1 // SPDX-License-Identifier: GPL-2.0
3 //! Extensions to [`Vec`] for fallible allocations.
5 use super::{AllocError, Flags};
9 /// Extensions to [`Vec`].
10 pub trait VecExt<T>: Sized {
11 /// Creates a new [`Vec`] instance with at least the given capacity.
16 /// let v = Vec::<u32>::with_capacity(20, GFP_KERNEL)?;
18 /// assert!(v.capacity() >= 20);
19 /// # Ok::<(), Error>(())
21 fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError>;
23 /// Appends an element to the back of the [`Vec`] instance.
28 /// let mut v = Vec::new();
29 /// v.push(1, GFP_KERNEL)?;
30 /// assert_eq!(&v, &[1]);
32 /// v.push(2, GFP_KERNEL)?;
33 /// assert_eq!(&v, &[1, 2]);
34 /// # Ok::<(), Error>(())
36 fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError>;
38 /// Pushes clones of the elements of slice into the [`Vec`] instance.
43 /// let mut v = Vec::new();
44 /// v.push(1, GFP_KERNEL)?;
46 /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
47 /// assert_eq!(&v, &[1, 20, 30, 40]);
49 /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
50 /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
51 /// # Ok::<(), Error>(())
53 fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
57 /// Ensures that the capacity exceeds the length by at least `additional` elements.
62 /// let mut v = Vec::new();
63 /// v.push(1, GFP_KERNEL)?;
65 /// v.reserve(10, GFP_KERNEL)?;
66 /// let cap = v.capacity();
67 /// assert!(cap >= 10);
69 /// v.reserve(10, GFP_KERNEL)?;
70 /// let new_cap = v.capacity();
71 /// assert_eq!(new_cap, cap);
73 /// # Ok::<(), Error>(())
75 fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError>;
78 impl<T> VecExt<T> for Vec<T> {
79 fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
80 let mut v = Vec::new();
81 <Self as VecExt<_>>::reserve(&mut v, capacity, flags)?;
85 fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
86 <Self as VecExt<_>>::reserve(self, 1, flags)?;
87 let s = self.spare_capacity_mut();
90 // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
91 // by 1. We also know that the new length is <= capacity because of the previous call to
93 unsafe { self.set_len(self.len() + 1) };
97 fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
101 <Self as VecExt<_>>::reserve(self, other.len(), flags)?;
102 for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
103 slot.write(item.clone());
106 // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase
107 // the length by the same amount. We also know that the new length is <= capacity because
108 // of the previous call to `reserve` above.
109 unsafe { self.set_len(self.len() + other.len()) };
113 #[cfg(any(test, testlib))]
114 fn reserve(&mut self, additional: usize, _flags: Flags) -> Result<(), AllocError> {
115 Vec::reserve(self, additional);
119 #[cfg(not(any(test, testlib)))]
120 fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
121 let len = self.len();
122 let cap = self.capacity();
124 if cap - len >= additional {
128 if core::mem::size_of::<T>() == 0 {
129 // The capacity is already `usize::MAX` for SZTs, we can't go higher.
130 return Err(AllocError);
133 // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size
134 // is greater than `isize::MAX`. So the multiplication by two won't overflow.
135 let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
136 let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
138 let (old_ptr, len, cap) = destructure(self);
140 // We need to make sure that `ptr` is either NULL or comes from a previous call to
141 // `krealloc_aligned`. A `Vec<T>`'s `ptr` value is not guaranteed to be NULL and might be
142 // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T>`'s capacity
143 // to be zero if no memory has been allocated yet.
144 let ptr = if cap == 0 { ptr::null_mut() } else { old_ptr };
146 // SAFETY: `ptr` is valid because it's either NULL or comes from a previous call to
147 // `krealloc_aligned`. We also verified that the type is not a ZST.
148 let new_ptr = unsafe { super::allocator::krealloc_aligned(ptr.cast(), layout, flags) };
149 if new_ptr.is_null() {
150 // SAFETY: We are just rebuilding the existing `Vec` with no changes.
151 unsafe { rebuild(self, old_ptr, len, cap) };
154 // SAFETY: `ptr` has been reallocated with the layout for `new_cap` elements. New cap
155 // is greater than `cap`, so it continues to be >= `len`.
156 unsafe { rebuild(self, new_ptr.cast::<T>(), len, new_cap) };
162 #[cfg(not(any(test, testlib)))]
163 fn destructure<T>(v: &mut Vec<T>) -> (*mut T, usize, usize) {
164 let mut tmp = Vec::new();
165 core::mem::swap(&mut tmp, v);
166 let mut tmp = core::mem::ManuallyDrop::new(tmp);
168 let cap = tmp.capacity();
169 (tmp.as_mut_ptr(), len, cap)
172 /// Rebuilds a `Vec` from a pointer, length, and capacity.
176 /// The same as [`Vec::from_raw_parts`].
177 #[cfg(not(any(test, testlib)))]
178 unsafe fn rebuild<T>(v: &mut Vec<T>, ptr: *mut T, len: usize, cap: usize) {
179 // SAFETY: The safety requirements from this function satisfy those of `from_raw_parts`.
180 let mut tmp = unsafe { Vec::from_raw_parts(ptr, len, cap) };
181 core::mem::swap(&mut tmp, v);