1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
22 #include "xfs_trans.h"
23 #include "xfs_buf_item.h"
24 #include "xfs_icreate_item.h"
25 #include "xfs_icache.h"
26 #include "xfs_trace.h"
30 #include "xfs_health.h"
33 * Lookup a record by ino in the btree given by cur.
37 struct xfs_btree_cur *cur, /* btree cursor */
38 xfs_agino_t ino, /* starting inode of chunk */
39 xfs_lookup_t dir, /* <=, >=, == */
40 int *stat) /* success/failure */
42 cur->bc_rec.i.ir_startino = ino;
43 cur->bc_rec.i.ir_holemask = 0;
44 cur->bc_rec.i.ir_count = 0;
45 cur->bc_rec.i.ir_freecount = 0;
46 cur->bc_rec.i.ir_free = 0;
47 return xfs_btree_lookup(cur, dir, stat);
51 * Update the record referred to by cur to the value given.
52 * This either works (return 0) or gets an EFSCORRUPTED error.
54 STATIC int /* error */
56 struct xfs_btree_cur *cur, /* btree cursor */
57 xfs_inobt_rec_incore_t *irec) /* btree record */
59 union xfs_btree_rec rec;
61 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
62 if (xfs_has_sparseinodes(cur->bc_mp)) {
63 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
64 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
65 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
67 /* ir_holemask/ir_count not supported on-disk */
68 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
70 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
71 return xfs_btree_update(cur, &rec);
74 /* Convert on-disk btree record to incore inobt record. */
76 xfs_inobt_btrec_to_irec(
78 const union xfs_btree_rec *rec,
79 struct xfs_inobt_rec_incore *irec)
81 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
82 if (xfs_has_sparseinodes(mp)) {
83 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
84 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
85 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
88 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
89 * values for full inode chunks.
91 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
92 irec->ir_count = XFS_INODES_PER_CHUNK;
94 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
96 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
99 /* Compute the freecount of an incore inode record. */
101 xfs_inobt_rec_freecount(
102 const struct xfs_inobt_rec_incore *irec)
104 uint64_t realfree = irec->ir_free;
106 if (xfs_inobt_issparse(irec->ir_holemask))
107 realfree &= xfs_inobt_irec_to_allocmask(irec);
108 return hweight64(realfree);
111 /* Simple checks for inode records. */
113 xfs_inobt_check_irec(
114 struct xfs_perag *pag,
115 const struct xfs_inobt_rec_incore *irec)
117 /* Record has to be properly aligned within the AG. */
118 if (!xfs_verify_agino(pag, irec->ir_startino))
119 return __this_address;
120 if (!xfs_verify_agino(pag,
121 irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
122 return __this_address;
123 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
124 irec->ir_count > XFS_INODES_PER_CHUNK)
125 return __this_address;
126 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
127 return __this_address;
129 if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
130 return __this_address;
136 xfs_inobt_complain_bad_rec(
137 struct xfs_btree_cur *cur,
139 const struct xfs_inobt_rec_incore *irec)
141 struct xfs_mount *mp = cur->bc_mp;
144 "%sbt record corruption in AG %d detected at %pS!",
145 cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa);
147 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
148 irec->ir_startino, irec->ir_count, irec->ir_freecount,
149 irec->ir_free, irec->ir_holemask);
150 xfs_btree_mark_sick(cur);
151 return -EFSCORRUPTED;
155 * Get the data from the pointed-to record.
159 struct xfs_btree_cur *cur,
160 struct xfs_inobt_rec_incore *irec,
163 struct xfs_mount *mp = cur->bc_mp;
164 union xfs_btree_rec *rec;
168 error = xfs_btree_get_rec(cur, &rec, stat);
169 if (error || *stat == 0)
172 xfs_inobt_btrec_to_irec(mp, rec, irec);
173 fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec);
175 return xfs_inobt_complain_bad_rec(cur, fa, irec);
181 * Insert a single inobt record. Cursor must already point to desired location.
184 xfs_inobt_insert_rec(
185 struct xfs_btree_cur *cur,
192 cur->bc_rec.i.ir_holemask = holemask;
193 cur->bc_rec.i.ir_count = count;
194 cur->bc_rec.i.ir_freecount = freecount;
195 cur->bc_rec.i.ir_free = free;
196 return xfs_btree_insert(cur, stat);
200 * Insert records describing a newly allocated inode chunk into the inobt.
204 struct xfs_perag *pag,
205 struct xfs_trans *tp,
206 struct xfs_buf *agbp,
211 struct xfs_btree_cur *cur;
217 cur = xfs_finobt_init_cursor(pag, tp, agbp);
219 cur = xfs_inobt_init_cursor(pag, tp, agbp);
221 for (thisino = newino;
222 thisino < newino + newlen;
223 thisino += XFS_INODES_PER_CHUNK) {
224 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
226 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
231 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
232 XFS_INODES_PER_CHUNK,
233 XFS_INODES_PER_CHUNK,
234 XFS_INOBT_ALL_FREE, &i);
236 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
242 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
248 * Verify that the number of free inodes in the AGI is correct.
252 xfs_check_agi_freecount(
253 struct xfs_btree_cur *cur)
255 if (cur->bc_nlevels == 1) {
256 xfs_inobt_rec_incore_t rec;
261 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
266 error = xfs_inobt_get_rec(cur, &rec, &i);
271 freecount += rec.ir_freecount;
272 error = xfs_btree_increment(cur, 0, &i);
278 if (!xfs_is_shutdown(cur->bc_mp))
279 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
284 #define xfs_check_agi_freecount(cur) 0
288 * Initialise a new set of inodes. When called without a transaction context
289 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
290 * than logging them (which in a transaction context puts them into the AIL
291 * for writeback rather than the xfsbufd queue).
294 xfs_ialloc_inode_init(
295 struct xfs_mount *mp,
296 struct xfs_trans *tp,
297 struct list_head *buffer_list,
301 xfs_agblock_t length,
304 struct xfs_buf *fbuf;
305 struct xfs_dinode *free;
314 * Loop over the new block(s), filling in the inodes. For small block
315 * sizes, manipulate the inodes in buffers which are multiples of the
318 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
321 * Figure out what version number to use in the inodes we create. If
322 * the superblock version has caught up to the one that supports the new
323 * inode format, then use the new inode version. Otherwise use the old
324 * version so that old kernels will continue to be able to use the file
327 * For v3 inodes, we also need to write the inode number into the inode,
328 * so calculate the first inode number of the chunk here as
329 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
330 * across multiple filesystem blocks (such as a cluster) and so cannot
331 * be used in the cluster buffer loop below.
333 * Further, because we are writing the inode directly into the buffer
334 * and calculating a CRC on the entire inode, we have ot log the entire
335 * inode so that the entire range the CRC covers is present in the log.
336 * That means for v3 inode we log the entire buffer rather than just the
339 if (xfs_has_v3inodes(mp)) {
341 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
344 * log the initialisation that is about to take place as an
345 * logical operation. This means the transaction does not
346 * need to log the physical changes to the inode buffers as log
347 * recovery will know what initialisation is actually needed.
348 * Hence we only need to log the buffers as "ordered" buffers so
349 * they track in the AIL as if they were physically logged.
352 xfs_icreate_log(tp, agno, agbno, icount,
353 mp->m_sb.sb_inodesize, length, gen);
357 for (j = 0; j < nbufs; j++) {
361 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
362 (j * M_IGEO(mp)->blocks_per_cluster));
363 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
364 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
365 XBF_UNMAPPED, &fbuf);
369 /* Initialize the inode buffers and log them appropriately. */
370 fbuf->b_ops = &xfs_inode_buf_ops;
371 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
372 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
373 int ioffset = i << mp->m_sb.sb_inodelog;
375 free = xfs_make_iptr(mp, fbuf, i);
376 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
377 free->di_version = version;
378 free->di_gen = cpu_to_be32(gen);
379 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
382 free->di_ino = cpu_to_be64(ino);
384 uuid_copy(&free->di_uuid,
385 &mp->m_sb.sb_meta_uuid);
386 xfs_dinode_calc_crc(mp, free);
388 /* just log the inode core */
389 xfs_trans_log_buf(tp, fbuf, ioffset,
390 ioffset + XFS_DINODE_SIZE(mp) - 1);
396 * Mark the buffer as an inode allocation buffer so it
397 * sticks in AIL at the point of this allocation
398 * transaction. This ensures the they are on disk before
399 * the tail of the log can be moved past this
400 * transaction (i.e. by preventing relogging from moving
401 * it forward in the log).
403 xfs_trans_inode_alloc_buf(tp, fbuf);
406 * Mark the buffer as ordered so that they are
407 * not physically logged in the transaction but
408 * still tracked in the AIL as part of the
409 * transaction and pin the log appropriately.
411 xfs_trans_ordered_buf(tp, fbuf);
414 fbuf->b_flags |= XBF_DONE;
415 xfs_buf_delwri_queue(fbuf, buffer_list);
423 * Align startino and allocmask for a recently allocated sparse chunk such that
424 * they are fit for insertion (or merge) into the on-disk inode btrees.
428 * When enabled, sparse inode support increases the inode alignment from cluster
429 * size to inode chunk size. This means that the minimum range between two
430 * non-adjacent inode records in the inobt is large enough for a full inode
431 * record. This allows for cluster sized, cluster aligned block allocation
432 * without need to worry about whether the resulting inode record overlaps with
433 * another record in the tree. Without this basic rule, we would have to deal
434 * with the consequences of overlap by potentially undoing recent allocations in
435 * the inode allocation codepath.
437 * Because of this alignment rule (which is enforced on mount), there are two
438 * inobt possibilities for newly allocated sparse chunks. One is that the
439 * aligned inode record for the chunk covers a range of inodes not already
440 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
441 * other is that a record already exists at the aligned startino that considers
442 * the newly allocated range as sparse. In the latter case, record content is
443 * merged in hope that sparse inode chunks fill to full chunks over time.
446 xfs_align_sparse_ino(
447 struct xfs_mount *mp,
448 xfs_agino_t *startino,
455 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
456 mod = agbno % mp->m_sb.sb_inoalignmt;
460 /* calculate the inode offset and align startino */
461 offset = XFS_AGB_TO_AGINO(mp, mod);
465 * Since startino has been aligned down, left shift allocmask such that
466 * it continues to represent the same physical inodes relative to the
469 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
473 * Determine whether the source inode record can merge into the target. Both
474 * records must be sparse, the inode ranges must match and there must be no
475 * allocation overlap between the records.
478 __xfs_inobt_can_merge(
479 struct xfs_inobt_rec_incore *trec, /* tgt record */
480 struct xfs_inobt_rec_incore *srec) /* src record */
485 /* records must cover the same inode range */
486 if (trec->ir_startino != srec->ir_startino)
489 /* both records must be sparse */
490 if (!xfs_inobt_issparse(trec->ir_holemask) ||
491 !xfs_inobt_issparse(srec->ir_holemask))
494 /* both records must track some inodes */
495 if (!trec->ir_count || !srec->ir_count)
498 /* can't exceed capacity of a full record */
499 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
502 /* verify there is no allocation overlap */
503 talloc = xfs_inobt_irec_to_allocmask(trec);
504 salloc = xfs_inobt_irec_to_allocmask(srec);
512 * Merge the source inode record into the target. The caller must call
513 * __xfs_inobt_can_merge() to ensure the merge is valid.
516 __xfs_inobt_rec_merge(
517 struct xfs_inobt_rec_incore *trec, /* target */
518 struct xfs_inobt_rec_incore *srec) /* src */
520 ASSERT(trec->ir_startino == srec->ir_startino);
522 /* combine the counts */
523 trec->ir_count += srec->ir_count;
524 trec->ir_freecount += srec->ir_freecount;
527 * Merge the holemask and free mask. For both fields, 0 bits refer to
528 * allocated inodes. We combine the allocated ranges with bitwise AND.
530 trec->ir_holemask &= srec->ir_holemask;
531 trec->ir_free &= srec->ir_free;
535 * Insert a new sparse inode chunk into the associated inode allocation btree.
536 * The inode record for the sparse chunk is pre-aligned to a startino that
537 * should match any pre-existing sparse inode record in the tree. This allows
538 * sparse chunks to fill over time.
540 * If no preexisting record exists, the provided record is inserted.
541 * If there is a preexisting record, the provided record is merged with the
542 * existing record and updated in place. The merged record is returned in nrec.
544 * It is considered corruption if a merge is requested and not possible. Given
545 * the sparse inode alignment constraints, this should never happen.
548 xfs_inobt_insert_sprec(
549 struct xfs_perag *pag,
550 struct xfs_trans *tp,
551 struct xfs_buf *agbp,
552 struct xfs_inobt_rec_incore *nrec) /* in/out: new/merged rec. */
554 struct xfs_mount *mp = pag->pag_mount;
555 struct xfs_btree_cur *cur;
558 struct xfs_inobt_rec_incore rec;
560 cur = xfs_inobt_init_cursor(pag, tp, agbp);
562 /* the new record is pre-aligned so we know where to look */
563 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
566 /* if nothing there, insert a new record and return */
568 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
569 nrec->ir_count, nrec->ir_freecount,
573 if (XFS_IS_CORRUPT(mp, i != 1)) {
574 xfs_btree_mark_sick(cur);
575 error = -EFSCORRUPTED;
583 * A record exists at this startino. Merge the records.
585 error = xfs_inobt_get_rec(cur, &rec, &i);
588 if (XFS_IS_CORRUPT(mp, i != 1)) {
589 xfs_btree_mark_sick(cur);
590 error = -EFSCORRUPTED;
593 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
594 xfs_btree_mark_sick(cur);
595 error = -EFSCORRUPTED;
600 * This should never fail. If we have coexisting records that
601 * cannot merge, something is seriously wrong.
603 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
604 xfs_btree_mark_sick(cur);
605 error = -EFSCORRUPTED;
609 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
610 rec.ir_holemask, nrec->ir_startino,
613 /* merge to nrec to output the updated record */
614 __xfs_inobt_rec_merge(nrec, &rec);
616 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
619 error = xfs_inobt_rec_check_count(mp, nrec);
623 error = xfs_inobt_update(cur, nrec);
628 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
631 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
636 * Insert a new sparse inode chunk into the free inode btree. The inode
637 * record for the sparse chunk is pre-aligned to a startino that should match
638 * any pre-existing sparse inode record in the tree. This allows sparse chunks
641 * The new record is always inserted, overwriting a pre-existing record if
645 xfs_finobt_insert_sprec(
646 struct xfs_perag *pag,
647 struct xfs_trans *tp,
648 struct xfs_buf *agbp,
649 struct xfs_inobt_rec_incore *nrec) /* in/out: new rec. */
651 struct xfs_mount *mp = pag->pag_mount;
652 struct xfs_btree_cur *cur;
656 cur = xfs_finobt_init_cursor(pag, tp, agbp);
658 /* the new record is pre-aligned so we know where to look */
659 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
662 /* if nothing there, insert a new record and return */
664 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
665 nrec->ir_count, nrec->ir_freecount,
669 if (XFS_IS_CORRUPT(mp, i != 1)) {
670 xfs_btree_mark_sick(cur);
671 error = -EFSCORRUPTED;
675 error = xfs_inobt_update(cur, nrec);
680 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
683 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
689 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
690 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
691 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
692 * inode count threshold, or the usual negative error code for other errors.
696 struct xfs_perag *pag,
697 struct xfs_trans *tp,
698 struct xfs_buf *agbp)
701 struct xfs_alloc_arg args;
703 xfs_agino_t newino; /* new first inode's number */
704 xfs_agino_t newlen; /* new number of inodes */
705 int isaligned = 0; /* inode allocation at stripe */
707 /* init. to full chunk */
708 struct xfs_inobt_rec_incore rec;
709 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
710 uint16_t allocmask = (uint16_t) -1;
713 memset(&args, 0, sizeof(args));
715 args.mp = tp->t_mountp;
716 args.fsbno = NULLFSBLOCK;
717 args.oinfo = XFS_RMAP_OINFO_INODES;
721 /* randomly do sparse inode allocations */
722 if (xfs_has_sparseinodes(tp->t_mountp) &&
723 igeo->ialloc_min_blks < igeo->ialloc_blks)
724 do_sparse = get_random_u32_below(2);
728 * Locking will ensure that we don't have two callers in here
731 newlen = igeo->ialloc_inos;
732 if (igeo->maxicount &&
733 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
736 args.minlen = args.maxlen = igeo->ialloc_blks;
738 * First try to allocate inodes contiguous with the last-allocated
739 * chunk of inodes. If the filesystem is striped, this will fill
740 * an entire stripe unit with inodes.
743 newino = be32_to_cpu(agi->agi_newino);
744 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
748 if (likely(newino != NULLAGINO &&
749 (args.agbno < be32_to_cpu(agi->agi_length)))) {
753 * We need to take into account alignment here to ensure that
754 * we don't modify the free list if we fail to have an exact
755 * block. If we don't have an exact match, and every oher
756 * attempt allocation attempt fails, we'll end up cancelling
757 * a dirty transaction and shutting down.
759 * For an exact allocation, alignment must be 1,
760 * however we need to take cluster alignment into account when
761 * fixing up the freelist. Use the minalignslop field to
762 * indicate that extra blocks might be required for alignment,
763 * but not to use them in the actual exact allocation.
766 args.minalignslop = igeo->cluster_align - 1;
768 /* Allow space for the inode btree to split. */
769 args.minleft = igeo->inobt_maxlevels;
770 error = xfs_alloc_vextent_exact_bno(&args,
771 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
777 * This request might have dirtied the transaction if the AG can
778 * satisfy the request, but the exact block was not available.
779 * If the allocation did fail, subsequent requests will relax
780 * the exact agbno requirement and increase the alignment
781 * instead. It is critical that the total size of the request
782 * (len + alignment + slop) does not increase from this point
783 * on, so reset minalignslop to ensure it is not included in
784 * subsequent requests.
786 args.minalignslop = 0;
789 if (unlikely(args.fsbno == NULLFSBLOCK)) {
791 * Set the alignment for the allocation.
792 * If stripe alignment is turned on then align at stripe unit
794 * If the cluster size is smaller than a filesystem block
795 * then we're doing I/O for inodes in filesystem block size
796 * pieces, so don't need alignment anyway.
799 if (igeo->ialloc_align) {
800 ASSERT(!xfs_has_noalign(args.mp));
801 args.alignment = args.mp->m_dalign;
804 args.alignment = igeo->cluster_align;
806 * Allocate a fixed-size extent of inodes.
810 * Allow space for the inode btree to split.
812 args.minleft = igeo->inobt_maxlevels;
813 error = xfs_alloc_vextent_near_bno(&args,
814 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
815 be32_to_cpu(agi->agi_root)));
821 * If stripe alignment is turned on, then try again with cluster
824 if (isaligned && args.fsbno == NULLFSBLOCK) {
825 args.alignment = igeo->cluster_align;
826 error = xfs_alloc_vextent_near_bno(&args,
827 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
828 be32_to_cpu(agi->agi_root)));
834 * Finally, try a sparse allocation if the filesystem supports it and
835 * the sparse allocation length is smaller than a full chunk.
837 if (xfs_has_sparseinodes(args.mp) &&
838 igeo->ialloc_min_blks < igeo->ialloc_blks &&
839 args.fsbno == NULLFSBLOCK) {
841 args.alignment = args.mp->m_sb.sb_spino_align;
844 args.minlen = igeo->ialloc_min_blks;
845 args.maxlen = args.minlen;
848 * The inode record will be aligned to full chunk size. We must
849 * prevent sparse allocation from AG boundaries that result in
850 * invalid inode records, such as records that start at agbno 0
851 * or extend beyond the AG.
853 * Set min agbno to the first aligned, non-zero agbno and max to
854 * the last aligned agbno that is at least one full chunk from
857 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
858 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
859 args.mp->m_sb.sb_inoalignmt) -
862 error = xfs_alloc_vextent_near_bno(&args,
863 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
864 be32_to_cpu(agi->agi_root)));
868 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
869 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
870 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
873 if (args.fsbno == NULLFSBLOCK)
876 ASSERT(args.len == args.minlen);
879 * Stamp and write the inode buffers.
881 * Seed the new inode cluster with a random generation number. This
882 * prevents short-term reuse of generation numbers if a chunk is
883 * freed and then immediately reallocated. We use random numbers
884 * rather than a linear progression to prevent the next generation
885 * number from being easily guessable.
887 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
888 args.agbno, args.len, get_random_u32());
893 * Convert the results.
895 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
897 if (xfs_inobt_issparse(~allocmask)) {
899 * We've allocated a sparse chunk. Align the startino and mask.
901 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
903 rec.ir_startino = newino;
904 rec.ir_holemask = ~allocmask;
905 rec.ir_count = newlen;
906 rec.ir_freecount = newlen;
907 rec.ir_free = XFS_INOBT_ALL_FREE;
910 * Insert the sparse record into the inobt and allow for a merge
911 * if necessary. If a merge does occur, rec is updated to the
914 error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec);
915 if (error == -EFSCORRUPTED) {
917 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
918 XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
920 rec.ir_holemask, rec.ir_count);
921 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
927 * We can't merge the part we've just allocated as for the inobt
928 * due to finobt semantics. The original record may or may not
929 * exist independent of whether physical inodes exist in this
932 * We must update the finobt record based on the inobt record.
933 * rec contains the fully merged and up to date inobt record
934 * from the previous call. Set merge false to replace any
935 * existing record with this one.
937 if (xfs_has_finobt(args.mp)) {
938 error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec);
943 /* full chunk - insert new records to both btrees */
944 error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false);
948 if (xfs_has_finobt(args.mp)) {
949 error = xfs_inobt_insert(pag, tp, agbp, newino,
957 * Update AGI counts and newino.
959 be32_add_cpu(&agi->agi_count, newlen);
960 be32_add_cpu(&agi->agi_freecount, newlen);
961 pag->pagi_freecount += newlen;
962 pag->pagi_count += newlen;
963 agi->agi_newino = cpu_to_be32(newino);
966 * Log allocation group header fields
968 xfs_ialloc_log_agi(tp, agbp,
969 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
971 * Modify/log superblock values for inode count and inode free count.
973 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
974 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
979 * Try to retrieve the next record to the left/right from the current one.
983 struct xfs_btree_cur *cur,
984 xfs_inobt_rec_incore_t *rec,
992 error = xfs_btree_decrement(cur, 0, &i);
994 error = xfs_btree_increment(cur, 0, &i);
1000 error = xfs_inobt_get_rec(cur, rec, &i);
1003 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1004 xfs_btree_mark_sick(cur);
1005 return -EFSCORRUPTED;
1014 struct xfs_btree_cur *cur,
1016 xfs_inobt_rec_incore_t *rec,
1022 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1027 error = xfs_inobt_get_rec(cur, rec, &i);
1030 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1031 xfs_btree_mark_sick(cur);
1032 return -EFSCORRUPTED;
1040 * Return the offset of the first free inode in the record. If the inode chunk
1041 * is sparsely allocated, we convert the record holemask to inode granularity
1042 * and mask off the unallocated regions from the inode free mask.
1045 xfs_inobt_first_free_inode(
1046 struct xfs_inobt_rec_incore *rec)
1048 xfs_inofree_t realfree;
1050 /* if there are no holes, return the first available offset */
1051 if (!xfs_inobt_issparse(rec->ir_holemask))
1052 return xfs_lowbit64(rec->ir_free);
1054 realfree = xfs_inobt_irec_to_allocmask(rec);
1055 realfree &= rec->ir_free;
1057 return xfs_lowbit64(realfree);
1061 * If this AG has corrupt inodes, check if allocating this inode would fail
1062 * with corruption errors. Returns 0 if we're clear, or EAGAIN to try again
1066 xfs_dialloc_check_ino(
1067 struct xfs_perag *pag,
1068 struct xfs_trans *tp,
1071 struct xfs_imap imap;
1075 error = xfs_imap(pag, tp, ino, &imap, 0);
1079 error = xfs_imap_to_bp(pag->pag_mount, tp, &imap, &bp);
1083 xfs_trans_brelse(tp, bp);
1088 * Allocate an inode using the inobt-only algorithm.
1091 xfs_dialloc_ag_inobt(
1092 struct xfs_perag *pag,
1093 struct xfs_trans *tp,
1094 struct xfs_buf *agbp,
1098 struct xfs_mount *mp = tp->t_mountp;
1099 struct xfs_agi *agi = agbp->b_addr;
1100 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1101 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1102 struct xfs_btree_cur *cur, *tcur;
1103 struct xfs_inobt_rec_incore rec, trec;
1108 int searchdistance = 10;
1110 ASSERT(xfs_perag_initialised_agi(pag));
1111 ASSERT(xfs_perag_allows_inodes(pag));
1112 ASSERT(pag->pagi_freecount > 0);
1115 cur = xfs_inobt_init_cursor(pag, tp, agbp);
1117 * If pagino is 0 (this is the root inode allocation) use newino.
1118 * This must work because we've just allocated some.
1121 pagino = be32_to_cpu(agi->agi_newino);
1123 error = xfs_check_agi_freecount(cur);
1128 * If in the same AG as the parent, try to get near the parent.
1130 if (pagno == pag->pag_agno) {
1131 int doneleft; /* done, to the left */
1132 int doneright; /* done, to the right */
1134 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1137 if (XFS_IS_CORRUPT(mp, i != 1)) {
1138 xfs_btree_mark_sick(cur);
1139 error = -EFSCORRUPTED;
1143 error = xfs_inobt_get_rec(cur, &rec, &j);
1146 if (XFS_IS_CORRUPT(mp, j != 1)) {
1147 xfs_btree_mark_sick(cur);
1148 error = -EFSCORRUPTED;
1152 if (rec.ir_freecount > 0) {
1154 * Found a free inode in the same chunk
1155 * as the parent, done.
1162 * In the same AG as parent, but parent's chunk is full.
1165 /* duplicate the cursor, search left & right simultaneously */
1166 error = xfs_btree_dup_cursor(cur, &tcur);
1171 * Skip to last blocks looked up if same parent inode.
1173 if (pagino != NULLAGINO &&
1174 pag->pagl_pagino == pagino &&
1175 pag->pagl_leftrec != NULLAGINO &&
1176 pag->pagl_rightrec != NULLAGINO) {
1177 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1182 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1187 /* search left with tcur, back up 1 record */
1188 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1192 /* search right with cur, go forward 1 record. */
1193 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1199 * Loop until we find an inode chunk with a free inode.
1201 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1202 int useleft; /* using left inode chunk this time */
1204 /* figure out the closer block if both are valid. */
1205 if (!doneleft && !doneright) {
1207 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1208 rec.ir_startino - pagino;
1210 useleft = !doneleft;
1213 /* free inodes to the left? */
1214 if (useleft && trec.ir_freecount) {
1215 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1218 pag->pagl_leftrec = trec.ir_startino;
1219 pag->pagl_rightrec = rec.ir_startino;
1220 pag->pagl_pagino = pagino;
1225 /* free inodes to the right? */
1226 if (!useleft && rec.ir_freecount) {
1227 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1229 pag->pagl_leftrec = trec.ir_startino;
1230 pag->pagl_rightrec = rec.ir_startino;
1231 pag->pagl_pagino = pagino;
1235 /* get next record to check */
1237 error = xfs_ialloc_next_rec(tcur, &trec,
1240 error = xfs_ialloc_next_rec(cur, &rec,
1247 if (searchdistance <= 0) {
1249 * Not in range - save last search
1250 * location and allocate a new inode
1252 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1253 pag->pagl_leftrec = trec.ir_startino;
1254 pag->pagl_rightrec = rec.ir_startino;
1255 pag->pagl_pagino = pagino;
1259 * We've reached the end of the btree. because
1260 * we are only searching a small chunk of the
1261 * btree each search, there is obviously free
1262 * inodes closer to the parent inode than we
1263 * are now. restart the search again.
1265 pag->pagl_pagino = NULLAGINO;
1266 pag->pagl_leftrec = NULLAGINO;
1267 pag->pagl_rightrec = NULLAGINO;
1268 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1269 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1275 * In a different AG from the parent.
1276 * See if the most recently allocated block has any free.
1278 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1279 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1285 error = xfs_inobt_get_rec(cur, &rec, &j);
1289 if (j == 1 && rec.ir_freecount > 0) {
1291 * The last chunk allocated in the group
1292 * still has a free inode.
1300 * None left in the last group, search the whole AG
1302 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1305 if (XFS_IS_CORRUPT(mp, i != 1)) {
1306 xfs_btree_mark_sick(cur);
1307 error = -EFSCORRUPTED;
1312 error = xfs_inobt_get_rec(cur, &rec, &i);
1315 if (XFS_IS_CORRUPT(mp, i != 1)) {
1316 xfs_btree_mark_sick(cur);
1317 error = -EFSCORRUPTED;
1320 if (rec.ir_freecount > 0)
1322 error = xfs_btree_increment(cur, 0, &i);
1325 if (XFS_IS_CORRUPT(mp, i != 1)) {
1326 xfs_btree_mark_sick(cur);
1327 error = -EFSCORRUPTED;
1333 offset = xfs_inobt_first_free_inode(&rec);
1334 ASSERT(offset >= 0);
1335 ASSERT(offset < XFS_INODES_PER_CHUNK);
1336 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1337 XFS_INODES_PER_CHUNK) == 0);
1338 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1340 if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1341 error = xfs_dialloc_check_ino(pag, tp, ino);
1346 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1348 error = xfs_inobt_update(cur, &rec);
1351 be32_add_cpu(&agi->agi_freecount, -1);
1352 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1353 pag->pagi_freecount--;
1355 error = xfs_check_agi_freecount(cur);
1359 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1360 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1364 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1366 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1371 * Use the free inode btree to allocate an inode based on distance from the
1372 * parent. Note that the provided cursor may be deleted and replaced.
1375 xfs_dialloc_ag_finobt_near(
1377 struct xfs_btree_cur **ocur,
1378 struct xfs_inobt_rec_incore *rec)
1380 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1381 struct xfs_btree_cur *rcur; /* right search cursor */
1382 struct xfs_inobt_rec_incore rrec;
1386 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1391 error = xfs_inobt_get_rec(lcur, rec, &i);
1394 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) {
1395 xfs_btree_mark_sick(lcur);
1396 return -EFSCORRUPTED;
1400 * See if we've landed in the parent inode record. The finobt
1401 * only tracks chunks with at least one free inode, so record
1402 * existence is enough.
1404 if (pagino >= rec->ir_startino &&
1405 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1409 error = xfs_btree_dup_cursor(lcur, &rcur);
1413 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1417 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1420 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1421 xfs_btree_mark_sick(lcur);
1422 error = -EFSCORRUPTED;
1427 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1428 xfs_btree_mark_sick(lcur);
1429 error = -EFSCORRUPTED;
1432 if (i == 1 && j == 1) {
1434 * Both the left and right records are valid. Choose the closer
1435 * inode chunk to the target.
1437 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1438 (rrec.ir_startino - pagino)) {
1440 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1443 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1445 } else if (j == 1) {
1446 /* only the right record is valid */
1448 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1450 } else if (i == 1) {
1451 /* only the left record is valid */
1452 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1458 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1463 * Use the free inode btree to find a free inode based on a newino hint. If
1464 * the hint is NULL, find the first free inode in the AG.
1467 xfs_dialloc_ag_finobt_newino(
1468 struct xfs_agi *agi,
1469 struct xfs_btree_cur *cur,
1470 struct xfs_inobt_rec_incore *rec)
1475 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1476 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1481 error = xfs_inobt_get_rec(cur, rec, &i);
1484 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1485 xfs_btree_mark_sick(cur);
1486 return -EFSCORRUPTED;
1493 * Find the first inode available in the AG.
1495 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1498 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1499 xfs_btree_mark_sick(cur);
1500 return -EFSCORRUPTED;
1503 error = xfs_inobt_get_rec(cur, rec, &i);
1506 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1507 xfs_btree_mark_sick(cur);
1508 return -EFSCORRUPTED;
1515 * Update the inobt based on a modification made to the finobt. Also ensure that
1516 * the records from both trees are equivalent post-modification.
1519 xfs_dialloc_ag_update_inobt(
1520 struct xfs_btree_cur *cur, /* inobt cursor */
1521 struct xfs_inobt_rec_incore *frec, /* finobt record */
1522 int offset) /* inode offset */
1524 struct xfs_inobt_rec_incore rec;
1528 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1531 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1532 xfs_btree_mark_sick(cur);
1533 return -EFSCORRUPTED;
1536 error = xfs_inobt_get_rec(cur, &rec, &i);
1539 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1540 xfs_btree_mark_sick(cur);
1541 return -EFSCORRUPTED;
1543 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1544 XFS_INODES_PER_CHUNK) == 0);
1546 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1549 if (XFS_IS_CORRUPT(cur->bc_mp,
1550 rec.ir_free != frec->ir_free ||
1551 rec.ir_freecount != frec->ir_freecount)) {
1552 xfs_btree_mark_sick(cur);
1553 return -EFSCORRUPTED;
1556 return xfs_inobt_update(cur, &rec);
1560 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1561 * back to the inobt search algorithm.
1563 * The caller selected an AG for us, and made sure that free inodes are
1568 struct xfs_perag *pag,
1569 struct xfs_trans *tp,
1570 struct xfs_buf *agbp,
1574 struct xfs_mount *mp = tp->t_mountp;
1575 struct xfs_agi *agi = agbp->b_addr;
1576 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1577 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1578 struct xfs_btree_cur *cur; /* finobt cursor */
1579 struct xfs_btree_cur *icur; /* inobt cursor */
1580 struct xfs_inobt_rec_incore rec;
1586 if (!xfs_has_finobt(mp))
1587 return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1590 * If pagino is 0 (this is the root inode allocation) use newino.
1591 * This must work because we've just allocated some.
1594 pagino = be32_to_cpu(agi->agi_newino);
1596 cur = xfs_finobt_init_cursor(pag, tp, agbp);
1598 error = xfs_check_agi_freecount(cur);
1603 * The search algorithm depends on whether we're in the same AG as the
1604 * parent. If so, find the closest available inode to the parent. If
1605 * not, consider the agi hint or find the first free inode in the AG.
1607 if (pag->pag_agno == pagno)
1608 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1610 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1614 offset = xfs_inobt_first_free_inode(&rec);
1615 ASSERT(offset >= 0);
1616 ASSERT(offset < XFS_INODES_PER_CHUNK);
1617 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1618 XFS_INODES_PER_CHUNK) == 0);
1619 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1621 if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1622 error = xfs_dialloc_check_ino(pag, tp, ino);
1628 * Modify or remove the finobt record.
1630 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1632 if (rec.ir_freecount)
1633 error = xfs_inobt_update(cur, &rec);
1635 error = xfs_btree_delete(cur, &i);
1640 * The finobt has now been updated appropriately. We haven't updated the
1641 * agi and superblock yet, so we can create an inobt cursor and validate
1642 * the original freecount. If all is well, make the equivalent update to
1643 * the inobt using the finobt record and offset information.
1645 icur = xfs_inobt_init_cursor(pag, tp, agbp);
1647 error = xfs_check_agi_freecount(icur);
1651 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1656 * Both trees have now been updated. We must update the perag and
1657 * superblock before we can check the freecount for each btree.
1659 be32_add_cpu(&agi->agi_freecount, -1);
1660 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1661 pag->pagi_freecount--;
1663 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1665 error = xfs_check_agi_freecount(icur);
1668 error = xfs_check_agi_freecount(cur);
1672 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1673 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1678 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1680 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1686 struct xfs_trans **tpp,
1687 struct xfs_buf *agibp)
1689 struct xfs_trans *tp = *tpp;
1690 struct xfs_dquot_acct *dqinfo;
1694 * Hold to on to the agibp across the commit so no other allocation can
1695 * come in and take the free inodes we just allocated for our caller.
1697 xfs_trans_bhold(tp, agibp);
1700 * We want the quota changes to be associated with the next transaction,
1701 * NOT this one. So, detach the dqinfo from this and attach it to the
1704 dqinfo = tp->t_dqinfo;
1705 tp->t_dqinfo = NULL;
1707 error = xfs_trans_roll(&tp);
1709 /* Re-attach the quota info that we detached from prev trx. */
1710 tp->t_dqinfo = dqinfo;
1713 * Join the buffer even on commit error so that the buffer is released
1714 * when the caller cancels the transaction and doesn't have to handle
1715 * this error case specially.
1717 xfs_trans_bjoin(tp, agibp);
1723 xfs_dialloc_good_ag(
1724 struct xfs_perag *pag,
1725 struct xfs_trans *tp,
1730 struct xfs_mount *mp = tp->t_mountp;
1732 xfs_extlen_t longest = 0;
1738 if (!xfs_perag_allows_inodes(pag))
1741 if (!xfs_perag_initialised_agi(pag)) {
1742 error = xfs_ialloc_read_agi(pag, tp, 0, NULL);
1747 if (pag->pagi_freecount)
1752 if (!xfs_perag_initialised_agf(pag)) {
1753 error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1759 * Check that there is enough free space for the file plus a chunk of
1760 * inodes if we need to allocate some. If this is the first pass across
1761 * the AGs, take into account the potential space needed for alignment
1762 * of inode chunks when checking the longest contiguous free space in
1763 * the AG - this prevents us from getting ENOSPC because we have free
1764 * space larger than ialloc_blks but alignment constraints prevent us
1767 * If we can't find an AG with space for full alignment slack to be
1768 * taken into account, we must be near ENOSPC in all AGs. Hence we
1769 * don't include alignment for the second pass and so if we fail
1770 * allocation due to alignment issues then it is most likely a real
1773 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1774 * reservations that xfs_alloc_fix_freelist() now does via
1775 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1776 * be more than large enough for the check below to succeed, but
1777 * xfs_alloc_space_available() will fail because of the non-zero
1778 * metadata reservation and hence we won't actually be able to allocate
1779 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1782 ineed = M_IGEO(mp)->ialloc_min_blks;
1783 if (flags && ineed > 1)
1784 ineed += M_IGEO(mp)->cluster_align;
1785 longest = pag->pagf_longest;
1787 longest = pag->pagf_flcount > 0;
1788 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1790 if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1797 struct xfs_perag *pag,
1798 struct xfs_trans **tpp,
1803 struct xfs_buf *agbp;
1808 * Then read in the AGI buffer and recheck with the AGI buffer
1811 error = xfs_ialloc_read_agi(pag, *tpp, 0, &agbp);
1815 if (!pag->pagi_freecount) {
1821 error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1826 * We successfully allocated space for an inode cluster in this
1827 * AG. Roll the transaction so that we can allocate one of the
1830 ASSERT(pag->pagi_freecount > 0);
1831 error = xfs_dialloc_roll(tpp, agbp);
1836 /* Allocate an inode in the found AG */
1837 error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1843 xfs_trans_brelse(*tpp, agbp);
1848 * Allocate an on-disk inode.
1850 * Mode is used to tell whether the new inode is a directory and hence where to
1851 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1852 * on success, otherwise an error will be set to indicate the failure (e.g.
1857 struct xfs_trans **tpp,
1862 struct xfs_mount *mp = (*tpp)->t_mountp;
1863 xfs_agnumber_t agno;
1865 xfs_agnumber_t start_agno;
1866 struct xfs_perag *pag;
1867 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1868 bool ok_alloc = true;
1869 bool low_space = false;
1871 xfs_ino_t ino = NULLFSINO;
1874 * Directories, symlinks, and regular files frequently allocate at least
1875 * one block, so factor that potential expansion when we examine whether
1876 * an AG has enough space for file creation.
1879 start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1882 start_agno = XFS_INO_TO_AGNO(mp, parent);
1883 if (start_agno >= mp->m_maxagi)
1888 * If we have already hit the ceiling of inode blocks then clear
1889 * ok_alloc so we scan all available agi structures for a free
1892 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1893 * which will sacrifice the preciseness but improve the performance.
1895 if (igeo->maxicount &&
1896 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1897 > igeo->maxicount) {
1902 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1903 * have free inodes in them rather than use up free space allocating new
1904 * inode chunks. Hence we turn off allocation for the first non-blocking
1905 * pass through the AGs if we are near ENOSPC to consume free inodes
1906 * that we can immediately allocate, but then we allow allocation on the
1907 * second pass if we fail to find an AG with free inodes in it.
1909 if (percpu_counter_read_positive(&mp->m_fdblocks) <
1910 mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1916 * Loop until we find an allocation group that either has free inodes
1917 * or in which we can allocate some inodes. Iterate through the
1918 * allocation groups upward, wrapping at the end.
1920 flags = XFS_ALLOC_FLAG_TRYLOCK;
1922 for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1923 if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1924 error = xfs_dialloc_try_ag(pag, tpp, parent,
1926 if (error != -EAGAIN)
1931 if (xfs_is_shutdown(mp)) {
1932 error = -EFSCORRUPTED;
1937 xfs_perag_rele(pag);
1940 if (ino == NULLFSINO) {
1954 * Free the blocks of an inode chunk. We must consider that the inode chunk
1955 * might be sparse and only free the regions that are allocated as part of the
1959 xfs_difree_inode_chunk(
1960 struct xfs_trans *tp,
1961 xfs_agnumber_t agno,
1962 struct xfs_inobt_rec_incore *rec)
1964 struct xfs_mount *mp = tp->t_mountp;
1965 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1967 int startidx, endidx;
1969 xfs_agblock_t agbno;
1971 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1973 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1974 /* not sparse, calculate extent info directly */
1975 return xfs_free_extent_later(tp,
1976 XFS_AGB_TO_FSB(mp, agno, sagbno),
1977 M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1978 XFS_AG_RESV_NONE, false);
1981 /* holemask is only 16-bits (fits in an unsigned long) */
1982 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1983 holemask[0] = rec->ir_holemask;
1986 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1987 * holemask and convert the start/end index of each range to an extent.
1988 * We start with the start and end index both pointing at the first 0 in
1991 startidx = endidx = find_first_zero_bit(holemask,
1992 XFS_INOBT_HOLEMASK_BITS);
1993 nextbit = startidx + 1;
1994 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1997 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
2000 * If the next zero bit is contiguous, update the end index of
2001 * the current range and continue.
2003 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
2004 nextbit == endidx + 1) {
2010 * nextbit is not contiguous with the current end index. Convert
2011 * the current start/end to an extent and add it to the free
2014 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
2015 mp->m_sb.sb_inopblock;
2016 contigblk = ((endidx - startidx + 1) *
2017 XFS_INODES_PER_HOLEMASK_BIT) /
2018 mp->m_sb.sb_inopblock;
2020 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
2021 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
2022 error = xfs_free_extent_later(tp,
2023 XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
2024 &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE,
2029 /* reset range to current bit and carry on... */
2030 startidx = endidx = nextbit;
2040 struct xfs_perag *pag,
2041 struct xfs_trans *tp,
2042 struct xfs_buf *agbp,
2044 struct xfs_icluster *xic,
2045 struct xfs_inobt_rec_incore *orec)
2047 struct xfs_mount *mp = pag->pag_mount;
2048 struct xfs_agi *agi = agbp->b_addr;
2049 struct xfs_btree_cur *cur;
2050 struct xfs_inobt_rec_incore rec;
2056 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2057 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
2060 * Initialize the cursor.
2062 cur = xfs_inobt_init_cursor(pag, tp, agbp);
2064 error = xfs_check_agi_freecount(cur);
2069 * Look for the entry describing this inode.
2071 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
2072 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
2076 if (XFS_IS_CORRUPT(mp, i != 1)) {
2077 xfs_btree_mark_sick(cur);
2078 error = -EFSCORRUPTED;
2081 error = xfs_inobt_get_rec(cur, &rec, &i);
2083 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
2087 if (XFS_IS_CORRUPT(mp, i != 1)) {
2088 xfs_btree_mark_sick(cur);
2089 error = -EFSCORRUPTED;
2093 * Get the offset in the inode chunk.
2095 off = agino - rec.ir_startino;
2096 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
2097 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
2099 * Mark the inode free & increment the count.
2101 rec.ir_free |= XFS_INOBT_MASK(off);
2105 * When an inode chunk is free, it becomes eligible for removal. Don't
2106 * remove the chunk if the block size is large enough for multiple inode
2107 * chunks (that might not be free).
2109 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2110 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2111 xic->deleted = true;
2112 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
2114 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2117 * Remove the inode cluster from the AGI B+Tree, adjust the
2118 * AGI and Superblock inode counts, and mark the disk space
2119 * to be freed when the transaction is committed.
2121 ilen = rec.ir_freecount;
2122 be32_add_cpu(&agi->agi_count, -ilen);
2123 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2124 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2125 pag->pagi_freecount -= ilen - 1;
2126 pag->pagi_count -= ilen;
2127 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2128 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2130 if ((error = xfs_btree_delete(cur, &i))) {
2131 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2136 error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2140 xic->deleted = false;
2142 error = xfs_inobt_update(cur, &rec);
2144 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2150 * Change the inode free counts and log the ag/sb changes.
2152 be32_add_cpu(&agi->agi_freecount, 1);
2153 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2154 pag->pagi_freecount++;
2155 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2158 error = xfs_check_agi_freecount(cur);
2163 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2167 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2172 * Free an inode in the free inode btree.
2176 struct xfs_perag *pag,
2177 struct xfs_trans *tp,
2178 struct xfs_buf *agbp,
2180 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2182 struct xfs_mount *mp = pag->pag_mount;
2183 struct xfs_btree_cur *cur;
2184 struct xfs_inobt_rec_incore rec;
2185 int offset = agino - ibtrec->ir_startino;
2189 cur = xfs_finobt_init_cursor(pag, tp, agbp);
2191 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2196 * If the record does not exist in the finobt, we must have just
2197 * freed an inode in a previously fully allocated chunk. If not,
2198 * something is out of sync.
2200 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2201 xfs_btree_mark_sick(cur);
2202 error = -EFSCORRUPTED;
2206 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2208 ibtrec->ir_freecount,
2209 ibtrec->ir_free, &i);
2218 * Read and update the existing record. We could just copy the ibtrec
2219 * across here, but that would defeat the purpose of having redundant
2220 * metadata. By making the modifications independently, we can catch
2221 * corruptions that we wouldn't see if we just copied from one record
2224 error = xfs_inobt_get_rec(cur, &rec, &i);
2227 if (XFS_IS_CORRUPT(mp, i != 1)) {
2228 xfs_btree_mark_sick(cur);
2229 error = -EFSCORRUPTED;
2233 rec.ir_free |= XFS_INOBT_MASK(offset);
2236 if (XFS_IS_CORRUPT(mp,
2237 rec.ir_free != ibtrec->ir_free ||
2238 rec.ir_freecount != ibtrec->ir_freecount)) {
2239 xfs_btree_mark_sick(cur);
2240 error = -EFSCORRUPTED;
2245 * The content of inobt records should always match between the inobt
2246 * and finobt. The lifecycle of records in the finobt is different from
2247 * the inobt in that the finobt only tracks records with at least one
2248 * free inode. Hence, if all of the inodes are free and we aren't
2249 * keeping inode chunks permanently on disk, remove the record.
2250 * Otherwise, update the record with the new information.
2252 * Note that we currently can't free chunks when the block size is large
2253 * enough for multiple chunks. Leave the finobt record to remain in sync
2256 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2257 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2258 error = xfs_btree_delete(cur, &i);
2263 error = xfs_inobt_update(cur, &rec);
2269 error = xfs_check_agi_freecount(cur);
2273 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2277 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2282 * Free disk inode. Carefully avoids touching the incore inode, all
2283 * manipulations incore are the caller's responsibility.
2284 * The on-disk inode is not changed by this operation, only the
2285 * btree (free inode mask) is changed.
2289 struct xfs_trans *tp,
2290 struct xfs_perag *pag,
2292 struct xfs_icluster *xic)
2295 xfs_agblock_t agbno; /* block number containing inode */
2296 struct xfs_buf *agbp; /* buffer for allocation group header */
2297 xfs_agino_t agino; /* allocation group inode number */
2298 int error; /* error return value */
2299 struct xfs_mount *mp = tp->t_mountp;
2300 struct xfs_inobt_rec_incore rec;/* btree record */
2303 * Break up inode number into its components.
2305 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2306 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2307 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2311 agino = XFS_INO_TO_AGINO(mp, inode);
2312 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2313 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2314 __func__, (unsigned long long)inode,
2315 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2319 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2320 if (agbno >= mp->m_sb.sb_agblocks) {
2321 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2322 __func__, agbno, mp->m_sb.sb_agblocks);
2327 * Get the allocation group header.
2329 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2331 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2337 * Fix up the inode allocation btree.
2339 error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2344 * Fix up the free inode btree.
2346 if (xfs_has_finobt(mp)) {
2347 error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2360 struct xfs_perag *pag,
2361 struct xfs_trans *tp,
2363 xfs_agblock_t agbno,
2364 xfs_agblock_t *chunk_agbno,
2365 xfs_agblock_t *offset_agbno,
2368 struct xfs_mount *mp = pag->pag_mount;
2369 struct xfs_inobt_rec_incore rec;
2370 struct xfs_btree_cur *cur;
2371 struct xfs_buf *agbp;
2375 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2378 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2379 __func__, error, pag->pag_agno);
2384 * Lookup the inode record for the given agino. If the record cannot be
2385 * found, then it's an invalid inode number and we should abort. Once
2386 * we have a record, we need to ensure it contains the inode number
2387 * we are looking up.
2389 cur = xfs_inobt_init_cursor(pag, tp, agbp);
2390 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2393 error = xfs_inobt_get_rec(cur, &rec, &i);
2394 if (!error && i == 0)
2398 xfs_trans_brelse(tp, agbp);
2399 xfs_btree_del_cursor(cur, error);
2403 /* check that the returned record contains the required inode */
2404 if (rec.ir_startino > agino ||
2405 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2408 /* for untrusted inodes check it is allocated first */
2409 if ((flags & XFS_IGET_UNTRUSTED) &&
2410 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2413 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2414 *offset_agbno = agbno - *chunk_agbno;
2419 * Return the location of the inode in imap, for mapping it into a buffer.
2423 struct xfs_perag *pag,
2424 struct xfs_trans *tp,
2425 xfs_ino_t ino, /* inode to locate */
2426 struct xfs_imap *imap, /* location map structure */
2427 uint flags) /* flags for inode btree lookup */
2429 struct xfs_mount *mp = pag->pag_mount;
2430 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2431 xfs_agino_t agino; /* inode number within alloc group */
2432 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2433 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2434 int error; /* error code */
2435 int offset; /* index of inode in its buffer */
2436 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2438 ASSERT(ino != NULLFSINO);
2441 * Split up the inode number into its parts.
2443 agino = XFS_INO_TO_AGINO(mp, ino);
2444 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2445 if (agbno >= mp->m_sb.sb_agblocks ||
2446 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2450 * Don't output diagnostic information for untrusted inodes
2451 * as they can be invalid without implying corruption.
2453 if (flags & XFS_IGET_UNTRUSTED)
2455 if (agbno >= mp->m_sb.sb_agblocks) {
2457 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2458 __func__, (unsigned long long)agbno,
2459 (unsigned long)mp->m_sb.sb_agblocks);
2461 if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2463 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2465 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2473 * For bulkstat and handle lookups, we have an untrusted inode number
2474 * that we have to verify is valid. We cannot do this just by reading
2475 * the inode buffer as it may have been unlinked and removed leaving
2476 * inodes in stale state on disk. Hence we have to do a btree lookup
2477 * in all cases where an untrusted inode number is passed.
2479 if (flags & XFS_IGET_UNTRUSTED) {
2480 error = xfs_imap_lookup(pag, tp, agino, agbno,
2481 &chunk_agbno, &offset_agbno, flags);
2488 * If the inode cluster size is the same as the blocksize or
2489 * smaller we get to the buffer by simple arithmetics.
2491 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2492 offset = XFS_INO_TO_OFFSET(mp, ino);
2493 ASSERT(offset < mp->m_sb.sb_inopblock);
2495 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2496 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2497 imap->im_boffset = (unsigned short)(offset <<
2498 mp->m_sb.sb_inodelog);
2503 * If the inode chunks are aligned then use simple maths to
2504 * find the location. Otherwise we have to do a btree
2505 * lookup to find the location.
2507 if (M_IGEO(mp)->inoalign_mask) {
2508 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2509 chunk_agbno = agbno - offset_agbno;
2511 error = xfs_imap_lookup(pag, tp, agino, agbno,
2512 &chunk_agbno, &offset_agbno, flags);
2518 ASSERT(agbno >= chunk_agbno);
2519 cluster_agbno = chunk_agbno +
2520 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2521 M_IGEO(mp)->blocks_per_cluster);
2522 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2523 XFS_INO_TO_OFFSET(mp, ino);
2525 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2526 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2527 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2530 * If the inode number maps to a block outside the bounds
2531 * of the file system then return NULL rather than calling
2532 * read_buf and panicing when we get an error from the
2535 if ((imap->im_blkno + imap->im_len) >
2536 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2538 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2539 __func__, (unsigned long long) imap->im_blkno,
2540 (unsigned long long) imap->im_len,
2541 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2548 * Log specified fields for the ag hdr (inode section). The growth of the agi
2549 * structure over time requires that we interpret the buffer as two logical
2550 * regions delineated by the end of the unlinked list. This is due to the size
2551 * of the hash table and its location in the middle of the agi.
2553 * For example, a request to log a field before agi_unlinked and a field after
2554 * agi_unlinked could cause us to log the entire hash table and use an excessive
2555 * amount of log space. To avoid this behavior, log the region up through
2556 * agi_unlinked in one call and the region after agi_unlinked through the end of
2557 * the structure in another.
2561 struct xfs_trans *tp,
2565 int first; /* first byte number */
2566 int last; /* last byte number */
2567 static const short offsets[] = { /* field starting offsets */
2568 /* keep in sync with bit definitions */
2569 offsetof(xfs_agi_t, agi_magicnum),
2570 offsetof(xfs_agi_t, agi_versionnum),
2571 offsetof(xfs_agi_t, agi_seqno),
2572 offsetof(xfs_agi_t, agi_length),
2573 offsetof(xfs_agi_t, agi_count),
2574 offsetof(xfs_agi_t, agi_root),
2575 offsetof(xfs_agi_t, agi_level),
2576 offsetof(xfs_agi_t, agi_freecount),
2577 offsetof(xfs_agi_t, agi_newino),
2578 offsetof(xfs_agi_t, agi_dirino),
2579 offsetof(xfs_agi_t, agi_unlinked),
2580 offsetof(xfs_agi_t, agi_free_root),
2581 offsetof(xfs_agi_t, agi_free_level),
2582 offsetof(xfs_agi_t, agi_iblocks),
2586 struct xfs_agi *agi = bp->b_addr;
2588 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2592 * Compute byte offsets for the first and last fields in the first
2593 * region and log the agi buffer. This only logs up through
2596 if (fields & XFS_AGI_ALL_BITS_R1) {
2597 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2599 xfs_trans_log_buf(tp, bp, first, last);
2603 * Mask off the bits in the first region and calculate the first and
2604 * last field offsets for any bits in the second region.
2606 fields &= ~XFS_AGI_ALL_BITS_R1;
2608 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2610 xfs_trans_log_buf(tp, bp, first, last);
2614 static xfs_failaddr_t
2618 struct xfs_mount *mp = bp->b_mount;
2619 struct xfs_agi *agi = bp->b_addr;
2621 uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno);
2622 uint32_t agi_length = be32_to_cpu(agi->agi_length);
2625 if (xfs_has_crc(mp)) {
2626 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2627 return __this_address;
2628 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2629 return __this_address;
2633 * Validate the magic number of the agi block.
2635 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2636 return __this_address;
2637 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2638 return __this_address;
2640 fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2644 if (be32_to_cpu(agi->agi_level) < 1 ||
2645 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2646 return __this_address;
2648 if (xfs_has_finobt(mp) &&
2649 (be32_to_cpu(agi->agi_free_level) < 1 ||
2650 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2651 return __this_address;
2653 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2654 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2656 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2657 return __this_address;
2664 xfs_agi_read_verify(
2667 struct xfs_mount *mp = bp->b_mount;
2670 if (xfs_has_crc(mp) &&
2671 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2672 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2674 fa = xfs_agi_verify(bp);
2675 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2676 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2681 xfs_agi_write_verify(
2684 struct xfs_mount *mp = bp->b_mount;
2685 struct xfs_buf_log_item *bip = bp->b_log_item;
2686 struct xfs_agi *agi = bp->b_addr;
2689 fa = xfs_agi_verify(bp);
2691 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2695 if (!xfs_has_crc(mp))
2699 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2700 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2703 const struct xfs_buf_ops xfs_agi_buf_ops = {
2705 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2706 .verify_read = xfs_agi_read_verify,
2707 .verify_write = xfs_agi_write_verify,
2708 .verify_struct = xfs_agi_verify,
2712 * Read in the allocation group header (inode allocation section)
2716 struct xfs_perag *pag,
2717 struct xfs_trans *tp,
2718 xfs_buf_flags_t flags,
2719 struct xfs_buf **agibpp)
2721 struct xfs_mount *mp = pag->pag_mount;
2724 trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2726 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2727 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2728 XFS_FSS_TO_BB(mp, 1), flags, agibpp, &xfs_agi_buf_ops);
2729 if (xfs_metadata_is_sick(error))
2730 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2734 xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2736 xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2741 * Read in the agi and initialise the per-ag data. If the caller supplies a
2742 * @agibpp, return the locked AGI buffer to them, otherwise release it.
2745 xfs_ialloc_read_agi(
2746 struct xfs_perag *pag,
2747 struct xfs_trans *tp,
2749 struct xfs_buf **agibpp)
2751 struct xfs_buf *agibp;
2752 struct xfs_agi *agi;
2755 trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2757 error = xfs_read_agi(pag, tp,
2758 (flags & XFS_IALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
2763 agi = agibp->b_addr;
2764 if (!xfs_perag_initialised_agi(pag)) {
2765 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2766 pag->pagi_count = be32_to_cpu(agi->agi_count);
2767 set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2771 * It's possible for these to be out of sync if
2772 * we are in the middle of a forced shutdown.
2774 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2775 xfs_is_shutdown(pag->pag_mount));
2779 xfs_trans_brelse(tp, agibp);
2783 /* How many inodes are backed by inode clusters ondisk? */
2785 xfs_ialloc_count_ondisk(
2786 struct xfs_btree_cur *cur,
2789 unsigned int *allocated)
2791 struct xfs_inobt_rec_incore irec;
2792 unsigned int ret = 0;
2796 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2800 while (has_record) {
2801 unsigned int i, hole_idx;
2803 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2806 if (irec.ir_startino > high)
2809 for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2810 if (irec.ir_startino + i < low)
2812 if (irec.ir_startino + i > high)
2815 hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2816 if (!(irec.ir_holemask & (1U << hole_idx)))
2820 error = xfs_btree_increment(cur, 0, &has_record);
2829 /* Is there an inode record covering a given extent? */
2831 xfs_ialloc_has_inodes_at_extent(
2832 struct xfs_btree_cur *cur,
2835 enum xbtree_recpacking *outcome)
2838 xfs_agino_t last_agino;
2839 unsigned int allocated;
2842 agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2843 last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2845 error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2850 *outcome = XBTREE_RECPACKING_EMPTY;
2851 else if (allocated == last_agino - agino + 1)
2852 *outcome = XBTREE_RECPACKING_FULL;
2854 *outcome = XBTREE_RECPACKING_SPARSE;
2858 struct xfs_ialloc_count_inodes {
2860 xfs_agino_t freecount;
2863 /* Record inode counts across all inobt records. */
2865 xfs_ialloc_count_inodes_rec(
2866 struct xfs_btree_cur *cur,
2867 const union xfs_btree_rec *rec,
2870 struct xfs_inobt_rec_incore irec;
2871 struct xfs_ialloc_count_inodes *ci = priv;
2874 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2875 fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec);
2877 return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2879 ci->count += irec.ir_count;
2880 ci->freecount += irec.ir_freecount;
2885 /* Count allocated and free inodes under an inobt. */
2887 xfs_ialloc_count_inodes(
2888 struct xfs_btree_cur *cur,
2890 xfs_agino_t *freecount)
2892 struct xfs_ialloc_count_inodes ci = {0};
2895 ASSERT(xfs_btree_is_ino(cur->bc_ops));
2896 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2901 *freecount = ci.freecount;
2906 * Initialize inode-related geometry information.
2908 * Compute the inode btree min and max levels and set maxicount.
2910 * Set the inode cluster size. This may still be overridden by the file
2911 * system block size if it is larger than the chosen cluster size.
2913 * For v5 filesystems, scale the cluster size with the inode size to keep a
2914 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2915 * inode alignment value appropriately for larger cluster sizes.
2917 * Then compute the inode cluster alignment information.
2920 xfs_ialloc_setup_geometry(
2921 struct xfs_mount *mp)
2923 struct xfs_sb *sbp = &mp->m_sb;
2924 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2928 igeo->new_diflags2 = 0;
2929 if (xfs_has_bigtime(mp))
2930 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2931 if (xfs_has_large_extent_counts(mp))
2932 igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2934 /* Compute inode btree geometry. */
2935 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2936 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2937 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2938 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2939 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2941 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2943 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2945 if (sbp->sb_spino_align)
2946 igeo->ialloc_min_blks = sbp->sb_spino_align;
2948 igeo->ialloc_min_blks = igeo->ialloc_blks;
2950 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2951 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2952 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2954 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2957 * Set the maximum inode count for this filesystem, being careful not
2958 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2959 * users should never get here due to failing sb verification, but
2960 * certain users (xfs_db) need to be usable even with corrupt metadata.
2962 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2964 * Make sure the maximum inode count is a multiple
2965 * of the units we allocate inodes in.
2967 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2968 do_div(icount, 100);
2969 do_div(icount, igeo->ialloc_blks);
2970 igeo->maxicount = XFS_FSB_TO_INO(mp,
2971 icount * igeo->ialloc_blks);
2973 igeo->maxicount = 0;
2977 * Compute the desired size of an inode cluster buffer size, which
2978 * starts at 8K and (on v5 filesystems) scales up with larger inode
2981 * Preserve the desired inode cluster size because the sparse inodes
2982 * feature uses that desired size (not the actual size) to compute the
2983 * sparse inode alignment. The mount code validates this value, so we
2984 * cannot change the behavior.
2986 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2987 if (xfs_has_v3inodes(mp)) {
2988 int new_size = igeo->inode_cluster_size_raw;
2990 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2991 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2992 igeo->inode_cluster_size_raw = new_size;
2995 /* Calculate inode cluster ratios. */
2996 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2997 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2998 igeo->inode_cluster_size_raw);
3000 igeo->blocks_per_cluster = 1;
3001 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
3002 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
3004 /* Calculate inode cluster alignment. */
3005 if (xfs_has_align(mp) &&
3006 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
3007 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
3009 igeo->cluster_align = 1;
3010 igeo->inoalign_mask = igeo->cluster_align - 1;
3011 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
3014 * If we are using stripe alignment, check whether
3015 * the stripe unit is a multiple of the inode alignment
3017 if (mp->m_dalign && igeo->inoalign_mask &&
3018 !(mp->m_dalign & igeo->inoalign_mask))
3019 igeo->ialloc_align = mp->m_dalign;
3021 igeo->ialloc_align = 0;
3024 /* Compute the location of the root directory inode that is laid out by mkfs. */
3026 xfs_ialloc_calc_rootino(
3027 struct xfs_mount *mp,
3030 struct xfs_ino_geometry *igeo = M_IGEO(mp);
3031 xfs_agblock_t first_bno;
3034 * Pre-calculate the geometry of AG 0. We know what it looks like
3035 * because libxfs knows how to create allocation groups now.
3037 * first_bno is the first block in which mkfs could possibly have
3038 * allocated the root directory inode, once we factor in the metadata
3039 * that mkfs formats before it. Namely, the four AG headers...
3041 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
3043 /* ...the two free space btree roots... */
3046 /* ...the inode btree root... */
3049 /* ...the initial AGFL... */
3050 first_bno += xfs_alloc_min_freelist(mp, NULL);
3052 /* ...the free inode btree root... */
3053 if (xfs_has_finobt(mp))
3056 /* ...the reverse mapping btree root... */
3057 if (xfs_has_rmapbt(mp))
3060 /* ...the reference count btree... */
3061 if (xfs_has_reflink(mp))
3065 * ...and the log, if it is allocated in the first allocation group.
3067 * This can happen with filesystems that only have a single
3068 * allocation group, or very odd geometries created by old mkfs
3069 * versions on very small filesystems.
3071 if (xfs_ag_contains_log(mp, 0))
3072 first_bno += mp->m_sb.sb_logblocks;
3075 * Now round first_bno up to whatever allocation alignment is given
3076 * by the filesystem or was passed in.
3078 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
3079 first_bno = roundup(first_bno, sunit);
3080 else if (xfs_has_align(mp) &&
3081 mp->m_sb.sb_inoalignmt > 1)
3082 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
3084 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
3088 * Ensure there are not sparse inode clusters that cross the new EOAG.
3090 * This is a no-op for non-spinode filesystems since clusters are always fully
3091 * allocated and checking the bnobt suffices. However, a spinode filesystem
3092 * could have a record where the upper inodes are free blocks. If those blocks
3093 * were removed from the filesystem, the inode record would extend beyond EOAG,
3094 * which will be flagged as corruption.
3097 xfs_ialloc_check_shrink(
3098 struct xfs_perag *pag,
3099 struct xfs_trans *tp,
3100 struct xfs_buf *agibp,
3101 xfs_agblock_t new_length)
3103 struct xfs_inobt_rec_incore rec;
3104 struct xfs_btree_cur *cur;
3109 if (!xfs_has_sparseinodes(pag->pag_mount))
3112 cur = xfs_inobt_init_cursor(pag, tp, agibp);
3114 /* Look up the inobt record that would correspond to the new EOFS. */
3115 agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
3116 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
3120 error = xfs_inobt_get_rec(cur, &rec, &has);
3125 xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT);
3126 error = -EFSCORRUPTED;
3130 /* If the record covers inodes that would be beyond EOFS, bail out. */
3131 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3136 xfs_btree_del_cursor(cur, error);