1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
16 #include "print-tree.h"
18 #include "compression.h"
20 #include "block-group.h"
21 #include "space-info.h"
24 /* magic values for the inode_only field in btrfs_log_inode:
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * directory trouble cases
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
47 * rename foo/some_dir foo2/some_dir
49 * fsync foo/some_dir/some_file
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 struct btrfs_inode *inode,
99 struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
108 static void wait_log_commit(struct btrfs_root *root, int transid);
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 struct btrfs_root *root,
140 struct btrfs_log_ctx *ctx)
142 struct btrfs_fs_info *fs_info = root->fs_info;
143 struct btrfs_root *tree_root = fs_info->tree_root;
144 const bool zoned = btrfs_is_zoned(fs_info);
146 bool created = false;
149 * First check if the log root tree was already created. If not, create
150 * it before locking the root's log_mutex, just to keep lockdep happy.
152 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 mutex_lock(&tree_root->log_mutex);
154 if (!fs_info->log_root_tree) {
155 ret = btrfs_init_log_root_tree(trans, fs_info);
157 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
161 mutex_unlock(&tree_root->log_mutex);
166 mutex_lock(&root->log_mutex);
169 if (root->log_root) {
170 int index = (root->log_transid + 1) % 2;
172 if (btrfs_need_log_full_commit(trans)) {
177 if (zoned && atomic_read(&root->log_commit[index])) {
178 wait_log_commit(root, root->log_transid - 1);
182 if (!root->log_start_pid) {
183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 root->log_start_pid = current->pid;
185 } else if (root->log_start_pid != current->pid) {
186 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
190 * This means fs_info->log_root_tree was already created
191 * for some other FS trees. Do the full commit not to mix
192 * nodes from multiple log transactions to do sequential
195 if (zoned && !created) {
200 ret = btrfs_add_log_tree(trans, root);
204 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
205 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 root->log_start_pid = current->pid;
209 atomic_inc(&root->log_writers);
210 if (!ctx->logging_new_name) {
211 int index = root->log_transid % 2;
212 list_add_tail(&ctx->list, &root->log_ctxs[index]);
213 ctx->log_transid = root->log_transid;
217 mutex_unlock(&root->log_mutex);
222 * returns 0 if there was a log transaction running and we were able
223 * to join, or returns -ENOENT if there were not transactions
226 static int join_running_log_trans(struct btrfs_root *root)
228 const bool zoned = btrfs_is_zoned(root->fs_info);
231 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
234 mutex_lock(&root->log_mutex);
236 if (root->log_root) {
237 int index = (root->log_transid + 1) % 2;
240 if (zoned && atomic_read(&root->log_commit[index])) {
241 wait_log_commit(root, root->log_transid - 1);
244 atomic_inc(&root->log_writers);
246 mutex_unlock(&root->log_mutex);
251 * This either makes the current running log transaction wait
252 * until you call btrfs_end_log_trans() or it makes any future
253 * log transactions wait until you call btrfs_end_log_trans()
255 void btrfs_pin_log_trans(struct btrfs_root *root)
257 atomic_inc(&root->log_writers);
261 * indicate we're done making changes to the log tree
262 * and wake up anyone waiting to do a sync
264 void btrfs_end_log_trans(struct btrfs_root *root)
266 if (atomic_dec_and_test(&root->log_writers)) {
267 /* atomic_dec_and_test implies a barrier */
268 cond_wake_up_nomb(&root->log_writer_wait);
272 static int btrfs_write_tree_block(struct extent_buffer *buf)
274 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 buf->start + buf->len - 1);
278 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
280 filemap_fdatawait_range(buf->pages[0]->mapping,
281 buf->start, buf->start + buf->len - 1);
285 * the walk control struct is used to pass state down the chain when
286 * processing the log tree. The stage field tells us which part
287 * of the log tree processing we are currently doing. The others
288 * are state fields used for that specific part
290 struct walk_control {
291 /* should we free the extent on disk when done? This is used
292 * at transaction commit time while freeing a log tree
296 /* should we write out the extent buffer? This is used
297 * while flushing the log tree to disk during a sync
301 /* should we wait for the extent buffer io to finish? Also used
302 * while flushing the log tree to disk for a sync
306 /* pin only walk, we record which extents on disk belong to the
311 /* what stage of the replay code we're currently in */
315 * Ignore any items from the inode currently being processed. Needs
316 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 * the LOG_WALK_REPLAY_INODES stage.
319 bool ignore_cur_inode;
321 /* the root we are currently replaying */
322 struct btrfs_root *replay_dest;
324 /* the trans handle for the current replay */
325 struct btrfs_trans_handle *trans;
327 /* the function that gets used to process blocks we find in the
328 * tree. Note the extent_buffer might not be up to date when it is
329 * passed in, and it must be checked or read if you need the data
332 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
333 struct walk_control *wc, u64 gen, int level);
337 * process_func used to pin down extents, write them or wait on them
339 static int process_one_buffer(struct btrfs_root *log,
340 struct extent_buffer *eb,
341 struct walk_control *wc, u64 gen, int level)
343 struct btrfs_fs_info *fs_info = log->fs_info;
347 * If this fs is mixed then we need to be able to process the leaves to
348 * pin down any logged extents, so we have to read the block.
350 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
351 ret = btrfs_read_buffer(eb, gen, level, NULL);
357 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
360 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
361 if (wc->pin && btrfs_header_level(eb) == 0)
362 ret = btrfs_exclude_logged_extents(eb);
364 btrfs_write_tree_block(eb);
366 btrfs_wait_tree_block_writeback(eb);
371 static int do_overwrite_item(struct btrfs_trans_handle *trans,
372 struct btrfs_root *root,
373 struct btrfs_path *path,
374 struct extent_buffer *eb, int slot,
375 struct btrfs_key *key)
379 u64 saved_i_size = 0;
380 int save_old_i_size = 0;
381 unsigned long src_ptr;
382 unsigned long dst_ptr;
383 int overwrite_root = 0;
384 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
386 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
389 item_size = btrfs_item_size_nr(eb, slot);
390 src_ptr = btrfs_item_ptr_offset(eb, slot);
392 /* Our caller must have done a search for the key for us. */
393 ASSERT(path->nodes[0] != NULL);
396 * And the slot must point to the exact key or the slot where the key
397 * should be at (the first item with a key greater than 'key')
399 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
400 struct btrfs_key found_key;
402 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
403 ret = btrfs_comp_cpu_keys(&found_key, key);
412 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
414 if (dst_size != item_size)
417 if (item_size == 0) {
418 btrfs_release_path(path);
421 dst_copy = kmalloc(item_size, GFP_NOFS);
422 src_copy = kmalloc(item_size, GFP_NOFS);
423 if (!dst_copy || !src_copy) {
424 btrfs_release_path(path);
430 read_extent_buffer(eb, src_copy, src_ptr, item_size);
432 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
433 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
435 ret = memcmp(dst_copy, src_copy, item_size);
440 * they have the same contents, just return, this saves
441 * us from cowing blocks in the destination tree and doing
442 * extra writes that may not have been done by a previous
446 btrfs_release_path(path);
451 * We need to load the old nbytes into the inode so when we
452 * replay the extents we've logged we get the right nbytes.
455 struct btrfs_inode_item *item;
459 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
460 struct btrfs_inode_item);
461 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
462 item = btrfs_item_ptr(eb, slot,
463 struct btrfs_inode_item);
464 btrfs_set_inode_nbytes(eb, item, nbytes);
467 * If this is a directory we need to reset the i_size to
468 * 0 so that we can set it up properly when replaying
469 * the rest of the items in this log.
471 mode = btrfs_inode_mode(eb, item);
473 btrfs_set_inode_size(eb, item, 0);
475 } else if (inode_item) {
476 struct btrfs_inode_item *item;
480 * New inode, set nbytes to 0 so that the nbytes comes out
481 * properly when we replay the extents.
483 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
484 btrfs_set_inode_nbytes(eb, item, 0);
487 * If this is a directory we need to reset the i_size to 0 so
488 * that we can set it up properly when replaying the rest of
489 * the items in this log.
491 mode = btrfs_inode_mode(eb, item);
493 btrfs_set_inode_size(eb, item, 0);
496 btrfs_release_path(path);
497 /* try to insert the key into the destination tree */
498 path->skip_release_on_error = 1;
499 ret = btrfs_insert_empty_item(trans, root, path,
501 path->skip_release_on_error = 0;
503 /* make sure any existing item is the correct size */
504 if (ret == -EEXIST || ret == -EOVERFLOW) {
506 found_size = btrfs_item_size_nr(path->nodes[0],
508 if (found_size > item_size)
509 btrfs_truncate_item(path, item_size, 1);
510 else if (found_size < item_size)
511 btrfs_extend_item(path, item_size - found_size);
515 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
518 /* don't overwrite an existing inode if the generation number
519 * was logged as zero. This is done when the tree logging code
520 * is just logging an inode to make sure it exists after recovery.
522 * Also, don't overwrite i_size on directories during replay.
523 * log replay inserts and removes directory items based on the
524 * state of the tree found in the subvolume, and i_size is modified
527 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
528 struct btrfs_inode_item *src_item;
529 struct btrfs_inode_item *dst_item;
531 src_item = (struct btrfs_inode_item *)src_ptr;
532 dst_item = (struct btrfs_inode_item *)dst_ptr;
534 if (btrfs_inode_generation(eb, src_item) == 0) {
535 struct extent_buffer *dst_eb = path->nodes[0];
536 const u64 ino_size = btrfs_inode_size(eb, src_item);
539 * For regular files an ino_size == 0 is used only when
540 * logging that an inode exists, as part of a directory
541 * fsync, and the inode wasn't fsynced before. In this
542 * case don't set the size of the inode in the fs/subvol
543 * tree, otherwise we would be throwing valid data away.
545 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
546 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
548 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
552 if (overwrite_root &&
553 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
554 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
556 saved_i_size = btrfs_inode_size(path->nodes[0],
561 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
564 if (save_old_i_size) {
565 struct btrfs_inode_item *dst_item;
566 dst_item = (struct btrfs_inode_item *)dst_ptr;
567 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
570 /* make sure the generation is filled in */
571 if (key->type == BTRFS_INODE_ITEM_KEY) {
572 struct btrfs_inode_item *dst_item;
573 dst_item = (struct btrfs_inode_item *)dst_ptr;
574 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
575 btrfs_set_inode_generation(path->nodes[0], dst_item,
580 btrfs_mark_buffer_dirty(path->nodes[0]);
581 btrfs_release_path(path);
586 * Item overwrite used by replay and tree logging. eb, slot and key all refer
587 * to the src data we are copying out.
589 * root is the tree we are copying into, and path is a scratch
590 * path for use in this function (it should be released on entry and
591 * will be released on exit).
593 * If the key is already in the destination tree the existing item is
594 * overwritten. If the existing item isn't big enough, it is extended.
595 * If it is too large, it is truncated.
597 * If the key isn't in the destination yet, a new item is inserted.
599 static int overwrite_item(struct btrfs_trans_handle *trans,
600 struct btrfs_root *root,
601 struct btrfs_path *path,
602 struct extent_buffer *eb, int slot,
603 struct btrfs_key *key)
607 /* Look for the key in the destination tree. */
608 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
612 return do_overwrite_item(trans, root, path, eb, slot, key);
616 * simple helper to read an inode off the disk from a given root
617 * This can only be called for subvolume roots and not for the log
619 static noinline struct inode *read_one_inode(struct btrfs_root *root,
624 inode = btrfs_iget(root->fs_info->sb, objectid, root);
630 /* replays a single extent in 'eb' at 'slot' with 'key' into the
631 * subvolume 'root'. path is released on entry and should be released
634 * extents in the log tree have not been allocated out of the extent
635 * tree yet. So, this completes the allocation, taking a reference
636 * as required if the extent already exists or creating a new extent
637 * if it isn't in the extent allocation tree yet.
639 * The extent is inserted into the file, dropping any existing extents
640 * from the file that overlap the new one.
642 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
643 struct btrfs_root *root,
644 struct btrfs_path *path,
645 struct extent_buffer *eb, int slot,
646 struct btrfs_key *key)
648 struct btrfs_drop_extents_args drop_args = { 0 };
649 struct btrfs_fs_info *fs_info = root->fs_info;
652 u64 start = key->offset;
654 struct btrfs_file_extent_item *item;
655 struct inode *inode = NULL;
659 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
660 found_type = btrfs_file_extent_type(eb, item);
662 if (found_type == BTRFS_FILE_EXTENT_REG ||
663 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
664 nbytes = btrfs_file_extent_num_bytes(eb, item);
665 extent_end = start + nbytes;
668 * We don't add to the inodes nbytes if we are prealloc or a
671 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
673 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
674 size = btrfs_file_extent_ram_bytes(eb, item);
675 nbytes = btrfs_file_extent_ram_bytes(eb, item);
676 extent_end = ALIGN(start + size,
677 fs_info->sectorsize);
683 inode = read_one_inode(root, key->objectid);
690 * first check to see if we already have this extent in the
691 * file. This must be done before the btrfs_drop_extents run
692 * so we don't try to drop this extent.
694 ret = btrfs_lookup_file_extent(trans, root, path,
695 btrfs_ino(BTRFS_I(inode)), start, 0);
698 (found_type == BTRFS_FILE_EXTENT_REG ||
699 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
700 struct btrfs_file_extent_item cmp1;
701 struct btrfs_file_extent_item cmp2;
702 struct btrfs_file_extent_item *existing;
703 struct extent_buffer *leaf;
705 leaf = path->nodes[0];
706 existing = btrfs_item_ptr(leaf, path->slots[0],
707 struct btrfs_file_extent_item);
709 read_extent_buffer(eb, &cmp1, (unsigned long)item,
711 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
715 * we already have a pointer to this exact extent,
716 * we don't have to do anything
718 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
719 btrfs_release_path(path);
723 btrfs_release_path(path);
725 /* drop any overlapping extents */
726 drop_args.start = start;
727 drop_args.end = extent_end;
728 drop_args.drop_cache = true;
729 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
733 if (found_type == BTRFS_FILE_EXTENT_REG ||
734 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
736 unsigned long dest_offset;
737 struct btrfs_key ins;
739 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
740 btrfs_fs_incompat(fs_info, NO_HOLES))
743 ret = btrfs_insert_empty_item(trans, root, path, key,
747 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
749 copy_extent_buffer(path->nodes[0], eb, dest_offset,
750 (unsigned long)item, sizeof(*item));
752 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
753 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
754 ins.type = BTRFS_EXTENT_ITEM_KEY;
755 offset = key->offset - btrfs_file_extent_offset(eb, item);
758 * Manually record dirty extent, as here we did a shallow
759 * file extent item copy and skip normal backref update,
760 * but modifying extent tree all by ourselves.
761 * So need to manually record dirty extent for qgroup,
762 * as the owner of the file extent changed from log tree
763 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
765 ret = btrfs_qgroup_trace_extent(trans,
766 btrfs_file_extent_disk_bytenr(eb, item),
767 btrfs_file_extent_disk_num_bytes(eb, item),
772 if (ins.objectid > 0) {
773 struct btrfs_ref ref = { 0 };
776 LIST_HEAD(ordered_sums);
779 * is this extent already allocated in the extent
780 * allocation tree? If so, just add a reference
782 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
786 } else if (ret == 0) {
787 btrfs_init_generic_ref(&ref,
788 BTRFS_ADD_DELAYED_REF,
789 ins.objectid, ins.offset, 0);
790 btrfs_init_data_ref(&ref,
791 root->root_key.objectid,
792 key->objectid, offset, 0, false);
793 ret = btrfs_inc_extent_ref(trans, &ref);
798 * insert the extent pointer in the extent
801 ret = btrfs_alloc_logged_file_extent(trans,
802 root->root_key.objectid,
803 key->objectid, offset, &ins);
807 btrfs_release_path(path);
809 if (btrfs_file_extent_compression(eb, item)) {
810 csum_start = ins.objectid;
811 csum_end = csum_start + ins.offset;
813 csum_start = ins.objectid +
814 btrfs_file_extent_offset(eb, item);
815 csum_end = csum_start +
816 btrfs_file_extent_num_bytes(eb, item);
819 ret = btrfs_lookup_csums_range(root->log_root,
820 csum_start, csum_end - 1,
825 * Now delete all existing cums in the csum root that
826 * cover our range. We do this because we can have an
827 * extent that is completely referenced by one file
828 * extent item and partially referenced by another
829 * file extent item (like after using the clone or
830 * extent_same ioctls). In this case if we end up doing
831 * the replay of the one that partially references the
832 * extent first, and we do not do the csum deletion
833 * below, we can get 2 csum items in the csum tree that
834 * overlap each other. For example, imagine our log has
835 * the two following file extent items:
837 * key (257 EXTENT_DATA 409600)
838 * extent data disk byte 12845056 nr 102400
839 * extent data offset 20480 nr 20480 ram 102400
841 * key (257 EXTENT_DATA 819200)
842 * extent data disk byte 12845056 nr 102400
843 * extent data offset 0 nr 102400 ram 102400
845 * Where the second one fully references the 100K extent
846 * that starts at disk byte 12845056, and the log tree
847 * has a single csum item that covers the entire range
850 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
852 * After the first file extent item is replayed, the
853 * csum tree gets the following csum item:
855 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
857 * Which covers the 20K sub-range starting at offset 20K
858 * of our extent. Now when we replay the second file
859 * extent item, if we do not delete existing csum items
860 * that cover any of its blocks, we end up getting two
861 * csum items in our csum tree that overlap each other:
863 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
864 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
866 * Which is a problem, because after this anyone trying
867 * to lookup up for the checksum of any block of our
868 * extent starting at an offset of 40K or higher, will
869 * end up looking at the second csum item only, which
870 * does not contain the checksum for any block starting
871 * at offset 40K or higher of our extent.
873 while (!list_empty(&ordered_sums)) {
874 struct btrfs_ordered_sum *sums;
875 sums = list_entry(ordered_sums.next,
876 struct btrfs_ordered_sum,
879 ret = btrfs_del_csums(trans,
884 ret = btrfs_csum_file_blocks(trans,
885 fs_info->csum_root, sums);
886 list_del(&sums->list);
892 btrfs_release_path(path);
894 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
895 /* inline extents are easy, we just overwrite them */
896 ret = overwrite_item(trans, root, path, eb, slot, key);
901 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
907 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
908 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
916 * when cleaning up conflicts between the directory names in the
917 * subvolume, directory names in the log and directory names in the
918 * inode back references, we may have to unlink inodes from directories.
920 * This is a helper function to do the unlink of a specific directory
923 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
924 struct btrfs_path *path,
925 struct btrfs_inode *dir,
926 struct btrfs_dir_item *di)
928 struct btrfs_root *root = dir->root;
932 struct extent_buffer *leaf;
933 struct btrfs_key location;
936 leaf = path->nodes[0];
938 btrfs_dir_item_key_to_cpu(leaf, di, &location);
939 name_len = btrfs_dir_name_len(leaf, di);
940 name = kmalloc(name_len, GFP_NOFS);
944 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
945 btrfs_release_path(path);
947 inode = read_one_inode(root, location.objectid);
953 ret = link_to_fixup_dir(trans, root, path, location.objectid);
957 ret = btrfs_unlink_inode(trans, dir, BTRFS_I(inode), name,
962 ret = btrfs_run_delayed_items(trans);
970 * See if a given name and sequence number found in an inode back reference are
971 * already in a directory and correctly point to this inode.
973 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
976 static noinline int inode_in_dir(struct btrfs_root *root,
977 struct btrfs_path *path,
978 u64 dirid, u64 objectid, u64 index,
979 const char *name, int name_len)
981 struct btrfs_dir_item *di;
982 struct btrfs_key location;
985 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
986 index, name, name_len, 0);
991 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
992 if (location.objectid != objectid)
998 btrfs_release_path(path);
999 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
1004 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1005 if (location.objectid == objectid)
1009 btrfs_release_path(path);
1014 * helper function to check a log tree for a named back reference in
1015 * an inode. This is used to decide if a back reference that is
1016 * found in the subvolume conflicts with what we find in the log.
1018 * inode backreferences may have multiple refs in a single item,
1019 * during replay we process one reference at a time, and we don't
1020 * want to delete valid links to a file from the subvolume if that
1021 * link is also in the log.
1023 static noinline int backref_in_log(struct btrfs_root *log,
1024 struct btrfs_key *key,
1026 const char *name, int namelen)
1028 struct btrfs_path *path;
1031 path = btrfs_alloc_path();
1035 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1038 } else if (ret == 1) {
1043 if (key->type == BTRFS_INODE_EXTREF_KEY)
1044 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1049 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1053 btrfs_free_path(path);
1057 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1058 struct btrfs_root *root,
1059 struct btrfs_path *path,
1060 struct btrfs_root *log_root,
1061 struct btrfs_inode *dir,
1062 struct btrfs_inode *inode,
1063 u64 inode_objectid, u64 parent_objectid,
1064 u64 ref_index, char *name, int namelen,
1069 int victim_name_len;
1070 struct extent_buffer *leaf;
1071 struct btrfs_dir_item *di;
1072 struct btrfs_key search_key;
1073 struct btrfs_inode_extref *extref;
1076 /* Search old style refs */
1077 search_key.objectid = inode_objectid;
1078 search_key.type = BTRFS_INODE_REF_KEY;
1079 search_key.offset = parent_objectid;
1080 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1082 struct btrfs_inode_ref *victim_ref;
1084 unsigned long ptr_end;
1086 leaf = path->nodes[0];
1088 /* are we trying to overwrite a back ref for the root directory
1089 * if so, just jump out, we're done
1091 if (search_key.objectid == search_key.offset)
1094 /* check all the names in this back reference to see
1095 * if they are in the log. if so, we allow them to stay
1096 * otherwise they must be unlinked as a conflict
1098 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1099 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1100 while (ptr < ptr_end) {
1101 victim_ref = (struct btrfs_inode_ref *)ptr;
1102 victim_name_len = btrfs_inode_ref_name_len(leaf,
1104 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1108 read_extent_buffer(leaf, victim_name,
1109 (unsigned long)(victim_ref + 1),
1112 ret = backref_in_log(log_root, &search_key,
1113 parent_objectid, victim_name,
1119 inc_nlink(&inode->vfs_inode);
1120 btrfs_release_path(path);
1122 ret = btrfs_unlink_inode(trans, dir, inode,
1123 victim_name, victim_name_len);
1127 ret = btrfs_run_delayed_items(trans);
1135 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1139 * NOTE: we have searched root tree and checked the
1140 * corresponding ref, it does not need to check again.
1144 btrfs_release_path(path);
1146 /* Same search but for extended refs */
1147 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1148 inode_objectid, parent_objectid, 0,
1150 if (!IS_ERR_OR_NULL(extref)) {
1154 struct inode *victim_parent;
1156 leaf = path->nodes[0];
1158 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1159 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1161 while (cur_offset < item_size) {
1162 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1164 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1166 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1169 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1172 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1175 search_key.objectid = inode_objectid;
1176 search_key.type = BTRFS_INODE_EXTREF_KEY;
1177 search_key.offset = btrfs_extref_hash(parent_objectid,
1180 ret = backref_in_log(log_root, &search_key,
1181 parent_objectid, victim_name,
1187 victim_parent = read_one_inode(root,
1189 if (victim_parent) {
1190 inc_nlink(&inode->vfs_inode);
1191 btrfs_release_path(path);
1193 ret = btrfs_unlink_inode(trans,
1194 BTRFS_I(victim_parent),
1199 ret = btrfs_run_delayed_items(
1202 iput(victim_parent);
1211 cur_offset += victim_name_len + sizeof(*extref);
1215 btrfs_release_path(path);
1217 /* look for a conflicting sequence number */
1218 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1219 ref_index, name, namelen, 0);
1223 ret = drop_one_dir_item(trans, path, dir, di);
1227 btrfs_release_path(path);
1229 /* look for a conflicting name */
1230 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1235 ret = drop_one_dir_item(trans, path, dir, di);
1239 btrfs_release_path(path);
1244 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1245 u32 *namelen, char **name, u64 *index,
1246 u64 *parent_objectid)
1248 struct btrfs_inode_extref *extref;
1250 extref = (struct btrfs_inode_extref *)ref_ptr;
1252 *namelen = btrfs_inode_extref_name_len(eb, extref);
1253 *name = kmalloc(*namelen, GFP_NOFS);
1257 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1261 *index = btrfs_inode_extref_index(eb, extref);
1262 if (parent_objectid)
1263 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1268 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1269 u32 *namelen, char **name, u64 *index)
1271 struct btrfs_inode_ref *ref;
1273 ref = (struct btrfs_inode_ref *)ref_ptr;
1275 *namelen = btrfs_inode_ref_name_len(eb, ref);
1276 *name = kmalloc(*namelen, GFP_NOFS);
1280 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1283 *index = btrfs_inode_ref_index(eb, ref);
1289 * Take an inode reference item from the log tree and iterate all names from the
1290 * inode reference item in the subvolume tree with the same key (if it exists).
1291 * For any name that is not in the inode reference item from the log tree, do a
1292 * proper unlink of that name (that is, remove its entry from the inode
1293 * reference item and both dir index keys).
1295 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1296 struct btrfs_root *root,
1297 struct btrfs_path *path,
1298 struct btrfs_inode *inode,
1299 struct extent_buffer *log_eb,
1301 struct btrfs_key *key)
1304 unsigned long ref_ptr;
1305 unsigned long ref_end;
1306 struct extent_buffer *eb;
1309 btrfs_release_path(path);
1310 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1318 eb = path->nodes[0];
1319 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1320 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1321 while (ref_ptr < ref_end) {
1326 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1327 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1330 parent_id = key->offset;
1331 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1337 if (key->type == BTRFS_INODE_EXTREF_KEY)
1338 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1342 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1348 btrfs_release_path(path);
1349 dir = read_one_inode(root, parent_id);
1355 ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
1356 inode, name, namelen);
1366 if (key->type == BTRFS_INODE_EXTREF_KEY)
1367 ref_ptr += sizeof(struct btrfs_inode_extref);
1369 ref_ptr += sizeof(struct btrfs_inode_ref);
1373 btrfs_release_path(path);
1377 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1378 const u8 ref_type, const char *name,
1381 struct btrfs_key key;
1382 struct btrfs_path *path;
1383 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1386 path = btrfs_alloc_path();
1390 key.objectid = btrfs_ino(BTRFS_I(inode));
1391 key.type = ref_type;
1392 if (key.type == BTRFS_INODE_REF_KEY)
1393 key.offset = parent_id;
1395 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1397 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1404 if (key.type == BTRFS_INODE_EXTREF_KEY)
1405 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1406 path->slots[0], parent_id, name, namelen);
1408 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1412 btrfs_free_path(path);
1416 static int add_link(struct btrfs_trans_handle *trans,
1417 struct inode *dir, struct inode *inode, const char *name,
1418 int namelen, u64 ref_index)
1420 struct btrfs_root *root = BTRFS_I(dir)->root;
1421 struct btrfs_dir_item *dir_item;
1422 struct btrfs_key key;
1423 struct btrfs_path *path;
1424 struct inode *other_inode = NULL;
1427 path = btrfs_alloc_path();
1431 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1432 btrfs_ino(BTRFS_I(dir)),
1435 btrfs_release_path(path);
1437 } else if (IS_ERR(dir_item)) {
1438 ret = PTR_ERR(dir_item);
1443 * Our inode's dentry collides with the dentry of another inode which is
1444 * in the log but not yet processed since it has a higher inode number.
1445 * So delete that other dentry.
1447 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1448 btrfs_release_path(path);
1449 other_inode = read_one_inode(root, key.objectid);
1454 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(other_inode),
1459 * If we dropped the link count to 0, bump it so that later the iput()
1460 * on the inode will not free it. We will fixup the link count later.
1462 if (other_inode->i_nlink == 0)
1463 inc_nlink(other_inode);
1465 ret = btrfs_run_delayed_items(trans);
1469 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1470 name, namelen, 0, ref_index);
1473 btrfs_free_path(path);
1479 * replay one inode back reference item found in the log tree.
1480 * eb, slot and key refer to the buffer and key found in the log tree.
1481 * root is the destination we are replaying into, and path is for temp
1482 * use by this function. (it should be released on return).
1484 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1485 struct btrfs_root *root,
1486 struct btrfs_root *log,
1487 struct btrfs_path *path,
1488 struct extent_buffer *eb, int slot,
1489 struct btrfs_key *key)
1491 struct inode *dir = NULL;
1492 struct inode *inode = NULL;
1493 unsigned long ref_ptr;
1494 unsigned long ref_end;
1498 int search_done = 0;
1499 int log_ref_ver = 0;
1500 u64 parent_objectid;
1503 int ref_struct_size;
1505 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1506 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1508 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1509 struct btrfs_inode_extref *r;
1511 ref_struct_size = sizeof(struct btrfs_inode_extref);
1513 r = (struct btrfs_inode_extref *)ref_ptr;
1514 parent_objectid = btrfs_inode_extref_parent(eb, r);
1516 ref_struct_size = sizeof(struct btrfs_inode_ref);
1517 parent_objectid = key->offset;
1519 inode_objectid = key->objectid;
1522 * it is possible that we didn't log all the parent directories
1523 * for a given inode. If we don't find the dir, just don't
1524 * copy the back ref in. The link count fixup code will take
1527 dir = read_one_inode(root, parent_objectid);
1533 inode = read_one_inode(root, inode_objectid);
1539 while (ref_ptr < ref_end) {
1541 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1542 &ref_index, &parent_objectid);
1544 * parent object can change from one array
1548 dir = read_one_inode(root, parent_objectid);
1554 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1560 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1561 btrfs_ino(BTRFS_I(inode)), ref_index,
1565 } else if (ret == 0) {
1567 * look for a conflicting back reference in the
1568 * metadata. if we find one we have to unlink that name
1569 * of the file before we add our new link. Later on, we
1570 * overwrite any existing back reference, and we don't
1571 * want to create dangling pointers in the directory.
1575 ret = __add_inode_ref(trans, root, path, log,
1580 ref_index, name, namelen,
1590 * If a reference item already exists for this inode
1591 * with the same parent and name, but different index,
1592 * drop it and the corresponding directory index entries
1593 * from the parent before adding the new reference item
1594 * and dir index entries, otherwise we would fail with
1595 * -EEXIST returned from btrfs_add_link() below.
1597 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1600 ret = btrfs_unlink_inode(trans,
1605 * If we dropped the link count to 0, bump it so
1606 * that later the iput() on the inode will not
1607 * free it. We will fixup the link count later.
1609 if (!ret && inode->i_nlink == 0)
1615 /* insert our name */
1616 ret = add_link(trans, dir, inode, name, namelen,
1621 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1625 /* Else, ret == 1, we already have a perfect match, we're done. */
1627 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1637 * Before we overwrite the inode reference item in the subvolume tree
1638 * with the item from the log tree, we must unlink all names from the
1639 * parent directory that are in the subvolume's tree inode reference
1640 * item, otherwise we end up with an inconsistent subvolume tree where
1641 * dir index entries exist for a name but there is no inode reference
1642 * item with the same name.
1644 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1649 /* finally write the back reference in the inode */
1650 ret = overwrite_item(trans, root, path, eb, slot, key);
1652 btrfs_release_path(path);
1659 static int count_inode_extrefs(struct btrfs_root *root,
1660 struct btrfs_inode *inode, struct btrfs_path *path)
1664 unsigned int nlink = 0;
1667 u64 inode_objectid = btrfs_ino(inode);
1670 struct btrfs_inode_extref *extref;
1671 struct extent_buffer *leaf;
1674 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1679 leaf = path->nodes[0];
1680 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1681 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1684 while (cur_offset < item_size) {
1685 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1686 name_len = btrfs_inode_extref_name_len(leaf, extref);
1690 cur_offset += name_len + sizeof(*extref);
1694 btrfs_release_path(path);
1696 btrfs_release_path(path);
1698 if (ret < 0 && ret != -ENOENT)
1703 static int count_inode_refs(struct btrfs_root *root,
1704 struct btrfs_inode *inode, struct btrfs_path *path)
1707 struct btrfs_key key;
1708 unsigned int nlink = 0;
1710 unsigned long ptr_end;
1712 u64 ino = btrfs_ino(inode);
1715 key.type = BTRFS_INODE_REF_KEY;
1716 key.offset = (u64)-1;
1719 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1723 if (path->slots[0] == 0)
1728 btrfs_item_key_to_cpu(path->nodes[0], &key,
1730 if (key.objectid != ino ||
1731 key.type != BTRFS_INODE_REF_KEY)
1733 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1734 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1736 while (ptr < ptr_end) {
1737 struct btrfs_inode_ref *ref;
1739 ref = (struct btrfs_inode_ref *)ptr;
1740 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1742 ptr = (unsigned long)(ref + 1) + name_len;
1746 if (key.offset == 0)
1748 if (path->slots[0] > 0) {
1753 btrfs_release_path(path);
1755 btrfs_release_path(path);
1761 * There are a few corners where the link count of the file can't
1762 * be properly maintained during replay. So, instead of adding
1763 * lots of complexity to the log code, we just scan the backrefs
1764 * for any file that has been through replay.
1766 * The scan will update the link count on the inode to reflect the
1767 * number of back refs found. If it goes down to zero, the iput
1768 * will free the inode.
1770 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1771 struct btrfs_root *root,
1772 struct inode *inode)
1774 struct btrfs_path *path;
1777 u64 ino = btrfs_ino(BTRFS_I(inode));
1779 path = btrfs_alloc_path();
1783 ret = count_inode_refs(root, BTRFS_I(inode), path);
1789 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1797 if (nlink != inode->i_nlink) {
1798 set_nlink(inode, nlink);
1799 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1803 BTRFS_I(inode)->index_cnt = (u64)-1;
1805 if (inode->i_nlink == 0) {
1806 if (S_ISDIR(inode->i_mode)) {
1807 ret = replay_dir_deletes(trans, root, NULL, path,
1812 ret = btrfs_insert_orphan_item(trans, root, ino);
1818 btrfs_free_path(path);
1822 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1823 struct btrfs_root *root,
1824 struct btrfs_path *path)
1827 struct btrfs_key key;
1828 struct inode *inode;
1830 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1831 key.type = BTRFS_ORPHAN_ITEM_KEY;
1832 key.offset = (u64)-1;
1834 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1840 if (path->slots[0] == 0)
1845 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1846 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1847 key.type != BTRFS_ORPHAN_ITEM_KEY)
1850 ret = btrfs_del_item(trans, root, path);
1854 btrfs_release_path(path);
1855 inode = read_one_inode(root, key.offset);
1861 ret = fixup_inode_link_count(trans, root, inode);
1867 * fixup on a directory may create new entries,
1868 * make sure we always look for the highset possible
1871 key.offset = (u64)-1;
1873 btrfs_release_path(path);
1879 * record a given inode in the fixup dir so we can check its link
1880 * count when replay is done. The link count is incremented here
1881 * so the inode won't go away until we check it
1883 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1884 struct btrfs_root *root,
1885 struct btrfs_path *path,
1888 struct btrfs_key key;
1890 struct inode *inode;
1892 inode = read_one_inode(root, objectid);
1896 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1897 key.type = BTRFS_ORPHAN_ITEM_KEY;
1898 key.offset = objectid;
1900 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1902 btrfs_release_path(path);
1904 if (!inode->i_nlink)
1905 set_nlink(inode, 1);
1908 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1909 } else if (ret == -EEXIST) {
1918 * when replaying the log for a directory, we only insert names
1919 * for inodes that actually exist. This means an fsync on a directory
1920 * does not implicitly fsync all the new files in it
1922 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1923 struct btrfs_root *root,
1924 u64 dirid, u64 index,
1925 char *name, int name_len,
1926 struct btrfs_key *location)
1928 struct inode *inode;
1932 inode = read_one_inode(root, location->objectid);
1936 dir = read_one_inode(root, dirid);
1942 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1943 name_len, 1, index);
1945 /* FIXME, put inode into FIXUP list */
1953 * take a single entry in a log directory item and replay it into
1956 * if a conflicting item exists in the subdirectory already,
1957 * the inode it points to is unlinked and put into the link count
1960 * If a name from the log points to a file or directory that does
1961 * not exist in the FS, it is skipped. fsyncs on directories
1962 * do not force down inodes inside that directory, just changes to the
1963 * names or unlinks in a directory.
1965 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1966 * non-existing inode) and 1 if the name was replayed.
1968 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 struct btrfs_path *path,
1971 struct extent_buffer *eb,
1972 struct btrfs_dir_item *di,
1973 struct btrfs_key *key)
1977 struct btrfs_dir_item *dst_di;
1978 struct btrfs_key found_key;
1979 struct btrfs_key log_key;
1984 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1985 bool name_added = false;
1987 dir = read_one_inode(root, key->objectid);
1991 name_len = btrfs_dir_name_len(eb, di);
1992 name = kmalloc(name_len, GFP_NOFS);
1998 log_type = btrfs_dir_type(eb, di);
1999 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2002 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
2003 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
2004 btrfs_release_path(path);
2007 exists = (ret == 0);
2010 if (key->type == BTRFS_DIR_ITEM_KEY) {
2011 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
2013 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
2014 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
2024 if (IS_ERR(dst_di)) {
2025 ret = PTR_ERR(dst_di);
2027 } else if (!dst_di) {
2028 /* we need a sequence number to insert, so we only
2029 * do inserts for the BTRFS_DIR_INDEX_KEY types
2031 if (key->type != BTRFS_DIR_INDEX_KEY)
2036 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
2037 /* the existing item matches the logged item */
2038 if (found_key.objectid == log_key.objectid &&
2039 found_key.type == log_key.type &&
2040 found_key.offset == log_key.offset &&
2041 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
2042 update_size = false;
2047 * don't drop the conflicting directory entry if the inode
2048 * for the new entry doesn't exist
2053 ret = drop_one_dir_item(trans, path, BTRFS_I(dir), dst_di);
2057 if (key->type == BTRFS_DIR_INDEX_KEY)
2060 btrfs_release_path(path);
2061 if (!ret && update_size) {
2062 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2063 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2067 if (!ret && name_added)
2073 * Check if the inode reference exists in the log for the given name,
2074 * inode and parent inode
2076 found_key.objectid = log_key.objectid;
2077 found_key.type = BTRFS_INODE_REF_KEY;
2078 found_key.offset = key->objectid;
2079 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2083 /* The dentry will be added later. */
2085 update_size = false;
2089 found_key.objectid = log_key.objectid;
2090 found_key.type = BTRFS_INODE_EXTREF_KEY;
2091 found_key.offset = key->objectid;
2092 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2097 /* The dentry will be added later. */
2099 update_size = false;
2102 btrfs_release_path(path);
2103 ret = insert_one_name(trans, root, key->objectid, key->offset,
2104 name, name_len, &log_key);
2105 if (ret && ret != -ENOENT && ret != -EEXIST)
2109 update_size = false;
2115 * find all the names in a directory item and reconcile them into
2116 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2117 * one name in a directory item, but the same code gets used for
2118 * both directory index types
2120 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2121 struct btrfs_root *root,
2122 struct btrfs_path *path,
2123 struct extent_buffer *eb, int slot,
2124 struct btrfs_key *key)
2127 u32 item_size = btrfs_item_size_nr(eb, slot);
2128 struct btrfs_dir_item *di;
2131 unsigned long ptr_end;
2132 struct btrfs_path *fixup_path = NULL;
2134 ptr = btrfs_item_ptr_offset(eb, slot);
2135 ptr_end = ptr + item_size;
2136 while (ptr < ptr_end) {
2137 di = (struct btrfs_dir_item *)ptr;
2138 name_len = btrfs_dir_name_len(eb, di);
2139 ret = replay_one_name(trans, root, path, eb, di, key);
2142 ptr = (unsigned long)(di + 1);
2146 * If this entry refers to a non-directory (directories can not
2147 * have a link count > 1) and it was added in the transaction
2148 * that was not committed, make sure we fixup the link count of
2149 * the inode it the entry points to. Otherwise something like
2150 * the following would result in a directory pointing to an
2151 * inode with a wrong link that does not account for this dir
2159 * ln testdir/bar testdir/bar_link
2160 * ln testdir/foo testdir/foo_link
2161 * xfs_io -c "fsync" testdir/bar
2165 * mount fs, log replay happens
2167 * File foo would remain with a link count of 1 when it has two
2168 * entries pointing to it in the directory testdir. This would
2169 * make it impossible to ever delete the parent directory has
2170 * it would result in stale dentries that can never be deleted.
2172 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2173 struct btrfs_key di_key;
2176 fixup_path = btrfs_alloc_path();
2183 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2184 ret = link_to_fixup_dir(trans, root, fixup_path,
2191 btrfs_free_path(fixup_path);
2196 * directory replay has two parts. There are the standard directory
2197 * items in the log copied from the subvolume, and range items
2198 * created in the log while the subvolume was logged.
2200 * The range items tell us which parts of the key space the log
2201 * is authoritative for. During replay, if a key in the subvolume
2202 * directory is in a logged range item, but not actually in the log
2203 * that means it was deleted from the directory before the fsync
2204 * and should be removed.
2206 static noinline int find_dir_range(struct btrfs_root *root,
2207 struct btrfs_path *path,
2208 u64 dirid, int key_type,
2209 u64 *start_ret, u64 *end_ret)
2211 struct btrfs_key key;
2213 struct btrfs_dir_log_item *item;
2217 if (*start_ret == (u64)-1)
2220 key.objectid = dirid;
2221 key.type = key_type;
2222 key.offset = *start_ret;
2224 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2228 if (path->slots[0] == 0)
2233 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2235 if (key.type != key_type || key.objectid != dirid) {
2239 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2240 struct btrfs_dir_log_item);
2241 found_end = btrfs_dir_log_end(path->nodes[0], item);
2243 if (*start_ret >= key.offset && *start_ret <= found_end) {
2245 *start_ret = key.offset;
2246 *end_ret = found_end;
2251 /* check the next slot in the tree to see if it is a valid item */
2252 nritems = btrfs_header_nritems(path->nodes[0]);
2254 if (path->slots[0] >= nritems) {
2255 ret = btrfs_next_leaf(root, path);
2260 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2262 if (key.type != key_type || key.objectid != dirid) {
2266 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2267 struct btrfs_dir_log_item);
2268 found_end = btrfs_dir_log_end(path->nodes[0], item);
2269 *start_ret = key.offset;
2270 *end_ret = found_end;
2273 btrfs_release_path(path);
2278 * this looks for a given directory item in the log. If the directory
2279 * item is not in the log, the item is removed and the inode it points
2282 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2283 struct btrfs_root *log,
2284 struct btrfs_path *path,
2285 struct btrfs_path *log_path,
2287 struct btrfs_key *dir_key)
2289 struct btrfs_root *root = BTRFS_I(dir)->root;
2291 struct extent_buffer *eb;
2294 struct btrfs_dir_item *di;
2295 struct btrfs_dir_item *log_di;
2298 unsigned long ptr_end;
2300 struct inode *inode;
2301 struct btrfs_key location;
2304 eb = path->nodes[0];
2305 slot = path->slots[0];
2306 item_size = btrfs_item_size_nr(eb, slot);
2307 ptr = btrfs_item_ptr_offset(eb, slot);
2308 ptr_end = ptr + item_size;
2309 while (ptr < ptr_end) {
2310 di = (struct btrfs_dir_item *)ptr;
2311 name_len = btrfs_dir_name_len(eb, di);
2312 name = kmalloc(name_len, GFP_NOFS);
2317 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2320 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2321 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2324 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2325 log_di = btrfs_lookup_dir_index_item(trans, log,
2332 btrfs_dir_item_key_to_cpu(eb, di, &location);
2333 btrfs_release_path(path);
2334 btrfs_release_path(log_path);
2335 inode = read_one_inode(root, location.objectid);
2341 ret = link_to_fixup_dir(trans, root,
2342 path, location.objectid);
2350 ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
2351 BTRFS_I(inode), name, name_len);
2353 ret = btrfs_run_delayed_items(trans);
2359 /* there might still be more names under this key
2360 * check and repeat if required
2362 ret = btrfs_search_slot(NULL, root, dir_key, path,
2368 } else if (IS_ERR(log_di)) {
2370 return PTR_ERR(log_di);
2372 btrfs_release_path(log_path);
2375 ptr = (unsigned long)(di + 1);
2380 btrfs_release_path(path);
2381 btrfs_release_path(log_path);
2385 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2386 struct btrfs_root *root,
2387 struct btrfs_root *log,
2388 struct btrfs_path *path,
2391 struct btrfs_key search_key;
2392 struct btrfs_path *log_path;
2397 log_path = btrfs_alloc_path();
2401 search_key.objectid = ino;
2402 search_key.type = BTRFS_XATTR_ITEM_KEY;
2403 search_key.offset = 0;
2405 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2409 nritems = btrfs_header_nritems(path->nodes[0]);
2410 for (i = path->slots[0]; i < nritems; i++) {
2411 struct btrfs_key key;
2412 struct btrfs_dir_item *di;
2413 struct btrfs_dir_item *log_di;
2417 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2418 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2423 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2424 total_size = btrfs_item_size_nr(path->nodes[0], i);
2426 while (cur < total_size) {
2427 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2428 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2429 u32 this_len = sizeof(*di) + name_len + data_len;
2432 name = kmalloc(name_len, GFP_NOFS);
2437 read_extent_buffer(path->nodes[0], name,
2438 (unsigned long)(di + 1), name_len);
2440 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2442 btrfs_release_path(log_path);
2444 /* Doesn't exist in log tree, so delete it. */
2445 btrfs_release_path(path);
2446 di = btrfs_lookup_xattr(trans, root, path, ino,
2447 name, name_len, -1);
2454 ret = btrfs_delete_one_dir_name(trans, root,
2458 btrfs_release_path(path);
2463 if (IS_ERR(log_di)) {
2464 ret = PTR_ERR(log_di);
2468 di = (struct btrfs_dir_item *)((char *)di + this_len);
2471 ret = btrfs_next_leaf(root, path);
2477 btrfs_free_path(log_path);
2478 btrfs_release_path(path);
2484 * deletion replay happens before we copy any new directory items
2485 * out of the log or out of backreferences from inodes. It
2486 * scans the log to find ranges of keys that log is authoritative for,
2487 * and then scans the directory to find items in those ranges that are
2488 * not present in the log.
2490 * Anything we don't find in the log is unlinked and removed from the
2493 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2494 struct btrfs_root *root,
2495 struct btrfs_root *log,
2496 struct btrfs_path *path,
2497 u64 dirid, int del_all)
2501 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2503 struct btrfs_key dir_key;
2504 struct btrfs_key found_key;
2505 struct btrfs_path *log_path;
2508 dir_key.objectid = dirid;
2509 dir_key.type = BTRFS_DIR_ITEM_KEY;
2510 log_path = btrfs_alloc_path();
2514 dir = read_one_inode(root, dirid);
2515 /* it isn't an error if the inode isn't there, that can happen
2516 * because we replay the deletes before we copy in the inode item
2520 btrfs_free_path(log_path);
2528 range_end = (u64)-1;
2530 ret = find_dir_range(log, path, dirid, key_type,
2531 &range_start, &range_end);
2538 dir_key.offset = range_start;
2541 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2546 nritems = btrfs_header_nritems(path->nodes[0]);
2547 if (path->slots[0] >= nritems) {
2548 ret = btrfs_next_leaf(root, path);
2554 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2556 if (found_key.objectid != dirid ||
2557 found_key.type != dir_key.type)
2560 if (found_key.offset > range_end)
2563 ret = check_item_in_log(trans, log, path,
2568 if (found_key.offset == (u64)-1)
2570 dir_key.offset = found_key.offset + 1;
2572 btrfs_release_path(path);
2573 if (range_end == (u64)-1)
2575 range_start = range_end + 1;
2580 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2581 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2582 dir_key.type = BTRFS_DIR_INDEX_KEY;
2583 btrfs_release_path(path);
2587 btrfs_release_path(path);
2588 btrfs_free_path(log_path);
2594 * the process_func used to replay items from the log tree. This
2595 * gets called in two different stages. The first stage just looks
2596 * for inodes and makes sure they are all copied into the subvolume.
2598 * The second stage copies all the other item types from the log into
2599 * the subvolume. The two stage approach is slower, but gets rid of
2600 * lots of complexity around inodes referencing other inodes that exist
2601 * only in the log (references come from either directory items or inode
2604 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2605 struct walk_control *wc, u64 gen, int level)
2608 struct btrfs_path *path;
2609 struct btrfs_root *root = wc->replay_dest;
2610 struct btrfs_key key;
2614 ret = btrfs_read_buffer(eb, gen, level, NULL);
2618 level = btrfs_header_level(eb);
2623 path = btrfs_alloc_path();
2627 nritems = btrfs_header_nritems(eb);
2628 for (i = 0; i < nritems; i++) {
2629 btrfs_item_key_to_cpu(eb, &key, i);
2631 /* inode keys are done during the first stage */
2632 if (key.type == BTRFS_INODE_ITEM_KEY &&
2633 wc->stage == LOG_WALK_REPLAY_INODES) {
2634 struct btrfs_inode_item *inode_item;
2637 inode_item = btrfs_item_ptr(eb, i,
2638 struct btrfs_inode_item);
2640 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2641 * and never got linked before the fsync, skip it, as
2642 * replaying it is pointless since it would be deleted
2643 * later. We skip logging tmpfiles, but it's always
2644 * possible we are replaying a log created with a kernel
2645 * that used to log tmpfiles.
2647 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2648 wc->ignore_cur_inode = true;
2651 wc->ignore_cur_inode = false;
2653 ret = replay_xattr_deletes(wc->trans, root, log,
2654 path, key.objectid);
2657 mode = btrfs_inode_mode(eb, inode_item);
2658 if (S_ISDIR(mode)) {
2659 ret = replay_dir_deletes(wc->trans,
2660 root, log, path, key.objectid, 0);
2664 ret = overwrite_item(wc->trans, root, path,
2670 * Before replaying extents, truncate the inode to its
2671 * size. We need to do it now and not after log replay
2672 * because before an fsync we can have prealloc extents
2673 * added beyond the inode's i_size. If we did it after,
2674 * through orphan cleanup for example, we would drop
2675 * those prealloc extents just after replaying them.
2677 if (S_ISREG(mode)) {
2678 struct btrfs_drop_extents_args drop_args = { 0 };
2679 struct inode *inode;
2682 inode = read_one_inode(root, key.objectid);
2687 from = ALIGN(i_size_read(inode),
2688 root->fs_info->sectorsize);
2689 drop_args.start = from;
2690 drop_args.end = (u64)-1;
2691 drop_args.drop_cache = true;
2692 ret = btrfs_drop_extents(wc->trans, root,
2696 inode_sub_bytes(inode,
2697 drop_args.bytes_found);
2698 /* Update the inode's nbytes. */
2699 ret = btrfs_update_inode(wc->trans,
2700 root, BTRFS_I(inode));
2707 ret = link_to_fixup_dir(wc->trans, root,
2708 path, key.objectid);
2713 if (wc->ignore_cur_inode)
2716 if (key.type == BTRFS_DIR_INDEX_KEY &&
2717 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2718 ret = replay_one_dir_item(wc->trans, root, path,
2724 if (wc->stage < LOG_WALK_REPLAY_ALL)
2727 /* these keys are simply copied */
2728 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2729 ret = overwrite_item(wc->trans, root, path,
2733 } else if (key.type == BTRFS_INODE_REF_KEY ||
2734 key.type == BTRFS_INODE_EXTREF_KEY) {
2735 ret = add_inode_ref(wc->trans, root, log, path,
2737 if (ret && ret != -ENOENT)
2740 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2741 ret = replay_one_extent(wc->trans, root, path,
2745 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2746 ret = replay_one_dir_item(wc->trans, root, path,
2752 btrfs_free_path(path);
2757 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2759 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2761 struct btrfs_block_group *cache;
2763 cache = btrfs_lookup_block_group(fs_info, start);
2765 btrfs_err(fs_info, "unable to find block group for %llu", start);
2769 spin_lock(&cache->space_info->lock);
2770 spin_lock(&cache->lock);
2771 cache->reserved -= fs_info->nodesize;
2772 cache->space_info->bytes_reserved -= fs_info->nodesize;
2773 spin_unlock(&cache->lock);
2774 spin_unlock(&cache->space_info->lock);
2776 btrfs_put_block_group(cache);
2779 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2780 struct btrfs_root *root,
2781 struct btrfs_path *path, int *level,
2782 struct walk_control *wc)
2784 struct btrfs_fs_info *fs_info = root->fs_info;
2787 struct extent_buffer *next;
2788 struct extent_buffer *cur;
2792 while (*level > 0) {
2793 struct btrfs_key first_key;
2795 cur = path->nodes[*level];
2797 WARN_ON(btrfs_header_level(cur) != *level);
2799 if (path->slots[*level] >=
2800 btrfs_header_nritems(cur))
2803 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2804 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2805 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2806 blocksize = fs_info->nodesize;
2808 next = btrfs_find_create_tree_block(fs_info, bytenr,
2809 btrfs_header_owner(cur),
2812 return PTR_ERR(next);
2815 ret = wc->process_func(root, next, wc, ptr_gen,
2818 free_extent_buffer(next);
2822 path->slots[*level]++;
2824 ret = btrfs_read_buffer(next, ptr_gen,
2825 *level - 1, &first_key);
2827 free_extent_buffer(next);
2832 btrfs_tree_lock(next);
2833 btrfs_clean_tree_block(next);
2834 btrfs_wait_tree_block_writeback(next);
2835 btrfs_tree_unlock(next);
2836 ret = btrfs_pin_reserved_extent(trans,
2839 free_extent_buffer(next);
2842 btrfs_redirty_list_add(
2843 trans->transaction, next);
2845 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2846 clear_extent_buffer_dirty(next);
2847 unaccount_log_buffer(fs_info, bytenr);
2850 free_extent_buffer(next);
2853 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2855 free_extent_buffer(next);
2859 if (path->nodes[*level-1])
2860 free_extent_buffer(path->nodes[*level-1]);
2861 path->nodes[*level-1] = next;
2862 *level = btrfs_header_level(next);
2863 path->slots[*level] = 0;
2866 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2872 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2873 struct btrfs_root *root,
2874 struct btrfs_path *path, int *level,
2875 struct walk_control *wc)
2877 struct btrfs_fs_info *fs_info = root->fs_info;
2882 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2883 slot = path->slots[i];
2884 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2887 WARN_ON(*level == 0);
2890 ret = wc->process_func(root, path->nodes[*level], wc,
2891 btrfs_header_generation(path->nodes[*level]),
2897 struct extent_buffer *next;
2899 next = path->nodes[*level];
2902 btrfs_tree_lock(next);
2903 btrfs_clean_tree_block(next);
2904 btrfs_wait_tree_block_writeback(next);
2905 btrfs_tree_unlock(next);
2906 ret = btrfs_pin_reserved_extent(trans,
2907 path->nodes[*level]->start,
2908 path->nodes[*level]->len);
2912 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2913 clear_extent_buffer_dirty(next);
2915 unaccount_log_buffer(fs_info,
2916 path->nodes[*level]->start);
2919 free_extent_buffer(path->nodes[*level]);
2920 path->nodes[*level] = NULL;
2928 * drop the reference count on the tree rooted at 'snap'. This traverses
2929 * the tree freeing any blocks that have a ref count of zero after being
2932 static int walk_log_tree(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *log, struct walk_control *wc)
2935 struct btrfs_fs_info *fs_info = log->fs_info;
2939 struct btrfs_path *path;
2942 path = btrfs_alloc_path();
2946 level = btrfs_header_level(log->node);
2948 path->nodes[level] = log->node;
2949 atomic_inc(&log->node->refs);
2950 path->slots[level] = 0;
2953 wret = walk_down_log_tree(trans, log, path, &level, wc);
2961 wret = walk_up_log_tree(trans, log, path, &level, wc);
2970 /* was the root node processed? if not, catch it here */
2971 if (path->nodes[orig_level]) {
2972 ret = wc->process_func(log, path->nodes[orig_level], wc,
2973 btrfs_header_generation(path->nodes[orig_level]),
2978 struct extent_buffer *next;
2980 next = path->nodes[orig_level];
2983 btrfs_tree_lock(next);
2984 btrfs_clean_tree_block(next);
2985 btrfs_wait_tree_block_writeback(next);
2986 btrfs_tree_unlock(next);
2987 ret = btrfs_pin_reserved_extent(trans,
2988 next->start, next->len);
2992 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2993 clear_extent_buffer_dirty(next);
2994 unaccount_log_buffer(fs_info, next->start);
3000 btrfs_free_path(path);
3005 * helper function to update the item for a given subvolumes log root
3006 * in the tree of log roots
3008 static int update_log_root(struct btrfs_trans_handle *trans,
3009 struct btrfs_root *log,
3010 struct btrfs_root_item *root_item)
3012 struct btrfs_fs_info *fs_info = log->fs_info;
3015 if (log->log_transid == 1) {
3016 /* insert root item on the first sync */
3017 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
3018 &log->root_key, root_item);
3020 ret = btrfs_update_root(trans, fs_info->log_root_tree,
3021 &log->root_key, root_item);
3026 static void wait_log_commit(struct btrfs_root *root, int transid)
3029 int index = transid % 2;
3032 * we only allow two pending log transactions at a time,
3033 * so we know that if ours is more than 2 older than the
3034 * current transaction, we're done
3037 prepare_to_wait(&root->log_commit_wait[index],
3038 &wait, TASK_UNINTERRUPTIBLE);
3040 if (!(root->log_transid_committed < transid &&
3041 atomic_read(&root->log_commit[index])))
3044 mutex_unlock(&root->log_mutex);
3046 mutex_lock(&root->log_mutex);
3048 finish_wait(&root->log_commit_wait[index], &wait);
3051 static void wait_for_writer(struct btrfs_root *root)
3056 prepare_to_wait(&root->log_writer_wait, &wait,
3057 TASK_UNINTERRUPTIBLE);
3058 if (!atomic_read(&root->log_writers))
3061 mutex_unlock(&root->log_mutex);
3063 mutex_lock(&root->log_mutex);
3065 finish_wait(&root->log_writer_wait, &wait);
3068 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3069 struct btrfs_log_ctx *ctx)
3071 mutex_lock(&root->log_mutex);
3072 list_del_init(&ctx->list);
3073 mutex_unlock(&root->log_mutex);
3077 * Invoked in log mutex context, or be sure there is no other task which
3078 * can access the list.
3080 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3081 int index, int error)
3083 struct btrfs_log_ctx *ctx;
3084 struct btrfs_log_ctx *safe;
3086 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3087 list_del_init(&ctx->list);
3088 ctx->log_ret = error;
3093 * btrfs_sync_log does sends a given tree log down to the disk and
3094 * updates the super blocks to record it. When this call is done,
3095 * you know that any inodes previously logged are safely on disk only
3098 * Any other return value means you need to call btrfs_commit_transaction.
3099 * Some of the edge cases for fsyncing directories that have had unlinks
3100 * or renames done in the past mean that sometimes the only safe
3101 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3102 * that has happened.
3104 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3105 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3111 struct btrfs_fs_info *fs_info = root->fs_info;
3112 struct btrfs_root *log = root->log_root;
3113 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3114 struct btrfs_root_item new_root_item;
3115 int log_transid = 0;
3116 struct btrfs_log_ctx root_log_ctx;
3117 struct blk_plug plug;
3121 mutex_lock(&root->log_mutex);
3122 log_transid = ctx->log_transid;
3123 if (root->log_transid_committed >= log_transid) {
3124 mutex_unlock(&root->log_mutex);
3125 return ctx->log_ret;
3128 index1 = log_transid % 2;
3129 if (atomic_read(&root->log_commit[index1])) {
3130 wait_log_commit(root, log_transid);
3131 mutex_unlock(&root->log_mutex);
3132 return ctx->log_ret;
3134 ASSERT(log_transid == root->log_transid);
3135 atomic_set(&root->log_commit[index1], 1);
3137 /* wait for previous tree log sync to complete */
3138 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3139 wait_log_commit(root, log_transid - 1);
3142 int batch = atomic_read(&root->log_batch);
3143 /* when we're on an ssd, just kick the log commit out */
3144 if (!btrfs_test_opt(fs_info, SSD) &&
3145 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3146 mutex_unlock(&root->log_mutex);
3147 schedule_timeout_uninterruptible(1);
3148 mutex_lock(&root->log_mutex);
3150 wait_for_writer(root);
3151 if (batch == atomic_read(&root->log_batch))
3155 /* bail out if we need to do a full commit */
3156 if (btrfs_need_log_full_commit(trans)) {
3158 mutex_unlock(&root->log_mutex);
3162 if (log_transid % 2 == 0)
3163 mark = EXTENT_DIRTY;
3167 /* we start IO on all the marked extents here, but we don't actually
3168 * wait for them until later.
3170 blk_start_plug(&plug);
3171 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3173 * -EAGAIN happens when someone, e.g., a concurrent transaction
3174 * commit, writes a dirty extent in this tree-log commit. This
3175 * concurrent write will create a hole writing out the extents,
3176 * and we cannot proceed on a zoned filesystem, requiring
3177 * sequential writing. While we can bail out to a full commit
3178 * here, but we can continue hoping the concurrent writing fills
3181 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3184 blk_finish_plug(&plug);
3185 btrfs_abort_transaction(trans, ret);
3186 btrfs_set_log_full_commit(trans);
3187 mutex_unlock(&root->log_mutex);
3192 * We _must_ update under the root->log_mutex in order to make sure we
3193 * have a consistent view of the log root we are trying to commit at
3196 * We _must_ copy this into a local copy, because we are not holding the
3197 * log_root_tree->log_mutex yet. This is important because when we
3198 * commit the log_root_tree we must have a consistent view of the
3199 * log_root_tree when we update the super block to point at the
3200 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3201 * with the commit and possibly point at the new block which we may not
3204 btrfs_set_root_node(&log->root_item, log->node);
3205 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3207 root->log_transid++;
3208 log->log_transid = root->log_transid;
3209 root->log_start_pid = 0;
3211 * IO has been started, blocks of the log tree have WRITTEN flag set
3212 * in their headers. new modifications of the log will be written to
3213 * new positions. so it's safe to allow log writers to go in.
3215 mutex_unlock(&root->log_mutex);
3217 if (btrfs_is_zoned(fs_info)) {
3218 mutex_lock(&fs_info->tree_root->log_mutex);
3219 if (!log_root_tree->node) {
3220 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3222 mutex_unlock(&fs_info->tree_root->log_mutex);
3226 mutex_unlock(&fs_info->tree_root->log_mutex);
3229 btrfs_init_log_ctx(&root_log_ctx, NULL);
3231 mutex_lock(&log_root_tree->log_mutex);
3233 index2 = log_root_tree->log_transid % 2;
3234 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3235 root_log_ctx.log_transid = log_root_tree->log_transid;
3238 * Now we are safe to update the log_root_tree because we're under the
3239 * log_mutex, and we're a current writer so we're holding the commit
3240 * open until we drop the log_mutex.
3242 ret = update_log_root(trans, log, &new_root_item);
3244 if (!list_empty(&root_log_ctx.list))
3245 list_del_init(&root_log_ctx.list);
3247 blk_finish_plug(&plug);
3248 btrfs_set_log_full_commit(trans);
3250 if (ret != -ENOSPC) {
3251 btrfs_abort_transaction(trans, ret);
3252 mutex_unlock(&log_root_tree->log_mutex);
3255 btrfs_wait_tree_log_extents(log, mark);
3256 mutex_unlock(&log_root_tree->log_mutex);
3261 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3262 blk_finish_plug(&plug);
3263 list_del_init(&root_log_ctx.list);
3264 mutex_unlock(&log_root_tree->log_mutex);
3265 ret = root_log_ctx.log_ret;
3269 index2 = root_log_ctx.log_transid % 2;
3270 if (atomic_read(&log_root_tree->log_commit[index2])) {
3271 blk_finish_plug(&plug);
3272 ret = btrfs_wait_tree_log_extents(log, mark);
3273 wait_log_commit(log_root_tree,
3274 root_log_ctx.log_transid);
3275 mutex_unlock(&log_root_tree->log_mutex);
3277 ret = root_log_ctx.log_ret;
3280 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3281 atomic_set(&log_root_tree->log_commit[index2], 1);
3283 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3284 wait_log_commit(log_root_tree,
3285 root_log_ctx.log_transid - 1);
3289 * now that we've moved on to the tree of log tree roots,
3290 * check the full commit flag again
3292 if (btrfs_need_log_full_commit(trans)) {
3293 blk_finish_plug(&plug);
3294 btrfs_wait_tree_log_extents(log, mark);
3295 mutex_unlock(&log_root_tree->log_mutex);
3297 goto out_wake_log_root;
3300 ret = btrfs_write_marked_extents(fs_info,
3301 &log_root_tree->dirty_log_pages,
3302 EXTENT_DIRTY | EXTENT_NEW);
3303 blk_finish_plug(&plug);
3305 * As described above, -EAGAIN indicates a hole in the extents. We
3306 * cannot wait for these write outs since the waiting cause a
3307 * deadlock. Bail out to the full commit instead.
3309 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3310 btrfs_set_log_full_commit(trans);
3311 btrfs_wait_tree_log_extents(log, mark);
3312 mutex_unlock(&log_root_tree->log_mutex);
3313 goto out_wake_log_root;
3315 btrfs_set_log_full_commit(trans);
3316 btrfs_abort_transaction(trans, ret);
3317 mutex_unlock(&log_root_tree->log_mutex);
3318 goto out_wake_log_root;
3320 ret = btrfs_wait_tree_log_extents(log, mark);
3322 ret = btrfs_wait_tree_log_extents(log_root_tree,
3323 EXTENT_NEW | EXTENT_DIRTY);
3325 btrfs_set_log_full_commit(trans);
3326 mutex_unlock(&log_root_tree->log_mutex);
3327 goto out_wake_log_root;
3330 log_root_start = log_root_tree->node->start;
3331 log_root_level = btrfs_header_level(log_root_tree->node);
3332 log_root_tree->log_transid++;
3333 mutex_unlock(&log_root_tree->log_mutex);
3336 * Here we are guaranteed that nobody is going to write the superblock
3337 * for the current transaction before us and that neither we do write
3338 * our superblock before the previous transaction finishes its commit
3339 * and writes its superblock, because:
3341 * 1) We are holding a handle on the current transaction, so no body
3342 * can commit it until we release the handle;
3344 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3345 * if the previous transaction is still committing, and hasn't yet
3346 * written its superblock, we wait for it to do it, because a
3347 * transaction commit acquires the tree_log_mutex when the commit
3348 * begins and releases it only after writing its superblock.
3350 mutex_lock(&fs_info->tree_log_mutex);
3353 * The previous transaction writeout phase could have failed, and thus
3354 * marked the fs in an error state. We must not commit here, as we
3355 * could have updated our generation in the super_for_commit and
3356 * writing the super here would result in transid mismatches. If there
3357 * is an error here just bail.
3359 if (BTRFS_FS_ERROR(fs_info)) {
3361 btrfs_set_log_full_commit(trans);
3362 btrfs_abort_transaction(trans, ret);
3363 mutex_unlock(&fs_info->tree_log_mutex);
3364 goto out_wake_log_root;
3367 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3368 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3369 ret = write_all_supers(fs_info, 1);
3370 mutex_unlock(&fs_info->tree_log_mutex);
3372 btrfs_set_log_full_commit(trans);
3373 btrfs_abort_transaction(trans, ret);
3374 goto out_wake_log_root;
3378 * We know there can only be one task here, since we have not yet set
3379 * root->log_commit[index1] to 0 and any task attempting to sync the
3380 * log must wait for the previous log transaction to commit if it's
3381 * still in progress or wait for the current log transaction commit if
3382 * someone else already started it. We use <= and not < because the
3383 * first log transaction has an ID of 0.
3385 ASSERT(root->last_log_commit <= log_transid);
3386 root->last_log_commit = log_transid;
3389 mutex_lock(&log_root_tree->log_mutex);
3390 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3392 log_root_tree->log_transid_committed++;
3393 atomic_set(&log_root_tree->log_commit[index2], 0);
3394 mutex_unlock(&log_root_tree->log_mutex);
3397 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3398 * all the updates above are seen by the woken threads. It might not be
3399 * necessary, but proving that seems to be hard.
3401 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3403 mutex_lock(&root->log_mutex);
3404 btrfs_remove_all_log_ctxs(root, index1, ret);
3405 root->log_transid_committed++;
3406 atomic_set(&root->log_commit[index1], 0);
3407 mutex_unlock(&root->log_mutex);
3410 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3411 * all the updates above are seen by the woken threads. It might not be
3412 * necessary, but proving that seems to be hard.
3414 cond_wake_up(&root->log_commit_wait[index1]);
3418 static void free_log_tree(struct btrfs_trans_handle *trans,
3419 struct btrfs_root *log)
3422 struct walk_control wc = {
3424 .process_func = process_one_buffer
3428 ret = walk_log_tree(trans, log, &wc);
3431 btrfs_abort_transaction(trans, ret);
3433 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3437 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3438 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3439 extent_io_tree_release(&log->log_csum_range);
3441 if (trans && log->node)
3442 btrfs_redirty_list_add(trans->transaction, log->node);
3443 btrfs_put_root(log);
3447 * free all the extents used by the tree log. This should be called
3448 * at commit time of the full transaction
3450 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3452 if (root->log_root) {
3453 free_log_tree(trans, root->log_root);
3454 root->log_root = NULL;
3455 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3460 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3461 struct btrfs_fs_info *fs_info)
3463 if (fs_info->log_root_tree) {
3464 free_log_tree(trans, fs_info->log_root_tree);
3465 fs_info->log_root_tree = NULL;
3466 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3472 * Check if an inode was logged in the current transaction. This may often
3473 * return some false positives, because logged_trans is an in memory only field,
3474 * not persisted anywhere. This is meant to be used in contexts where a false
3475 * positive has no functional consequences.
3477 static bool inode_logged(struct btrfs_trans_handle *trans,
3478 struct btrfs_inode *inode)
3480 if (inode->logged_trans == trans->transid)
3483 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state))
3487 * The inode's logged_trans is always 0 when we load it (because it is
3488 * not persisted in the inode item or elsewhere). So if it is 0, the
3489 * inode was last modified in the current transaction then the inode may
3490 * have been logged before in the current transaction, then evicted and
3491 * loaded again in the current transaction - or may have never been logged
3492 * in the current transaction, but since we can not be sure, we have to
3493 * assume it was, otherwise our callers can leave an inconsistent log.
3495 if (inode->logged_trans == 0 &&
3496 inode->last_trans == trans->transid &&
3497 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3504 * If both a file and directory are logged, and unlinks or renames are
3505 * mixed in, we have a few interesting corners:
3507 * create file X in dir Y
3508 * link file X to X.link in dir Y
3510 * unlink file X but leave X.link
3513 * After a crash we would expect only X.link to exist. But file X
3514 * didn't get fsync'd again so the log has back refs for X and X.link.
3516 * We solve this by removing directory entries and inode backrefs from the
3517 * log when a file that was logged in the current transaction is
3518 * unlinked. Any later fsync will include the updated log entries, and
3519 * we'll be able to reconstruct the proper directory items from backrefs.
3521 * This optimizations allows us to avoid relogging the entire inode
3522 * or the entire directory.
3524 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3525 struct btrfs_root *root,
3526 const char *name, int name_len,
3527 struct btrfs_inode *dir, u64 index)
3529 struct btrfs_root *log;
3530 struct btrfs_dir_item *di;
3531 struct btrfs_path *path;
3534 u64 dir_ino = btrfs_ino(dir);
3536 if (!inode_logged(trans, dir))
3539 ret = join_running_log_trans(root);
3543 mutex_lock(&dir->log_mutex);
3545 log = root->log_root;
3546 path = btrfs_alloc_path();
3552 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3553 name, name_len, -1);
3559 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3565 btrfs_release_path(path);
3566 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3567 index, name, name_len, -1);
3573 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3581 * We do not need to update the size field of the directory's inode item
3582 * because on log replay we update the field to reflect all existing
3583 * entries in the directory (see overwrite_item()).
3586 btrfs_free_path(path);
3588 mutex_unlock(&dir->log_mutex);
3590 btrfs_set_log_full_commit(trans);
3591 btrfs_end_log_trans(root);
3594 /* see comments for btrfs_del_dir_entries_in_log */
3595 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3596 struct btrfs_root *root,
3597 const char *name, int name_len,
3598 struct btrfs_inode *inode, u64 dirid)
3600 struct btrfs_root *log;
3604 if (!inode_logged(trans, inode))
3607 ret = join_running_log_trans(root);
3610 log = root->log_root;
3611 mutex_lock(&inode->log_mutex);
3613 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3615 mutex_unlock(&inode->log_mutex);
3616 if (ret < 0 && ret != -ENOENT)
3617 btrfs_set_log_full_commit(trans);
3618 btrfs_end_log_trans(root);
3622 * creates a range item in the log for 'dirid'. first_offset and
3623 * last_offset tell us which parts of the key space the log should
3624 * be considered authoritative for.
3626 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3627 struct btrfs_root *log,
3628 struct btrfs_path *path,
3629 int key_type, u64 dirid,
3630 u64 first_offset, u64 last_offset)
3633 struct btrfs_key key;
3634 struct btrfs_dir_log_item *item;
3636 key.objectid = dirid;
3637 key.offset = first_offset;
3638 if (key_type == BTRFS_DIR_ITEM_KEY)
3639 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3641 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3642 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3646 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3647 struct btrfs_dir_log_item);
3648 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3649 btrfs_mark_buffer_dirty(path->nodes[0]);
3650 btrfs_release_path(path);
3654 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3655 struct btrfs_root *log,
3656 struct extent_buffer *src,
3657 struct btrfs_path *dst_path,
3661 char *ins_data = NULL;
3662 struct btrfs_item_batch batch;
3663 struct extent_buffer *dst;
3664 unsigned long src_offset;
3665 unsigned long dst_offset;
3666 struct btrfs_key key;
3675 btrfs_item_key_to_cpu(src, &key, start_slot);
3676 item_size = btrfs_item_size_nr(src, start_slot);
3678 batch.data_sizes = &item_size;
3679 batch.total_data_size = item_size;
3681 struct btrfs_key *ins_keys;
3684 ins_data = kmalloc(count * sizeof(u32) +
3685 count * sizeof(struct btrfs_key), GFP_NOFS);
3689 ins_sizes = (u32 *)ins_data;
3690 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3691 batch.keys = ins_keys;
3692 batch.data_sizes = ins_sizes;
3693 batch.total_data_size = 0;
3695 for (i = 0; i < count; i++) {
3696 const int slot = start_slot + i;
3698 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3699 ins_sizes[i] = btrfs_item_size_nr(src, slot);
3700 batch.total_data_size += ins_sizes[i];
3704 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3708 dst = dst_path->nodes[0];
3710 * Copy all the items in bulk, in a single copy operation. Item data is
3711 * organized such that it's placed at the end of a leaf and from right
3712 * to left. For example, the data for the second item ends at an offset
3713 * that matches the offset where the data for the first item starts, the
3714 * data for the third item ends at an offset that matches the offset
3715 * where the data of the second items starts, and so on.
3716 * Therefore our source and destination start offsets for copy match the
3717 * offsets of the last items (highest slots).
3719 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3720 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3721 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3722 btrfs_release_path(dst_path);
3729 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3730 struct btrfs_inode *inode,
3731 struct btrfs_path *path,
3732 struct btrfs_path *dst_path,
3734 struct btrfs_log_ctx *ctx)
3736 struct btrfs_root *log = inode->root->log_root;
3737 struct extent_buffer *src = path->nodes[0];
3738 const int nritems = btrfs_header_nritems(src);
3739 const u64 ino = btrfs_ino(inode);
3740 const bool inode_logged_before = inode_logged(trans, inode);
3741 u64 last_logged_key_offset;
3742 bool last_found = false;
3743 int batch_start = 0;
3747 if (key_type == BTRFS_DIR_ITEM_KEY)
3748 last_logged_key_offset = inode->last_dir_item_offset;
3750 last_logged_key_offset = inode->last_dir_index_offset;
3752 for (i = path->slots[0]; i < nritems; i++) {
3753 struct btrfs_key key;
3756 btrfs_item_key_to_cpu(src, &key, i);
3758 if (key.objectid != ino || key.type != key_type) {
3763 ctx->last_dir_item_offset = key.offset;
3765 * We must make sure that when we log a directory entry, the
3766 * corresponding inode, after log replay, has a matching link
3767 * count. For example:
3773 * xfs_io -c "fsync" mydir
3775 * <mount fs and log replay>
3777 * Would result in a fsync log that when replayed, our file inode
3778 * would have a link count of 1, but we get two directory entries
3779 * pointing to the same inode. After removing one of the names,
3780 * it would not be possible to remove the other name, which
3781 * resulted always in stale file handle errors, and would not be
3782 * possible to rmdir the parent directory, since its i_size could
3783 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3784 * resulting in -ENOTEMPTY errors.
3786 if (!ctx->log_new_dentries) {
3787 struct btrfs_dir_item *di;
3788 struct btrfs_key di_key;
3790 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3791 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3792 if ((btrfs_dir_transid(src, di) == trans->transid ||
3793 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3794 di_key.type != BTRFS_ROOT_ITEM_KEY)
3795 ctx->log_new_dentries = true;
3798 if (!inode_logged_before)
3802 * If we were logged before and have logged dir items, we can skip
3803 * checking if any item with a key offset larger than the last one
3804 * we logged is in the log tree, saving time and avoiding adding
3805 * contention on the log tree.
3807 if (key.offset > last_logged_key_offset)
3810 * Check if the key was already logged before. If not we can add
3811 * it to a batch for bulk insertion.
3813 ret = btrfs_search_slot(NULL, log, &key, dst_path, 0, 0);
3816 } else if (ret > 0) {
3817 btrfs_release_path(dst_path);
3822 * Item exists in the log. Overwrite the item in the log if it
3823 * has different content or do nothing if it has exactly the same
3824 * content. And then flush the current batch if any - do it after
3825 * overwriting the current item, or we would deadlock otherwise,
3826 * since we are holding a path for the existing item.
3828 ret = do_overwrite_item(trans, log, dst_path, src, i, &key);
3832 if (batch_size > 0) {
3833 ret = flush_dir_items_batch(trans, log, src, dst_path,
3834 batch_start, batch_size);
3841 if (batch_size == 0)
3846 if (batch_size > 0) {
3849 ret = flush_dir_items_batch(trans, log, src, dst_path,
3850 batch_start, batch_size);
3855 return last_found ? 1 : 0;
3859 * log all the items included in the current transaction for a given
3860 * directory. This also creates the range items in the log tree required
3861 * to replay anything deleted before the fsync
3863 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3864 struct btrfs_inode *inode,
3865 struct btrfs_path *path,
3866 struct btrfs_path *dst_path, int key_type,
3867 struct btrfs_log_ctx *ctx,
3868 u64 min_offset, u64 *last_offset_ret)
3870 struct btrfs_key min_key;
3871 struct btrfs_root *root = inode->root;
3872 struct btrfs_root *log = root->log_root;
3875 u64 first_offset = min_offset;
3876 u64 last_offset = (u64)-1;
3877 u64 ino = btrfs_ino(inode);
3879 min_key.objectid = ino;
3880 min_key.type = key_type;
3881 min_key.offset = min_offset;
3883 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3886 * we didn't find anything from this transaction, see if there
3887 * is anything at all
3889 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3890 min_key.objectid = ino;
3891 min_key.type = key_type;
3892 min_key.offset = (u64)-1;
3893 btrfs_release_path(path);
3894 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3896 btrfs_release_path(path);
3899 ret = btrfs_previous_item(root, path, ino, key_type);
3901 /* if ret == 0 there are items for this type,
3902 * create a range to tell us the last key of this type.
3903 * otherwise, there are no items in this directory after
3904 * *min_offset, and we create a range to indicate that.
3907 struct btrfs_key tmp;
3908 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3910 if (key_type == tmp.type)
3911 first_offset = max(min_offset, tmp.offset) + 1;
3916 /* go backward to find any previous key */
3917 ret = btrfs_previous_item(root, path, ino, key_type);
3919 struct btrfs_key tmp;
3920 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3921 if (key_type == tmp.type) {
3922 first_offset = tmp.offset;
3923 ret = overwrite_item(trans, log, dst_path,
3924 path->nodes[0], path->slots[0],
3932 btrfs_release_path(path);
3935 * Find the first key from this transaction again. See the note for
3936 * log_new_dir_dentries, if we're logging a directory recursively we
3937 * won't be holding its i_mutex, which means we can modify the directory
3938 * while we're logging it. If we remove an entry between our first
3939 * search and this search we'll not find the key again and can just
3943 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3948 * we have a block from this transaction, log every item in it
3949 * from our directory
3952 ret = process_dir_items_leaf(trans, inode, path, dst_path,
3959 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3962 * look ahead to the next item and see if it is also
3963 * from this directory and from this transaction
3965 ret = btrfs_next_leaf(root, path);
3968 last_offset = (u64)-1;
3973 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3974 if (min_key.objectid != ino || min_key.type != key_type) {
3975 last_offset = (u64)-1;
3978 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3979 ret = overwrite_item(trans, log, dst_path,
3980 path->nodes[0], path->slots[0],
3985 last_offset = min_key.offset;
3988 if (need_resched()) {
3989 btrfs_release_path(path);
3995 btrfs_release_path(path);
3996 btrfs_release_path(dst_path);
3999 *last_offset_ret = last_offset;
4001 * insert the log range keys to indicate where the log
4004 ret = insert_dir_log_key(trans, log, path, key_type,
4005 ino, first_offset, last_offset);
4013 * logging directories is very similar to logging inodes, We find all the items
4014 * from the current transaction and write them to the log.
4016 * The recovery code scans the directory in the subvolume, and if it finds a
4017 * key in the range logged that is not present in the log tree, then it means
4018 * that dir entry was unlinked during the transaction.
4020 * In order for that scan to work, we must include one key smaller than
4021 * the smallest logged by this transaction and one key larger than the largest
4022 * key logged by this transaction.
4024 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4025 struct btrfs_inode *inode,
4026 struct btrfs_path *path,
4027 struct btrfs_path *dst_path,
4028 struct btrfs_log_ctx *ctx)
4033 int key_type = BTRFS_DIR_ITEM_KEY;
4036 * If this is the first time we are being logged in the current
4037 * transaction, or we were logged before but the inode was evicted and
4038 * reloaded later, in which case its logged_trans is 0, reset the values
4039 * of the last logged key offsets. Note that we don't use the helper
4040 * function inode_logged() here - that is because the function returns
4041 * true after an inode eviction, assuming the worst case as it can not
4042 * know for sure if the inode was logged before. So we can not skip key
4043 * searches in the case the inode was evicted, because it may not have
4044 * been logged in this transaction and may have been logged in a past
4045 * transaction, so we need to reset the last dir item and index offsets
4048 if (inode->logged_trans != trans->transid) {
4049 inode->last_dir_item_offset = (u64)-1;
4050 inode->last_dir_index_offset = (u64)-1;
4055 if (key_type == BTRFS_DIR_ITEM_KEY)
4056 ctx->last_dir_item_offset = inode->last_dir_item_offset;
4058 ctx->last_dir_item_offset = inode->last_dir_index_offset;
4061 ret = log_dir_items(trans, inode, path, dst_path, key_type,
4062 ctx, min_key, &max_key);
4065 if (max_key == (u64)-1)
4067 min_key = max_key + 1;
4070 if (key_type == BTRFS_DIR_ITEM_KEY) {
4071 inode->last_dir_item_offset = ctx->last_dir_item_offset;
4072 key_type = BTRFS_DIR_INDEX_KEY;
4075 inode->last_dir_index_offset = ctx->last_dir_item_offset;
4081 * a helper function to drop items from the log before we relog an
4082 * inode. max_key_type indicates the highest item type to remove.
4083 * This cannot be run for file data extents because it does not
4084 * free the extents they point to.
4086 static int drop_inode_items(struct btrfs_trans_handle *trans,
4087 struct btrfs_root *log,
4088 struct btrfs_path *path,
4089 struct btrfs_inode *inode,
4093 struct btrfs_key key;
4094 struct btrfs_key found_key;
4097 if (!inode_logged(trans, inode))
4100 key.objectid = btrfs_ino(inode);
4101 key.type = max_key_type;
4102 key.offset = (u64)-1;
4105 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4106 BUG_ON(ret == 0); /* Logic error */
4110 if (path->slots[0] == 0)
4114 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4117 if (found_key.objectid != key.objectid)
4120 found_key.offset = 0;
4122 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4126 ret = btrfs_del_items(trans, log, path, start_slot,
4127 path->slots[0] - start_slot + 1);
4129 * If start slot isn't 0 then we don't need to re-search, we've
4130 * found the last guy with the objectid in this tree.
4132 if (ret || start_slot != 0)
4134 btrfs_release_path(path);
4136 btrfs_release_path(path);
4142 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4143 struct btrfs_root *log_root,
4144 struct btrfs_inode *inode,
4145 u64 new_size, u32 min_type)
4150 ret = btrfs_truncate_inode_items(trans, log_root, inode,
4151 new_size, min_type, NULL);
4152 } while (ret == -EAGAIN);
4157 static void fill_inode_item(struct btrfs_trans_handle *trans,
4158 struct extent_buffer *leaf,
4159 struct btrfs_inode_item *item,
4160 struct inode *inode, int log_inode_only,
4163 struct btrfs_map_token token;
4166 btrfs_init_map_token(&token, leaf);
4168 if (log_inode_only) {
4169 /* set the generation to zero so the recover code
4170 * can tell the difference between an logging
4171 * just to say 'this inode exists' and a logging
4172 * to say 'update this inode with these values'
4174 btrfs_set_token_inode_generation(&token, item, 0);
4175 btrfs_set_token_inode_size(&token, item, logged_isize);
4177 btrfs_set_token_inode_generation(&token, item,
4178 BTRFS_I(inode)->generation);
4179 btrfs_set_token_inode_size(&token, item, inode->i_size);
4182 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4183 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4184 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4185 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4187 btrfs_set_token_timespec_sec(&token, &item->atime,
4188 inode->i_atime.tv_sec);
4189 btrfs_set_token_timespec_nsec(&token, &item->atime,
4190 inode->i_atime.tv_nsec);
4192 btrfs_set_token_timespec_sec(&token, &item->mtime,
4193 inode->i_mtime.tv_sec);
4194 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4195 inode->i_mtime.tv_nsec);
4197 btrfs_set_token_timespec_sec(&token, &item->ctime,
4198 inode->i_ctime.tv_sec);
4199 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4200 inode->i_ctime.tv_nsec);
4203 * We do not need to set the nbytes field, in fact during a fast fsync
4204 * its value may not even be correct, since a fast fsync does not wait
4205 * for ordered extent completion, which is where we update nbytes, it
4206 * only waits for writeback to complete. During log replay as we find
4207 * file extent items and replay them, we adjust the nbytes field of the
4208 * inode item in subvolume tree as needed (see overwrite_item()).
4211 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4212 btrfs_set_token_inode_transid(&token, item, trans->transid);
4213 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4214 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4215 BTRFS_I(inode)->ro_flags);
4216 btrfs_set_token_inode_flags(&token, item, flags);
4217 btrfs_set_token_inode_block_group(&token, item, 0);
4220 static int log_inode_item(struct btrfs_trans_handle *trans,
4221 struct btrfs_root *log, struct btrfs_path *path,
4222 struct btrfs_inode *inode, bool inode_item_dropped)
4224 struct btrfs_inode_item *inode_item;
4228 * If we are doing a fast fsync and the inode was logged before in the
4229 * current transaction, then we know the inode was previously logged and
4230 * it exists in the log tree. For performance reasons, in this case use
4231 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4232 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4233 * contention in case there are concurrent fsyncs for other inodes of the
4234 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4235 * already exists can also result in unnecessarily splitting a leaf.
4237 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4238 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4244 * This means it is the first fsync in the current transaction,
4245 * so the inode item is not in the log and we need to insert it.
4246 * We can never get -EEXIST because we are only called for a fast
4247 * fsync and in case an inode eviction happens after the inode was
4248 * logged before in the current transaction, when we load again
4249 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4250 * flags and set ->logged_trans to 0.
4252 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4253 sizeof(*inode_item));
4254 ASSERT(ret != -EEXIST);
4258 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4259 struct btrfs_inode_item);
4260 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4262 btrfs_release_path(path);
4266 static int log_csums(struct btrfs_trans_handle *trans,
4267 struct btrfs_inode *inode,
4268 struct btrfs_root *log_root,
4269 struct btrfs_ordered_sum *sums)
4271 const u64 lock_end = sums->bytenr + sums->len - 1;
4272 struct extent_state *cached_state = NULL;
4276 * If this inode was not used for reflink operations in the current
4277 * transaction with new extents, then do the fast path, no need to
4278 * worry about logging checksum items with overlapping ranges.
4280 if (inode->last_reflink_trans < trans->transid)
4281 return btrfs_csum_file_blocks(trans, log_root, sums);
4284 * Serialize logging for checksums. This is to avoid racing with the
4285 * same checksum being logged by another task that is logging another
4286 * file which happens to refer to the same extent as well. Such races
4287 * can leave checksum items in the log with overlapping ranges.
4289 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4290 lock_end, &cached_state);
4294 * Due to extent cloning, we might have logged a csum item that covers a
4295 * subrange of a cloned extent, and later we can end up logging a csum
4296 * item for a larger subrange of the same extent or the entire range.
4297 * This would leave csum items in the log tree that cover the same range
4298 * and break the searches for checksums in the log tree, resulting in
4299 * some checksums missing in the fs/subvolume tree. So just delete (or
4300 * trim and adjust) any existing csum items in the log for this range.
4302 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4304 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4306 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4312 static noinline int copy_items(struct btrfs_trans_handle *trans,
4313 struct btrfs_inode *inode,
4314 struct btrfs_path *dst_path,
4315 struct btrfs_path *src_path,
4316 int start_slot, int nr, int inode_only,
4319 struct btrfs_fs_info *fs_info = trans->fs_info;
4320 unsigned long src_offset;
4321 unsigned long dst_offset;
4322 struct btrfs_root *log = inode->root->log_root;
4323 struct btrfs_file_extent_item *extent;
4324 struct btrfs_inode_item *inode_item;
4325 struct extent_buffer *src = src_path->nodes[0];
4327 struct btrfs_key *ins_keys;
4329 struct btrfs_item_batch batch;
4332 struct list_head ordered_sums;
4333 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4335 INIT_LIST_HEAD(&ordered_sums);
4337 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4338 nr * sizeof(u32), GFP_NOFS);
4342 ins_sizes = (u32 *)ins_data;
4343 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4344 batch.keys = ins_keys;
4345 batch.data_sizes = ins_sizes;
4346 batch.total_data_size = 0;
4349 for (i = 0; i < nr; i++) {
4350 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4351 batch.total_data_size += ins_sizes[i];
4352 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4354 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4360 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4361 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4362 dst_path->slots[0]);
4364 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4366 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4367 inode_item = btrfs_item_ptr(dst_path->nodes[0],
4369 struct btrfs_inode_item);
4370 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4372 inode_only == LOG_INODE_EXISTS,
4375 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4376 src_offset, ins_sizes[i]);
4379 /* take a reference on file data extents so that truncates
4380 * or deletes of this inode don't have to relog the inode
4383 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4386 extent = btrfs_item_ptr(src, start_slot + i,
4387 struct btrfs_file_extent_item);
4389 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4392 found_type = btrfs_file_extent_type(src, extent);
4393 if (found_type == BTRFS_FILE_EXTENT_REG) {
4395 ds = btrfs_file_extent_disk_bytenr(src,
4397 /* ds == 0 is a hole */
4401 dl = btrfs_file_extent_disk_num_bytes(src,
4403 cs = btrfs_file_extent_offset(src, extent);
4404 cl = btrfs_file_extent_num_bytes(src,
4406 if (btrfs_file_extent_compression(src,
4412 ret = btrfs_lookup_csums_range(
4414 ds + cs, ds + cs + cl - 1,
4422 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4423 btrfs_release_path(dst_path);
4427 * we have to do this after the loop above to avoid changing the
4428 * log tree while trying to change the log tree.
4430 while (!list_empty(&ordered_sums)) {
4431 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4432 struct btrfs_ordered_sum,
4435 ret = log_csums(trans, inode, log, sums);
4436 list_del(&sums->list);
4443 static int extent_cmp(void *priv, const struct list_head *a,
4444 const struct list_head *b)
4446 const struct extent_map *em1, *em2;
4448 em1 = list_entry(a, struct extent_map, list);
4449 em2 = list_entry(b, struct extent_map, list);
4451 if (em1->start < em2->start)
4453 else if (em1->start > em2->start)
4458 static int log_extent_csums(struct btrfs_trans_handle *trans,
4459 struct btrfs_inode *inode,
4460 struct btrfs_root *log_root,
4461 const struct extent_map *em,
4462 struct btrfs_log_ctx *ctx)
4464 struct btrfs_ordered_extent *ordered;
4467 u64 mod_start = em->mod_start;
4468 u64 mod_len = em->mod_len;
4469 LIST_HEAD(ordered_sums);
4472 if (inode->flags & BTRFS_INODE_NODATASUM ||
4473 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4474 em->block_start == EXTENT_MAP_HOLE)
4477 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4478 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4479 const u64 mod_end = mod_start + mod_len;
4480 struct btrfs_ordered_sum *sums;
4485 if (ordered_end <= mod_start)
4487 if (mod_end <= ordered->file_offset)
4491 * We are going to copy all the csums on this ordered extent, so
4492 * go ahead and adjust mod_start and mod_len in case this ordered
4493 * extent has already been logged.
4495 if (ordered->file_offset > mod_start) {
4496 if (ordered_end >= mod_end)
4497 mod_len = ordered->file_offset - mod_start;
4499 * If we have this case
4501 * |--------- logged extent ---------|
4502 * |----- ordered extent ----|
4504 * Just don't mess with mod_start and mod_len, we'll
4505 * just end up logging more csums than we need and it
4509 if (ordered_end < mod_end) {
4510 mod_len = mod_end - ordered_end;
4511 mod_start = ordered_end;
4518 * To keep us from looping for the above case of an ordered
4519 * extent that falls inside of the logged extent.
4521 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4524 list_for_each_entry(sums, &ordered->list, list) {
4525 ret = log_csums(trans, inode, log_root, sums);
4531 /* We're done, found all csums in the ordered extents. */
4535 /* If we're compressed we have to save the entire range of csums. */
4536 if (em->compress_type) {
4538 csum_len = max(em->block_len, em->orig_block_len);
4540 csum_offset = mod_start - em->start;
4544 /* block start is already adjusted for the file extent offset. */
4545 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4546 em->block_start + csum_offset,
4547 em->block_start + csum_offset +
4548 csum_len - 1, &ordered_sums, 0);
4552 while (!list_empty(&ordered_sums)) {
4553 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4554 struct btrfs_ordered_sum,
4557 ret = log_csums(trans, inode, log_root, sums);
4558 list_del(&sums->list);
4565 static int log_one_extent(struct btrfs_trans_handle *trans,
4566 struct btrfs_inode *inode,
4567 const struct extent_map *em,
4568 struct btrfs_path *path,
4569 struct btrfs_log_ctx *ctx)
4571 struct btrfs_drop_extents_args drop_args = { 0 };
4572 struct btrfs_root *log = inode->root->log_root;
4573 struct btrfs_file_extent_item *fi;
4574 struct extent_buffer *leaf;
4575 struct btrfs_map_token token;
4576 struct btrfs_key key;
4577 u64 extent_offset = em->start - em->orig_start;
4581 ret = log_extent_csums(trans, inode, log, em, ctx);
4586 * If this is the first time we are logging the inode in the current
4587 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4588 * because it does a deletion search, which always acquires write locks
4589 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4590 * but also adds significant contention in a log tree, since log trees
4591 * are small, with a root at level 2 or 3 at most, due to their short
4594 if (inode_logged(trans, inode)) {
4595 drop_args.path = path;
4596 drop_args.start = em->start;
4597 drop_args.end = em->start + em->len;
4598 drop_args.replace_extent = true;
4599 drop_args.extent_item_size = sizeof(*fi);
4600 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4605 if (!drop_args.extent_inserted) {
4606 key.objectid = btrfs_ino(inode);
4607 key.type = BTRFS_EXTENT_DATA_KEY;
4608 key.offset = em->start;
4610 ret = btrfs_insert_empty_item(trans, log, path, &key,
4615 leaf = path->nodes[0];
4616 btrfs_init_map_token(&token, leaf);
4617 fi = btrfs_item_ptr(leaf, path->slots[0],
4618 struct btrfs_file_extent_item);
4620 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4621 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4622 btrfs_set_token_file_extent_type(&token, fi,
4623 BTRFS_FILE_EXTENT_PREALLOC);
4625 btrfs_set_token_file_extent_type(&token, fi,
4626 BTRFS_FILE_EXTENT_REG);
4628 block_len = max(em->block_len, em->orig_block_len);
4629 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4630 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4632 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4633 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4634 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4637 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4639 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4640 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4643 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4644 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4645 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4646 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4647 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4648 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4649 btrfs_mark_buffer_dirty(leaf);
4651 btrfs_release_path(path);
4657 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4658 * lose them after doing a fast fsync and replaying the log. We scan the
4659 * subvolume's root instead of iterating the inode's extent map tree because
4660 * otherwise we can log incorrect extent items based on extent map conversion.
4661 * That can happen due to the fact that extent maps are merged when they
4662 * are not in the extent map tree's list of modified extents.
4664 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4665 struct btrfs_inode *inode,
4666 struct btrfs_path *path)
4668 struct btrfs_root *root = inode->root;
4669 struct btrfs_key key;
4670 const u64 i_size = i_size_read(&inode->vfs_inode);
4671 const u64 ino = btrfs_ino(inode);
4672 struct btrfs_path *dst_path = NULL;
4673 bool dropped_extents = false;
4674 u64 truncate_offset = i_size;
4675 struct extent_buffer *leaf;
4681 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4685 key.type = BTRFS_EXTENT_DATA_KEY;
4686 key.offset = i_size;
4687 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4692 * We must check if there is a prealloc extent that starts before the
4693 * i_size and crosses the i_size boundary. This is to ensure later we
4694 * truncate down to the end of that extent and not to the i_size, as
4695 * otherwise we end up losing part of the prealloc extent after a log
4696 * replay and with an implicit hole if there is another prealloc extent
4697 * that starts at an offset beyond i_size.
4699 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4704 struct btrfs_file_extent_item *ei;
4706 leaf = path->nodes[0];
4707 slot = path->slots[0];
4708 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4710 if (btrfs_file_extent_type(leaf, ei) ==
4711 BTRFS_FILE_EXTENT_PREALLOC) {
4714 btrfs_item_key_to_cpu(leaf, &key, slot);
4715 extent_end = key.offset +
4716 btrfs_file_extent_num_bytes(leaf, ei);
4718 if (extent_end > i_size)
4719 truncate_offset = extent_end;
4726 leaf = path->nodes[0];
4727 slot = path->slots[0];
4729 if (slot >= btrfs_header_nritems(leaf)) {
4731 ret = copy_items(trans, inode, dst_path, path,
4732 start_slot, ins_nr, 1, 0);
4737 ret = btrfs_next_leaf(root, path);
4747 btrfs_item_key_to_cpu(leaf, &key, slot);
4748 if (key.objectid > ino)
4750 if (WARN_ON_ONCE(key.objectid < ino) ||
4751 key.type < BTRFS_EXTENT_DATA_KEY ||
4752 key.offset < i_size) {
4756 if (!dropped_extents) {
4758 * Avoid logging extent items logged in past fsync calls
4759 * and leading to duplicate keys in the log tree.
4761 ret = truncate_inode_items(trans, root->log_root, inode,
4763 BTRFS_EXTENT_DATA_KEY);
4766 dropped_extents = true;
4773 dst_path = btrfs_alloc_path();
4781 ret = copy_items(trans, inode, dst_path, path,
4782 start_slot, ins_nr, 1, 0);
4784 btrfs_release_path(path);
4785 btrfs_free_path(dst_path);
4789 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4790 struct btrfs_inode *inode,
4791 struct btrfs_path *path,
4792 struct btrfs_log_ctx *ctx)
4794 struct btrfs_ordered_extent *ordered;
4795 struct btrfs_ordered_extent *tmp;
4796 struct extent_map *em, *n;
4797 struct list_head extents;
4798 struct extent_map_tree *tree = &inode->extent_tree;
4802 INIT_LIST_HEAD(&extents);
4804 write_lock(&tree->lock);
4806 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4807 list_del_init(&em->list);
4809 * Just an arbitrary number, this can be really CPU intensive
4810 * once we start getting a lot of extents, and really once we
4811 * have a bunch of extents we just want to commit since it will
4814 if (++num > 32768) {
4815 list_del_init(&tree->modified_extents);
4820 if (em->generation < trans->transid)
4823 /* We log prealloc extents beyond eof later. */
4824 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4825 em->start >= i_size_read(&inode->vfs_inode))
4828 /* Need a ref to keep it from getting evicted from cache */
4829 refcount_inc(&em->refs);
4830 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4831 list_add_tail(&em->list, &extents);
4835 list_sort(NULL, &extents, extent_cmp);
4837 while (!list_empty(&extents)) {
4838 em = list_entry(extents.next, struct extent_map, list);
4840 list_del_init(&em->list);
4843 * If we had an error we just need to delete everybody from our
4847 clear_em_logging(tree, em);
4848 free_extent_map(em);
4852 write_unlock(&tree->lock);
4854 ret = log_one_extent(trans, inode, em, path, ctx);
4855 write_lock(&tree->lock);
4856 clear_em_logging(tree, em);
4857 free_extent_map(em);
4859 WARN_ON(!list_empty(&extents));
4860 write_unlock(&tree->lock);
4862 btrfs_release_path(path);
4864 ret = btrfs_log_prealloc_extents(trans, inode, path);
4869 * We have logged all extents successfully, now make sure the commit of
4870 * the current transaction waits for the ordered extents to complete
4871 * before it commits and wipes out the log trees, otherwise we would
4872 * lose data if an ordered extents completes after the transaction
4873 * commits and a power failure happens after the transaction commit.
4875 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4876 list_del_init(&ordered->log_list);
4877 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4879 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4880 spin_lock_irq(&inode->ordered_tree.lock);
4881 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4882 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4883 atomic_inc(&trans->transaction->pending_ordered);
4885 spin_unlock_irq(&inode->ordered_tree.lock);
4887 btrfs_put_ordered_extent(ordered);
4893 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4894 struct btrfs_path *path, u64 *size_ret)
4896 struct btrfs_key key;
4899 key.objectid = btrfs_ino(inode);
4900 key.type = BTRFS_INODE_ITEM_KEY;
4903 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4906 } else if (ret > 0) {
4909 struct btrfs_inode_item *item;
4911 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4912 struct btrfs_inode_item);
4913 *size_ret = btrfs_inode_size(path->nodes[0], item);
4915 * If the in-memory inode's i_size is smaller then the inode
4916 * size stored in the btree, return the inode's i_size, so
4917 * that we get a correct inode size after replaying the log
4918 * when before a power failure we had a shrinking truncate
4919 * followed by addition of a new name (rename / new hard link).
4920 * Otherwise return the inode size from the btree, to avoid
4921 * data loss when replaying a log due to previously doing a
4922 * write that expands the inode's size and logging a new name
4923 * immediately after.
4925 if (*size_ret > inode->vfs_inode.i_size)
4926 *size_ret = inode->vfs_inode.i_size;
4929 btrfs_release_path(path);
4934 * At the moment we always log all xattrs. This is to figure out at log replay
4935 * time which xattrs must have their deletion replayed. If a xattr is missing
4936 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4937 * because if a xattr is deleted, the inode is fsynced and a power failure
4938 * happens, causing the log to be replayed the next time the fs is mounted,
4939 * we want the xattr to not exist anymore (same behaviour as other filesystems
4940 * with a journal, ext3/4, xfs, f2fs, etc).
4942 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4943 struct btrfs_inode *inode,
4944 struct btrfs_path *path,
4945 struct btrfs_path *dst_path)
4947 struct btrfs_root *root = inode->root;
4949 struct btrfs_key key;
4950 const u64 ino = btrfs_ino(inode);
4953 bool found_xattrs = false;
4955 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4959 key.type = BTRFS_XATTR_ITEM_KEY;
4962 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4967 int slot = path->slots[0];
4968 struct extent_buffer *leaf = path->nodes[0];
4969 int nritems = btrfs_header_nritems(leaf);
4971 if (slot >= nritems) {
4973 ret = copy_items(trans, inode, dst_path, path,
4974 start_slot, ins_nr, 1, 0);
4979 ret = btrfs_next_leaf(root, path);
4987 btrfs_item_key_to_cpu(leaf, &key, slot);
4988 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4995 found_xattrs = true;
4999 ret = copy_items(trans, inode, dst_path, path,
5000 start_slot, ins_nr, 1, 0);
5006 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5012 * When using the NO_HOLES feature if we punched a hole that causes the
5013 * deletion of entire leafs or all the extent items of the first leaf (the one
5014 * that contains the inode item and references) we may end up not processing
5015 * any extents, because there are no leafs with a generation matching the
5016 * current transaction that have extent items for our inode. So we need to find
5017 * if any holes exist and then log them. We also need to log holes after any
5018 * truncate operation that changes the inode's size.
5020 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5021 struct btrfs_inode *inode,
5022 struct btrfs_path *path)
5024 struct btrfs_root *root = inode->root;
5025 struct btrfs_fs_info *fs_info = root->fs_info;
5026 struct btrfs_key key;
5027 const u64 ino = btrfs_ino(inode);
5028 const u64 i_size = i_size_read(&inode->vfs_inode);
5029 u64 prev_extent_end = 0;
5032 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5036 key.type = BTRFS_EXTENT_DATA_KEY;
5039 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5044 struct extent_buffer *leaf = path->nodes[0];
5046 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5047 ret = btrfs_next_leaf(root, path);
5054 leaf = path->nodes[0];
5057 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5058 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5061 /* We have a hole, log it. */
5062 if (prev_extent_end < key.offset) {
5063 const u64 hole_len = key.offset - prev_extent_end;
5066 * Release the path to avoid deadlocks with other code
5067 * paths that search the root while holding locks on
5068 * leafs from the log root.
5070 btrfs_release_path(path);
5071 ret = btrfs_insert_file_extent(trans, root->log_root,
5072 ino, prev_extent_end, 0,
5073 0, hole_len, 0, hole_len,
5079 * Search for the same key again in the root. Since it's
5080 * an extent item and we are holding the inode lock, the
5081 * key must still exist. If it doesn't just emit warning
5082 * and return an error to fall back to a transaction
5085 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5088 if (WARN_ON(ret > 0))
5090 leaf = path->nodes[0];
5093 prev_extent_end = btrfs_file_extent_end(path);
5098 if (prev_extent_end < i_size) {
5101 btrfs_release_path(path);
5102 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5103 ret = btrfs_insert_file_extent(trans, root->log_root,
5104 ino, prev_extent_end, 0, 0,
5105 hole_len, 0, hole_len,
5115 * When we are logging a new inode X, check if it doesn't have a reference that
5116 * matches the reference from some other inode Y created in a past transaction
5117 * and that was renamed in the current transaction. If we don't do this, then at
5118 * log replay time we can lose inode Y (and all its files if it's a directory):
5121 * echo "hello world" > /mnt/x/foobar
5124 * mkdir /mnt/x # or touch /mnt/x
5125 * xfs_io -c fsync /mnt/x
5127 * mount fs, trigger log replay
5129 * After the log replay procedure, we would lose the first directory and all its
5130 * files (file foobar).
5131 * For the case where inode Y is not a directory we simply end up losing it:
5133 * echo "123" > /mnt/foo
5135 * mv /mnt/foo /mnt/bar
5136 * echo "abc" > /mnt/foo
5137 * xfs_io -c fsync /mnt/foo
5140 * We also need this for cases where a snapshot entry is replaced by some other
5141 * entry (file or directory) otherwise we end up with an unreplayable log due to
5142 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5143 * if it were a regular entry:
5146 * btrfs subvolume snapshot /mnt /mnt/x/snap
5147 * btrfs subvolume delete /mnt/x/snap
5150 * fsync /mnt/x or fsync some new file inside it
5153 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5154 * the same transaction.
5156 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5158 const struct btrfs_key *key,
5159 struct btrfs_inode *inode,
5160 u64 *other_ino, u64 *other_parent)
5163 struct btrfs_path *search_path;
5166 u32 item_size = btrfs_item_size_nr(eb, slot);
5168 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5170 search_path = btrfs_alloc_path();
5173 search_path->search_commit_root = 1;
5174 search_path->skip_locking = 1;
5176 while (cur_offset < item_size) {
5180 unsigned long name_ptr;
5181 struct btrfs_dir_item *di;
5183 if (key->type == BTRFS_INODE_REF_KEY) {
5184 struct btrfs_inode_ref *iref;
5186 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5187 parent = key->offset;
5188 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5189 name_ptr = (unsigned long)(iref + 1);
5190 this_len = sizeof(*iref) + this_name_len;
5192 struct btrfs_inode_extref *extref;
5194 extref = (struct btrfs_inode_extref *)(ptr +
5196 parent = btrfs_inode_extref_parent(eb, extref);
5197 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5198 name_ptr = (unsigned long)&extref->name;
5199 this_len = sizeof(*extref) + this_name_len;
5202 if (this_name_len > name_len) {
5205 new_name = krealloc(name, this_name_len, GFP_NOFS);
5210 name_len = this_name_len;
5214 read_extent_buffer(eb, name, name_ptr, this_name_len);
5215 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5216 parent, name, this_name_len, 0);
5217 if (di && !IS_ERR(di)) {
5218 struct btrfs_key di_key;
5220 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5222 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5223 if (di_key.objectid != key->objectid) {
5225 *other_ino = di_key.objectid;
5226 *other_parent = parent;
5234 } else if (IS_ERR(di)) {
5238 btrfs_release_path(search_path);
5240 cur_offset += this_len;
5244 btrfs_free_path(search_path);
5249 struct btrfs_ino_list {
5252 struct list_head list;
5255 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5256 struct btrfs_root *root,
5257 struct btrfs_path *path,
5258 struct btrfs_log_ctx *ctx,
5259 u64 ino, u64 parent)
5261 struct btrfs_ino_list *ino_elem;
5262 LIST_HEAD(inode_list);
5265 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5268 ino_elem->ino = ino;
5269 ino_elem->parent = parent;
5270 list_add_tail(&ino_elem->list, &inode_list);
5272 while (!list_empty(&inode_list)) {
5273 struct btrfs_fs_info *fs_info = root->fs_info;
5274 struct btrfs_key key;
5275 struct inode *inode;
5277 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5279 ino = ino_elem->ino;
5280 parent = ino_elem->parent;
5281 list_del(&ino_elem->list);
5286 btrfs_release_path(path);
5288 inode = btrfs_iget(fs_info->sb, ino, root);
5290 * If the other inode that had a conflicting dir entry was
5291 * deleted in the current transaction, we need to log its parent
5294 if (IS_ERR(inode)) {
5295 ret = PTR_ERR(inode);
5296 if (ret == -ENOENT) {
5297 inode = btrfs_iget(fs_info->sb, parent, root);
5298 if (IS_ERR(inode)) {
5299 ret = PTR_ERR(inode);
5301 ret = btrfs_log_inode(trans,
5303 LOG_OTHER_INODE_ALL,
5305 btrfs_add_delayed_iput(inode);
5311 * If the inode was already logged skip it - otherwise we can
5312 * hit an infinite loop. Example:
5314 * From the commit root (previous transaction) we have the
5317 * inode 257 a directory
5318 * inode 258 with references "zz" and "zz_link" on inode 257
5319 * inode 259 with reference "a" on inode 257
5321 * And in the current (uncommitted) transaction we have:
5323 * inode 257 a directory, unchanged
5324 * inode 258 with references "a" and "a2" on inode 257
5325 * inode 259 with reference "zz_link" on inode 257
5326 * inode 261 with reference "zz" on inode 257
5328 * When logging inode 261 the following infinite loop could
5329 * happen if we don't skip already logged inodes:
5331 * - we detect inode 258 as a conflicting inode, with inode 261
5332 * on reference "zz", and log it;
5334 * - we detect inode 259 as a conflicting inode, with inode 258
5335 * on reference "a", and log it;
5337 * - we detect inode 258 as a conflicting inode, with inode 259
5338 * on reference "zz_link", and log it - again! After this we
5339 * repeat the above steps forever.
5341 spin_lock(&BTRFS_I(inode)->lock);
5343 * Check the inode's logged_trans only instead of
5344 * btrfs_inode_in_log(). This is because the last_log_commit of
5345 * the inode is not updated when we only log that it exists (see
5346 * btrfs_log_inode()).
5348 if (BTRFS_I(inode)->logged_trans == trans->transid) {
5349 spin_unlock(&BTRFS_I(inode)->lock);
5350 btrfs_add_delayed_iput(inode);
5353 spin_unlock(&BTRFS_I(inode)->lock);
5355 * We are safe logging the other inode without acquiring its
5356 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5357 * are safe against concurrent renames of the other inode as
5358 * well because during a rename we pin the log and update the
5359 * log with the new name before we unpin it.
5361 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_OTHER_INODE, ctx);
5363 btrfs_add_delayed_iput(inode);
5368 key.type = BTRFS_INODE_REF_KEY;
5370 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5372 btrfs_add_delayed_iput(inode);
5377 struct extent_buffer *leaf = path->nodes[0];
5378 int slot = path->slots[0];
5380 u64 other_parent = 0;
5382 if (slot >= btrfs_header_nritems(leaf)) {
5383 ret = btrfs_next_leaf(root, path);
5386 } else if (ret > 0) {
5393 btrfs_item_key_to_cpu(leaf, &key, slot);
5394 if (key.objectid != ino ||
5395 (key.type != BTRFS_INODE_REF_KEY &&
5396 key.type != BTRFS_INODE_EXTREF_KEY)) {
5401 ret = btrfs_check_ref_name_override(leaf, slot, &key,
5402 BTRFS_I(inode), &other_ino,
5407 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5412 ino_elem->ino = other_ino;
5413 ino_elem->parent = other_parent;
5414 list_add_tail(&ino_elem->list, &inode_list);
5419 btrfs_add_delayed_iput(inode);
5425 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5426 struct btrfs_inode *inode,
5427 struct btrfs_key *min_key,
5428 const struct btrfs_key *max_key,
5429 struct btrfs_path *path,
5430 struct btrfs_path *dst_path,
5431 const u64 logged_isize,
5432 const bool recursive_logging,
5433 const int inode_only,
5434 struct btrfs_log_ctx *ctx,
5435 bool *need_log_inode_item)
5437 struct btrfs_root *root = inode->root;
5438 int ins_start_slot = 0;
5443 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5451 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5452 if (min_key->objectid != max_key->objectid)
5454 if (min_key->type > max_key->type)
5457 if (min_key->type == BTRFS_INODE_ITEM_KEY)
5458 *need_log_inode_item = false;
5460 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5461 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5462 inode->generation == trans->transid &&
5463 !recursive_logging) {
5465 u64 other_parent = 0;
5467 ret = btrfs_check_ref_name_override(path->nodes[0],
5468 path->slots[0], min_key, inode,
5469 &other_ino, &other_parent);
5472 } else if (ret > 0 &&
5473 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5478 ins_start_slot = path->slots[0];
5480 ret = copy_items(trans, inode, dst_path, path,
5481 ins_start_slot, ins_nr,
5482 inode_only, logged_isize);
5487 ret = log_conflicting_inodes(trans, root, path,
5488 ctx, other_ino, other_parent);
5491 btrfs_release_path(path);
5496 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5497 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5500 ret = copy_items(trans, inode, dst_path, path,
5502 ins_nr, inode_only, logged_isize);
5509 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5512 } else if (!ins_nr) {
5513 ins_start_slot = path->slots[0];
5518 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5519 ins_nr, inode_only, logged_isize);
5523 ins_start_slot = path->slots[0];
5526 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5527 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5532 ret = copy_items(trans, inode, dst_path, path,
5533 ins_start_slot, ins_nr, inode_only,
5539 btrfs_release_path(path);
5541 if (min_key->offset < (u64)-1) {
5543 } else if (min_key->type < max_key->type) {
5545 min_key->offset = 0;
5551 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5552 ins_nr, inode_only, logged_isize);
5557 /* log a single inode in the tree log.
5558 * At least one parent directory for this inode must exist in the tree
5559 * or be logged already.
5561 * Any items from this inode changed by the current transaction are copied
5562 * to the log tree. An extra reference is taken on any extents in this
5563 * file, allowing us to avoid a whole pile of corner cases around logging
5564 * blocks that have been removed from the tree.
5566 * See LOG_INODE_ALL and related defines for a description of what inode_only
5569 * This handles both files and directories.
5571 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5572 struct btrfs_inode *inode,
5574 struct btrfs_log_ctx *ctx)
5576 struct btrfs_path *path;
5577 struct btrfs_path *dst_path;
5578 struct btrfs_key min_key;
5579 struct btrfs_key max_key;
5580 struct btrfs_root *log = inode->root->log_root;
5583 bool fast_search = false;
5584 u64 ino = btrfs_ino(inode);
5585 struct extent_map_tree *em_tree = &inode->extent_tree;
5586 u64 logged_isize = 0;
5587 bool need_log_inode_item = true;
5588 bool xattrs_logged = false;
5589 bool recursive_logging = false;
5590 bool inode_item_dropped = true;
5592 path = btrfs_alloc_path();
5595 dst_path = btrfs_alloc_path();
5597 btrfs_free_path(path);
5601 min_key.objectid = ino;
5602 min_key.type = BTRFS_INODE_ITEM_KEY;
5605 max_key.objectid = ino;
5608 /* today the code can only do partial logging of directories */
5609 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5610 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5611 &inode->runtime_flags) &&
5612 inode_only >= LOG_INODE_EXISTS))
5613 max_key.type = BTRFS_XATTR_ITEM_KEY;
5615 max_key.type = (u8)-1;
5616 max_key.offset = (u64)-1;
5619 * Only run delayed items if we are a directory. We want to make sure
5620 * all directory indexes hit the fs/subvolume tree so we can find them
5621 * and figure out which index ranges have to be logged.
5623 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5624 err = btrfs_commit_inode_delayed_items(trans, inode);
5629 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5630 recursive_logging = true;
5631 if (inode_only == LOG_OTHER_INODE)
5632 inode_only = LOG_INODE_EXISTS;
5634 inode_only = LOG_INODE_ALL;
5635 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5637 mutex_lock(&inode->log_mutex);
5641 * This is for cases where logging a directory could result in losing a
5642 * a file after replaying the log. For example, if we move a file from a
5643 * directory A to a directory B, then fsync directory A, we have no way
5644 * to known the file was moved from A to B, so logging just A would
5645 * result in losing the file after a log replay.
5647 if (S_ISDIR(inode->vfs_inode.i_mode) &&
5648 inode_only == LOG_INODE_ALL &&
5649 inode->last_unlink_trans >= trans->transid) {
5650 btrfs_set_log_full_commit(trans);
5656 * a brute force approach to making sure we get the most uptodate
5657 * copies of everything.
5659 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5660 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5662 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5663 if (inode_only == LOG_INODE_EXISTS)
5664 max_key_type = BTRFS_XATTR_ITEM_KEY;
5665 ret = drop_inode_items(trans, log, path, inode, max_key_type);
5667 if (inode_only == LOG_INODE_EXISTS && inode_logged(trans, inode)) {
5669 * Make sure the new inode item we write to the log has
5670 * the same isize as the current one (if it exists).
5671 * This is necessary to prevent data loss after log
5672 * replay, and also to prevent doing a wrong expanding
5673 * truncate - for e.g. create file, write 4K into offset
5674 * 0, fsync, write 4K into offset 4096, add hard link,
5675 * fsync some other file (to sync log), power fail - if
5676 * we use the inode's current i_size, after log replay
5677 * we get a 8Kb file, with the last 4Kb extent as a hole
5678 * (zeroes), as if an expanding truncate happened,
5679 * instead of getting a file of 4Kb only.
5681 err = logged_inode_size(log, inode, path, &logged_isize);
5685 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5686 &inode->runtime_flags)) {
5687 if (inode_only == LOG_INODE_EXISTS) {
5688 max_key.type = BTRFS_XATTR_ITEM_KEY;
5689 ret = drop_inode_items(trans, log, path, inode,
5692 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5693 &inode->runtime_flags);
5694 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5695 &inode->runtime_flags);
5696 if (inode_logged(trans, inode))
5697 ret = truncate_inode_items(trans, log,
5700 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5701 &inode->runtime_flags) ||
5702 inode_only == LOG_INODE_EXISTS) {
5703 if (inode_only == LOG_INODE_ALL)
5705 max_key.type = BTRFS_XATTR_ITEM_KEY;
5706 ret = drop_inode_items(trans, log, path, inode,
5709 if (inode_only == LOG_INODE_ALL)
5711 inode_item_dropped = false;
5721 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5722 path, dst_path, logged_isize,
5723 recursive_logging, inode_only, ctx,
5724 &need_log_inode_item);
5728 btrfs_release_path(path);
5729 btrfs_release_path(dst_path);
5730 err = btrfs_log_all_xattrs(trans, inode, path, dst_path);
5733 xattrs_logged = true;
5734 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5735 btrfs_release_path(path);
5736 btrfs_release_path(dst_path);
5737 err = btrfs_log_holes(trans, inode, path);
5742 btrfs_release_path(path);
5743 btrfs_release_path(dst_path);
5744 if (need_log_inode_item) {
5745 err = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
5749 * If we are doing a fast fsync and the inode was logged before
5750 * in this transaction, we don't need to log the xattrs because
5751 * they were logged before. If xattrs were added, changed or
5752 * deleted since the last time we logged the inode, then we have
5753 * already logged them because the inode had the runtime flag
5754 * BTRFS_INODE_COPY_EVERYTHING set.
5756 if (!xattrs_logged && inode->logged_trans < trans->transid) {
5757 err = btrfs_log_all_xattrs(trans, inode, path, dst_path);
5760 btrfs_release_path(path);
5764 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
5769 } else if (inode_only == LOG_INODE_ALL) {
5770 struct extent_map *em, *n;
5772 write_lock(&em_tree->lock);
5773 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5774 list_del_init(&em->list);
5775 write_unlock(&em_tree->lock);
5778 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5779 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
5786 spin_lock(&inode->lock);
5787 inode->logged_trans = trans->transid;
5789 * Don't update last_log_commit if we logged that an inode exists.
5790 * We do this for three reasons:
5792 * 1) We might have had buffered writes to this inode that were
5793 * flushed and had their ordered extents completed in this
5794 * transaction, but we did not previously log the inode with
5795 * LOG_INODE_ALL. Later the inode was evicted and after that
5796 * it was loaded again and this LOG_INODE_EXISTS log operation
5797 * happened. We must make sure that if an explicit fsync against
5798 * the inode is performed later, it logs the new extents, an
5799 * updated inode item, etc, and syncs the log. The same logic
5800 * applies to direct IO writes instead of buffered writes.
5802 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5803 * is logged with an i_size of 0 or whatever value was logged
5804 * before. If later the i_size of the inode is increased by a
5805 * truncate operation, the log is synced through an fsync of
5806 * some other inode and then finally an explicit fsync against
5807 * this inode is made, we must make sure this fsync logs the
5808 * inode with the new i_size, the hole between old i_size and
5809 * the new i_size, and syncs the log.
5811 * 3) If we are logging that an ancestor inode exists as part of
5812 * logging a new name from a link or rename operation, don't update
5813 * its last_log_commit - otherwise if an explicit fsync is made
5814 * against an ancestor, the fsync considers the inode in the log
5815 * and doesn't sync the log, resulting in the ancestor missing after
5816 * a power failure unless the log was synced as part of an fsync
5817 * against any other unrelated inode.
5819 if (inode_only != LOG_INODE_EXISTS)
5820 inode->last_log_commit = inode->last_sub_trans;
5821 spin_unlock(&inode->lock);
5823 mutex_unlock(&inode->log_mutex);
5825 btrfs_free_path(path);
5826 btrfs_free_path(dst_path);
5831 * Check if we need to log an inode. This is used in contexts where while
5832 * logging an inode we need to log another inode (either that it exists or in
5833 * full mode). This is used instead of btrfs_inode_in_log() because the later
5834 * requires the inode to be in the log and have the log transaction committed,
5835 * while here we do not care if the log transaction was already committed - our
5836 * caller will commit the log later - and we want to avoid logging an inode
5837 * multiple times when multiple tasks have joined the same log transaction.
5839 static bool need_log_inode(struct btrfs_trans_handle *trans,
5840 struct btrfs_inode *inode)
5843 * If a directory was not modified, no dentries added or removed, we can
5844 * and should avoid logging it.
5846 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5850 * If this inode does not have new/updated/deleted xattrs since the last
5851 * time it was logged and is flagged as logged in the current transaction,
5852 * we can skip logging it. As for new/deleted names, those are updated in
5853 * the log by link/unlink/rename operations.
5854 * In case the inode was logged and then evicted and reloaded, its
5855 * logged_trans will be 0, in which case we have to fully log it since
5856 * logged_trans is a transient field, not persisted.
5858 if (inode->logged_trans == trans->transid &&
5859 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5865 struct btrfs_dir_list {
5867 struct list_head list;
5871 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5872 * details about the why it is needed.
5873 * This is a recursive operation - if an existing dentry corresponds to a
5874 * directory, that directory's new entries are logged too (same behaviour as
5875 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5876 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5877 * complains about the following circular lock dependency / possible deadlock:
5881 * lock(&type->i_mutex_dir_key#3/2);
5882 * lock(sb_internal#2);
5883 * lock(&type->i_mutex_dir_key#3/2);
5884 * lock(&sb->s_type->i_mutex_key#14);
5886 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5887 * sb_start_intwrite() in btrfs_start_transaction().
5888 * Not locking i_mutex of the inodes is still safe because:
5890 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5891 * that while logging the inode new references (names) are added or removed
5892 * from the inode, leaving the logged inode item with a link count that does
5893 * not match the number of logged inode reference items. This is fine because
5894 * at log replay time we compute the real number of links and correct the
5895 * link count in the inode item (see replay_one_buffer() and
5896 * link_to_fixup_dir());
5898 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5899 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5900 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5901 * has a size that doesn't match the sum of the lengths of all the logged
5902 * names. This does not result in a problem because if a dir_item key is
5903 * logged but its matching dir_index key is not logged, at log replay time we
5904 * don't use it to replay the respective name (see replay_one_name()). On the
5905 * other hand if only the dir_index key ends up being logged, the respective
5906 * name is added to the fs/subvol tree with both the dir_item and dir_index
5907 * keys created (see replay_one_name()).
5908 * The directory's inode item with a wrong i_size is not a problem as well,
5909 * since we don't use it at log replay time to set the i_size in the inode
5910 * item of the fs/subvol tree (see overwrite_item()).
5912 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5913 struct btrfs_root *root,
5914 struct btrfs_inode *start_inode,
5915 struct btrfs_log_ctx *ctx)
5917 struct btrfs_fs_info *fs_info = root->fs_info;
5918 struct btrfs_root *log = root->log_root;
5919 struct btrfs_path *path;
5920 LIST_HEAD(dir_list);
5921 struct btrfs_dir_list *dir_elem;
5925 * If we are logging a new name, as part of a link or rename operation,
5926 * don't bother logging new dentries, as we just want to log the names
5927 * of an inode and that any new parents exist.
5929 if (ctx->logging_new_name)
5932 path = btrfs_alloc_path();
5936 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5938 btrfs_free_path(path);
5941 dir_elem->ino = btrfs_ino(start_inode);
5942 list_add_tail(&dir_elem->list, &dir_list);
5944 while (!list_empty(&dir_list)) {
5945 struct extent_buffer *leaf;
5946 struct btrfs_key min_key;
5950 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5953 goto next_dir_inode;
5955 min_key.objectid = dir_elem->ino;
5956 min_key.type = BTRFS_DIR_ITEM_KEY;
5959 btrfs_release_path(path);
5960 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5962 goto next_dir_inode;
5963 } else if (ret > 0) {
5965 goto next_dir_inode;
5969 leaf = path->nodes[0];
5970 nritems = btrfs_header_nritems(leaf);
5971 for (i = path->slots[0]; i < nritems; i++) {
5972 struct btrfs_dir_item *di;
5973 struct btrfs_key di_key;
5974 struct inode *di_inode;
5975 struct btrfs_dir_list *new_dir_elem;
5976 int log_mode = LOG_INODE_EXISTS;
5979 btrfs_item_key_to_cpu(leaf, &min_key, i);
5980 if (min_key.objectid != dir_elem->ino ||
5981 min_key.type != BTRFS_DIR_ITEM_KEY)
5982 goto next_dir_inode;
5984 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5985 type = btrfs_dir_type(leaf, di);
5986 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5987 type != BTRFS_FT_DIR)
5989 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5990 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5993 btrfs_release_path(path);
5994 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5995 if (IS_ERR(di_inode)) {
5996 ret = PTR_ERR(di_inode);
5997 goto next_dir_inode;
6000 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6001 btrfs_add_delayed_iput(di_inode);
6005 ctx->log_new_dentries = false;
6006 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
6007 log_mode = LOG_INODE_ALL;
6008 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
6010 btrfs_add_delayed_iput(di_inode);
6012 goto next_dir_inode;
6013 if (ctx->log_new_dentries) {
6014 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
6016 if (!new_dir_elem) {
6018 goto next_dir_inode;
6020 new_dir_elem->ino = di_key.objectid;
6021 list_add_tail(&new_dir_elem->list, &dir_list);
6026 ret = btrfs_next_leaf(log, path);
6028 goto next_dir_inode;
6029 } else if (ret > 0) {
6031 goto next_dir_inode;
6035 if (min_key.offset < (u64)-1) {
6040 list_del(&dir_elem->list);
6044 btrfs_free_path(path);
6048 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6049 struct btrfs_inode *inode,
6050 struct btrfs_log_ctx *ctx)
6052 struct btrfs_fs_info *fs_info = trans->fs_info;
6054 struct btrfs_path *path;
6055 struct btrfs_key key;
6056 struct btrfs_root *root = inode->root;
6057 const u64 ino = btrfs_ino(inode);
6059 path = btrfs_alloc_path();
6062 path->skip_locking = 1;
6063 path->search_commit_root = 1;
6066 key.type = BTRFS_INODE_REF_KEY;
6068 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6073 struct extent_buffer *leaf = path->nodes[0];
6074 int slot = path->slots[0];
6079 if (slot >= btrfs_header_nritems(leaf)) {
6080 ret = btrfs_next_leaf(root, path);
6088 btrfs_item_key_to_cpu(leaf, &key, slot);
6089 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6090 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6093 item_size = btrfs_item_size_nr(leaf, slot);
6094 ptr = btrfs_item_ptr_offset(leaf, slot);
6095 while (cur_offset < item_size) {
6096 struct btrfs_key inode_key;
6097 struct inode *dir_inode;
6099 inode_key.type = BTRFS_INODE_ITEM_KEY;
6100 inode_key.offset = 0;
6102 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6103 struct btrfs_inode_extref *extref;
6105 extref = (struct btrfs_inode_extref *)
6107 inode_key.objectid = btrfs_inode_extref_parent(
6109 cur_offset += sizeof(*extref);
6110 cur_offset += btrfs_inode_extref_name_len(leaf,
6113 inode_key.objectid = key.offset;
6114 cur_offset = item_size;
6117 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6120 * If the parent inode was deleted, return an error to
6121 * fallback to a transaction commit. This is to prevent
6122 * getting an inode that was moved from one parent A to
6123 * a parent B, got its former parent A deleted and then
6124 * it got fsync'ed, from existing at both parents after
6125 * a log replay (and the old parent still existing).
6132 * mv /mnt/B/bar /mnt/A/bar
6133 * mv -T /mnt/A /mnt/B
6137 * If we ignore the old parent B which got deleted,
6138 * after a log replay we would have file bar linked
6139 * at both parents and the old parent B would still
6142 if (IS_ERR(dir_inode)) {
6143 ret = PTR_ERR(dir_inode);
6147 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6148 btrfs_add_delayed_iput(dir_inode);
6152 ctx->log_new_dentries = false;
6153 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6154 LOG_INODE_ALL, ctx);
6155 if (!ret && ctx->log_new_dentries)
6156 ret = log_new_dir_dentries(trans, root,
6157 BTRFS_I(dir_inode), ctx);
6158 btrfs_add_delayed_iput(dir_inode);
6166 btrfs_free_path(path);
6170 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6171 struct btrfs_root *root,
6172 struct btrfs_path *path,
6173 struct btrfs_log_ctx *ctx)
6175 struct btrfs_key found_key;
6177 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6180 struct btrfs_fs_info *fs_info = root->fs_info;
6181 struct extent_buffer *leaf = path->nodes[0];
6182 int slot = path->slots[0];
6183 struct btrfs_key search_key;
6184 struct inode *inode;
6188 btrfs_release_path(path);
6190 ino = found_key.offset;
6192 search_key.objectid = found_key.offset;
6193 search_key.type = BTRFS_INODE_ITEM_KEY;
6194 search_key.offset = 0;
6195 inode = btrfs_iget(fs_info->sb, ino, root);
6197 return PTR_ERR(inode);
6199 if (BTRFS_I(inode)->generation >= trans->transid &&
6200 need_log_inode(trans, BTRFS_I(inode)))
6201 ret = btrfs_log_inode(trans, BTRFS_I(inode),
6202 LOG_INODE_EXISTS, ctx);
6203 btrfs_add_delayed_iput(inode);
6207 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6210 search_key.type = BTRFS_INODE_REF_KEY;
6211 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6215 leaf = path->nodes[0];
6216 slot = path->slots[0];
6217 if (slot >= btrfs_header_nritems(leaf)) {
6218 ret = btrfs_next_leaf(root, path);
6223 leaf = path->nodes[0];
6224 slot = path->slots[0];
6227 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6228 if (found_key.objectid != search_key.objectid ||
6229 found_key.type != BTRFS_INODE_REF_KEY)
6235 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6236 struct btrfs_inode *inode,
6237 struct dentry *parent,
6238 struct btrfs_log_ctx *ctx)
6240 struct btrfs_root *root = inode->root;
6241 struct dentry *old_parent = NULL;
6242 struct super_block *sb = inode->vfs_inode.i_sb;
6246 if (!parent || d_really_is_negative(parent) ||
6250 inode = BTRFS_I(d_inode(parent));
6251 if (root != inode->root)
6254 if (inode->generation >= trans->transid &&
6255 need_log_inode(trans, inode)) {
6256 ret = btrfs_log_inode(trans, inode,
6257 LOG_INODE_EXISTS, ctx);
6261 if (IS_ROOT(parent))
6264 parent = dget_parent(parent);
6266 old_parent = parent;
6273 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6274 struct btrfs_inode *inode,
6275 struct dentry *parent,
6276 struct btrfs_log_ctx *ctx)
6278 struct btrfs_root *root = inode->root;
6279 const u64 ino = btrfs_ino(inode);
6280 struct btrfs_path *path;
6281 struct btrfs_key search_key;
6285 * For a single hard link case, go through a fast path that does not
6286 * need to iterate the fs/subvolume tree.
6288 if (inode->vfs_inode.i_nlink < 2)
6289 return log_new_ancestors_fast(trans, inode, parent, ctx);
6291 path = btrfs_alloc_path();
6295 search_key.objectid = ino;
6296 search_key.type = BTRFS_INODE_REF_KEY;
6297 search_key.offset = 0;
6299 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6306 struct extent_buffer *leaf = path->nodes[0];
6307 int slot = path->slots[0];
6308 struct btrfs_key found_key;
6310 if (slot >= btrfs_header_nritems(leaf)) {
6311 ret = btrfs_next_leaf(root, path);
6319 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6320 if (found_key.objectid != ino ||
6321 found_key.type > BTRFS_INODE_EXTREF_KEY)
6325 * Don't deal with extended references because they are rare
6326 * cases and too complex to deal with (we would need to keep
6327 * track of which subitem we are processing for each item in
6328 * this loop, etc). So just return some error to fallback to
6329 * a transaction commit.
6331 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6337 * Logging ancestors needs to do more searches on the fs/subvol
6338 * tree, so it releases the path as needed to avoid deadlocks.
6339 * Keep track of the last inode ref key and resume from that key
6340 * after logging all new ancestors for the current hard link.
6342 memcpy(&search_key, &found_key, sizeof(search_key));
6344 ret = log_new_ancestors(trans, root, path, ctx);
6347 btrfs_release_path(path);
6352 btrfs_free_path(path);
6357 * helper function around btrfs_log_inode to make sure newly created
6358 * parent directories also end up in the log. A minimal inode and backref
6359 * only logging is done of any parent directories that are older than
6360 * the last committed transaction
6362 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6363 struct btrfs_inode *inode,
6364 struct dentry *parent,
6366 struct btrfs_log_ctx *ctx)
6368 struct btrfs_root *root = inode->root;
6369 struct btrfs_fs_info *fs_info = root->fs_info;
6371 bool log_dentries = false;
6373 if (btrfs_test_opt(fs_info, NOTREELOG)) {
6378 if (btrfs_root_refs(&root->root_item) == 0) {
6384 * Skip already logged inodes or inodes corresponding to tmpfiles
6385 * (since logging them is pointless, a link count of 0 means they
6386 * will never be accessible).
6388 if ((btrfs_inode_in_log(inode, trans->transid) &&
6389 list_empty(&ctx->ordered_extents)) ||
6390 inode->vfs_inode.i_nlink == 0) {
6391 ret = BTRFS_NO_LOG_SYNC;
6395 ret = start_log_trans(trans, root, ctx);
6399 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
6404 * for regular files, if its inode is already on disk, we don't
6405 * have to worry about the parents at all. This is because
6406 * we can use the last_unlink_trans field to record renames
6407 * and other fun in this file.
6409 if (S_ISREG(inode->vfs_inode.i_mode) &&
6410 inode->generation < trans->transid &&
6411 inode->last_unlink_trans < trans->transid) {
6416 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
6417 log_dentries = true;
6420 * On unlink we must make sure all our current and old parent directory
6421 * inodes are fully logged. This is to prevent leaving dangling
6422 * directory index entries in directories that were our parents but are
6423 * not anymore. Not doing this results in old parent directory being
6424 * impossible to delete after log replay (rmdir will always fail with
6425 * error -ENOTEMPTY).
6431 * ln testdir/foo testdir/bar
6433 * unlink testdir/bar
6434 * xfs_io -c fsync testdir/foo
6436 * mount fs, triggers log replay
6438 * If we don't log the parent directory (testdir), after log replay the
6439 * directory still has an entry pointing to the file inode using the bar
6440 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6441 * the file inode has a link count of 1.
6447 * ln foo testdir/foo2
6448 * ln foo testdir/foo3
6450 * unlink testdir/foo3
6451 * xfs_io -c fsync foo
6453 * mount fs, triggers log replay
6455 * Similar as the first example, after log replay the parent directory
6456 * testdir still has an entry pointing to the inode file with name foo3
6457 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6458 * and has a link count of 2.
6460 if (inode->last_unlink_trans >= trans->transid) {
6461 ret = btrfs_log_all_parents(trans, inode, ctx);
6466 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6471 ret = log_new_dir_dentries(trans, root, inode, ctx);
6476 btrfs_set_log_full_commit(trans);
6481 btrfs_remove_log_ctx(root, ctx);
6482 btrfs_end_log_trans(root);
6488 * it is not safe to log dentry if the chunk root has added new
6489 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6490 * If this returns 1, you must commit the transaction to safely get your
6493 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6494 struct dentry *dentry,
6495 struct btrfs_log_ctx *ctx)
6497 struct dentry *parent = dget_parent(dentry);
6500 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6501 LOG_INODE_ALL, ctx);
6508 * should be called during mount to recover any replay any log trees
6511 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6514 struct btrfs_path *path;
6515 struct btrfs_trans_handle *trans;
6516 struct btrfs_key key;
6517 struct btrfs_key found_key;
6518 struct btrfs_root *log;
6519 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6520 struct walk_control wc = {
6521 .process_func = process_one_buffer,
6522 .stage = LOG_WALK_PIN_ONLY,
6525 path = btrfs_alloc_path();
6529 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6531 trans = btrfs_start_transaction(fs_info->tree_root, 0);
6532 if (IS_ERR(trans)) {
6533 ret = PTR_ERR(trans);
6540 ret = walk_log_tree(trans, log_root_tree, &wc);
6542 btrfs_abort_transaction(trans, ret);
6547 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6548 key.offset = (u64)-1;
6549 key.type = BTRFS_ROOT_ITEM_KEY;
6552 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6555 btrfs_abort_transaction(trans, ret);
6559 if (path->slots[0] == 0)
6563 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6565 btrfs_release_path(path);
6566 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6569 log = btrfs_read_tree_root(log_root_tree, &found_key);
6572 btrfs_abort_transaction(trans, ret);
6576 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6578 if (IS_ERR(wc.replay_dest)) {
6579 ret = PTR_ERR(wc.replay_dest);
6582 * We didn't find the subvol, likely because it was
6583 * deleted. This is ok, simply skip this log and go to
6586 * We need to exclude the root because we can't have
6587 * other log replays overwriting this log as we'll read
6588 * it back in a few more times. This will keep our
6589 * block from being modified, and we'll just bail for
6590 * each subsequent pass.
6593 ret = btrfs_pin_extent_for_log_replay(trans,
6596 btrfs_put_root(log);
6600 btrfs_abort_transaction(trans, ret);
6604 wc.replay_dest->log_root = log;
6605 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6607 /* The loop needs to continue due to the root refs */
6608 btrfs_abort_transaction(trans, ret);
6610 ret = walk_log_tree(trans, log, &wc);
6612 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6613 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6616 btrfs_abort_transaction(trans, ret);
6619 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6620 struct btrfs_root *root = wc.replay_dest;
6622 btrfs_release_path(path);
6625 * We have just replayed everything, and the highest
6626 * objectid of fs roots probably has changed in case
6627 * some inode_item's got replayed.
6629 * root->objectid_mutex is not acquired as log replay
6630 * could only happen during mount.
6632 ret = btrfs_init_root_free_objectid(root);
6634 btrfs_abort_transaction(trans, ret);
6637 wc.replay_dest->log_root = NULL;
6638 btrfs_put_root(wc.replay_dest);
6639 btrfs_put_root(log);
6644 if (found_key.offset == 0)
6646 key.offset = found_key.offset - 1;
6648 btrfs_release_path(path);
6650 /* step one is to pin it all, step two is to replay just inodes */
6653 wc.process_func = replay_one_buffer;
6654 wc.stage = LOG_WALK_REPLAY_INODES;
6657 /* step three is to replay everything */
6658 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6663 btrfs_free_path(path);
6665 /* step 4: commit the transaction, which also unpins the blocks */
6666 ret = btrfs_commit_transaction(trans);
6670 log_root_tree->log_root = NULL;
6671 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6672 btrfs_put_root(log_root_tree);
6677 btrfs_end_transaction(wc.trans);
6678 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6679 btrfs_free_path(path);
6684 * there are some corner cases where we want to force a full
6685 * commit instead of allowing a directory to be logged.
6687 * They revolve around files there were unlinked from the directory, and
6688 * this function updates the parent directory so that a full commit is
6689 * properly done if it is fsync'd later after the unlinks are done.
6691 * Must be called before the unlink operations (updates to the subvolume tree,
6692 * inodes, etc) are done.
6694 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6695 struct btrfs_inode *dir, struct btrfs_inode *inode,
6699 * when we're logging a file, if it hasn't been renamed
6700 * or unlinked, and its inode is fully committed on disk,
6701 * we don't have to worry about walking up the directory chain
6702 * to log its parents.
6704 * So, we use the last_unlink_trans field to put this transid
6705 * into the file. When the file is logged we check it and
6706 * don't log the parents if the file is fully on disk.
6708 mutex_lock(&inode->log_mutex);
6709 inode->last_unlink_trans = trans->transid;
6710 mutex_unlock(&inode->log_mutex);
6713 * if this directory was already logged any new
6714 * names for this file/dir will get recorded
6716 if (dir->logged_trans == trans->transid)
6720 * if the inode we're about to unlink was logged,
6721 * the log will be properly updated for any new names
6723 if (inode->logged_trans == trans->transid)
6727 * when renaming files across directories, if the directory
6728 * there we're unlinking from gets fsync'd later on, there's
6729 * no way to find the destination directory later and fsync it
6730 * properly. So, we have to be conservative and force commits
6731 * so the new name gets discovered.
6736 /* we can safely do the unlink without any special recording */
6740 mutex_lock(&dir->log_mutex);
6741 dir->last_unlink_trans = trans->transid;
6742 mutex_unlock(&dir->log_mutex);
6746 * Make sure that if someone attempts to fsync the parent directory of a deleted
6747 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6748 * that after replaying the log tree of the parent directory's root we will not
6749 * see the snapshot anymore and at log replay time we will not see any log tree
6750 * corresponding to the deleted snapshot's root, which could lead to replaying
6751 * it after replaying the log tree of the parent directory (which would replay
6752 * the snapshot delete operation).
6754 * Must be called before the actual snapshot destroy operation (updates to the
6755 * parent root and tree of tree roots trees, etc) are done.
6757 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6758 struct btrfs_inode *dir)
6760 mutex_lock(&dir->log_mutex);
6761 dir->last_unlink_trans = trans->transid;
6762 mutex_unlock(&dir->log_mutex);
6766 * Call this after adding a new name for a file and it will properly
6767 * update the log to reflect the new name.
6769 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6770 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6771 struct dentry *parent)
6773 struct btrfs_log_ctx ctx;
6776 * this will force the logging code to walk the dentry chain
6779 if (!S_ISDIR(inode->vfs_inode.i_mode))
6780 inode->last_unlink_trans = trans->transid;
6783 * if this inode hasn't been logged and directory we're renaming it
6784 * from hasn't been logged, we don't need to log it
6786 if (!inode_logged(trans, inode) &&
6787 (!old_dir || !inode_logged(trans, old_dir)))
6791 * If we are doing a rename (old_dir is not NULL) from a directory that
6792 * was previously logged, make sure the next log attempt on the directory
6793 * is not skipped and logs the inode again. This is because the log may
6794 * not currently be authoritative for a range including the old
6795 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6796 * sure after a log replay we do not end up with both the new and old
6797 * dentries around (in case the inode is a directory we would have a
6798 * directory with two hard links and 2 inode references for different
6799 * parents). The next log attempt of old_dir will happen at
6800 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6801 * below, because we have previously set inode->last_unlink_trans to the
6802 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6803 * case inode is a directory.
6806 old_dir->logged_trans = 0;
6808 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6809 ctx.logging_new_name = true;
6811 * We don't care about the return value. If we fail to log the new name
6812 * then we know the next attempt to sync the log will fallback to a full
6813 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6814 * we don't need to worry about getting a log committed that has an
6815 * inconsistent state after a rename operation.
6817 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);