888                           0 : EF4_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
889         rx_ev_pause_frm = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
890
891
892         /* Count errors that are not in MAC stats.  Ignore expected
893          * checksum errors during self-test. */
894         if (rx_ev_frm_trunc)
895                 ++channel->n_rx_frm_trunc;
896         else if (rx_ev_tobe_disc)
897                 ++channel->n_rx_tobe_disc;
898         else if (!efx->loopback_selftest) {
899                 if (rx_ev_ip_hdr_chksum_err)
900                         ++channel->n_rx_ip_hdr_chksum_err;
901                 else if (rx_ev_tcp_udp_chksum_err)
902                         ++channel->n_rx_tcp_udp_chksum_err;
903         }
904
905         /* TOBE_DISC is expected on unicast mismatches; don't print out an
906          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
907          * to a FIFO overflow.
908          */
909 #ifdef DEBUG
910         {
911         /* Every error apart from tobe_disc and pause_frm */
912
913         bool rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
914                                 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
915                                 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
916
917         if (rx_ev_other_err && net_ratelimit()) {
918                 netif_dbg(efx, rx_err, efx->net_dev,
919                           " RX queue %d unexpected RX event "
920                           EF4_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
921                           ef4_rx_queue_index(rx_queue), EF4_QWORD_VAL(*event),
922                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
923                           rx_ev_ip_hdr_chksum_err ?
924                           " [IP_HDR_CHKSUM_ERR]" : "",
925                           rx_ev_tcp_udp_chksum_err ?
926                           " [TCP_UDP_CHKSUM_ERR]" : "",
927                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
928                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
929                           rx_ev_drib_nib ? " [DRIB_NIB]" : "",
930                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
931                           rx_ev_pause_frm ? " [PAUSE]" : "");
932         }
933         }
934 #endif
935
936         /* The frame must be discarded if any of these are true. */
937         return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
938                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
939                 EF4_RX_PKT_DISCARD : 0;
940 }
941
942 /* Handle receive events that are not in-order. Return true if this
943  * can be handled as a partial packet discard, false if it's more
944  * serious.
945  */
946 static bool
947 ef4_farch_handle_rx_bad_index(struct ef4_rx_queue *rx_queue, unsigned index)
948 {
949         struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
950         struct ef4_nic *efx = rx_queue->efx;
951         unsigned expected, dropped;
952
953         if (rx_queue->scatter_n &&
954             index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
955                       rx_queue->ptr_mask)) {
956                 ++channel->n_rx_nodesc_trunc;
957                 return true;
958         }
959
960         expected = rx_queue->removed_count & rx_queue->ptr_mask;
961         dropped = (index - expected) & rx_queue->ptr_mask;
962         netif_info(efx, rx_err, efx->net_dev,
963                    "dropped %d events (index=%d expected=%d)\n",
964                    dropped, index, expected);
965
966         ef4_schedule_reset(efx, EF4_WORKAROUND_5676(efx) ?
967                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
968         return false;
969 }
970
971 /* Handle a packet received event
972  *
973  * The NIC gives a "discard" flag if it's a unicast packet with the
974  * wrong destination address
975  * Also "is multicast" and "matches multicast filter" flags can be used to
976  * discard non-matching multicast packets.
977  */
978 static void
979 ef4_farch_handle_rx_event(struct ef4_channel *channel, const ef4_qword_t *event)
980 {
981         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
982         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
983         unsigned expected_ptr;
984         bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
985         u16 flags;
986         struct ef4_rx_queue *rx_queue;
987         struct ef4_nic *efx = channel->efx;
988
989         if (unlikely(READ_ONCE(efx->reset_pending)))
990                 return;
991
992         rx_ev_cont = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
993         rx_ev_sop = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
994         WARN_ON(EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
995                 channel->channel);
996
997         rx_queue = ef4_channel_get_rx_queue(channel);
998
999         rx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1000         expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1001                         rx_queue->ptr_mask);
1002
1003         /* Check for partial drops and other errors */
1004         if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1005             unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1006                 if (rx_ev_desc_ptr != expected_ptr &&
1007                     !ef4_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1008                         return;
1009
1010                 /* Discard all pending fragments */
1011                 if (rx_queue->scatter_n) {
1012                         ef4_rx_packet(
1013                                 rx_queue,
1014                                 rx_queue->removed_count & rx_queue->ptr_mask,
1015                                 rx_queue->scatter_n, 0, EF4_RX_PKT_DISCARD);
1016                         rx_queue->removed_count += rx_queue->scatter_n;
1017                         rx_queue->scatter_n = 0;
1018                 }
1019
1020                 /* Return if there is no new fragment */
1021                 if (rx_ev_desc_ptr != expected_ptr)
1022                         return;
1023
1024                 /* Discard new fragment if not SOP */
1025                 if (!rx_ev_sop) {
1026                         ef4_rx_packet(
1027                                 rx_queue,
1028                                 rx_queue->removed_count & rx_queue->ptr_mask,
1029                                 1, 0, EF4_RX_PKT_DISCARD);
1030                         ++rx_queue->removed_count;
1031                         return;
1032                 }
1033         }
1034
1035         ++rx_queue->scatter_n;
1036         if (rx_ev_cont)
1037                 return;
1038
1039         rx_ev_byte_cnt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1040         rx_ev_pkt_ok = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1041         rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1042
1043         if (likely(rx_ev_pkt_ok)) {
1044                 /* If packet is marked as OK then we can rely on the
1045                  * hardware checksum and classification.
1046                  */
1047                 flags = 0;
1048                 switch (rx_ev_hdr_type) {
1049                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1050                         flags |= EF4_RX_PKT_TCP;
1051                         fallthrough;
1052                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1053                         flags |= EF4_RX_PKT_CSUMMED;
1054                         fallthrough;
1055                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1056                 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1057                         break;
1058                 }
1059         } else {
1060                 flags = ef4_farch_handle_rx_not_ok(rx_queue, event);
1061         }
1062
1063         /* Detect multicast packets that didn't match the filter */
1064         rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1065         if (rx_ev_mcast_pkt) {
1066                 unsigned int rx_ev_mcast_hash_match =
1067                         EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1068
1069                 if (unlikely(!rx_ev_mcast_hash_match)) {
1070                         ++channel->n_rx_mcast_mismatch;
1071                         flags |= EF4_RX_PKT_DISCARD;
1072                 }
1073         }
1074
1075         channel->irq_mod_score += 2;
1076
1077         /* Handle received packet */
1078         ef4_rx_packet(rx_queue,
1079                       rx_queue->removed_count & rx_queue->ptr_mask,
1080                       rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1081         rx_queue->removed_count += rx_queue->scatter_n;
1082         rx_queue->scatter_n = 0;
1083 }
1084
1085 /* If this flush done event corresponds to a &struct ef4_tx_queue, then
1086  * send an %EF4_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1087  * of all transmit completions.
1088  */
1089 static void
1090 ef4_farch_handle_tx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1091 {
1092         struct ef4_tx_queue *tx_queue;
1093         int qid;
1094
1095         qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1096         if (qid < EF4_TXQ_TYPES * efx->n_tx_channels) {
1097                 tx_queue = ef4_get_tx_queue(efx, qid / EF4_TXQ_TYPES,
1098                                             qid % EF4_TXQ_TYPES);
1099                 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1100                         ef4_farch_magic_event(tx_queue->channel,
1101                                               EF4_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1102                 }
1103         }
1104 }
1105
1106 /* If this flush done event corresponds to a &struct ef4_rx_queue: If the flush
1107  * was successful then send an %EF4_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1108  * the RX queue back to the mask of RX queues in need of flushing.
1109  */
1110 static void
1111 ef4_farch_handle_rx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1112 {
1113         struct ef4_channel *channel;
1114         struct ef4_rx_queue *rx_queue;
1115         int qid;
1116         bool failed;
1117
1118         qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1119         failed = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1120         if (qid >= efx->n_channels)
1121                 return;
1122         channel = ef4_get_channel(efx, qid);
1123         if (!ef4_channel_has_rx_queue(channel))
1124                 return;
1125         rx_queue = ef4_channel_get_rx_queue(channel);
1126
1127         if (failed) {
1128                 netif_info(efx, hw, efx->net_dev,
1129                            "RXQ %d flush retry\n", qid);
1130                 rx_queue->flush_pending = true;
1131                 atomic_inc(&efx->rxq_flush_pending);
1132         } else {
1133                 ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1134                                       EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1135         }
1136         atomic_dec(&efx->rxq_flush_outstanding);
1137         if (ef4_farch_flush_wake(efx))
1138                 wake_up(&efx->flush_wq);
1139 }
1140
1141 static void
1142 ef4_farch_handle_drain_event(struct ef4_channel *channel)
1143 {
1144         struct ef4_nic *efx = channel->efx;
1145
1146         WARN_ON(atomic_read(&efx->active_queues) == 0);
1147         atomic_dec(&efx->active_queues);
1148         if (ef4_farch_flush_wake(efx))
1149                 wake_up(&efx->flush_wq);
1150 }
1151
1152 static void ef4_farch_handle_generated_event(struct ef4_channel *channel,
1153                                              ef4_qword_t *event)
1154 {
1155         struct ef4_nic *efx = channel->efx;
1156         struct ef4_rx_queue *rx_queue =
1157                 ef4_channel_has_rx_queue(channel) ?
1158                 ef4_channel_get_rx_queue(channel) : NULL;
1159         unsigned magic, code;
1160
1161         magic = EF4_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1162         code = _EF4_CHANNEL_MAGIC_CODE(magic);
1163
1164         if (magic == EF4_CHANNEL_MAGIC_TEST(channel)) {
1165                 channel->event_test_cpu = raw_smp_processor_id();
1166         } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_FILL(rx_queue)) {
1167                 /* The queue must be empty, so we won't receive any rx
1168                  * events, so ef4_process_channel() won't refill the
1169                  * queue. Refill it here */
1170                 ef4_fast_push_rx_descriptors(rx_queue, true);
1171         } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1172                 ef4_farch_handle_drain_event(channel);
1173         } else if (code == _EF4_CHANNEL_MAGIC_TX_DRAIN) {
1174                 ef4_farch_handle_drain_event(channel);
1175         } else {
1176                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1177                           "generated event "EF4_QWORD_FMT"\n",
1178                           channel->channel, EF4_QWORD_VAL(*event));
1179         }
1180 }
1181
1182 static void
1183 ef4_farch_handle_driver_event(struct ef4_channel *channel, ef4_qword_t *event)
1184 {
1185         struct ef4_nic *efx = channel->efx;
1186         unsigned int ev_sub_code;
1187         unsigned int ev_sub_data;
1188
1189         ev_sub_code = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1190         ev_sub_data = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1191
1192         switch (ev_sub_code) {
1193         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1194                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1195                            channel->channel, ev_sub_data);
1196                 ef4_farch_handle_tx_flush_done(efx, event);
1197                 break;
1198         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1199                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1200                            channel->channel, ev_sub_data);
1201                 ef4_farch_handle_rx_flush_done(efx, event);
1202                 break;
1203         case FSE_AZ_EVQ_INIT_DONE_EV:
1204                 netif_dbg(efx, hw, efx->net_dev,
1205                           "channel %d EVQ %d initialised\n",
1206                           channel->channel, ev_sub_data);
1207                 break;
1208         case FSE_AZ_SRM_UPD_DONE_EV:
1209                 netif_vdbg(efx, hw, efx->net_dev,
1210                            "channel %d SRAM update done\n", channel->channel);
1211                 break;
1212         case FSE_AZ_WAKE_UP_EV:
1213                 netif_vdbg(efx, hw, efx->net_dev,
1214                            "channel %d RXQ %d wakeup event\n",
1215                            channel->channel, ev_sub_data);
1216                 break;
1217         case FSE_AZ_TIMER_EV:
1218                 netif_vdbg(efx, hw, efx->net_dev,
1219                            "channel %d RX queue %d timer expired\n",
1220                            channel->channel, ev_sub_data);
1221                 break;
1222         case FSE_AA_RX_RECOVER_EV:
1223                 netif_err(efx, rx_err, efx->net_dev,
1224                           "channel %d seen DRIVER RX_RESET event. "
1225                         "Resetting.\n", channel->channel);
1226                 atomic_inc(&efx->rx_reset);
1227                 ef4_schedule_reset(efx,
1228                                    EF4_WORKAROUND_6555(efx) ?
1229                                    RESET_TYPE_RX_RECOVERY :
1230                                    RESET_TYPE_DISABLE);
1231                 break;
1232         case FSE_BZ_RX_DSC_ERROR_EV:
1233                 netif_err(efx, rx_err, efx->net_dev,
1234                           "RX DMA Q %d reports descriptor fetch error."
1235                           " RX Q %d is disabled.\n", ev_sub_data,
1236                           ev_sub_data);
1237                 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1238                 break;
1239         case FSE_BZ_TX_DSC_ERROR_EV:
1240                 netif_err(efx, tx_err, efx->net_dev,
1241                           "TX DMA Q %d reports descriptor fetch error."
1242                           " TX Q %d is disabled.\n", ev_sub_data,
1243                           ev_sub_data);
1244                 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1245                 break;
1246         default:
1247                 netif_vdbg(efx, hw, efx->net_dev,
1248                            "channel %d unknown driver event code %d "
1249                            "data %04x\n", channel->channel, ev_sub_code,
1250                            ev_sub_data);
1251                 break;
1252         }
1253 }
1254
1255 int ef4_farch_ev_process(struct ef4_channel *channel, int budget)
1256 {
1257         struct ef4_nic *efx = channel->efx;
1258         unsigned int read_ptr;
1259         ef4_qword_t event, *p_event;
1260         int ev_code;
1261         int tx_packets = 0;
1262         int spent = 0;
1263
1264         if (budget <= 0)
1265                 return spent;
1266
1267         read_ptr = channel->eventq_read_ptr;
1268
1269         for (;;) {
1270                 p_event = ef4_event(channel, read_ptr);
1271                 event = *p_event;
1272
1273                 if (!ef4_event_present(&event))
1274                         /* End of events */
1275                         break;
1276
1277                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1278                            "channel %d event is "EF4_QWORD_FMT"\n",
1279                            channel->channel, EF4_QWORD_VAL(event));
1280
1281                 /* Clear this event by marking it all ones */
1282                 EF4_SET_QWORD(*p_event);
1283
1284                 ++read_ptr;
1285
1286                 ev_code = EF4_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1287
1288                 switch (ev_code) {
1289                 case FSE_AZ_EV_CODE_RX_EV:
1290                         ef4_farch_handle_rx_event(channel, &event);
1291                         if (++spent == budget)
1292                                 goto out;
1293                         break;
1294                 case FSE_AZ_EV_CODE_TX_EV:
1295                         tx_packets += ef4_farch_handle_tx_event(channel,
1296                                                                 &event);
1297                         if (tx_packets > efx->txq_entries) {
1298                                 spent = budget;
1299                                 goto out;
1300                         }
1301                         break;
1302                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1303                         ef4_farch_handle_generated_event(channel, &event);
1304                         break;
1305                 case FSE_AZ_EV_CODE_DRIVER_EV:
1306                         ef4_farch_handle_driver_event(channel, &event);
1307                         break;
1308                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1309                         if (efx->type->handle_global_event &&
1310                             efx->type->handle_global_event(channel, &event))
1311                                 break;
1312                         fallthrough;
1313                 default:
1314                         netif_err(channel->efx, hw, channel->efx->net_dev,
1315                                   "channel %d unknown event type %d (data "
1316                                   EF4_QWORD_FMT ")\n", channel->channel,
1317                                   ev_code, EF4_QWORD_VAL(event));
1318                 }
1319         }
1320
1321 out:
1322         channel->eventq_read_ptr = read_ptr;
1323         return spent;
1324 }
1325
1326 /* Allocate buffer table entries for event queue */
1327 int ef4_farch_ev_probe(struct ef4_channel *channel)
1328 {
1329         struct ef4_nic *efx = channel->efx;
1330         unsigned entries;
1331
1332         entries = channel->eventq_mask + 1;
1333         return ef4_alloc_special_buffer(efx, &channel->eventq,
1334                                         entries * sizeof(ef4_qword_t));
1335 }
1336
1337 int ef4_farch_ev_init(struct ef4_channel *channel)
1338 {
1339         ef4_oword_t reg;
1340         struct ef4_nic *efx = channel->efx;
1341
1342         netif_dbg(efx, hw, efx->net_dev,
1343                   "channel %d event queue in special buffers %d-%d\n",
1344                   channel->channel, channel->eventq.index,
1345                   channel->eventq.index + channel->eventq.entries - 1);
1346
1347         /* Pin event queue buffer */
1348         ef4_init_special_buffer(efx, &channel->eventq);
1349
1350         /* Fill event queue with all ones (i.e. empty events) */
1351         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1352
1353         /* Push event queue to card */
1354         EF4_POPULATE_OWORD_3(reg,
1355                              FRF_AZ_EVQ_EN, 1,
1356                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1357                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1358         ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1359                          channel->channel);
1360
1361         return 0;
1362 }
1363
1364 void ef4_farch_ev_fini(struct ef4_channel *channel)
1365 {
1366         ef4_oword_t reg;
1367         struct ef4_nic *efx = channel->efx;
1368
1369         /* Remove event queue from card */
1370         EF4_ZERO_OWORD(reg);
1371         ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1372                          channel->channel);
1373
1374         /* Unpin event queue */
1375         ef4_fini_special_buffer(efx, &channel->eventq);
1376 }
1377
1378 /* Free buffers backing event queue */
1379 void ef4_farch_ev_remove(struct ef4_channel *channel)
1380 {
1381         ef4_free_special_buffer(channel->efx, &channel->eventq);
1382 }
1383
1384
1385 void ef4_farch_ev_test_generate(struct ef4_channel *channel)
1386 {
1387         ef4_farch_magic_event(channel, EF4_CHANNEL_MAGIC_TEST(channel));
1388 }
1389
1390 void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue)
1391 {
1392         ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1393                               EF4_CHANNEL_MAGIC_FILL(rx_queue));
1394 }
1395
1396 /**************************************************************************
1397  *
1398  * Hardware interrupts
1399  * The hardware interrupt handler does very little work; all the event
1400  * queue processing is carried out by per-channel tasklets.
1401  *
1402  **************************************************************************/
1403
1404 /* Enable/disable/generate interrupts */
1405 static inline void ef4_farch_interrupts(struct ef4_nic *efx,
1406                                       bool enabled, bool force)
1407 {
1408         ef4_oword_t int_en_reg_ker;
1409
1410         EF4_POPULATE_OWORD_3(int_en_reg_ker,
1411                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1412                              FRF_AZ_KER_INT_KER, force,
1413                              FRF_AZ_DRV_INT_EN_KER, enabled);
1414         ef4_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1415 }
1416
1417 void ef4_farch_irq_enable_master(struct ef4_nic *efx)
1418 {
1419         EF4_ZERO_OWORD(*((ef4_oword_t *) efx->irq_status.addr));
1420         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1421
1422         ef4_farch_interrupts(efx, true, false);
1423 }
1424
1425 void ef4_farch_irq_disable_master(struct ef4_nic *efx)
1426 {
1427         /* Disable interrupts */
1428         ef4_farch_interrupts(efx, false, false);
1429 }
1430
1431 /* Generate a test interrupt
1432  * Interrupt must already have been enabled, otherwise nasty things
1433  * may happen.
1434  */
1435 int ef4_farch_irq_test_generate(struct ef4_nic *efx)
1436 {
1437         ef4_farch_interrupts(efx, true, true);
1438         return 0;
1439 }
1440
1441 /* Process a fatal interrupt
1442  * Disable bus mastering ASAP and schedule a reset
1443  */
1444 irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx)
1445 {
1446         struct falcon_nic_data *nic_data = efx->nic_data;
1447         ef4_oword_t *int_ker = efx->irq_status.addr;
1448         ef4_oword_t fatal_intr;
1449         int error, mem_perr;
1450
1451         ef4_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1452         error = EF4_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1453
1454         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EF4_OWORD_FMT" status "
1455                   EF4_OWORD_FMT ": %s\n", EF4_OWORD_VAL(*int_ker),
1456                   EF4_OWORD_VAL(fatal_intr),
1457                   error ? "disabling bus mastering" : "no recognised error");
1458
1459         /* If this is a memory parity error dump which blocks are offending */
1460         mem_perr = (EF4_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1461                     EF4_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1462         if (mem_perr) {
1463                 ef4_oword_t reg;
1464                 ef4_reado(efx, &reg, FR_AZ_MEM_STAT);
1465                 netif_err(efx, hw, efx->net_dev,
1466                           "SYSTEM ERROR: memory parity error "EF4_OWORD_FMT"\n",
1467                           EF4_OWORD_VAL(reg));
1468         }
1469
1470         /* Disable both devices */
1471         pci_clear_master(efx->pci_dev);
1472         if (ef4_nic_is_dual_func(efx))
1473                 pci_clear_master(nic_data->pci_dev2);
1474         ef4_farch_irq_disable_master(efx);
1475
1476         /* Count errors and reset or disable the NIC accordingly */
1477         if (efx->int_error_count == 0 ||
1478             time_after(jiffies, efx->int_error_expire)) {
1479                 efx->int_error_count = 0;
1480                 efx->int_error_expire =
1481                         jiffies + EF4_INT_ERROR_EXPIRE * HZ;
1482         }
1483         if (++efx->int_error_count < EF4_MAX_INT_ERRORS) {
1484                 netif_err(efx, hw, efx->net_dev,
1485                           "SYSTEM ERROR - reset scheduled\n");
1486                 ef4_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1487         } else {
1488                 netif_err(efx, hw, efx->net_dev,
1489                           "SYSTEM ERROR - max number of errors seen."
1490                           "NIC will be disabled\n");
1491                 ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
1492         }
1493
1494         return IRQ_HANDLED;
1495 }
1496
1497 /* Handle a legacy interrupt
1498  * Acknowledges the interrupt and schedule event queue processing.
1499  */
1500 irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id)
1501 {
1502         struct ef4_nic *efx = dev_id;
1503         bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1504         ef4_oword_t *int_ker = efx->irq_status.addr;
1505         irqreturn_t result = IRQ_NONE;
1506         struct ef4_channel *channel;
1507         ef4_dword_t reg;
1508         u32 queues;
1509         int syserr;
1510
1511         /* Read the ISR which also ACKs the interrupts */
1512         ef4_readd(efx, &reg, FR_BZ_INT_ISR0);
1513         queues = EF4_EXTRACT_DWORD(reg, 0, 31);
1514
1515         /* Legacy interrupts are disabled too late by the EEH kernel
1516          * code. Disable them earlier.
1517          * If an EEH error occurred, the read will have returned all ones.
1518          */
1519         if (EF4_DWORD_IS_ALL_ONES(reg) && ef4_try_recovery(efx) &&
1520             !efx->eeh_disabled_legacy_irq) {
1521                 disable_irq_nosync(efx->legacy_irq);
1522                 efx->eeh_disabled_legacy_irq = true;
1523         }
1524
1525         /* Handle non-event-queue sources */
1526         if (queues & (1U << efx->irq_level) && soft_enabled) {
1527                 syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1528                 if (unlikely(syserr))
1529                         return ef4_farch_fatal_interrupt(efx);
1530                 efx->last_irq_cpu = raw_smp_processor_id();
1531         }
1532
1533         if (queues != 0) {
1534                 efx->irq_zero_count = 0;
1535
1536                 /* Schedule processing of any interrupting queues */
1537                 if (likely(soft_enabled)) {
1538                         ef4_for_each_channel(channel, efx) {
1539                                 if (queues & 1)
1540                                         ef4_schedule_channel_irq(channel);
1541                                 queues >>= 1;
1542                         }
1543                 }
1544                 result = IRQ_HANDLED;
1545
1546         } else {
1547                 ef4_qword_t *event;
1548
1549                 /* Legacy ISR read can return zero once (SF bug 15783) */
1550
1551                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1552                  * because this might be a shared interrupt. */
1553                 if (efx->irq_zero_count++ == 0)
1554                         result = IRQ_HANDLED;
1555
1556                 /* Ensure we schedule or rearm all event queues */
1557                 if (likely(soft_enabled)) {
1558                         ef4_for_each_channel(channel, efx) {
1559                                 event = ef4_event(channel,
1560                                                   channel->eventq_read_ptr);
1561                                 if (ef4_event_present(event))
1562                                         ef4_schedule_channel_irq(channel);
1563                                 else
1564                                         ef4_farch_ev_read_ack(channel);
1565                         }
1566                 }
1567         }
1568
1569         if (result == IRQ_HANDLED)
1570                 netif_vdbg(efx, intr, efx->net_dev,
1571                            "IRQ %d on CPU %d status " EF4_DWORD_FMT "\n",
1572                            irq, raw_smp_processor_id(), EF4_DWORD_VAL(reg));
1573
1574         return result;
1575 }
1576
1577 /* Handle an MSI interrupt
1578  *
1579  * Handle an MSI hardware interrupt.  This routine schedules event
1580  * queue processing.  No interrupt acknowledgement cycle is necessary.
1581  * Also, we never need to check that the interrupt is for us, since
1582  * MSI interrupts cannot be shared.
1583  */
1584 irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id)
1585 {
1586         struct ef4_msi_context *context = dev_id;
1587         struct ef4_nic *efx = context->efx;
1588         ef4_oword_t *int_ker = efx->irq_status.addr;
1589         int syserr;
1590
1591         netif_vdbg(efx, intr, efx->net_dev,
1592                    "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
1593                    irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
1594
1595         if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1596                 return IRQ_HANDLED;
1597
1598         /* Handle non-event-queue sources */
1599         if (context->index == efx->irq_level) {
1600                 syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1601                 if (unlikely(syserr))
1602                         return ef4_farch_fatal_interrupt(efx);
1603                 efx->last_irq_cpu = raw_smp_processor_id();
1604         }
1605
1606         /* Schedule processing of the channel */
1607         ef4_schedule_channel_irq(efx->channel[context->index]);
1608
1609         return IRQ_HANDLED;
1610 }
1611
1612 /* Setup RSS indirection table.
1613  * This maps from the hash value of the packet to RXQ
1614  */
1615 void ef4_farch_rx_push_indir_table(struct ef4_nic *efx)
1616 {
1617         size_t i = 0;
1618         ef4_dword_t dword;
1619
1620         BUG_ON(ef4_nic_rev(efx) < EF4_REV_FALCON_B0);
1621
1622         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1623                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1624
1625         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1626                 EF4_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1627                                      efx->rx_indir_table[i]);
1628                 ef4_writed(efx, &dword,
1629                            FR_BZ_RX_INDIRECTION_TBL +
1630                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1631         }
1632 }
1633
1634 /* Looks at available SRAM resources and works out how many queues we
1635  * can support, and where things like descriptor caches should live.
1636  *
1637  * SRAM is split up as follows:
1638  * 0                          buftbl entries for channels
1639  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1640  * efx->rx_dc_base            RX descriptor caches
1641  * efx->tx_dc_base            TX descriptor caches
1642  */
1643 void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw)
1644 {
1645         unsigned vi_count;
1646
1647         /* Account for the buffer table entries backing the datapath channels
1648          * and the descriptor caches for those channels.
1649          */
1650         vi_count = max(efx->n_channels, efx->n_tx_channels * EF4_TXQ_TYPES);
1651
1652         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1653         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1654 }
1655
1656 u32 ef4_farch_fpga_ver(struct ef4_nic *efx)
1657 {
1658         ef4_oword_t altera_build;
1659         ef4_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1660         return EF4_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1661 }
1662
1663 void ef4_farch_init_common(struct ef4_nic *efx)
1664 {
1665         ef4_oword_t temp;
1666
1667         /* Set positions of descriptor caches in SRAM. */
1668         EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1669         ef4_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1670         EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1671         ef4_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1672
1673         /* Set TX descriptor cache size. */
1674         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1675         EF4_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1676         ef4_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1677
1678         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1679          * this allows most efficient prefetching.
1680          */
1681         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1682         EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1683         ef4_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1684         EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1685         ef4_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1686
1687         /* Program INT_KER address */
1688         EF4_POPULATE_OWORD_2(temp,
1689                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1690                              EF4_INT_MODE_USE_MSI(efx),
1691                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1692         ef4_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1693
1694         /* Use a valid MSI-X vector */
1695         efx->irq_level = 0;
1696
1697         /* Enable all the genuinely fatal interrupts.  (They are still
1698          * masked by the overall interrupt mask, controlled by
1699          * falcon_interrupts()).
1700          *
1701          * Note: All other fatal interrupts are enabled
1702          */
1703         EF4_POPULATE_OWORD_3(temp,
1704                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1705                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1706                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1707         EF4_INVERT_OWORD(temp);
1708         ef4_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1709
1710         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1711          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1712          */
1713         ef4_reado(efx, &temp, FR_AZ_TX_RESERVED);
1714         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1715         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1716         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1717         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1718         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1719         /* Enable SW_EV to inherit in char driver - assume harmless here */
1720         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1721         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1722         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1723         /* Disable hardware watchdog which can misfire */
1724         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1725         /* Squash TX of packets of 16 bytes or less */
1726         if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1727                 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1728         ef4_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1729
1730         if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1731                 EF4_POPULATE_OWORD_4(temp,
1732                                      /* Default values */
1733                                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1734                                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1735                                      FRF_BZ_TX_PACE_FB_BASE, 0,
1736                                      /* Allow large pace values in the
1737                                       * fast bin. */
1738                                      FRF_BZ_TX_PACE_BIN_TH,
1739                                      FFE_BZ_TX_PACE_RESERVED);
1740                 ef4_writeo(efx, &temp, FR_BZ_TX_PACE);
1741         }
1742 }
1743
1744 /**************************************************************************
1745  *
1746  * Filter tables
1747  *
1748  **************************************************************************
1749  */
1750
1751 /* "Fudge factors" - difference between programmed value and actual depth.
1752  * Due to pipelined implementation we need to program H/W with a value that
1753  * is larger than the hop limit we want.
1754  */
1755 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1756 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1757
1758 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1759  * We also need to avoid infinite loops in ef4_farch_filter_search() when the
1760  * table is full.
1761  */
1762 #define EF4_FARCH_FILTER_CTL_SRCH_MAX 200
1763
1764 /* Don't try very hard to find space for performance hints, as this is
1765  * counter-productive. */
1766 #define EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1767
1768 enum ef4_farch_filter_type {
1769         EF4_FARCH_FILTER_TCP_FULL = 0,
1770         EF4_FARCH_FILTER_TCP_WILD,
1771         EF4_FARCH_FILTER_UDP_FULL,
1772         EF4_FARCH_FILTER_UDP_WILD,
1773         EF4_FARCH_FILTER_MAC_FULL = 4,
1774         EF4_FARCH_FILTER_MAC_WILD,
1775         EF4_FARCH_FILTER_UC_DEF = 8,
1776         EF4_FARCH_FILTER_MC_DEF,
1777         EF4_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1778 };
1779
1780 enum ef4_farch_filter_table_id {
1781         EF4_FARCH_FILTER_TABLE_RX_IP = 0,
1782         EF4_FARCH_FILTER_TABLE_RX_MAC,
1783         EF4_FARCH_FILTER_TABLE_RX_DEF,
1784         EF4_FARCH_FILTER_TABLE_TX_MAC,
1785         EF4_FARCH_FILTER_TABLE_COUNT,
1786 };
1787
1788 enum ef4_farch_filter_index {
1789         EF4_FARCH_FILTER_INDEX_UC_DEF,
1790         EF4_FARCH_FILTER_INDEX_MC_DEF,
1791         EF4_FARCH_FILTER_SIZE_RX_DEF,
1792 };
1793
1794 struct ef4_farch_filter_spec {
1795         u8      type:4;
1796         u8      priority:4;
1797         u8      flags;
1798         u16     dmaq_id;
1799         u32     data[3];
1800 };
1801
1802 struct ef4_farch_filter_table {
1803         enum ef4_farch_filter_table_id id;
1804         u32             offset;         /* address of table relative to BAR */
1805         unsigned        size;           /* number of entries */
1806         unsigned        step;           /* step between entries */
1807         unsigned        used;           /* number currently used */
1808         unsigned long   *used_bitmap;
1809         struct ef4_farch_filter_spec *spec;
1810         unsigned        search_limit[EF4_FARCH_FILTER_TYPE_COUNT];
1811 };
1812
1813 struct ef4_farch_filter_state {
1814         struct ef4_farch_filter_table table[EF4_FARCH_FILTER_TABLE_COUNT];
1815 };
1816
1817 static void
1818 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
1819                                    struct ef4_farch_filter_table *table,
1820                                    unsigned int filter_idx);
1821
1822 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1823  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1824 static u16 ef4_farch_filter_hash(u32 key)
1825 {
1826         u16 tmp;
1827
1828         /* First 16 rounds */
1829         tmp = 0x1fff ^ key >> 16;
1830         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1831         tmp = tmp ^ tmp >> 9;
1832         /* Last 16 rounds */
1833         tmp = tmp ^ tmp << 13 ^ key;
1834         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1835         return tmp ^ tmp >> 9;
1836 }
1837
1838 /* To allow for hash collisions, filter search continues at these
1839  * increments from the first possible entry selected by the hash. */
1840 static u16 ef4_farch_filter_increment(u32 key)
1841 {
1842         return key * 2 - 1;
1843 }
1844
1845 static enum ef4_farch_filter_table_id
1846 ef4_farch_filter_spec_table_id(const struct ef4_farch_filter_spec *spec)
1847 {
1848         BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1849                      (EF4_FARCH_FILTER_TCP_FULL >> 2));
1850         BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1851                      (EF4_FARCH_FILTER_TCP_WILD >> 2));
1852         BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1853                      (EF4_FARCH_FILTER_UDP_FULL >> 2));
1854         BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1855                      (EF4_FARCH_FILTER_UDP_WILD >> 2));
1856         BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1857                      (EF4_FARCH_FILTER_MAC_FULL >> 2));
1858         BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1859                      (EF4_FARCH_FILTER_MAC_WILD >> 2));
1860         BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_TX_MAC !=
1861                      EF4_FARCH_FILTER_TABLE_RX_MAC + 2);
1862         return (spec->type >> 2) + ((spec->flags & EF4_FILTER_FLAG_TX) ? 2 : 0);
1863 }
1864
1865 static void ef4_farch_filter_push_rx_config(struct ef4_nic *efx)
1866 {
1867         struct ef4_farch_filter_state *state = efx->filter_state;
1868         struct ef4_farch_filter_table *table;
1869         ef4_oword_t filter_ctl;
1870
1871         ef4_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1872
1873         table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
1874         EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1875                             table->search_limit[EF4_FARCH_FILTER_TCP_FULL] +
1876                             EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1877         EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1878                             table->search_limit[EF4_FARCH_FILTER_TCP_WILD] +
1879                             EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1880         EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1881                             table->search_limit[EF4_FARCH_FILTER_UDP_FULL] +
1882                             EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1883         EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1884                             table->search_limit[EF4_FARCH_FILTER_UDP_WILD] +
1885                             EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1886
1887         table = &state->table[EF4_FARCH_FILTER_TABLE_RX_MAC];
1888         if (table->size) {
1889                 EF4_SET_OWORD_FIELD(
1890                         filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1891                         table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1892                         EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1893                 EF4_SET_OWORD_FIELD(
1894                         filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1895                         table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1896                         EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1897         }
1898
1899         table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
1900         if (table->size) {
1901                 EF4_SET_OWORD_FIELD(
1902                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1903                         table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1904                 EF4_SET_OWORD_FIELD(
1905                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1906                         !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1907                            EF4_FILTER_FLAG_RX_RSS));
1908                 EF4_SET_OWORD_FIELD(
1909                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1910                         table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1911                 EF4_SET_OWORD_FIELD(
1912                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1913                         !!(table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1914                            EF4_FILTER_FLAG_RX_RSS));
1915
1916                 /* There is a single bit to enable RX scatter for all
1917                  * unmatched packets.  Only set it if scatter is
1918                  * enabled in both filter specs.
1919                  */
1920                 EF4_SET_OWORD_FIELD(
1921                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1922                         !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1923                            table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1924                            EF4_FILTER_FLAG_RX_SCATTER));
1925         } else if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1926                 /* We don't expose 'default' filters because unmatched
1927                  * packets always go to the queue number found in the
1928                  * RSS table.  But we still need to set the RX scatter
1929                  * bit here.
1930                  */
1931                 EF4_SET_OWORD_FIELD(
1932                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1933                         efx->rx_scatter);
1934         }
1935
1936         ef4_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1937 }
1938
1939 static void ef4_farch_filter_push_tx_limits(struct ef4_nic *efx)
1940 {
1941         struct ef4_farch_filter_state *state = efx->filter_state;
1942         struct ef4_farch_filter_table *table;
1943         ef4_oword_t tx_cfg;
1944
1945         ef4_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
1946
1947         table = &state->table[EF4_FARCH_FILTER_TABLE_TX_MAC];
1948         if (table->size) {
1949                 EF4_SET_OWORD_FIELD(
1950                         tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
1951                         table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1952                         EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1953                 EF4_SET_OWORD_FIELD(
1954                         tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
1955                         table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1956                         EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1957         }
1958
1959         ef4_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
1960 }
1961
1962 static int
1963 ef4_farch_filter_from_gen_spec(struct ef4_farch_filter_spec *spec,
1964                                const struct ef4_filter_spec *gen_spec)
1965 {
1966         bool is_full = false;
1967
1968         if ((gen_spec->flags & EF4_FILTER_FLAG_RX_RSS) &&
1969             gen_spec->rss_context != EF4_FILTER_RSS_CONTEXT_DEFAULT)
1970                 return -EINVAL;
1971
1972         spec->priority = gen_spec->priority;
1973         spec->flags = gen_spec->flags;
1974         spec->dmaq_id = gen_spec->dmaq_id;
1975
1976         switch (gen_spec->match_flags) {
1977         case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1978               EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
1979               EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT):
1980                 is_full = true;
1981                 fallthrough;
1982         case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1983               EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT): {
1984                 __be32 rhost, host1, host2;
1985                 __be16 rport, port1, port2;
1986
1987                 EF4_BUG_ON_PARANOID(!(gen_spec->flags & EF4_FILTER_FLAG_RX));
1988
1989                 if (gen_spec->ether_type != htons(ETH_P_IP))
1990                         return -EPROTONOSUPPORT;
1991                 if (gen_spec->loc_port == 0 ||
1992                     (is_full && gen_spec->rem_port == 0))
1993                         return -EADDRNOTAVAIL;
1994                 switch (gen_spec->ip_proto) {
1995                 case IPPROTO_TCP:
1996                         spec->type = (is_full ? EF4_FARCH_FILTER_TCP_FULL :
1997                                       EF4_FARCH_FILTER_TCP_WILD);
1998                         break;
1999                 case IPPROTO_UDP:
2000                         spec->type = (is_full ? EF4_FARCH_FILTER_UDP_FULL :
2001                                       EF4_FARCH_FILTER_UDP_WILD);
2002                         break;
2003                 default:
2004                         return -EPROTONOSUPPORT;
2005                 }
2006
2007                 /* Filter is constructed in terms of source and destination,
2008                  * with the odd wrinkle that the ports are swapped in a UDP
2009                  * wildcard filter.  We need to convert from local and remote
2010                  * (= zero for wildcard) addresses.
2011                  */
2012                 rhost = is_full ? gen_spec->rem_host[0] : 0;
2013                 rport = is_full ? gen_spec->rem_port : 0;
2014                 host1 = rhost;
2015                 host2 = gen_spec->loc_host[0];
2016                 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2017                         port1 = gen_spec->loc_port;
2018                         port2 = rport;
2019                 } else {
2020                         port1 = rport;
2021                         port2 = gen_spec->loc_port;
2022                 }
2023                 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2024                 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2025                 spec->data[2] = ntohl(host2);
2026
2027                 break;
2028         }
2029
2030         case EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_OUTER_VID:
2031                 is_full = true;
2032                 fallthrough;
2033         case EF4_FILTER_MATCH_LOC_MAC:
2034                 spec->type = (is_full ? EF4_FARCH_FILTER_MAC_FULL :
2035                               EF4_FARCH_FILTER_MAC_WILD);
2036                 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2037                 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2038                                  gen_spec->loc_mac[3] << 16 |
2039                                  gen_spec->loc_mac[4] << 8 |
2040                                  gen_spec->loc_mac[5]);
2041                 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2042                                  gen_spec->loc_mac[1]);
2043                 break;
2044
2045         case EF4_FILTER_MATCH_LOC_MAC_IG:
2046                 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2047                               EF4_FARCH_FILTER_MC_DEF :
2048                               EF4_FARCH_FILTER_UC_DEF);
2049                 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2050                 break;
2051
2052         default:
2053                 return -EPROTONOSUPPORT;
2054         }
2055
2056         return 0;
2057 }
2058
2059 static void
2060 ef4_farch_filter_to_gen_spec(struct ef4_filter_spec *gen_spec,
2061                              const struct ef4_farch_filter_spec *spec)
2062 {
2063         bool is_full = false;
2064
2065         /* *gen_spec should be completely initialised, to be consistent
2066          * with ef4_filter_init_{rx,tx}() and in case we want to copy
2067          * it back to userland.
2068          */
2069         memset(gen_spec, 0, sizeof(*gen_spec));
2070
2071         gen_spec->priority = spec->priority;
2072         gen_spec->flags = spec->flags;
2073         gen_spec->dmaq_id = spec->dmaq_id;
2074
2075         switch (spec->type) {
2076         case EF4_FARCH_FILTER_TCP_FULL:
2077         case EF4_FARCH_FILTER_UDP_FULL:
2078                 is_full = true;
2079                 fallthrough;
2080         case EF4_FARCH_FILTER_TCP_WILD:
2081         case EF4_FARCH_FILTER_UDP_WILD: {
2082                 __be32 host1, host2;
2083                 __be16 port1, port2;
2084
2085                 gen_spec->match_flags =
2086                         EF4_FILTER_MATCH_ETHER_TYPE |
2087                         EF4_FILTER_MATCH_IP_PROTO |
2088                         EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT;
2089                 if (is_full)
2090                         gen_spec->match_flags |= (EF4_FILTER_MATCH_REM_HOST |
2091                                                   EF4_FILTER_MATCH_REM_PORT);
2092                 gen_spec->ether_type = htons(ETH_P_IP);
2093                 gen_spec->ip_proto =
2094                         (spec->type == EF4_FARCH_FILTER_TCP_FULL ||
2095                          spec->type == EF4_FARCH_FILTER_TCP_WILD) ?
2096                         IPPROTO_TCP : IPPROTO_UDP;
2097
2098                 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2099                 port1 = htons(spec->data[0]);
2100                 host2 = htonl(spec->data[2]);
2101                 port2 = htons(spec->data[1] >> 16);
2102                 if (spec->flags & EF4_FILTER_FLAG_TX) {
2103                         gen_spec->loc_host[0] = host1;
2104                         gen_spec->rem_host[0] = host2;
2105                 } else {
2106                         gen_spec->loc_host[0] = host2;
2107                         gen_spec->rem_host[0] = host1;
2108                 }
2109                 if (!!(gen_spec->flags & EF4_FILTER_FLAG_TX) ^
2110                     (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2111                         gen_spec->loc_port = port1;
2112                         gen_spec->rem_port = port2;
2113                 } else {
2114                         gen_spec->loc_port = port2;
2115                         gen_spec->rem_port = port1;
2116                 }
2117
2118                 break;
2119         }
2120
2121         case EF4_FARCH_FILTER_MAC_FULL:
2122                 is_full = true;
2123                 fallthrough;
2124         case EF4_FARCH_FILTER_MAC_WILD:
2125                 gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC;
2126                 if (is_full)
2127                         gen_spec->match_flags |= EF4_FILTER_MATCH_OUTER_VID;
2128                 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2129                 gen_spec->loc_mac[1] = spec->data[2];
2130                 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2131                 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2132                 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2133                 gen_spec->loc_mac[5] = spec->data[1];
2134                 gen_spec->outer_vid = htons(spec->data[0]);
2135                 break;
2136
2137         case EF4_FARCH_FILTER_UC_DEF:
2138         case EF4_FARCH_FILTER_MC_DEF:
2139                 gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC_IG;
2140                 gen_spec->loc_mac[0] = spec->type == EF4_FARCH_FILTER_MC_DEF;
2141                 break;
2142
2143         default:
2144                 WARN_ON(1);
2145                 break;
2146         }
2147 }
2148
2149 static void
2150 ef4_farch_filter_init_rx_auto(struct ef4_nic *efx,
2151                               struct ef4_farch_filter_spec *spec)
2152 {
2153         /* If there's only one channel then disable RSS for non VF
2154          * traffic, thereby allowing VFs to use RSS when the PF can't.
2155          */
2156         spec->priority = EF4_FILTER_PRI_AUTO;
2157         spec->flags = (EF4_FILTER_FLAG_RX |
2158                        (ef4_rss_enabled(efx) ? EF4_FILTER_FLAG_RX_RSS : 0) |
2159                        (efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0));
2160         spec->dmaq_id = 0;
2161 }
2162
2163 /* Build a filter entry and return its n-tuple key. */
2164 static u32 ef4_farch_filter_build(ef4_oword_t *filter,
2165                                   struct ef4_farch_filter_spec *spec)
2166 {
2167         u32 data3;
2168
2169         switch (ef4_farch_filter_spec_table_id(spec)) {
2170         case EF4_FARCH_FILTER_TABLE_RX_IP: {
2171                 bool is_udp = (spec->type == EF4_FARCH_FILTER_UDP_FULL ||
2172                                spec->type == EF4_FARCH_FILTER_UDP_WILD);
2173                 EF4_POPULATE_OWORD_7(
2174                         *filter,
2175                         FRF_BZ_RSS_EN,
2176                         !!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2177                         FRF_BZ_SCATTER_EN,
2178                         !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2179                         FRF_BZ_TCP_UDP, is_udp,
2180                         FRF_BZ_RXQ_ID, spec->dmaq_id,
2181                         EF4_DWORD_2, spec->data[2],
2182                         EF4_DWORD_1, spec->data[1],
2183                         EF4_DWORD_0, spec->data[0]);
2184                 data3 = is_udp;
2185                 break;
2186         }
2187
2188         case EF4_FARCH_FILTER_TABLE_RX_MAC: {
2189                 bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2190                 EF4_POPULATE_OWORD_7(
2191                         *filter,
2192                         FRF_CZ_RMFT_RSS_EN,
2193                         !!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2194                         FRF_CZ_RMFT_SCATTER_EN,
2195                         !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2196                         FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2197                         FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2198                         FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2199                         FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2200                         FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2201                 data3 = is_wild;
2202                 break;
2203         }
2204
2205         case EF4_FARCH_FILTER_TABLE_TX_MAC: {
2206                 bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2207                 EF4_POPULATE_OWORD_5(*filter,
2208                                      FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2209                                      FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2210                                      FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2211                                      FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2212                                      FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2213                 data3 = is_wild | spec->dmaq_id << 1;
2214                 break;
2215         }
2216
2217         default:
2218                 BUG();
2219         }
2220
2221         return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2222 }
2223
2224 static bool ef4_farch_filter_equal(const struct ef4_farch_filter_spec *left,
2225                                    const struct ef4_farch_filter_spec *right)
2226 {
2227         if (left->type != right->type ||
2228             memcmp(left->data, right->data, sizeof(left->data)))
2229                 return false;
2230
2231         if (left->flags & EF4_FILTER_FLAG_TX &&
2232             left->dmaq_id != right->dmaq_id)
2233                 return false;
2234
2235         return true;
2236 }
2237
2238 /*
2239  * Construct/deconstruct external filter IDs.  At least the RX filter
2240  * IDs must be ordered by matching priority, for RX NFC semantics.
2241  *
2242  * Deconstruction needs to be robust against invalid IDs so that
2243  * ef4_filter_remove_id_safe() and ef4_filter_get_filter_safe() can
2244  * accept user-provided IDs.
2245  */
2246
2247 #define EF4_FARCH_FILTER_MATCH_PRI_COUNT        5
2248
2249 static const u8 ef4_farch_filter_type_match_pri[EF4_FARCH_FILTER_TYPE_COUNT] = {
2250         [EF4_FARCH_FILTER_TCP_FULL]     = 0,
2251         [EF4_FARCH_FILTER_UDP_FULL]     = 0,
2252         [EF4_FARCH_FILTER_TCP_WILD]     = 1,
2253         [EF4_FARCH_FILTER_UDP_WILD]     = 1,
2254         [EF4_FARCH_FILTER_MAC_FULL]     = 2,
2255         [EF4_FARCH_FILTER_MAC_WILD]     = 3,
2256         [EF4_FARCH_FILTER_UC_DEF]       = 4,
2257         [EF4_FARCH_FILTER_MC_DEF]       = 4,
2258 };
2259
2260 static const enum ef4_farch_filter_table_id ef4_farch_filter_range_table[] = {
2261         EF4_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2262         EF4_FARCH_FILTER_TABLE_RX_IP,
2263         EF4_FARCH_FILTER_TABLE_RX_MAC,
2264         EF4_FARCH_FILTER_TABLE_RX_MAC,
2265         EF4_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2266         EF4_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2267         EF4_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2268 };
2269
2270 #define EF4_FARCH_FILTER_INDEX_WIDTH 13
2271 #define EF4_FARCH_FILTER_INDEX_MASK ((1 << EF4_FARCH_FILTER_INDEX_WIDTH) - 1)
2272
2273 static inline u32
2274 ef4_farch_filter_make_id(const struct ef4_farch_filter_spec *spec,
2275                          unsigned int index)
2276 {
2277         unsigned int range;
2278
2279         range = ef4_farch_filter_type_match_pri[spec->type];
2280         if (!(spec->flags & EF4_FILTER_FLAG_RX))
2281                 range += EF4_FARCH_FILTER_MATCH_PRI_COUNT;
2282
2283         return range << EF4_FARCH_FILTER_INDEX_WIDTH | index;
2284 }
2285
2286 static inline enum ef4_farch_filter_table_id
2287 ef4_farch_filter_id_table_id(u32 id)
2288 {
2289         unsigned int range = id >> EF4_FARCH_FILTER_INDEX_WIDTH;
2290
2291         if (range < ARRAY_SIZE(ef4_farch_filter_range_table))
2292                 return ef4_farch_filter_range_table[range];
2293         else
2294                 return EF4_FARCH_FILTER_TABLE_COUNT; /* invalid */
2295 }
2296
2297 static inline unsigned int ef4_farch_filter_id_index(u32 id)
2298 {
2299         return id & EF4_FARCH_FILTER_INDEX_MASK;
2300 }
2301
2302 u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx)
2303 {
2304         struct ef4_farch_filter_state *state = efx->filter_state;
2305         unsigned int range = EF4_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2306         enum ef4_farch_filter_table_id table_id;
2307
2308         do {
2309                 table_id = ef4_farch_filter_range_table[range];
2310                 if (state->table[table_id].size != 0)
2311                         return range << EF4_FARCH_FILTER_INDEX_WIDTH |
2312                                 state->table[table_id].size;
2313         } while (range--);
2314
2315         return 0;
2316 }
2317
2318 s32 ef4_farch_filter_insert(struct ef4_nic *efx,
2319                             struct ef4_filter_spec *gen_spec,
2320                             bool replace_equal)
2321 {
2322         struct ef4_farch_filter_state *state = efx->filter_state;
2323         struct ef4_farch_filter_table *table;
2324         struct ef4_farch_filter_spec spec;
2325         ef4_oword_t filter;
2326         int rep_index, ins_index;
2327         unsigned int depth = 0;
2328         int rc;
2329
2330         rc = ef4_farch_filter_from_gen_spec(&spec, gen_spec);
2331         if (rc)
2332                 return rc;
2333
2334         table = &state->table[ef4_farch_filter_spec_table_id(&spec)];
2335         if (table->size == 0)
2336                 return -EINVAL;
2337
2338         netif_vdbg(efx, hw, efx->net_dev,
2339                    "%s: type %d search_limit=%d", __func__, spec.type,
2340                    table->search_limit[spec.type]);
2341
2342         if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2343                 /* One filter spec per type */
2344                 BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_UC_DEF != 0);
2345                 BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_MC_DEF !=
2346                              EF4_FARCH_FILTER_MC_DEF - EF4_FARCH_FILTER_UC_DEF);
2347                 rep_index = spec.type - EF4_FARCH_FILTER_UC_DEF;
2348                 ins_index = rep_index;
2349
2350                 spin_lock_bh(&efx->filter_lock);
2351         } else {
2352                 /* Search concurrently for
2353                  * (1) a filter to be replaced (rep_index): any filter
2354                  *     with the same match values, up to the current
2355                  *     search depth for this type, and
2356                  * (2) the insertion point (ins_index): (1) or any
2357                  *     free slot before it or up to the maximum search
2358                  *     depth for this priority
2359                  * We fail if we cannot find (2).
2360                  *
2361                  * We can stop once either
2362                  * (a) we find (1), in which case we have definitely
2363                  *     found (2) as well; or
2364                  * (b) we have searched exhaustively for (1), and have
2365                  *     either found (2) or searched exhaustively for it
2366                  */
2367                 u32 key = ef4_farch_filter_build(&filter, &spec);
2368                 unsigned int hash = ef4_farch_filter_hash(key);
2369                 unsigned int incr = ef4_farch_filter_increment(key);
2370                 unsigned int max_rep_depth = table->search_limit[spec.type];
2371                 unsigned int max_ins_depth =
2372                         spec.priority <= EF4_FILTER_PRI_HINT ?
2373                         EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2374                         EF4_FARCH_FILTER_CTL_SRCH_MAX;
2375                 unsigned int i = hash & (table->size - 1);
2376
2377                 ins_index = -1;
2378                 depth = 1;
2379
2380                 spin_lock_bh(&efx->filter_lock);
2381
2382                 for (;;) {
2383                         if (!test_bit(i, table->used_bitmap)) {
2384                                 if (ins_index < 0)
2385                                         ins_index = i;
2386                         } else if (ef4_farch_filter_equal(&spec,
2387                                                           &table->spec[i])) {
2388                                 /* Case (a) */
2389                                 if (ins_index < 0)
2390                                         ins_index = i;
2391                                 rep_index = i;
2392                                 break;
2393                         }
2394
2395                         if (depth >= max_rep_depth &&
2396                             (ins_index >= 0 || depth >= max_ins_depth)) {
2397                                 /* Case (b) */
2398                                 if (ins_index < 0) {
2399                                         rc = -EBUSY;
2400                                         goto out;
2401                                 }
2402                                 rep_index = -1;
2403                                 break;
2404                         }
2405
2406                         i = (i + incr) & (table->size - 1);
2407                         ++depth;
2408                 }
2409         }
2410
2411         /* If we found a filter to be replaced, check whether we
2412          * should do so
2413          */
2414         if (rep_index >= 0) {
2415                 struct ef4_farch_filter_spec *saved_spec =
2416                         &table->spec[rep_index];
2417
2418                 if (spec.priority == saved_spec->priority && !replace_equal) {
2419                         rc = -EEXIST;
2420                         goto out;
2421                 }
2422                 if (spec.priority < saved_spec->priority) {
2423                         rc = -EPERM;
2424                         goto out;
2425                 }
2426                 if (saved_spec->priority == EF4_FILTER_PRI_AUTO ||
2427                     saved_spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO)
2428                         spec.flags |= EF4_FILTER_FLAG_RX_OVER_AUTO;
2429         }
2430
2431         /* Insert the filter */
2432         if (ins_index != rep_index) {
2433                 __set_bit(ins_index, table->used_bitmap);
2434                 ++table->used;
2435         }
2436         table->spec[ins_index] = spec;
2437
2438         if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2439                 ef4_farch_filter_push_rx_config(efx);
2440         } else {
2441                 if (table->search_limit[spec.type] < depth) {
2442                         table->search_limit[spec.type] = depth;
2443                         if (spec.flags & EF4_FILTER_FLAG_TX)
2444                                 ef4_farch_filter_push_tx_limits(efx);
2445                         else
2446                                 ef4_farch_filter_push_rx_config(efx);
2447                 }
2448
2449                 ef4_writeo(efx, &filter,
2450                            table->offset + table->step * ins_index);
2451
2452                 /* If we were able to replace a filter by inserting
2453                  * at a lower depth, clear the replaced filter
2454                  */
2455                 if (ins_index != rep_index && rep_index >= 0)
2456                         ef4_farch_filter_table_clear_entry(efx, table,
2457                                                            rep_index);
2458         }
2459
2460         netif_vdbg(efx, hw, efx->net_dev,
2461                    "%s: filter type %d index %d rxq %u set",
2462                    __func__, spec.type, ins_index, spec.dmaq_id);
2463         rc = ef4_farch_filter_make_id(&spec, ins_index);
2464
2465 out:
2466         spin_unlock_bh(&efx->filter_lock);
2467         return rc;
2468 }
2469
2470 static void
2471 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
2472                                    struct ef4_farch_filter_table *table,
2473                                    unsigned int filter_idx)
2474 {
2475         static ef4_oword_t filter;
2476
2477         EF4_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2478         BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2479
2480         __clear_bit(filter_idx, table->used_bitmap);
2481         --table->used;
2482         memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2483
2484         ef4_writeo(efx, &filter, table->offset + table->step * filter_idx);
2485
2486         /* If this filter required a greater search depth than
2487          * any other, the search limit for its type can now be
2488          * decreased.  However, it is hard to determine that
2489          * unless the table has become completely empty - in
2490          * which case, all its search limits can be set to 0.
2491          */
2492         if (unlikely(table->used == 0)) {
2493                 memset(table->search_limit, 0, sizeof(table->search_limit));
2494                 if (table->id == EF4_FARCH_FILTER_TABLE_TX_MAC)
2495                         ef4_farch_filter_push_tx_limits(efx);
2496                 else
2497                         ef4_farch_filter_push_rx_config(efx);
2498         }
2499 }
2500
2501 static int ef4_farch_filter_remove(struct ef4_nic *efx,
2502                                    struct ef4_farch_filter_table *table,
2503                                    unsigned int filter_idx,
2504                                    enum ef4_filter_priority priority)
2505 {
2506         struct ef4_farch_filter_spec *spec = &table->spec[filter_idx];
2507
2508         if (!test_bit(filter_idx, table->used_bitmap) ||
2509             spec->priority != priority)
2510                 return -ENOENT;
2511
2512         if (spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO) {
2513                 ef4_farch_filter_init_rx_auto(efx, spec);
2514                 ef4_farch_filter_push_rx_config(efx);
2515         } else {
2516                 ef4_farch_filter_table_clear_entry(efx, table, filter_idx);
2517         }
2518
2519         return 0;
2520 }
2521
2522 int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
2523                                  enum ef4_filter_priority priority,
2524                                  u32 filter_id)
2525 {
2526         struct ef4_farch_filter_state *state = efx->filter_state;
2527         enum ef4_farch_filter_table_id table_id;
2528         struct ef4_farch_filter_table *table;
2529         unsigned int filter_idx;
2530         int rc;
2531
2532         table_id = ef4_farch_filter_id_table_id(filter_id);
2533         if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2534                 return -ENOENT;
2535         table = &state->table[table_id];
2536
2537         filter_idx = ef4_farch_filter_id_index(filter_id);
2538         if (filter_idx >= table->size)
2539                 return -ENOENT;
2540
2541         spin_lock_bh(&efx->filter_lock);
2542         rc = ef4_farch_filter_remove(efx, table, filter_idx, priority);
2543         spin_unlock_bh(&efx->filter_lock);
2544
2545         return rc;
2546 }
2547
2548 int ef4_farch_filter_get_safe(struct ef4_nic *efx,
2549                               enum ef4_filter_priority priority,
2550                               u32 filter_id, struct ef4_filter_spec *spec_buf)
2551 {
2552         struct ef4_farch_filter_state *state = efx->filter_state;
2553         enum ef4_farch_filter_table_id table_id;
2554         struct ef4_farch_filter_table *table;
2555         struct ef4_farch_filter_spec *spec;
2556         unsigned int filter_idx;
2557         int rc;
2558
2559         table_id = ef4_farch_filter_id_table_id(filter_id);
2560         if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2561                 return -ENOENT;
2562         table = &state->table[table_id];
2563
2564         filter_idx = ef4_farch_filter_id_index(filter_id);
2565         if (filter_idx >= table->size)
2566                 return -ENOENT;
2567         spec = &table->spec[filter_idx];
2568
2569         spin_lock_bh(&efx->filter_lock);
2570
2571         if (test_bit(filter_idx, table->used_bitmap) &&
2572             spec->priority == priority) {
2573                 ef4_farch_filter_to_gen_spec(spec_buf, spec);
2574                 rc = 0;
2575         } else {
2576                 rc = -ENOENT;
2577         }
2578
2579         spin_unlock_bh(&efx->filter_lock);
2580
2581         return rc;
2582 }
2583
2584 static void
2585 ef4_farch_filter_table_clear(struct ef4_nic *efx,
2586                              enum ef4_farch_filter_table_id table_id,
2587                              enum ef4_filter_priority priority)
2588 {
2589         struct ef4_farch_filter_state *state = efx->filter_state;
2590         struct ef4_farch_filter_table *table = &state->table[table_id];
2591         unsigned int filter_idx;
2592
2593         spin_lock_bh(&efx->filter_lock);
2594         for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2595                 if (table->spec[filter_idx].priority != EF4_FILTER_PRI_AUTO)
2596                         ef4_farch_filter_remove(efx, table,
2597                                                 filter_idx, priority);
2598         }
2599         spin_unlock_bh(&efx->filter_lock);
2600 }
2601
2602 int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
2603                                enum ef4_filter_priority priority)
2604 {
2605         ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_IP,
2606                                      priority);
2607         ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_MAC,
2608                                      priority);
2609         ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_DEF,
2610                                      priority);
2611         return 0;
2612 }
2613
2614 u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
2615                                    enum ef4_filter_priority priority)
2616 {
2617         struct ef4_farch_filter_state *state = efx->filter_state;
2618         enum ef4_farch_filter_table_id table_id;
2619         struct ef4_farch_filter_table *table;
2620         unsigned int filter_idx;
2621         u32 count = 0;
2622
2623         spin_lock_bh(&efx->filter_lock);
2624
2625         for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2626              table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2627              table_id++) {
2628                 table = &state->table[table_id];
2629                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2630                         if (test_bit(filter_idx, table->used_bitmap) &&
2631                             table->spec[filter_idx].priority == priority)
2632                                 ++count;
2633                 }
2634         }
2635
2636         spin_unlock_bh(&efx->filter_lock);
2637
2638         return count;
2639 }
2640
2641 s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
2642                                 enum ef4_filter_priority priority,
2643                                 u32 *buf, u32 size)
2644 {
2645         struct ef4_farch_filter_state *state = efx->filter_state;
2646         enum ef4_farch_filter_table_id table_id;
2647         struct ef4_farch_filter_table *table;
2648         unsigned int filter_idx;
2649         s32 count = 0;
2650
2651         spin_lock_bh(&efx->filter_lock);
2652
2653         for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2654              table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2655              table_id++) {
2656                 table = &state->table[table_id];
2657                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2658                         if (test_bit(filter_idx, table->used_bitmap) &&
2659                             table->spec[filter_idx].priority == priority) {
2660                                 if (count == size) {
2661                                         count = -EMSGSIZE;
2662                                         goto out;
2663                                 }
2664                                 buf[count++] = ef4_farch_filter_make_id(
2665                                         &table->spec[filter_idx], filter_idx);
2666                         }
2667                 }
2668         }
2669 out:
2670         spin_unlock_bh(&efx->filter_lock);
2671
2672         return count;
2673 }
2674
2675 /* Restore filter stater after reset */
2676 void ef4_farch_filter_table_restore(struct ef4_nic *efx)
2677 {
2678         struct ef4_farch_filter_state *state = efx->filter_state;
2679         enum ef4_farch_filter_table_id table_id;
2680         struct ef4_farch_filter_table *table;
2681         ef4_oword_t filter;
2682         unsigned int filter_idx;
2683
2684         spin_lock_bh(&efx->filter_lock);
2685
2686         for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2687                 table = &state->table[table_id];
2688
2689                 /* Check whether this is a regular register table */
2690                 if (table->step == 0)
2691                         continue;
2692
2693                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2694                         if (!test_bit(filter_idx, table->used_bitmap))
2695                                 continue;
2696                         ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2697                         ef4_writeo(efx, &filter,
2698                                    table->offset + table->step * filter_idx);
2699                 }
2700         }
2701
2702         ef4_farch_filter_push_rx_config(efx);
2703         ef4_farch_filter_push_tx_limits(efx);
2704
2705         spin_unlock_bh(&efx->filter_lock);
2706 }
2707
2708 void ef4_farch_filter_table_remove(struct ef4_nic *efx)
2709 {
2710         struct ef4_farch_filter_state *state = efx->filter_state;
2711         enum ef4_farch_filter_table_id table_id;
2712
2713         for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2714                 kfree(state->table[table_id].used_bitmap);
2715                 vfree(state->table[table_id].spec);
2716         }
2717         kfree(state);
2718 }
2719
2720 int ef4_farch_filter_table_probe(struct ef4_nic *efx)
2721 {
2722         struct ef4_farch_filter_state *state;
2723         struct ef4_farch_filter_table *table;
2724         unsigned table_id;
2725
2726         state = kzalloc(sizeof(struct ef4_farch_filter_state), GFP_KERNEL);
2727         if (!state)
2728                 return -ENOMEM;
2729         efx->filter_state = state;
2730
2731         if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2732                 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2733                 table->id = EF4_FARCH_FILTER_TABLE_RX_IP;
2734                 table->offset = FR_BZ_RX_FILTER_TBL0;
2735                 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2736                 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2737         }
2738
2739         for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2740                 table = &state->table[table_id];
2741                 if (table->size == 0)
2742                         continue;
2743                 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2744                                              sizeof(unsigned long),
2745                                              GFP_KERNEL);
2746                 if (!table->used_bitmap)
2747                         goto fail;
2748                 table->spec = vzalloc(array_size(sizeof(*table->spec),
2749                                                  table->size));
2750                 if (!table->spec)
2751                         goto fail;
2752         }
2753
2754         table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
2755         if (table->size) {
2756                 /* RX default filters must always exist */
2757                 struct ef4_farch_filter_spec *spec;
2758                 unsigned i;
2759
2760                 for (i = 0; i < EF4_FARCH_FILTER_SIZE_RX_DEF; i++) {
2761                         spec = &table->spec[i];
2762                         spec->type = EF4_FARCH_FILTER_UC_DEF + i;
2763                         ef4_farch_filter_init_rx_auto(efx, spec);
2764                         __set_bit(i, table->used_bitmap);
2765                 }
2766         }
2767
2768         ef4_farch_filter_push_rx_config(efx);
2769
2770         return 0;
2771
2772 fail:
2773         ef4_farch_filter_table_remove(efx);
2774         return -ENOMEM;
2775 }
2776
2777 /* Update scatter enable flags for filters pointing to our own RX queues */
2778 void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx)
2779 {
2780         struct ef4_farch_filter_state *state = efx->filter_state;
2781         enum ef4_farch_filter_table_id table_id;
2782         struct ef4_farch_filter_table *table;
2783         ef4_oword_t filter;
2784         unsigned int filter_idx;
2785
2786         spin_lock_bh(&efx->filter_lock);
2787
2788         for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2789              table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2790              table_id++) {
2791                 table = &state->table[table_id];
2792
2793                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2794                         if (!test_bit(filter_idx, table->used_bitmap) ||
2795                             table->spec[filter_idx].dmaq_id >=
2796                             efx->n_rx_channels)
2797                                 continue;
2798
2799                         if (efx->rx_scatter)
2800                                 table->spec[filter_idx].flags |=
2801                                         EF4_FILTER_FLAG_RX_SCATTER;
2802                         else
2803                                 table->spec[filter_idx].flags &=
2804                                         ~EF4_FILTER_FLAG_RX_SCATTER;
2805
2806                         if (table_id == EF4_FARCH_FILTER_TABLE_RX_DEF)
2807                                 /* Pushed by ef4_farch_filter_push_rx_config() */
2808                                 continue;
2809
2810                         ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2811                         ef4_writeo(efx, &filter,
2812                                    table->offset + table->step * filter_idx);
2813                 }
2814         }
2815
2816         ef4_farch_filter_push_rx_config(efx);
2817
2818         spin_unlock_bh(&efx->filter_lock);
2819 }
2820
2821 #ifdef CONFIG_RFS_ACCEL
2822
2823 s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
2824                                 struct ef4_filter_spec *gen_spec)
2825 {
2826         return ef4_farch_filter_insert(efx, gen_spec, true);
2827 }
2828
2829 bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
2830                                      unsigned int index)
2831 {
2832         struct ef4_farch_filter_state *state = efx->filter_state;
2833         struct ef4_farch_filter_table *table =
2834                 &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2835
2836         if (test_bit(index, table->used_bitmap) &&
2837             table->spec[index].priority == EF4_FILTER_PRI_HINT &&
2838             rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2839                                 flow_id, index)) {
2840                 ef4_farch_filter_table_clear_entry(efx, table, index);
2841                 return true;
2842         }
2843
2844         return false;
2845 }
2846
2847 #endif /* CONFIG_RFS_ACCEL */
2848
2849 void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx)
2850 {
2851         struct net_device *net_dev = efx->net_dev;
2852         struct netdev_hw_addr *ha;
2853         union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
2854         u32 crc;
2855         int bit;
2856
2857         if (!ef4_dev_registered(efx))
2858                 return;
2859
2860         netif_addr_lock_bh(net_dev);
2861
2862         efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2863
2864         /* Build multicast hash table */
2865         if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2866                 memset(mc_hash, 0xff, sizeof(*mc_hash));
2867         } else {
2868                 memset(mc_hash, 0x00, sizeof(*mc_hash));
2869                 netdev_for_each_mc_addr(ha, net_dev) {
2870                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2871                         bit = crc & (EF4_MCAST_HASH_ENTRIES - 1);
2872                         __set_bit_le(bit, mc_hash);
2873                 }
2874
2875                 /* Broadcast packets go through the multicast hash filter.
2876                  * ether_crc_le() of the broadcast address is 0xbe2612ff
2877                  * so we always add bit 0xff to the mask.
2878                  */
2879                 __set_bit_le(0xff, mc_hash);
2880         }
2881
2882         netif_addr_unlock_bh(net_dev);
2883 }
This page took 0.202534 seconds and 4 git commands to generate.