1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
37 #define pr_fmt(fmt) "Memory failure: " fmt
39 #include <linux/kernel.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
65 #include "ras/ras_event.h"
67 static int sysctl_memory_failure_early_kill __read_mostly;
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
73 static bool hw_memory_failure __read_mostly = false;
75 static DEFINE_MUTEX(mf_mutex);
77 void num_poisoned_pages_inc(unsigned long pfn)
79 atomic_long_inc(&num_poisoned_pages);
80 memblk_nr_poison_inc(pfn);
83 void num_poisoned_pages_sub(unsigned long pfn, long i)
85 atomic_long_sub(i, &num_poisoned_pages);
87 memblk_nr_poison_sub(pfn, i);
91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92 * @_name: name of the file in the per NUMA sysfs directory.
94 #define MF_ATTR_RO(_name) \
95 static ssize_t _name##_show(struct device *dev, \
96 struct device_attribute *attr, \
99 struct memory_failure_stats *mf_stats = \
100 &NODE_DATA(dev->id)->mf_stats; \
101 return sprintf(buf, "%lu\n", mf_stats->_name); \
103 static DEVICE_ATTR_RO(_name)
109 MF_ATTR_RO(recovered);
111 static struct attribute *memory_failure_attr[] = {
112 &dev_attr_total.attr,
113 &dev_attr_ignored.attr,
114 &dev_attr_failed.attr,
115 &dev_attr_delayed.attr,
116 &dev_attr_recovered.attr,
120 const struct attribute_group memory_failure_attr_group = {
121 .name = "memory_failure",
122 .attrs = memory_failure_attr,
125 static struct ctl_table memory_failure_table[] = {
127 .procname = "memory_failure_early_kill",
128 .data = &sysctl_memory_failure_early_kill,
129 .maxlen = sizeof(sysctl_memory_failure_early_kill),
131 .proc_handler = proc_dointvec_minmax,
132 .extra1 = SYSCTL_ZERO,
133 .extra2 = SYSCTL_ONE,
136 .procname = "memory_failure_recovery",
137 .data = &sysctl_memory_failure_recovery,
138 .maxlen = sizeof(sysctl_memory_failure_recovery),
140 .proc_handler = proc_dointvec_minmax,
141 .extra1 = SYSCTL_ZERO,
142 .extra2 = SYSCTL_ONE,
148 * 1: the page is dissolved (if needed) and taken off from buddy,
149 * 0: the page is dissolved (if needed) and not taken off from buddy,
150 * < 0: failed to dissolve.
152 static int __page_handle_poison(struct page *page)
157 * zone_pcp_disable() can't be used here. It will
158 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
159 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
160 * optimization is enabled. This will break current lock dependency
161 * chain and leads to deadlock.
162 * Disabling pcp before dissolving the page was a deterministic
163 * approach because we made sure that those pages cannot end up in any
164 * PCP list. Draining PCP lists expels those pages to the buddy system,
165 * but nothing guarantees that those pages do not get back to a PCP
166 * queue if we need to refill those.
168 ret = dissolve_free_hugetlb_folio(page_folio(page));
170 drain_all_pages(page_zone(page));
171 ret = take_page_off_buddy(page);
177 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
179 if (hugepage_or_freepage) {
181 * Doing this check for free pages is also fine since
182 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
184 if (__page_handle_poison(page) <= 0)
186 * We could fail to take off the target page from buddy
187 * for example due to racy page allocation, but that's
188 * acceptable because soft-offlined page is not broken
189 * and if someone really want to use it, they should
195 SetPageHWPoison(page);
199 num_poisoned_pages_inc(page_to_pfn(page));
204 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
206 u32 hwpoison_filter_enable = 0;
207 u32 hwpoison_filter_dev_major = ~0U;
208 u32 hwpoison_filter_dev_minor = ~0U;
209 u64 hwpoison_filter_flags_mask;
210 u64 hwpoison_filter_flags_value;
211 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
212 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
213 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
214 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
215 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
217 static int hwpoison_filter_dev(struct page *p)
219 struct folio *folio = page_folio(p);
220 struct address_space *mapping;
223 if (hwpoison_filter_dev_major == ~0U &&
224 hwpoison_filter_dev_minor == ~0U)
227 mapping = folio_mapping(folio);
228 if (mapping == NULL || mapping->host == NULL)
231 dev = mapping->host->i_sb->s_dev;
232 if (hwpoison_filter_dev_major != ~0U &&
233 hwpoison_filter_dev_major != MAJOR(dev))
235 if (hwpoison_filter_dev_minor != ~0U &&
236 hwpoison_filter_dev_minor != MINOR(dev))
242 static int hwpoison_filter_flags(struct page *p)
244 if (!hwpoison_filter_flags_mask)
247 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
248 hwpoison_filter_flags_value)
255 * This allows stress tests to limit test scope to a collection of tasks
256 * by putting them under some memcg. This prevents killing unrelated/important
257 * processes such as /sbin/init. Note that the target task may share clean
258 * pages with init (eg. libc text), which is harmless. If the target task
259 * share _dirty_ pages with another task B, the test scheme must make sure B
260 * is also included in the memcg. At last, due to race conditions this filter
261 * can only guarantee that the page either belongs to the memcg tasks, or is
265 u64 hwpoison_filter_memcg;
266 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
267 static int hwpoison_filter_task(struct page *p)
269 if (!hwpoison_filter_memcg)
272 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
278 static int hwpoison_filter_task(struct page *p) { return 0; }
281 int hwpoison_filter(struct page *p)
283 if (!hwpoison_filter_enable)
286 if (hwpoison_filter_dev(p))
289 if (hwpoison_filter_flags(p))
292 if (hwpoison_filter_task(p))
298 int hwpoison_filter(struct page *p)
304 EXPORT_SYMBOL_GPL(hwpoison_filter);
307 * Kill all processes that have a poisoned page mapped and then isolate
311 * Find all processes having the page mapped and kill them.
312 * But we keep a page reference around so that the page is not
313 * actually freed yet.
314 * Then stash the page away
316 * There's no convenient way to get back to mapped processes
317 * from the VMAs. So do a brute-force search over all
320 * Remember that machine checks are not common (or rather
321 * if they are common you have other problems), so this shouldn't
322 * be a performance issue.
324 * Also there are some races possible while we get from the
325 * error detection to actually handle it.
330 struct task_struct *tsk;
336 * Send all the processes who have the page mapped a signal.
337 * ``action optional'' if they are not immediately affected by the error
338 * ``action required'' if error happened in current execution context
340 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
342 struct task_struct *t = tk->tsk;
343 short addr_lsb = tk->size_shift;
346 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
347 pfn, t->comm, t->pid);
349 if ((flags & MF_ACTION_REQUIRED) && (t == current))
350 ret = force_sig_mceerr(BUS_MCEERR_AR,
351 (void __user *)tk->addr, addr_lsb);
354 * Signal other processes sharing the page if they have
356 * Don't use force here, it's convenient if the signal
357 * can be temporarily blocked.
358 * This could cause a loop when the user sets SIGBUS
359 * to SIG_IGN, but hopefully no one will do that?
361 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
364 pr_info("Error sending signal to %s:%d: %d\n",
365 t->comm, t->pid, ret);
370 * Unknown page type encountered. Try to check whether it can turn PageLRU by
373 void shake_folio(struct folio *folio)
375 if (folio_test_hugetlb(folio))
378 * TODO: Could shrink slab caches here if a lightweight range-based
379 * shrinker will be available.
381 if (folio_test_slab(folio))
386 EXPORT_SYMBOL_GPL(shake_folio);
388 static void shake_page(struct page *page)
390 shake_folio(page_folio(page));
393 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
394 unsigned long address)
396 unsigned long ret = 0;
404 VM_BUG_ON_VMA(address == -EFAULT, vma);
405 pgd = pgd_offset(vma->vm_mm, address);
406 if (!pgd_present(*pgd))
408 p4d = p4d_offset(pgd, address);
409 if (!p4d_present(*p4d))
411 pud = pud_offset(p4d, address);
412 if (!pud_present(*pud))
414 if (pud_devmap(*pud))
416 pmd = pmd_offset(pud, address);
417 if (!pmd_present(*pmd))
419 if (pmd_devmap(*pmd))
421 pte = pte_offset_map(pmd, address);
424 ptent = ptep_get(pte);
425 if (pte_present(ptent) && pte_devmap(ptent))
432 * Failure handling: if we can't find or can't kill a process there's
433 * not much we can do. We just print a message and ignore otherwise.
437 * Schedule a process for later kill.
438 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
440 static void __add_to_kill(struct task_struct *tsk, struct page *p,
441 struct vm_area_struct *vma, struct list_head *to_kill,
446 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
448 pr_err("Out of memory while machine check handling\n");
453 if (is_zone_device_page(p))
454 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
456 tk->size_shift = page_shift(compound_head(p));
459 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
460 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
461 * so "tk->size_shift == 0" effectively checks no mapping on
462 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
463 * to a process' address space, it's possible not all N VMAs
464 * contain mappings for the page, but at least one VMA does.
465 * Only deliver SIGBUS with payload derived from the VMA that
466 * has a mapping for the page.
468 if (tk->addr == -EFAULT) {
469 pr_info("Unable to find user space address %lx in %s\n",
470 page_to_pfn(p), tsk->comm);
471 } else if (tk->size_shift == 0) {
476 get_task_struct(tsk);
478 list_add_tail(&tk->nd, to_kill);
481 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
482 struct vm_area_struct *vma, struct list_head *to_kill,
487 __add_to_kill(tsk, p, vma, to_kill, addr);
491 static bool task_in_to_kill_list(struct list_head *to_kill,
492 struct task_struct *tsk)
494 struct to_kill *tk, *next;
496 list_for_each_entry_safe(tk, next, to_kill, nd) {
504 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
505 struct vm_area_struct *vma, struct list_head *to_kill,
508 if (!task_in_to_kill_list(to_kill, tsk))
509 __add_to_kill(tsk, p, vma, to_kill, addr);
513 * Kill the processes that have been collected earlier.
515 * Only do anything when FORCEKILL is set, otherwise just free the
516 * list (this is used for clean pages which do not need killing)
517 * Also when FAIL is set do a force kill because something went
520 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
521 unsigned long pfn, int flags)
523 struct to_kill *tk, *next;
525 list_for_each_entry_safe(tk, next, to_kill, nd) {
528 * In case something went wrong with munmapping
529 * make sure the process doesn't catch the
530 * signal and then access the memory. Just kill it.
532 if (fail || tk->addr == -EFAULT) {
533 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
534 pfn, tk->tsk->comm, tk->tsk->pid);
535 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
536 tk->tsk, PIDTYPE_PID);
540 * In theory the process could have mapped
541 * something else on the address in-between. We could
542 * check for that, but we need to tell the
545 else if (kill_proc(tk, pfn, flags) < 0)
546 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
547 pfn, tk->tsk->comm, tk->tsk->pid);
550 put_task_struct(tk->tsk);
556 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
557 * on behalf of the thread group. Return task_struct of the (first found)
558 * dedicated thread if found, and return NULL otherwise.
560 * We already hold rcu lock in the caller, so we don't have to call
561 * rcu_read_lock/unlock() in this function.
563 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565 struct task_struct *t;
567 for_each_thread(tsk, t) {
568 if (t->flags & PF_MCE_PROCESS) {
569 if (t->flags & PF_MCE_EARLY)
572 if (sysctl_memory_failure_early_kill)
580 * Determine whether a given process is "early kill" process which expects
581 * to be signaled when some page under the process is hwpoisoned.
582 * Return task_struct of the dedicated thread (main thread unless explicitly
583 * specified) if the process is "early kill" and otherwise returns NULL.
585 * Note that the above is true for Action Optional case. For Action Required
586 * case, it's only meaningful to the current thread which need to be signaled
587 * with SIGBUS, this error is Action Optional for other non current
588 * processes sharing the same error page,if the process is "early kill", the
589 * task_struct of the dedicated thread will also be returned.
591 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
596 * Comparing ->mm here because current task might represent
597 * a subthread, while tsk always points to the main thread.
599 if (force_early && tsk->mm == current->mm)
602 return find_early_kill_thread(tsk);
606 * Collect processes when the error hit an anonymous page.
608 static void collect_procs_anon(struct folio *folio, struct page *page,
609 struct list_head *to_kill, int force_early)
611 struct task_struct *tsk;
615 av = folio_lock_anon_vma_read(folio, NULL);
616 if (av == NULL) /* Not actually mapped anymore */
619 pgoff = page_to_pgoff(page);
621 for_each_process(tsk) {
622 struct vm_area_struct *vma;
623 struct anon_vma_chain *vmac;
624 struct task_struct *t = task_early_kill(tsk, force_early);
629 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
632 if (vma->vm_mm != t->mm)
634 addr = page_mapped_in_vma(page, vma);
635 add_to_kill_anon_file(t, page, vma, to_kill, addr);
639 anon_vma_unlock_read(av);
643 * Collect processes when the error hit a file mapped page.
645 static void collect_procs_file(struct folio *folio, struct page *page,
646 struct list_head *to_kill, int force_early)
648 struct vm_area_struct *vma;
649 struct task_struct *tsk;
650 struct address_space *mapping = folio->mapping;
653 i_mmap_lock_read(mapping);
655 pgoff = page_to_pgoff(page);
656 for_each_process(tsk) {
657 struct task_struct *t = task_early_kill(tsk, force_early);
662 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
665 * Send early kill signal to tasks where a vma covers
666 * the page but the corrupted page is not necessarily
668 * Assume applications who requested early kill want
669 * to be informed of all such data corruptions.
671 if (vma->vm_mm != t->mm)
673 addr = page_address_in_vma(page, vma);
674 add_to_kill_anon_file(t, page, vma, to_kill, addr);
678 i_mmap_unlock_read(mapping);
682 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
683 struct vm_area_struct *vma,
684 struct list_head *to_kill, pgoff_t pgoff)
686 unsigned long addr = vma_address(vma, pgoff, 1);
687 __add_to_kill(tsk, p, vma, to_kill, addr);
691 * Collect processes when the error hit a fsdax page.
693 static void collect_procs_fsdax(struct page *page,
694 struct address_space *mapping, pgoff_t pgoff,
695 struct list_head *to_kill, bool pre_remove)
697 struct vm_area_struct *vma;
698 struct task_struct *tsk;
700 i_mmap_lock_read(mapping);
702 for_each_process(tsk) {
703 struct task_struct *t = tsk;
706 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
707 * the current may not be the one accessing the fsdax page.
708 * Otherwise, search for the current task.
711 t = task_early_kill(tsk, true);
714 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
715 if (vma->vm_mm == t->mm)
716 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
720 i_mmap_unlock_read(mapping);
722 #endif /* CONFIG_FS_DAX */
725 * Collect the processes who have the corrupted page mapped to kill.
727 static void collect_procs(struct folio *folio, struct page *page,
728 struct list_head *tokill, int force_early)
732 if (unlikely(folio_test_ksm(folio)))
733 collect_procs_ksm(folio, page, tokill, force_early);
734 else if (folio_test_anon(folio))
735 collect_procs_anon(folio, page, tokill, force_early);
737 collect_procs_file(folio, page, tokill, force_early);
740 struct hwpoison_walk {
746 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
749 tk->size_shift = shift;
752 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
753 unsigned long poisoned_pfn, struct to_kill *tk)
755 unsigned long pfn = 0;
757 if (pte_present(pte)) {
760 swp_entry_t swp = pte_to_swp_entry(pte);
762 if (is_hwpoison_entry(swp))
763 pfn = swp_offset_pfn(swp);
766 if (!pfn || pfn != poisoned_pfn)
769 set_to_kill(tk, addr, shift);
773 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
774 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
775 struct hwpoison_walk *hwp)
779 unsigned long hwpoison_vaddr;
781 if (!pmd_present(pmd))
784 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
785 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
786 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
792 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
793 struct hwpoison_walk *hwp)
799 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
800 unsigned long end, struct mm_walk *walk)
802 struct hwpoison_walk *hwp = walk->private;
804 pte_t *ptep, *mapped_pte;
807 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
809 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
814 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
819 for (; addr != end; ptep++, addr += PAGE_SIZE) {
820 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
825 pte_unmap_unlock(mapped_pte, ptl);
831 #ifdef CONFIG_HUGETLB_PAGE
832 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
833 unsigned long addr, unsigned long end,
834 struct mm_walk *walk)
836 struct hwpoison_walk *hwp = walk->private;
837 pte_t pte = huge_ptep_get(ptep);
838 struct hstate *h = hstate_vma(walk->vma);
840 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
844 #define hwpoison_hugetlb_range NULL
847 static const struct mm_walk_ops hwpoison_walk_ops = {
848 .pmd_entry = hwpoison_pte_range,
849 .hugetlb_entry = hwpoison_hugetlb_range,
850 .walk_lock = PGWALK_RDLOCK,
854 * Sends SIGBUS to the current process with error info.
856 * This function is intended to handle "Action Required" MCEs on already
857 * hardware poisoned pages. They could happen, for example, when
858 * memory_failure() failed to unmap the error page at the first call, or
859 * when multiple local machine checks happened on different CPUs.
861 * MCE handler currently has no easy access to the error virtual address,
862 * so this function walks page table to find it. The returned virtual address
863 * is proper in most cases, but it could be wrong when the application
864 * process has multiple entries mapping the error page.
866 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
870 struct hwpoison_walk priv = {
878 mmap_read_lock(p->mm);
879 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
881 if (ret == 1 && priv.tk.addr)
882 kill_proc(&priv.tk, pfn, flags);
885 mmap_read_unlock(p->mm);
886 return ret > 0 ? -EHWPOISON : -EFAULT;
889 static const char *action_name[] = {
890 [MF_IGNORED] = "Ignored",
891 [MF_FAILED] = "Failed",
892 [MF_DELAYED] = "Delayed",
893 [MF_RECOVERED] = "Recovered",
896 static const char * const action_page_types[] = {
897 [MF_MSG_KERNEL] = "reserved kernel page",
898 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
899 [MF_MSG_SLAB] = "kernel slab page",
900 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
901 [MF_MSG_HUGE] = "huge page",
902 [MF_MSG_FREE_HUGE] = "free huge page",
903 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
904 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
905 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
906 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
907 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
908 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
909 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
910 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
911 [MF_MSG_CLEAN_LRU] = "clean LRU page",
912 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
913 [MF_MSG_BUDDY] = "free buddy page",
914 [MF_MSG_DAX] = "dax page",
915 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
916 [MF_MSG_UNKNOWN] = "unknown page",
920 * XXX: It is possible that a page is isolated from LRU cache,
921 * and then kept in swap cache or failed to remove from page cache.
922 * The page count will stop it from being freed by unpoison.
923 * Stress tests should be aware of this memory leak problem.
925 static int delete_from_lru_cache(struct folio *folio)
927 if (folio_isolate_lru(folio)) {
929 * Clear sensible page flags, so that the buddy system won't
930 * complain when the folio is unpoison-and-freed.
932 folio_clear_active(folio);
933 folio_clear_unevictable(folio);
936 * Poisoned page might never drop its ref count to 0 so we have
937 * to uncharge it manually from its memcg.
939 mem_cgroup_uncharge(folio);
942 * drop the refcount elevated by folio_isolate_lru()
950 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
951 struct address_space *mapping)
955 if (mapping->a_ops->error_remove_folio) {
956 int err = mapping->a_ops->error_remove_folio(mapping, folio);
959 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
960 else if (!filemap_release_folio(folio, GFP_NOIO))
961 pr_info("%#lx: failed to release buffers\n", pfn);
966 * If the file system doesn't support it just invalidate
967 * This fails on dirty or anything with private pages
969 if (mapping_evict_folio(mapping, folio))
972 pr_info("%#lx: Failed to invalidate\n", pfn);
981 enum mf_action_page_type type;
983 /* Callback ->action() has to unlock the relevant page inside it. */
984 int (*action)(struct page_state *ps, struct page *p);
988 * Return true if page is still referenced by others, otherwise return
991 * The extra_pins is true when one extra refcount is expected.
993 static bool has_extra_refcount(struct page_state *ps, struct page *p,
996 int count = page_count(p) - 1;
999 count -= folio_nr_pages(page_folio(p));
1002 pr_err("%#lx: %s still referenced by %d users\n",
1003 page_to_pfn(p), action_page_types[ps->type], count);
1011 * Error hit kernel page.
1012 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1013 * could be more sophisticated.
1015 static int me_kernel(struct page_state *ps, struct page *p)
1022 * Page in unknown state. Do nothing.
1024 static int me_unknown(struct page_state *ps, struct page *p)
1026 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1032 * Clean (or cleaned) page cache page.
1034 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1036 struct folio *folio = page_folio(p);
1038 struct address_space *mapping;
1041 delete_from_lru_cache(folio);
1044 * For anonymous folios the only reference left
1045 * should be the one m_f() holds.
1047 if (folio_test_anon(folio)) {
1053 * Now truncate the page in the page cache. This is really
1054 * more like a "temporary hole punch"
1055 * Don't do this for block devices when someone else
1056 * has a reference, because it could be file system metadata
1057 * and that's not safe to truncate.
1059 mapping = folio_mapping(folio);
1061 /* Folio has been torn down in the meantime */
1067 * The shmem page is kept in page cache instead of truncating
1068 * so is expected to have an extra refcount after error-handling.
1070 extra_pins = shmem_mapping(mapping);
1073 * Truncation is a bit tricky. Enable it per file system for now.
1075 * Open: to take i_rwsem or not for this? Right now we don't.
1077 ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1078 if (has_extra_refcount(ps, p, extra_pins))
1082 folio_unlock(folio);
1088 * Dirty pagecache page
1089 * Issues: when the error hit a hole page the error is not properly
1092 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1094 struct folio *folio = page_folio(p);
1095 struct address_space *mapping = folio_mapping(folio);
1098 /* TBD: print more information about the file. */
1101 * IO error will be reported by write(), fsync(), etc.
1102 * who check the mapping.
1103 * This way the application knows that something went
1104 * wrong with its dirty file data.
1106 * There's one open issue:
1108 * The EIO will be only reported on the next IO
1109 * operation and then cleared through the IO map.
1110 * Normally Linux has two mechanisms to pass IO error
1111 * first through the AS_EIO flag in the address space
1112 * and then through the PageError flag in the page.
1113 * Since we drop pages on memory failure handling the
1114 * only mechanism open to use is through AS_AIO.
1116 * This has the disadvantage that it gets cleared on
1117 * the first operation that returns an error, while
1118 * the PageError bit is more sticky and only cleared
1119 * when the page is reread or dropped. If an
1120 * application assumes it will always get error on
1121 * fsync, but does other operations on the fd before
1122 * and the page is dropped between then the error
1123 * will not be properly reported.
1125 * This can already happen even without hwpoisoned
1126 * pages: first on metadata IO errors (which only
1127 * report through AS_EIO) or when the page is dropped
1128 * at the wrong time.
1130 * So right now we assume that the application DTRT on
1131 * the first EIO, but we're not worse than other parts
1134 mapping_set_error(mapping, -EIO);
1137 return me_pagecache_clean(ps, p);
1141 * Clean and dirty swap cache.
1143 * Dirty swap cache page is tricky to handle. The page could live both in page
1144 * cache and swap cache(ie. page is freshly swapped in). So it could be
1145 * referenced concurrently by 2 types of PTEs:
1146 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1147 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1149 * - clear dirty bit to prevent IO
1151 * - but keep in the swap cache, so that when we return to it on
1152 * a later page fault, we know the application is accessing
1153 * corrupted data and shall be killed (we installed simple
1154 * interception code in do_swap_page to catch it).
1156 * Clean swap cache pages can be directly isolated. A later page fault will
1157 * bring in the known good data from disk.
1159 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1161 struct folio *folio = page_folio(p);
1163 bool extra_pins = false;
1165 folio_clear_dirty(folio);
1166 /* Trigger EIO in shmem: */
1167 folio_clear_uptodate(folio);
1169 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1170 folio_unlock(folio);
1172 if (ret == MF_DELAYED)
1175 if (has_extra_refcount(ps, p, extra_pins))
1181 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1183 struct folio *folio = page_folio(p);
1186 delete_from_swap_cache(folio);
1188 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1189 folio_unlock(folio);
1191 if (has_extra_refcount(ps, p, false))
1198 * Huge pages. Needs work.
1200 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1201 * To narrow down kill region to one page, we need to break up pmd.
1203 static int me_huge_page(struct page_state *ps, struct page *p)
1205 struct folio *folio = page_folio(p);
1207 struct address_space *mapping;
1208 bool extra_pins = false;
1210 mapping = folio_mapping(folio);
1212 res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1213 /* The page is kept in page cache. */
1215 folio_unlock(folio);
1217 folio_unlock(folio);
1219 * migration entry prevents later access on error hugepage,
1220 * so we can free and dissolve it into buddy to save healthy
1224 if (__page_handle_poison(p) >= 0) {
1232 if (has_extra_refcount(ps, p, extra_pins))
1239 * Various page states we can handle.
1241 * A page state is defined by its current page->flags bits.
1242 * The table matches them in order and calls the right handler.
1244 * This is quite tricky because we can access page at any time
1245 * in its live cycle, so all accesses have to be extremely careful.
1247 * This is not complete. More states could be added.
1248 * For any missing state don't attempt recovery.
1251 #define dirty (1UL << PG_dirty)
1252 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1253 #define unevict (1UL << PG_unevictable)
1254 #define mlock (1UL << PG_mlocked)
1255 #define lru (1UL << PG_lru)
1256 #define head (1UL << PG_head)
1257 #define reserved (1UL << PG_reserved)
1259 static struct page_state error_states[] = {
1260 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1262 * free pages are specially detected outside this table:
1263 * PG_buddy pages only make a small fraction of all free pages.
1266 { head, head, MF_MSG_HUGE, me_huge_page },
1268 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1269 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1271 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1272 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1274 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1275 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1277 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1278 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1281 * Catchall entry: must be at end.
1283 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1294 static void update_per_node_mf_stats(unsigned long pfn,
1295 enum mf_result result)
1297 int nid = MAX_NUMNODES;
1298 struct memory_failure_stats *mf_stats = NULL;
1300 nid = pfn_to_nid(pfn);
1301 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1302 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1306 mf_stats = &NODE_DATA(nid)->mf_stats;
1309 ++mf_stats->ignored;
1315 ++mf_stats->delayed;
1318 ++mf_stats->recovered;
1321 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1328 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1329 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1331 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1332 enum mf_result result)
1334 trace_memory_failure_event(pfn, type, result);
1336 num_poisoned_pages_inc(pfn);
1338 update_per_node_mf_stats(pfn, result);
1340 pr_err("%#lx: recovery action for %s: %s\n",
1341 pfn, action_page_types[type], action_name[result]);
1343 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1346 static int page_action(struct page_state *ps, struct page *p,
1351 /* page p should be unlocked after returning from ps->action(). */
1352 result = ps->action(ps, p);
1354 /* Could do more checks here if page looks ok */
1356 * Could adjust zone counters here to correct for the missing page.
1359 return action_result(pfn, ps->type, result);
1362 static inline bool PageHWPoisonTakenOff(struct page *page)
1364 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1367 void SetPageHWPoisonTakenOff(struct page *page)
1369 set_page_private(page, MAGIC_HWPOISON);
1372 void ClearPageHWPoisonTakenOff(struct page *page)
1374 if (PageHWPoison(page))
1375 set_page_private(page, 0);
1379 * Return true if a page type of a given page is supported by hwpoison
1380 * mechanism (while handling could fail), otherwise false. This function
1381 * does not return true for hugetlb or device memory pages, so it's assumed
1382 * to be called only in the context where we never have such pages.
1384 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1389 /* Soft offline could migrate non-LRU movable pages */
1390 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1393 return PageLRU(page) || is_free_buddy_page(page);
1396 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1398 struct folio *folio = page_folio(page);
1400 bool hugetlb = false;
1402 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1404 /* Make sure hugetlb demotion did not happen from under us. */
1405 if (folio == page_folio(page))
1409 folio = page_folio(page);
1414 * This check prevents from calling folio_try_get() for any
1415 * unsupported type of folio in order to reduce the risk of unexpected
1416 * races caused by taking a folio refcount.
1418 if (!HWPoisonHandlable(&folio->page, flags))
1421 if (folio_try_get(folio)) {
1422 if (folio == page_folio(page))
1425 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1432 static int get_any_page(struct page *p, unsigned long flags)
1434 int ret = 0, pass = 0;
1435 bool count_increased = false;
1437 if (flags & MF_COUNT_INCREASED)
1438 count_increased = true;
1441 if (!count_increased) {
1442 ret = __get_hwpoison_page(p, flags);
1444 if (page_count(p)) {
1445 /* We raced with an allocation, retry. */
1449 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1450 /* We raced with put_page, retry. */
1456 } else if (ret == -EBUSY) {
1458 * We raced with (possibly temporary) unhandlable
1470 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1474 * A page we cannot handle. Check whether we can turn
1475 * it into something we can handle.
1480 count_increased = false;
1488 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1493 static int __get_unpoison_page(struct page *page)
1495 struct folio *folio = page_folio(page);
1497 bool hugetlb = false;
1499 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1501 /* Make sure hugetlb demotion did not happen from under us. */
1502 if (folio == page_folio(page))
1509 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1510 * but also isolated from buddy freelist, so need to identify the
1511 * state and have to cancel both operations to unpoison.
1513 if (PageHWPoisonTakenOff(page))
1516 return get_page_unless_zero(page) ? 1 : 0;
1520 * get_hwpoison_page() - Get refcount for memory error handling
1521 * @p: Raw error page (hit by memory error)
1522 * @flags: Flags controlling behavior of error handling
1524 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1525 * error on it, after checking that the error page is in a well-defined state
1526 * (defined as a page-type we can successfully handle the memory error on it,
1527 * such as LRU page and hugetlb page).
1529 * Memory error handling could be triggered at any time on any type of page,
1530 * so it's prone to race with typical memory management lifecycle (like
1531 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1532 * extra care for the error page's state (as done in __get_hwpoison_page()),
1533 * and has some retry logic in get_any_page().
1535 * When called from unpoison_memory(), the caller should already ensure that
1536 * the given page has PG_hwpoison. So it's never reused for other page
1537 * allocations, and __get_unpoison_page() never races with them.
1539 * Return: 0 on failure,
1540 * 1 on success for in-use pages in a well-defined state,
1541 * -EIO for pages on which we can not handle memory errors,
1542 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1543 * operations like allocation and free,
1544 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1546 static int get_hwpoison_page(struct page *p, unsigned long flags)
1550 zone_pcp_disable(page_zone(p));
1551 if (flags & MF_UNPOISON)
1552 ret = __get_unpoison_page(p);
1554 ret = get_any_page(p, flags);
1555 zone_pcp_enable(page_zone(p));
1561 * Do all that is necessary to remove user space mappings. Unmap
1562 * the pages and send SIGBUS to the processes if the data was dirty.
1564 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1565 unsigned long pfn, int flags)
1567 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1568 struct address_space *mapping;
1572 bool mlocked = folio_test_mlocked(folio);
1575 * Here we are interested only in user-mapped pages, so skip any
1576 * other types of pages.
1578 if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1579 folio_test_pgtable(folio) || folio_test_offline(folio))
1581 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1585 * This check implies we don't kill processes if their pages
1586 * are in the swap cache early. Those are always late kills.
1588 if (!page_mapped(p))
1591 if (folio_test_swapcache(folio)) {
1592 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1593 ttu &= ~TTU_HWPOISON;
1597 * Propagate the dirty bit from PTEs to struct page first, because we
1598 * need this to decide if we should kill or just drop the page.
1599 * XXX: the dirty test could be racy: set_page_dirty() may not always
1600 * be called inside page lock (it's recommended but not enforced).
1602 mapping = folio_mapping(folio);
1603 if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping &&
1604 mapping_can_writeback(mapping)) {
1605 if (folio_mkclean(folio)) {
1606 folio_set_dirty(folio);
1608 ttu &= ~TTU_HWPOISON;
1609 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1615 * First collect all the processes that have the page
1616 * mapped in dirty form. This has to be done before try_to_unmap,
1617 * because ttu takes the rmap data structures down.
1619 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1621 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1623 * For hugetlb pages in shared mappings, try_to_unmap
1624 * could potentially call huge_pmd_unshare. Because of
1625 * this, take semaphore in write mode here and set
1626 * TTU_RMAP_LOCKED to indicate we have taken the lock
1627 * at this higher level.
1629 mapping = hugetlb_folio_mapping_lock_write(folio);
1631 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1632 i_mmap_unlock_write(mapping);
1634 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1636 try_to_unmap(folio, ttu);
1639 unmap_success = !page_mapped(p);
1641 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1642 pfn, folio_mapcount(page_folio(p)));
1645 * try_to_unmap() might put mlocked page in lru cache, so call
1646 * shake_page() again to ensure that it's flushed.
1652 * Now that the dirty bit has been propagated to the
1653 * struct page and all unmaps done we can decide if
1654 * killing is needed or not. Only kill when the page
1655 * was dirty or the process is not restartable,
1656 * otherwise the tokill list is merely
1657 * freed. When there was a problem unmapping earlier
1658 * use a more force-full uncatchable kill to prevent
1659 * any accesses to the poisoned memory.
1661 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1663 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1665 return unmap_success;
1668 static int identify_page_state(unsigned long pfn, struct page *p,
1669 unsigned long page_flags)
1671 struct page_state *ps;
1674 * The first check uses the current page flags which may not have any
1675 * relevant information. The second check with the saved page flags is
1676 * carried out only if the first check can't determine the page status.
1678 for (ps = error_states;; ps++)
1679 if ((p->flags & ps->mask) == ps->res)
1682 page_flags |= (p->flags & (1UL << PG_dirty));
1685 for (ps = error_states;; ps++)
1686 if ((page_flags & ps->mask) == ps->res)
1688 return page_action(ps, p, pfn);
1691 static int try_to_split_thp_page(struct page *page)
1696 ret = split_huge_page(page);
1705 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1706 struct address_space *mapping, pgoff_t index, int flags)
1709 unsigned long size = 0;
1711 list_for_each_entry(tk, to_kill, nd)
1713 size = max(size, 1UL << tk->size_shift);
1717 * Unmap the largest mapping to avoid breaking up device-dax
1718 * mappings which are constant size. The actual size of the
1719 * mapping being torn down is communicated in siginfo, see
1722 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1724 unmap_mapping_range(mapping, start, size, 0);
1727 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1731 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1732 * either do not claim or fails to claim a hwpoison event, or devdax.
1733 * The fsdax pages are initialized per base page, and the devdax pages
1734 * could be initialized either as base pages, or as compound pages with
1735 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1736 * hwpoison, such that, if a subpage of a compound page is poisoned,
1737 * simply mark the compound head page is by far sufficient.
1739 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1740 struct dev_pagemap *pgmap)
1742 struct folio *folio = pfn_folio(pfn);
1748 * Prevent the inode from being freed while we are interrogating
1749 * the address_space, typically this would be handled by
1750 * lock_page(), but dax pages do not use the page lock. This
1751 * also prevents changes to the mapping of this pfn until
1752 * poison signaling is complete.
1754 cookie = dax_lock_folio(folio);
1758 if (hwpoison_filter(&folio->page)) {
1763 switch (pgmap->type) {
1764 case MEMORY_DEVICE_PRIVATE:
1765 case MEMORY_DEVICE_COHERENT:
1767 * TODO: Handle device pages which may need coordination
1768 * with device-side memory.
1777 * Use this flag as an indication that the dax page has been
1778 * remapped UC to prevent speculative consumption of poison.
1780 SetPageHWPoison(&folio->page);
1783 * Unlike System-RAM there is no possibility to swap in a
1784 * different physical page at a given virtual address, so all
1785 * userspace consumption of ZONE_DEVICE memory necessitates
1786 * SIGBUS (i.e. MF_MUST_KILL)
1788 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1789 collect_procs(folio, &folio->page, &to_kill, true);
1791 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1793 dax_unlock_folio(folio, cookie);
1797 #ifdef CONFIG_FS_DAX
1799 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1800 * @mapping: address_space of the file in use
1801 * @index: start pgoff of the range within the file
1802 * @count: length of the range, in unit of PAGE_SIZE
1803 * @mf_flags: memory failure flags
1805 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1806 unsigned long count, int mf_flags)
1811 size_t end = index + count;
1812 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1814 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1816 for (; index < end; index++) {
1818 cookie = dax_lock_mapping_entry(mapping, index, &page);
1825 SetPageHWPoison(page);
1828 * The pre_remove case is revoking access, the memory is still
1829 * good and could theoretically be put back into service.
1831 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1832 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1835 dax_unlock_mapping_entry(mapping, index, cookie);
1839 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1840 #endif /* CONFIG_FS_DAX */
1842 #ifdef CONFIG_HUGETLB_PAGE
1845 * Struct raw_hwp_page represents information about "raw error page",
1846 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1848 struct raw_hwp_page {
1849 struct llist_node node;
1853 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1855 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1858 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1860 struct llist_head *raw_hwp_head;
1861 struct raw_hwp_page *p;
1862 struct folio *folio = page_folio(page);
1865 if (!folio_test_hwpoison(folio))
1868 if (!folio_test_hugetlb(folio))
1869 return PageHWPoison(page);
1872 * When RawHwpUnreliable is set, kernel lost track of which subpages
1873 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1875 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1878 mutex_lock(&mf_mutex);
1880 raw_hwp_head = raw_hwp_list_head(folio);
1881 llist_for_each_entry(p, raw_hwp_head->first, node) {
1882 if (page == p->page) {
1888 mutex_unlock(&mf_mutex);
1893 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1895 struct llist_node *head;
1896 struct raw_hwp_page *p, *next;
1897 unsigned long count = 0;
1899 head = llist_del_all(raw_hwp_list_head(folio));
1900 llist_for_each_entry_safe(p, next, head, node) {
1902 SetPageHWPoison(p->page);
1904 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1911 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1913 struct llist_head *head;
1914 struct raw_hwp_page *raw_hwp;
1915 struct raw_hwp_page *p, *next;
1916 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1919 * Once the hwpoison hugepage has lost reliable raw error info,
1920 * there is little meaning to keep additional error info precisely,
1921 * so skip to add additional raw error info.
1923 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1925 head = raw_hwp_list_head(folio);
1926 llist_for_each_entry_safe(p, next, head->first, node) {
1927 if (p->page == page)
1931 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1933 raw_hwp->page = page;
1934 llist_add(&raw_hwp->node, head);
1935 /* the first error event will be counted in action_result(). */
1937 num_poisoned_pages_inc(page_to_pfn(page));
1940 * Failed to save raw error info. We no longer trace all
1941 * hwpoisoned subpages, and we need refuse to free/dissolve
1942 * this hwpoisoned hugepage.
1944 folio_set_hugetlb_raw_hwp_unreliable(folio);
1946 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1947 * used any more, so free it.
1949 __folio_free_raw_hwp(folio, false);
1954 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1957 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1958 * pages for tail pages are required but they don't exist.
1960 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1964 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1967 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1970 return __folio_free_raw_hwp(folio, move_flag);
1973 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1975 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1977 if (folio_test_hugetlb_vmemmap_optimized(folio))
1979 folio_clear_hwpoison(folio);
1980 folio_free_raw_hwp(folio, true);
1984 * Called from hugetlb code with hugetlb_lock held.
1988 * 1 - in-use hugepage
1989 * 2 - not a hugepage
1990 * -EBUSY - the hugepage is busy (try to retry)
1991 * -EHWPOISON - the hugepage is already hwpoisoned
1993 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1994 bool *migratable_cleared)
1996 struct page *page = pfn_to_page(pfn);
1997 struct folio *folio = page_folio(page);
1998 int ret = 2; /* fallback to normal page handling */
1999 bool count_increased = false;
2001 if (!folio_test_hugetlb(folio))
2004 if (flags & MF_COUNT_INCREASED) {
2006 count_increased = true;
2007 } else if (folio_test_hugetlb_freed(folio)) {
2009 } else if (folio_test_hugetlb_migratable(folio)) {
2010 ret = folio_try_get(folio);
2012 count_increased = true;
2015 if (!(flags & MF_NO_RETRY))
2019 if (folio_set_hugetlb_hwpoison(folio, page)) {
2025 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2026 * from being migrated by memory hotremove.
2028 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2029 folio_clear_hugetlb_migratable(folio);
2030 *migratable_cleared = true;
2035 if (count_increased)
2041 * Taking refcount of hugetlb pages needs extra care about race conditions
2042 * with basic operations like hugepage allocation/free/demotion.
2043 * So some of prechecks for hwpoison (pinning, and testing/setting
2044 * PageHWPoison) should be done in single hugetlb_lock range.
2046 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2049 struct page *p = pfn_to_page(pfn);
2050 struct folio *folio;
2051 unsigned long page_flags;
2052 bool migratable_cleared = false;
2056 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2057 if (res == 2) { /* fallback to normal page handling */
2060 } else if (res == -EHWPOISON) {
2061 pr_err("%#lx: already hardware poisoned\n", pfn);
2062 if (flags & MF_ACTION_REQUIRED) {
2063 folio = page_folio(p);
2064 res = kill_accessing_process(current, folio_pfn(folio), flags);
2067 } else if (res == -EBUSY) {
2068 if (!(flags & MF_NO_RETRY)) {
2069 flags |= MF_NO_RETRY;
2072 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2075 folio = page_folio(p);
2078 if (hwpoison_filter(p)) {
2079 folio_clear_hugetlb_hwpoison(folio);
2080 if (migratable_cleared)
2081 folio_set_hugetlb_migratable(folio);
2082 folio_unlock(folio);
2089 * Handling free hugepage. The possible race with hugepage allocation
2090 * or demotion can be prevented by PageHWPoison flag.
2093 folio_unlock(folio);
2094 if (__page_handle_poison(p) >= 0) {
2100 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2103 page_flags = folio->flags;
2105 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2106 folio_unlock(folio);
2107 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2110 return identify_page_state(pfn, p, page_flags);
2114 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2119 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2123 #endif /* CONFIG_HUGETLB_PAGE */
2125 /* Drop the extra refcount in case we come from madvise() */
2126 static void put_ref_page(unsigned long pfn, int flags)
2130 if (!(flags & MF_COUNT_INCREASED))
2133 page = pfn_to_page(pfn);
2138 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2139 struct dev_pagemap *pgmap)
2143 /* device metadata space is not recoverable */
2144 if (!pgmap_pfn_valid(pgmap, pfn))
2148 * Call driver's implementation to handle the memory failure, otherwise
2149 * fall back to generic handler.
2151 if (pgmap_has_memory_failure(pgmap)) {
2152 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2154 * Fall back to generic handler too if operation is not
2155 * supported inside the driver/device/filesystem.
2157 if (rc != -EOPNOTSUPP)
2161 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2163 /* drop pgmap ref acquired in caller */
2164 put_dev_pagemap(pgmap);
2165 if (rc != -EOPNOTSUPP)
2166 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2171 * memory_failure - Handle memory failure of a page.
2172 * @pfn: Page Number of the corrupted page
2173 * @flags: fine tune action taken
2175 * This function is called by the low level machine check code
2176 * of an architecture when it detects hardware memory corruption
2177 * of a page. It tries its best to recover, which includes
2178 * dropping pages, killing processes etc.
2180 * The function is primarily of use for corruptions that
2181 * happen outside the current execution context (e.g. when
2182 * detected by a background scrubber)
2184 * Must run in process context (e.g. a work queue) with interrupts
2185 * enabled and no spinlocks held.
2187 * Return: 0 for successfully handled the memory error,
2188 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2189 * < 0(except -EOPNOTSUPP) on failure.
2191 int memory_failure(unsigned long pfn, int flags)
2194 struct folio *folio;
2195 struct dev_pagemap *pgmap;
2197 unsigned long page_flags;
2201 if (!sysctl_memory_failure_recovery)
2202 panic("Memory failure on page %lx", pfn);
2204 mutex_lock(&mf_mutex);
2206 if (!(flags & MF_SW_SIMULATED))
2207 hw_memory_failure = true;
2209 p = pfn_to_online_page(pfn);
2211 res = arch_memory_failure(pfn, flags);
2215 if (pfn_valid(pfn)) {
2216 pgmap = get_dev_pagemap(pfn, NULL);
2217 put_ref_page(pfn, flags);
2219 res = memory_failure_dev_pagemap(pfn, flags,
2224 pr_err("%#lx: memory outside kernel control\n", pfn);
2230 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2234 if (TestSetPageHWPoison(p)) {
2235 pr_err("%#lx: already hardware poisoned\n", pfn);
2237 if (flags & MF_ACTION_REQUIRED)
2238 res = kill_accessing_process(current, pfn, flags);
2239 if (flags & MF_COUNT_INCREASED)
2245 * We need/can do nothing about count=0 pages.
2246 * 1) it's a free page, and therefore in safe hand:
2247 * check_new_page() will be the gate keeper.
2248 * 2) it's part of a non-compound high order page.
2249 * Implies some kernel user: cannot stop them from
2250 * R/W the page; let's pray that the page has been
2251 * used and will be freed some time later.
2252 * In fact it's dangerous to directly bump up page count from 0,
2253 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2255 if (!(flags & MF_COUNT_INCREASED)) {
2256 res = get_hwpoison_page(p, flags);
2258 if (is_free_buddy_page(p)) {
2259 if (take_page_off_buddy(p)) {
2263 /* We lost the race, try again */
2265 ClearPageHWPoison(p);
2271 res = action_result(pfn, MF_MSG_BUDDY, res);
2273 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2276 } else if (res < 0) {
2277 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2282 folio = page_folio(p);
2283 if (folio_test_large(folio)) {
2285 * The flag must be set after the refcount is bumped
2286 * otherwise it may race with THP split.
2287 * And the flag can't be set in get_hwpoison_page() since
2288 * it is called by soft offline too and it is just called
2289 * for !MF_COUNT_INCREASED. So here seems to be the best
2292 * Don't need care about the above error handling paths for
2293 * get_hwpoison_page() since they handle either free page
2294 * or unhandlable page. The refcount is bumped iff the
2295 * page is a valid handlable page.
2297 folio_set_has_hwpoisoned(folio);
2298 if (try_to_split_thp_page(p) < 0) {
2299 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2302 VM_BUG_ON_PAGE(!page_count(p), p);
2303 folio = page_folio(p);
2307 * We ignore non-LRU pages for good reasons.
2308 * - PG_locked is only well defined for LRU pages and a few others
2309 * - to avoid races with __SetPageLocked()
2310 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2311 * The check (unnecessarily) ignores LRU pages being isolated and
2312 * walked by the page reclaim code, however that's not a big loss.
2319 * We're only intended to deal with the non-Compound page here.
2320 * However, the page could have changed compound pages due to
2321 * race window. If this happens, we could try again to hopefully
2322 * handle the page next round.
2324 if (folio_test_large(folio)) {
2326 ClearPageHWPoison(p);
2327 folio_unlock(folio);
2329 flags &= ~MF_COUNT_INCREASED;
2333 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2338 * We use page flags to determine what action should be taken, but
2339 * the flags can be modified by the error containment action. One
2340 * example is an mlocked page, where PG_mlocked is cleared by
2341 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2342 * status correctly, we save a copy of the page flags at this time.
2344 page_flags = folio->flags;
2346 if (hwpoison_filter(p)) {
2347 ClearPageHWPoison(p);
2348 folio_unlock(folio);
2355 * __munlock_folio() may clear a writeback folio's LRU flag without
2356 * the folio lock. We need to wait for writeback completion for this
2357 * folio or it may trigger a vfs BUG while evicting inode.
2359 if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2360 goto identify_page_state;
2363 * It's very difficult to mess with pages currently under IO
2364 * and in many cases impossible, so we just avoid it here.
2366 folio_wait_writeback(folio);
2369 * Now take care of user space mappings.
2370 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2372 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2373 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2378 * Torn down by someone else?
2380 if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2381 folio->mapping == NULL) {
2382 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2386 identify_page_state:
2387 res = identify_page_state(pfn, p, page_flags);
2388 mutex_unlock(&mf_mutex);
2391 folio_unlock(folio);
2393 mutex_unlock(&mf_mutex);
2396 EXPORT_SYMBOL_GPL(memory_failure);
2398 #define MEMORY_FAILURE_FIFO_ORDER 4
2399 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2401 struct memory_failure_entry {
2406 struct memory_failure_cpu {
2407 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2408 MEMORY_FAILURE_FIFO_SIZE);
2410 struct work_struct work;
2413 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2416 * memory_failure_queue - Schedule handling memory failure of a page.
2417 * @pfn: Page Number of the corrupted page
2418 * @flags: Flags for memory failure handling
2420 * This function is called by the low level hardware error handler
2421 * when it detects hardware memory corruption of a page. It schedules
2422 * the recovering of error page, including dropping pages, killing
2425 * The function is primarily of use for corruptions that
2426 * happen outside the current execution context (e.g. when
2427 * detected by a background scrubber)
2429 * Can run in IRQ context.
2431 void memory_failure_queue(unsigned long pfn, int flags)
2433 struct memory_failure_cpu *mf_cpu;
2434 unsigned long proc_flags;
2435 struct memory_failure_entry entry = {
2440 mf_cpu = &get_cpu_var(memory_failure_cpu);
2441 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2442 if (kfifo_put(&mf_cpu->fifo, entry))
2443 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2445 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2447 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2448 put_cpu_var(memory_failure_cpu);
2450 EXPORT_SYMBOL_GPL(memory_failure_queue);
2452 static void memory_failure_work_func(struct work_struct *work)
2454 struct memory_failure_cpu *mf_cpu;
2455 struct memory_failure_entry entry = { 0, };
2456 unsigned long proc_flags;
2459 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2461 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2462 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2463 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2466 if (entry.flags & MF_SOFT_OFFLINE)
2467 soft_offline_page(entry.pfn, entry.flags);
2469 memory_failure(entry.pfn, entry.flags);
2474 * Process memory_failure work queued on the specified CPU.
2475 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2477 void memory_failure_queue_kick(int cpu)
2479 struct memory_failure_cpu *mf_cpu;
2481 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2482 cancel_work_sync(&mf_cpu->work);
2483 memory_failure_work_func(&mf_cpu->work);
2486 static int __init memory_failure_init(void)
2488 struct memory_failure_cpu *mf_cpu;
2491 for_each_possible_cpu(cpu) {
2492 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2493 spin_lock_init(&mf_cpu->lock);
2494 INIT_KFIFO(mf_cpu->fifo);
2495 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2498 register_sysctl_init("vm", memory_failure_table);
2502 core_initcall(memory_failure_init);
2505 #define pr_fmt(fmt) "" fmt
2506 #define unpoison_pr_info(fmt, pfn, rs) \
2508 if (__ratelimit(rs)) \
2509 pr_info(fmt, pfn); \
2513 * unpoison_memory - Unpoison a previously poisoned page
2514 * @pfn: Page number of the to be unpoisoned page
2516 * Software-unpoison a page that has been poisoned by
2517 * memory_failure() earlier.
2519 * This is only done on the software-level, so it only works
2520 * for linux injected failures, not real hardware failures
2522 * Returns 0 for success, otherwise -errno.
2524 int unpoison_memory(unsigned long pfn)
2526 struct folio *folio;
2528 int ret = -EBUSY, ghp;
2529 unsigned long count = 1;
2531 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2532 DEFAULT_RATELIMIT_BURST);
2534 if (!pfn_valid(pfn))
2537 p = pfn_to_page(pfn);
2538 folio = page_folio(p);
2540 mutex_lock(&mf_mutex);
2542 if (hw_memory_failure) {
2543 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2549 if (!PageHWPoison(p)) {
2550 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2555 if (folio_ref_count(folio) > 1) {
2556 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2561 if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2562 folio_test_reserved(folio) || folio_test_offline(folio))
2566 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2567 * in folio_mapped() has to be done after folio_test_slab() is checked.
2569 if (folio_mapped(folio)) {
2570 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2575 if (folio_mapping(folio)) {
2576 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2581 ghp = get_hwpoison_page(p, MF_UNPOISON);
2583 if (folio_test_hugetlb(folio)) {
2585 count = folio_free_raw_hwp(folio, false);
2589 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2590 } else if (ghp < 0) {
2591 if (ghp == -EHWPOISON) {
2592 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2595 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2599 if (folio_test_hugetlb(folio)) {
2601 count = folio_free_raw_hwp(folio, false);
2609 if (TestClearPageHWPoison(p)) {
2616 mutex_unlock(&mf_mutex);
2619 num_poisoned_pages_sub(pfn, 1);
2620 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2621 page_to_pfn(p), &unpoison_rs);
2625 EXPORT_SYMBOL(unpoison_memory);
2627 static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist)
2629 bool isolated = false;
2631 if (folio_test_hugetlb(folio)) {
2632 isolated = isolate_hugetlb(folio, pagelist);
2634 bool lru = !__folio_test_movable(folio);
2637 isolated = folio_isolate_lru(folio);
2639 isolated = isolate_movable_page(&folio->page,
2640 ISOLATE_UNEVICTABLE);
2643 list_add(&folio->lru, pagelist);
2645 node_stat_add_folio(folio, NR_ISOLATED_ANON +
2646 folio_is_file_lru(folio));
2651 * If we succeed to isolate the folio, we grabbed another refcount on
2652 * the folio, so we can safely drop the one we got from get_any_page().
2653 * If we failed to isolate the folio, it means that we cannot go further
2654 * and we will return an error, so drop the reference we got from
2655 * get_any_page() as well.
2662 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2663 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2664 * If the page is mapped, it migrates the contents over.
2666 static int soft_offline_in_use_page(struct page *page)
2669 unsigned long pfn = page_to_pfn(page);
2670 struct folio *folio = page_folio(page);
2671 char const *msg_page[] = {"page", "hugepage"};
2672 bool huge = folio_test_hugetlb(folio);
2673 LIST_HEAD(pagelist);
2674 struct migration_target_control mtc = {
2675 .nid = NUMA_NO_NODE,
2676 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2677 .reason = MR_MEMORY_FAILURE,
2680 if (!huge && folio_test_large(folio)) {
2681 if (try_to_split_thp_page(page)) {
2682 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2685 folio = page_folio(page);
2690 folio_wait_writeback(folio);
2691 if (PageHWPoison(page)) {
2692 folio_unlock(folio);
2694 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2698 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2700 * Try to invalidate first. This should work for
2701 * non dirty unmapped page cache pages.
2703 ret = mapping_evict_folio(folio_mapping(folio), folio);
2704 folio_unlock(folio);
2707 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2708 page_handle_poison(page, false, true);
2712 if (mf_isolate_folio(folio, &pagelist)) {
2713 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2714 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2716 bool release = !huge;
2718 if (!page_handle_poison(page, huge, release))
2721 if (!list_empty(&pagelist))
2722 putback_movable_pages(&pagelist);
2724 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2725 pfn, msg_page[huge], ret, &page->flags);
2730 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2731 pfn, msg_page[huge], page_count(page), &page->flags);
2738 * soft_offline_page - Soft offline a page.
2739 * @pfn: pfn to soft-offline
2740 * @flags: flags. Same as memory_failure().
2742 * Returns 0 on success
2743 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2744 * < 0 otherwise negated errno.
2746 * Soft offline a page, by migration or invalidation,
2747 * without killing anything. This is for the case when
2748 * a page is not corrupted yet (so it's still valid to access),
2749 * but has had a number of corrected errors and is better taken
2752 * The actual policy on when to do that is maintained by
2755 * This should never impact any application or cause data loss,
2756 * however it might take some time.
2758 * This is not a 100% solution for all memory, but tries to be
2759 * ``good enough'' for the majority of memory.
2761 int soft_offline_page(unsigned long pfn, int flags)
2764 bool try_again = true;
2767 if (!pfn_valid(pfn)) {
2768 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2772 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2773 page = pfn_to_online_page(pfn);
2775 put_ref_page(pfn, flags);
2779 mutex_lock(&mf_mutex);
2781 if (PageHWPoison(page)) {
2782 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2783 put_ref_page(pfn, flags);
2784 mutex_unlock(&mf_mutex);
2790 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2793 if (hwpoison_filter(page)) {
2797 mutex_unlock(&mf_mutex);
2802 ret = soft_offline_in_use_page(page);
2803 } else if (ret == 0) {
2804 if (!page_handle_poison(page, true, false)) {
2807 flags &= ~MF_COUNT_INCREASED;
2814 mutex_unlock(&mf_mutex);