1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 * Definitions for the 'struct sk_buff' memory handlers.
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
44 * The interface for checksum offload between the stack and networking drivers
47 * IP checksum related features
48 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50 * Drivers advertise checksum offload capabilities in the features of a device.
51 * From the stack's point of view these are capabilities offered by the driver.
52 * A driver typically only advertises features that it is capable of offloading
55 * .. flat-table:: Checksum related device features
58 * * - %NETIF_F_HW_CSUM
59 * - The driver (or its device) is able to compute one
60 * IP (one's complement) checksum for any combination
61 * of protocols or protocol layering. The checksum is
62 * computed and set in a packet per the CHECKSUM_PARTIAL
63 * interface (see below).
65 * * - %NETIF_F_IP_CSUM
66 * - Driver (device) is only able to checksum plain
67 * TCP or UDP packets over IPv4. These are specifically
68 * unencapsulated packets of the form IPv4|TCP or
69 * IPv4|UDP where the Protocol field in the IPv4 header
70 * is TCP or UDP. The IPv4 header may contain IP options.
71 * This feature cannot be set in features for a device
72 * with NETIF_F_HW_CSUM also set. This feature is being
73 * DEPRECATED (see below).
75 * * - %NETIF_F_IPV6_CSUM
76 * - Driver (device) is only able to checksum plain
77 * TCP or UDP packets over IPv6. These are specifically
78 * unencapsulated packets of the form IPv6|TCP or
79 * IPv6|UDP where the Next Header field in the IPv6
80 * header is either TCP or UDP. IPv6 extension headers
81 * are not supported with this feature. This feature
82 * cannot be set in features for a device with
83 * NETIF_F_HW_CSUM also set. This feature is being
84 * DEPRECATED (see below).
87 * - Driver (device) performs receive checksum offload.
88 * This flag is only used to disable the RX checksum
89 * feature for a device. The stack will accept receive
90 * checksum indication in packets received on a device
91 * regardless of whether NETIF_F_RXCSUM is set.
93 * Checksumming of received packets by device
94 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96 * Indication of checksum verification is set in &sk_buff.ip_summed.
97 * Possible values are:
101 * Device did not checksum this packet e.g. due to lack of capabilities.
102 * The packet contains full (though not verified) checksum in packet but
103 * not in skb->csum. Thus, skb->csum is undefined in this case.
105 * - %CHECKSUM_UNNECESSARY
107 * The hardware you're dealing with doesn't calculate the full checksum
108 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
109 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
110 * if their checksums are okay. &sk_buff.csum is still undefined in this case
111 * though. A driver or device must never modify the checksum field in the
112 * packet even if checksum is verified.
114 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
116 * - TCP: IPv6 and IPv4.
117 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
118 * zero UDP checksum for either IPv4 or IPv6, the networking stack
119 * may perform further validation in this case.
120 * - GRE: only if the checksum is present in the header.
121 * - SCTP: indicates the CRC in SCTP header has been validated.
122 * - FCOE: indicates the CRC in FC frame has been validated.
124 * &sk_buff.csum_level indicates the number of consecutive checksums found in
125 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
126 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
127 * and a device is able to verify the checksums for UDP (possibly zero),
128 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
129 * two. If the device were only able to verify the UDP checksum and not
130 * GRE, either because it doesn't support GRE checksum or because GRE
131 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
132 * not considered in this case).
134 * - %CHECKSUM_COMPLETE
136 * This is the most generic way. The device supplied checksum of the _whole_
137 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
138 * hardware doesn't need to parse L3/L4 headers to implement this.
142 * - Even if device supports only some protocols, but is able to produce
143 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
144 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146 * - %CHECKSUM_PARTIAL
148 * A checksum is set up to be offloaded to a device as described in the
149 * output description for CHECKSUM_PARTIAL. This may occur on a packet
150 * received directly from another Linux OS, e.g., a virtualized Linux kernel
151 * on the same host, or it may be set in the input path in GRO or remote
152 * checksum offload. For the purposes of checksum verification, the checksum
153 * referred to by skb->csum_start + skb->csum_offset and any preceding
154 * checksums in the packet are considered verified. Any checksums in the
155 * packet that are after the checksum being offloaded are not considered to
158 * Checksumming on transmit for non-GSO
159 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
164 * - %CHECKSUM_PARTIAL
166 * The driver is required to checksum the packet as seen by hard_start_xmit()
167 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
168 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
169 * A driver may verify that the
170 * csum_start and csum_offset values are valid values given the length and
171 * offset of the packet, but it should not attempt to validate that the
172 * checksum refers to a legitimate transport layer checksum -- it is the
173 * purview of the stack to validate that csum_start and csum_offset are set
176 * When the stack requests checksum offload for a packet, the driver MUST
177 * ensure that the checksum is set correctly. A driver can either offload the
178 * checksum calculation to the device, or call skb_checksum_help (in the case
179 * that the device does not support offload for a particular checksum).
181 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
182 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
183 * checksum offload capability.
184 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
185 * on network device checksumming capabilities: if a packet does not match
186 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
187 * &sk_buff.csum_not_inet, see :ref:`crc`)
188 * is called to resolve the checksum.
192 * The skb was already checksummed by the protocol, or a checksum is not
195 * - %CHECKSUM_UNNECESSARY
197 * This has the same meaning as CHECKSUM_NONE for checksum offload on
200 * - %CHECKSUM_COMPLETE
202 * Not used in checksum output. If a driver observes a packet with this value
203 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
207 * Non-IP checksum (CRC) offloads
208 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
213 * * - %NETIF_F_SCTP_CRC
214 * - This feature indicates that a device is capable of
215 * offloading the SCTP CRC in a packet. To perform this offload the stack
216 * will set csum_start and csum_offset accordingly, set ip_summed to
217 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
218 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
219 * A driver that supports both IP checksum offload and SCTP CRC32c offload
220 * must verify which offload is configured for a packet by testing the
221 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
222 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224 * * - %NETIF_F_FCOE_CRC
225 * - This feature indicates that a device is capable of offloading the FCOE
226 * CRC in a packet. To perform this offload the stack will set ip_summed
227 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
228 * accordingly. Note that there is no indication in the skbuff that the
229 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
230 * both IP checksum offload and FCOE CRC offload must verify which offload
231 * is configured for a packet, presumably by inspecting packet headers.
233 * Checksumming on output with GSO
234 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
237 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
238 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
239 * part of the GSO operation is implied. If a checksum is being offloaded
240 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
241 * csum_offset are set to refer to the outermost checksum being offloaded
242 * (two offloaded checksums are possible with UDP encapsulation).
245 /* Don't change this without changing skb_csum_unnecessary! */
246 #define CHECKSUM_NONE 0
247 #define CHECKSUM_UNNECESSARY 1
248 #define CHECKSUM_COMPLETE 2
249 #define CHECKSUM_PARTIAL 3
251 /* Maximum value in skb->csum_level */
252 #define SKB_MAX_CSUM_LEVEL 3
254 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
255 #define SKB_WITH_OVERHEAD(X) \
256 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 /* For X bytes available in skb->head, what is the minimal
259 * allocation needed, knowing struct skb_shared_info needs
262 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
263 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 #define SKB_MAX_ORDER(X, ORDER) \
266 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
267 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
268 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
270 /* return minimum truesize of one skb containing X bytes of data */
271 #define SKB_TRUESIZE(X) ((X) + \
272 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
273 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 struct ahash_request;
278 struct pipe_inode_info;
286 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
287 struct nf_bridge_info {
289 BRNF_PROTO_UNCHANGED,
296 u8 sabotage_in_done:1;
298 struct net_device *physindev;
300 /* always valid & non-NULL from FORWARD on, for physdev match */
301 struct net_device *physoutdev;
303 /* prerouting: detect dnat in orig/reply direction */
305 struct in6_addr ipv6_daddr;
307 /* after prerouting + nat detected: store original source
308 * mac since neigh resolution overwrites it, only used while
309 * skb is out in neigh layer.
311 char neigh_header[8];
316 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
317 /* Chain in tc_skb_ext will be used to share the tc chain with
318 * ovs recirc_id. It will be set to the current chain by tc
319 * and read by ovs to recirc_id.
331 u8 act_miss:1; /* Set if act_miss_cookie is used */
332 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
336 struct sk_buff_head {
337 /* These two members must be first to match sk_buff. */
338 struct_group_tagged(sk_buff_list, list,
339 struct sk_buff *next;
340 struct sk_buff *prev;
349 #ifndef CONFIG_MAX_SKB_FRAGS
350 # define CONFIG_MAX_SKB_FRAGS 17
353 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355 extern int sysctl_max_skb_frags;
357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358 * segment using its current segmentation instead.
360 #define GSO_BY_FRAGS 0xFFFF
362 typedef struct bio_vec skb_frag_t;
365 * skb_frag_size() - Returns the size of a skb fragment
366 * @frag: skb fragment
368 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
374 * skb_frag_size_set() - Sets the size of a skb fragment
375 * @frag: skb fragment
376 * @size: size of fragment
378 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
384 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
385 * @frag: skb fragment
386 * @delta: value to add
388 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
390 frag->bv_len += delta;
394 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
395 * @frag: skb fragment
396 * @delta: value to subtract
398 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
400 frag->bv_len -= delta;
404 * skb_frag_must_loop - Test if %p is a high memory page
405 * @p: fragment's page
407 static inline bool skb_frag_must_loop(struct page *p)
409 #if defined(CONFIG_HIGHMEM)
410 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
417 * skb_frag_foreach_page - loop over pages in a fragment
419 * @f: skb frag to operate on
420 * @f_off: offset from start of f->bv_page
421 * @f_len: length from f_off to loop over
422 * @p: (temp var) current page
423 * @p_off: (temp var) offset from start of current page,
424 * non-zero only on first page.
425 * @p_len: (temp var) length in current page,
426 * < PAGE_SIZE only on first and last page.
427 * @copied: (temp var) length so far, excluding current p_len.
429 * A fragment can hold a compound page, in which case per-page
430 * operations, notably kmap_atomic, must be called for each
433 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
434 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
435 p_off = (f_off) & (PAGE_SIZE - 1), \
436 p_len = skb_frag_must_loop(p) ? \
437 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
440 copied += p_len, p++, p_off = 0, \
441 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
444 * struct skb_shared_hwtstamps - hardware time stamps
445 * @hwtstamp: hardware time stamp transformed into duration
446 * since arbitrary point in time
447 * @netdev_data: address/cookie of network device driver used as
448 * reference to actual hardware time stamp
450 * Software time stamps generated by ktime_get_real() are stored in
453 * hwtstamps can only be compared against other hwtstamps from
456 * This structure is attached to packets as part of the
457 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
459 struct skb_shared_hwtstamps {
466 /* Definitions for tx_flags in struct skb_shared_info */
468 /* generate hardware time stamp */
469 SKBTX_HW_TSTAMP = 1 << 0,
471 /* generate software time stamp when queueing packet to NIC */
472 SKBTX_SW_TSTAMP = 1 << 1,
474 /* device driver is going to provide hardware time stamp */
475 SKBTX_IN_PROGRESS = 1 << 2,
477 /* generate hardware time stamp based on cycles if supported */
478 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
480 /* generate wifi status information (where possible) */
481 SKBTX_WIFI_STATUS = 1 << 4,
483 /* determine hardware time stamp based on time or cycles */
484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
486 /* generate software time stamp when entering packet scheduling */
487 SKBTX_SCHED_TSTAMP = 1 << 6,
490 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
492 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
493 SKBTX_HW_TSTAMP_USE_CYCLES | \
496 /* Definitions for flags in struct skb_shared_info */
498 /* use zcopy routines */
499 SKBFL_ZEROCOPY_ENABLE = BIT(0),
501 /* This indicates at least one fragment might be overwritten
502 * (as in vmsplice(), sendfile() ...)
503 * If we need to compute a TX checksum, we'll need to copy
504 * all frags to avoid possible bad checksum
506 SKBFL_SHARED_FRAG = BIT(1),
508 /* segment contains only zerocopy data and should not be
509 * charged to the kernel memory.
511 SKBFL_PURE_ZEROCOPY = BIT(2),
513 SKBFL_DONT_ORPHAN = BIT(3),
515 /* page references are managed by the ubuf_info, so it's safe to
516 * use frags only up until ubuf_info is released
518 SKBFL_MANAGED_FRAG_REFS = BIT(4),
521 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
526 * The callback notifies userspace to release buffers when skb DMA is done in
527 * lower device, the skb last reference should be 0 when calling this.
528 * The zerocopy_success argument is true if zero copy transmit occurred,
529 * false on data copy or out of memory error caused by data copy attempt.
530 * The ctx field is used to track device context.
531 * The desc field is used to track userspace buffer index.
534 void (*callback)(struct sk_buff *, struct ubuf_info *,
535 bool zerocopy_success);
540 struct ubuf_info_msgzc {
541 struct ubuf_info ubuf;
557 struct user_struct *user;
562 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
563 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
566 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
567 void mm_unaccount_pinned_pages(struct mmpin *mmp);
569 /* Preserve some data across TX submission and completion.
571 * Note, this state is stored in the driver. Extending the layout
572 * might need some special care.
574 struct xsk_tx_metadata_compl {
578 /* This data is invariant across clones and lives at
579 * the end of the header data, ie. at skb->end.
581 struct skb_shared_info {
586 unsigned short gso_size;
587 /* Warning: this field is not always filled in (UFO)! */
588 unsigned short gso_segs;
589 struct sk_buff *frag_list;
591 struct skb_shared_hwtstamps hwtstamps;
592 struct xsk_tx_metadata_compl xsk_meta;
594 unsigned int gso_type;
598 * Warning : all fields before dataref are cleared in __alloc_skb()
601 unsigned int xdp_frags_size;
603 /* Intermediate layers must ensure that destructor_arg
604 * remains valid until skb destructor */
605 void * destructor_arg;
607 /* must be last field, see pskb_expand_head() */
608 skb_frag_t frags[MAX_SKB_FRAGS];
612 * DOC: dataref and headerless skbs
614 * Transport layers send out clones of payload skbs they hold for
615 * retransmissions. To allow lower layers of the stack to prepend their headers
616 * we split &skb_shared_info.dataref into two halves.
617 * The lower 16 bits count the overall number of references.
618 * The higher 16 bits indicate how many of the references are payload-only.
619 * skb_header_cloned() checks if skb is allowed to add / write the headers.
621 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
622 * (via __skb_header_release()). Any clone created from marked skb will get
623 * &sk_buff.hdr_len populated with the available headroom.
624 * If there's the only clone in existence it's able to modify the headroom
625 * at will. The sequence of calls inside the transport layer is::
629 * __skb_header_release()
631 * // send the clone down the stack
633 * This is not a very generic construct and it depends on the transport layers
634 * doing the right thing. In practice there's usually only one payload-only skb.
635 * Having multiple payload-only skbs with different lengths of hdr_len is not
636 * possible. The payload-only skbs should never leave their owner.
638 #define SKB_DATAREF_SHIFT 16
639 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
643 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
644 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
645 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
649 SKB_GSO_TCPV4 = 1 << 0,
651 /* This indicates the skb is from an untrusted source. */
652 SKB_GSO_DODGY = 1 << 1,
654 /* This indicates the tcp segment has CWR set. */
655 SKB_GSO_TCP_ECN = 1 << 2,
657 SKB_GSO_TCP_FIXEDID = 1 << 3,
659 SKB_GSO_TCPV6 = 1 << 4,
661 SKB_GSO_FCOE = 1 << 5,
663 SKB_GSO_GRE = 1 << 6,
665 SKB_GSO_GRE_CSUM = 1 << 7,
667 SKB_GSO_IPXIP4 = 1 << 8,
669 SKB_GSO_IPXIP6 = 1 << 9,
671 SKB_GSO_UDP_TUNNEL = 1 << 10,
673 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
675 SKB_GSO_PARTIAL = 1 << 12,
677 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
679 SKB_GSO_SCTP = 1 << 14,
681 SKB_GSO_ESP = 1 << 15,
683 SKB_GSO_UDP = 1 << 16,
685 SKB_GSO_UDP_L4 = 1 << 17,
687 SKB_GSO_FRAGLIST = 1 << 18,
690 #if BITS_PER_LONG > 32
691 #define NET_SKBUFF_DATA_USES_OFFSET 1
694 #ifdef NET_SKBUFF_DATA_USES_OFFSET
695 typedef unsigned int sk_buff_data_t;
697 typedef unsigned char *sk_buff_data_t;
701 * DOC: Basic sk_buff geometry
703 * struct sk_buff itself is a metadata structure and does not hold any packet
704 * data. All the data is held in associated buffers.
706 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
709 * - data buffer, containing headers and sometimes payload;
710 * this is the part of the skb operated on by the common helpers
711 * such as skb_put() or skb_pull();
712 * - shared info (struct skb_shared_info) which holds an array of pointers
713 * to read-only data in the (page, offset, length) format.
715 * Optionally &skb_shared_info.frag_list may point to another skb.
717 * Basic diagram may look like this::
722 * ,--------------------------- + head
723 * / ,----------------- + data
724 * / / ,----------- + tail
728 * -----------------------------------------------
729 * | headroom | data | tailroom | skb_shared_info |
730 * -----------------------------------------------
734 * + [page frag] ---------
735 * + frag_list --> | sk_buff |
741 * struct sk_buff - socket buffer
742 * @next: Next buffer in list
743 * @prev: Previous buffer in list
744 * @tstamp: Time we arrived/left
745 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
746 * for retransmit timer
747 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
749 * @ll_node: anchor in an llist (eg socket defer_list)
750 * @sk: Socket we are owned by
751 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
752 * fragmentation management
753 * @dev: Device we arrived on/are leaving by
754 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
755 * @cb: Control buffer. Free for use by every layer. Put private vars here
756 * @_skb_refdst: destination entry (with norefcount bit)
757 * @sp: the security path, used for xfrm
758 * @len: Length of actual data
759 * @data_len: Data length
760 * @mac_len: Length of link layer header
761 * @hdr_len: writable header length of cloned skb
762 * @csum: Checksum (must include start/offset pair)
763 * @csum_start: Offset from skb->head where checksumming should start
764 * @csum_offset: Offset from csum_start where checksum should be stored
765 * @priority: Packet queueing priority
766 * @ignore_df: allow local fragmentation
767 * @cloned: Head may be cloned (check refcnt to be sure)
768 * @ip_summed: Driver fed us an IP checksum
769 * @nohdr: Payload reference only, must not modify header
770 * @pkt_type: Packet class
771 * @fclone: skbuff clone status
772 * @ipvs_property: skbuff is owned by ipvs
773 * @inner_protocol_type: whether the inner protocol is
774 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
775 * @remcsum_offload: remote checksum offload is enabled
776 * @offload_fwd_mark: Packet was L2-forwarded in hardware
777 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
778 * @tc_skip_classify: do not classify packet. set by IFB device
779 * @tc_at_ingress: used within tc_classify to distinguish in/egress
780 * @redirected: packet was redirected by packet classifier
781 * @from_ingress: packet was redirected from the ingress path
782 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
783 * @peeked: this packet has been seen already, so stats have been
784 * done for it, don't do them again
785 * @nf_trace: netfilter packet trace flag
786 * @protocol: Packet protocol from driver
787 * @destructor: Destruct function
788 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
789 * @_sk_redir: socket redirection information for skmsg
790 * @_nfct: Associated connection, if any (with nfctinfo bits)
791 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
792 * @skb_iif: ifindex of device we arrived on
793 * @tc_index: Traffic control index
794 * @hash: the packet hash
795 * @queue_mapping: Queue mapping for multiqueue devices
796 * @head_frag: skb was allocated from page fragments,
797 * not allocated by kmalloc() or vmalloc().
798 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
799 * @pp_recycle: mark the packet for recycling instead of freeing (implies
800 * page_pool support on driver)
801 * @active_extensions: active extensions (skb_ext_id types)
802 * @ndisc_nodetype: router type (from link layer)
803 * @ooo_okay: allow the mapping of a socket to a queue to be changed
804 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
806 * @sw_hash: indicates hash was computed in software stack
807 * @wifi_acked_valid: wifi_acked was set
808 * @wifi_acked: whether frame was acked on wifi or not
809 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
810 * @encapsulation: indicates the inner headers in the skbuff are valid
811 * @encap_hdr_csum: software checksum is needed
812 * @csum_valid: checksum is already valid
813 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
814 * @csum_complete_sw: checksum was completed by software
815 * @csum_level: indicates the number of consecutive checksums found in
816 * the packet minus one that have been verified as
817 * CHECKSUM_UNNECESSARY (max 3)
818 * @dst_pending_confirm: need to confirm neighbour
819 * @decrypted: Decrypted SKB
820 * @slow_gro: state present at GRO time, slower prepare step required
821 * @mono_delivery_time: When set, skb->tstamp has the
822 * delivery_time in mono clock base (i.e. EDT). Otherwise, the
823 * skb->tstamp has the (rcv) timestamp at ingress and
824 * delivery_time at egress.
825 * @napi_id: id of the NAPI struct this skb came from
826 * @sender_cpu: (aka @napi_id) source CPU in XPS
827 * @alloc_cpu: CPU which did the skb allocation.
828 * @secmark: security marking
829 * @mark: Generic packet mark
830 * @reserved_tailroom: (aka @mark) number of bytes of free space available
831 * at the tail of an sk_buff
832 * @vlan_all: vlan fields (proto & tci)
833 * @vlan_proto: vlan encapsulation protocol
834 * @vlan_tci: vlan tag control information
835 * @inner_protocol: Protocol (encapsulation)
836 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
837 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
838 * @inner_transport_header: Inner transport layer header (encapsulation)
839 * @inner_network_header: Network layer header (encapsulation)
840 * @inner_mac_header: Link layer header (encapsulation)
841 * @transport_header: Transport layer header
842 * @network_header: Network layer header
843 * @mac_header: Link layer header
844 * @kcov_handle: KCOV remote handle for remote coverage collection
845 * @tail: Tail pointer
847 * @head: Head of buffer
848 * @data: Data head pointer
849 * @truesize: Buffer size
850 * @users: User count - see {datagram,tcp}.c
851 * @extensions: allocated extensions, valid if active_extensions is nonzero
857 /* These two members must be first to match sk_buff_head. */
858 struct sk_buff *next;
859 struct sk_buff *prev;
862 struct net_device *dev;
863 /* Some protocols might use this space to store information,
864 * while device pointer would be NULL.
865 * UDP receive path is one user.
867 unsigned long dev_scratch;
870 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
871 struct list_head list;
872 struct llist_node ll_node;
877 int ip_defrag_offset;
882 u64 skb_mstamp_ns; /* earliest departure time */
885 * This is the control buffer. It is free to use for every
886 * layer. Please put your private variables there. If you
887 * want to keep them across layers you have to do a skb_clone()
888 * first. This is owned by whoever has the skb queued ATM.
890 char cb[48] __aligned(8);
894 unsigned long _skb_refdst;
895 void (*destructor)(struct sk_buff *skb);
897 struct list_head tcp_tsorted_anchor;
898 #ifdef CONFIG_NET_SOCK_MSG
899 unsigned long _sk_redir;
903 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
911 /* Following fields are _not_ copied in __copy_skb_header()
912 * Note that queue_mapping is here mostly to fill a hole.
916 /* if you move cloned around you also must adapt those constants */
917 #ifdef __BIG_ENDIAN_BITFIELD
918 #define CLONED_MASK (1 << 7)
920 #define CLONED_MASK 1
922 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
925 __u8 __cloned_offset[0];
933 pp_recycle:1; /* page_pool recycle indicator */
934 #ifdef CONFIG_SKB_EXTENSIONS
935 __u8 active_extensions;
938 /* Fields enclosed in headers group are copied
939 * using a single memcpy() in __copy_skb_header()
941 struct_group(headers,
944 __u8 __pkt_type_offset[0];
946 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
948 __u8 dst_pending_confirm:1;
953 __u8 __mono_tc_offset[0];
955 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */
956 #ifdef CONFIG_NET_XGRESS
957 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
958 __u8 tc_skip_classify:1;
960 __u8 remcsum_offload:1;
961 __u8 csum_complete_sw:1;
963 __u8 inner_protocol_type:1;
967 #ifdef CONFIG_WIRELESS
968 __u8 wifi_acked_valid:1;
972 /* Indicates the inner headers are valid in the skbuff. */
973 __u8 encapsulation:1;
974 __u8 encap_hdr_csum:1;
976 #ifdef CONFIG_IPV6_NDISC_NODETYPE
977 __u8 ndisc_nodetype:2;
980 #if IS_ENABLED(CONFIG_IP_VS)
981 __u8 ipvs_property:1;
983 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
986 #ifdef CONFIG_NET_SWITCHDEV
987 __u8 offload_fwd_mark:1;
988 __u8 offload_l3_fwd_mark:1;
991 #ifdef CONFIG_NET_REDIRECT
994 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
995 __u8 nf_skip_egress:1;
997 #ifdef CONFIG_TLS_DEVICE
1001 #if IS_ENABLED(CONFIG_IP_SCTP)
1002 __u8 csum_not_inet:1;
1005 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1006 __u16 tc_index; /* traffic control index */
1028 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1030 unsigned int napi_id;
1031 unsigned int sender_cpu;
1034 #ifdef CONFIG_NETWORK_SECMARK
1040 __u32 reserved_tailroom;
1044 __be16 inner_protocol;
1048 __u16 inner_transport_header;
1049 __u16 inner_network_header;
1050 __u16 inner_mac_header;
1053 __u16 transport_header;
1054 __u16 network_header;
1061 ); /* end headers group */
1063 /* These elements must be at the end, see alloc_skb() for details. */
1064 sk_buff_data_t tail;
1066 unsigned char *head,
1068 unsigned int truesize;
1071 #ifdef CONFIG_SKB_EXTENSIONS
1072 /* only usable after checking ->active_extensions != 0 */
1073 struct skb_ext *extensions;
1077 /* if you move pkt_type around you also must adapt those constants */
1078 #ifdef __BIG_ENDIAN_BITFIELD
1079 #define PKT_TYPE_MAX (7 << 5)
1081 #define PKT_TYPE_MAX 7
1083 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1085 /* if you move tc_at_ingress or mono_delivery_time
1086 * around, you also must adapt these constants.
1088 #ifdef __BIG_ENDIAN_BITFIELD
1089 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 7)
1090 #define TC_AT_INGRESS_MASK (1 << 6)
1092 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 0)
1093 #define TC_AT_INGRESS_MASK (1 << 1)
1095 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset)
1099 * Handling routines are only of interest to the kernel
1102 #define SKB_ALLOC_FCLONE 0x01
1103 #define SKB_ALLOC_RX 0x02
1104 #define SKB_ALLOC_NAPI 0x04
1107 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1110 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1112 return unlikely(skb->pfmemalloc);
1116 * skb might have a dst pointer attached, refcounted or not.
1117 * _skb_refdst low order bit is set if refcount was _not_ taken
1119 #define SKB_DST_NOREF 1UL
1120 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1123 * skb_dst - returns skb dst_entry
1126 * Returns skb dst_entry, regardless of reference taken or not.
1128 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1130 /* If refdst was not refcounted, check we still are in a
1131 * rcu_read_lock section
1133 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1134 !rcu_read_lock_held() &&
1135 !rcu_read_lock_bh_held());
1136 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1140 * skb_dst_set - sets skb dst
1144 * Sets skb dst, assuming a reference was taken on dst and should
1145 * be released by skb_dst_drop()
1147 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1149 skb->slow_gro |= !!dst;
1150 skb->_skb_refdst = (unsigned long)dst;
1154 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1158 * Sets skb dst, assuming a reference was not taken on dst.
1159 * If dst entry is cached, we do not take reference and dst_release
1160 * will be avoided by refdst_drop. If dst entry is not cached, we take
1161 * reference, so that last dst_release can destroy the dst immediately.
1163 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1165 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1166 skb->slow_gro |= !!dst;
1167 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1171 * skb_dst_is_noref - Test if skb dst isn't refcounted
1174 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1176 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1180 * skb_rtable - Returns the skb &rtable
1183 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1185 return (struct rtable *)skb_dst(skb);
1188 /* For mangling skb->pkt_type from user space side from applications
1189 * such as nft, tc, etc, we only allow a conservative subset of
1190 * possible pkt_types to be set.
1192 static inline bool skb_pkt_type_ok(u32 ptype)
1194 return ptype <= PACKET_OTHERHOST;
1198 * skb_napi_id - Returns the skb's NAPI id
1201 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1203 #ifdef CONFIG_NET_RX_BUSY_POLL
1204 return skb->napi_id;
1210 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1212 #ifdef CONFIG_WIRELESS
1213 return skb->wifi_acked_valid;
1220 * skb_unref - decrement the skb's reference count
1223 * Returns true if we can free the skb.
1225 static inline bool skb_unref(struct sk_buff *skb)
1229 if (likely(refcount_read(&skb->users) == 1))
1231 else if (likely(!refcount_dec_and_test(&skb->users)))
1238 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1241 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1242 * @skb: buffer to free
1244 static inline void kfree_skb(struct sk_buff *skb)
1246 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1249 void skb_release_head_state(struct sk_buff *skb);
1250 void kfree_skb_list_reason(struct sk_buff *segs,
1251 enum skb_drop_reason reason);
1252 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1253 void skb_tx_error(struct sk_buff *skb);
1255 static inline void kfree_skb_list(struct sk_buff *segs)
1257 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1260 #ifdef CONFIG_TRACEPOINTS
1261 void consume_skb(struct sk_buff *skb);
1263 static inline void consume_skb(struct sk_buff *skb)
1265 return kfree_skb(skb);
1269 void __consume_stateless_skb(struct sk_buff *skb);
1270 void __kfree_skb(struct sk_buff *skb);
1271 extern struct kmem_cache *skbuff_cache;
1273 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1274 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1275 bool *fragstolen, int *delta_truesize);
1277 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1279 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1280 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1281 struct sk_buff *build_skb_around(struct sk_buff *skb,
1282 void *data, unsigned int frag_size);
1283 void skb_attempt_defer_free(struct sk_buff *skb);
1285 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1286 struct sk_buff *slab_build_skb(void *data);
1289 * alloc_skb - allocate a network buffer
1290 * @size: size to allocate
1291 * @priority: allocation mask
1293 * This function is a convenient wrapper around __alloc_skb().
1295 static inline struct sk_buff *alloc_skb(unsigned int size,
1298 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1301 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1302 unsigned long data_len,
1306 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1308 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1309 struct sk_buff_fclones {
1310 struct sk_buff skb1;
1312 struct sk_buff skb2;
1314 refcount_t fclone_ref;
1318 * skb_fclone_busy - check if fclone is busy
1322 * Returns true if skb is a fast clone, and its clone is not freed.
1323 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1324 * so we also check that didn't happen.
1326 static inline bool skb_fclone_busy(const struct sock *sk,
1327 const struct sk_buff *skb)
1329 const struct sk_buff_fclones *fclones;
1331 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1333 return skb->fclone == SKB_FCLONE_ORIG &&
1334 refcount_read(&fclones->fclone_ref) > 1 &&
1335 READ_ONCE(fclones->skb2.sk) == sk;
1339 * alloc_skb_fclone - allocate a network buffer from fclone cache
1340 * @size: size to allocate
1341 * @priority: allocation mask
1343 * This function is a convenient wrapper around __alloc_skb().
1345 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1348 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1351 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1352 void skb_headers_offset_update(struct sk_buff *skb, int off);
1353 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1354 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1355 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1356 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1357 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1358 gfp_t gfp_mask, bool fclone);
1359 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1362 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1365 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1366 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1367 unsigned int headroom);
1368 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1369 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1370 int newtailroom, gfp_t priority);
1371 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1372 int offset, int len);
1373 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1374 int offset, int len);
1375 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1376 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1379 * skb_pad - zero pad the tail of an skb
1380 * @skb: buffer to pad
1381 * @pad: space to pad
1383 * Ensure that a buffer is followed by a padding area that is zero
1384 * filled. Used by network drivers which may DMA or transfer data
1385 * beyond the buffer end onto the wire.
1387 * May return error in out of memory cases. The skb is freed on error.
1389 static inline int skb_pad(struct sk_buff *skb, int pad)
1391 return __skb_pad(skb, pad, true);
1393 #define dev_kfree_skb(a) consume_skb(a)
1395 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1396 int offset, size_t size, size_t max_frags);
1398 struct skb_seq_state {
1402 __u32 stepped_offset;
1403 struct sk_buff *root_skb;
1404 struct sk_buff *cur_skb;
1409 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1410 unsigned int to, struct skb_seq_state *st);
1411 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1412 struct skb_seq_state *st);
1413 void skb_abort_seq_read(struct skb_seq_state *st);
1415 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1416 unsigned int to, struct ts_config *config);
1419 * Packet hash types specify the type of hash in skb_set_hash.
1421 * Hash types refer to the protocol layer addresses which are used to
1422 * construct a packet's hash. The hashes are used to differentiate or identify
1423 * flows of the protocol layer for the hash type. Hash types are either
1424 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1426 * Properties of hashes:
1428 * 1) Two packets in different flows have different hash values
1429 * 2) Two packets in the same flow should have the same hash value
1431 * A hash at a higher layer is considered to be more specific. A driver should
1432 * set the most specific hash possible.
1434 * A driver cannot indicate a more specific hash than the layer at which a hash
1435 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1437 * A driver may indicate a hash level which is less specific than the
1438 * actual layer the hash was computed on. For instance, a hash computed
1439 * at L4 may be considered an L3 hash. This should only be done if the
1440 * driver can't unambiguously determine that the HW computed the hash at
1441 * the higher layer. Note that the "should" in the second property above
1444 enum pkt_hash_types {
1445 PKT_HASH_TYPE_NONE, /* Undefined type */
1446 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1447 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1448 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1451 static inline void skb_clear_hash(struct sk_buff *skb)
1458 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1461 skb_clear_hash(skb);
1465 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1467 skb->l4_hash = is_l4;
1468 skb->sw_hash = is_sw;
1473 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1475 /* Used by drivers to set hash from HW */
1476 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1480 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1482 __skb_set_hash(skb, hash, true, is_l4);
1485 void __skb_get_hash(struct sk_buff *skb);
1486 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1487 u32 skb_get_poff(const struct sk_buff *skb);
1488 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1489 const struct flow_keys_basic *keys, int hlen);
1490 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1491 const void *data, int hlen_proto);
1493 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1494 int thoff, u8 ip_proto)
1496 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1499 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1500 const struct flow_dissector_key *key,
1501 unsigned int key_count);
1503 struct bpf_flow_dissector;
1504 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1505 __be16 proto, int nhoff, int hlen, unsigned int flags);
1507 bool __skb_flow_dissect(const struct net *net,
1508 const struct sk_buff *skb,
1509 struct flow_dissector *flow_dissector,
1510 void *target_container, const void *data,
1511 __be16 proto, int nhoff, int hlen, unsigned int flags);
1513 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1514 struct flow_dissector *flow_dissector,
1515 void *target_container, unsigned int flags)
1517 return __skb_flow_dissect(NULL, skb, flow_dissector,
1518 target_container, NULL, 0, 0, 0, flags);
1521 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1522 struct flow_keys *flow,
1525 memset(flow, 0, sizeof(*flow));
1526 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1527 flow, NULL, 0, 0, 0, flags);
1531 skb_flow_dissect_flow_keys_basic(const struct net *net,
1532 const struct sk_buff *skb,
1533 struct flow_keys_basic *flow,
1534 const void *data, __be16 proto,
1535 int nhoff, int hlen, unsigned int flags)
1537 memset(flow, 0, sizeof(*flow));
1538 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1539 data, proto, nhoff, hlen, flags);
1542 void skb_flow_dissect_meta(const struct sk_buff *skb,
1543 struct flow_dissector *flow_dissector,
1544 void *target_container);
1546 /* Gets a skb connection tracking info, ctinfo map should be a
1547 * map of mapsize to translate enum ip_conntrack_info states
1551 skb_flow_dissect_ct(const struct sk_buff *skb,
1552 struct flow_dissector *flow_dissector,
1553 void *target_container,
1554 u16 *ctinfo_map, size_t mapsize,
1555 bool post_ct, u16 zone);
1557 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1558 struct flow_dissector *flow_dissector,
1559 void *target_container);
1561 void skb_flow_dissect_hash(const struct sk_buff *skb,
1562 struct flow_dissector *flow_dissector,
1563 void *target_container);
1565 static inline __u32 skb_get_hash(struct sk_buff *skb)
1567 if (!skb->l4_hash && !skb->sw_hash)
1568 __skb_get_hash(skb);
1573 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1575 if (!skb->l4_hash && !skb->sw_hash) {
1576 struct flow_keys keys;
1577 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1579 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1585 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1586 const siphash_key_t *perturb);
1588 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1593 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1595 to->hash = from->hash;
1596 to->sw_hash = from->sw_hash;
1597 to->l4_hash = from->l4_hash;
1600 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1601 const struct sk_buff *skb2)
1603 #ifdef CONFIG_TLS_DEVICE
1604 return skb2->decrypted - skb1->decrypted;
1610 static inline void skb_copy_decrypted(struct sk_buff *to,
1611 const struct sk_buff *from)
1613 #ifdef CONFIG_TLS_DEVICE
1614 to->decrypted = from->decrypted;
1618 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1619 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1621 return skb->head + skb->end;
1624 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1629 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1634 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1639 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1641 return skb->end - skb->head;
1644 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1646 skb->end = skb->head + offset;
1650 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1651 struct ubuf_info *uarg);
1653 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1655 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1658 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1659 struct sk_buff *skb, struct iov_iter *from,
1662 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1663 struct msghdr *msg, int len)
1665 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1668 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1669 struct msghdr *msg, int len,
1670 struct ubuf_info *uarg);
1673 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1675 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1677 return &skb_shinfo(skb)->hwtstamps;
1680 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1682 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1684 return is_zcopy ? skb_uarg(skb) : NULL;
1687 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1689 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1692 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1694 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1697 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1698 const struct sk_buff *skb2)
1700 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1703 static inline void net_zcopy_get(struct ubuf_info *uarg)
1705 refcount_inc(&uarg->refcnt);
1708 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1710 skb_shinfo(skb)->destructor_arg = uarg;
1711 skb_shinfo(skb)->flags |= uarg->flags;
1714 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1717 if (skb && uarg && !skb_zcopy(skb)) {
1718 if (unlikely(have_ref && *have_ref))
1721 net_zcopy_get(uarg);
1722 skb_zcopy_init(skb, uarg);
1726 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1728 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1729 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1732 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1734 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1737 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1739 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1742 static inline void net_zcopy_put(struct ubuf_info *uarg)
1745 uarg->callback(NULL, uarg, true);
1748 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1751 if (uarg->callback == msg_zerocopy_callback)
1752 msg_zerocopy_put_abort(uarg, have_uref);
1754 net_zcopy_put(uarg);
1758 /* Release a reference on a zerocopy structure */
1759 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1761 struct ubuf_info *uarg = skb_zcopy(skb);
1764 if (!skb_zcopy_is_nouarg(skb))
1765 uarg->callback(skb, uarg, zerocopy_success);
1767 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1771 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1773 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1775 if (unlikely(skb_zcopy_managed(skb)))
1776 __skb_zcopy_downgrade_managed(skb);
1779 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1784 static inline void skb_poison_list(struct sk_buff *skb)
1786 #ifdef CONFIG_DEBUG_NET
1787 skb->next = SKB_LIST_POISON_NEXT;
1791 /* Iterate through singly-linked GSO fragments of an skb. */
1792 #define skb_list_walk_safe(first, skb, next_skb) \
1793 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1794 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1796 static inline void skb_list_del_init(struct sk_buff *skb)
1798 __list_del_entry(&skb->list);
1799 skb_mark_not_on_list(skb);
1803 * skb_queue_empty - check if a queue is empty
1806 * Returns true if the queue is empty, false otherwise.
1808 static inline int skb_queue_empty(const struct sk_buff_head *list)
1810 return list->next == (const struct sk_buff *) list;
1814 * skb_queue_empty_lockless - check if a queue is empty
1817 * Returns true if the queue is empty, false otherwise.
1818 * This variant can be used in lockless contexts.
1820 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1822 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1827 * skb_queue_is_last - check if skb is the last entry in the queue
1831 * Returns true if @skb is the last buffer on the list.
1833 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1834 const struct sk_buff *skb)
1836 return skb->next == (const struct sk_buff *) list;
1840 * skb_queue_is_first - check if skb is the first entry in the queue
1844 * Returns true if @skb is the first buffer on the list.
1846 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1847 const struct sk_buff *skb)
1849 return skb->prev == (const struct sk_buff *) list;
1853 * skb_queue_next - return the next packet in the queue
1855 * @skb: current buffer
1857 * Return the next packet in @list after @skb. It is only valid to
1858 * call this if skb_queue_is_last() evaluates to false.
1860 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1861 const struct sk_buff *skb)
1863 /* This BUG_ON may seem severe, but if we just return then we
1864 * are going to dereference garbage.
1866 BUG_ON(skb_queue_is_last(list, skb));
1871 * skb_queue_prev - return the prev packet in the queue
1873 * @skb: current buffer
1875 * Return the prev packet in @list before @skb. It is only valid to
1876 * call this if skb_queue_is_first() evaluates to false.
1878 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1879 const struct sk_buff *skb)
1881 /* This BUG_ON may seem severe, but if we just return then we
1882 * are going to dereference garbage.
1884 BUG_ON(skb_queue_is_first(list, skb));
1889 * skb_get - reference buffer
1890 * @skb: buffer to reference
1892 * Makes another reference to a socket buffer and returns a pointer
1895 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1897 refcount_inc(&skb->users);
1902 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1906 * skb_cloned - is the buffer a clone
1907 * @skb: buffer to check
1909 * Returns true if the buffer was generated with skb_clone() and is
1910 * one of multiple shared copies of the buffer. Cloned buffers are
1911 * shared data so must not be written to under normal circumstances.
1913 static inline int skb_cloned(const struct sk_buff *skb)
1915 return skb->cloned &&
1916 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1919 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1921 might_sleep_if(gfpflags_allow_blocking(pri));
1923 if (skb_cloned(skb))
1924 return pskb_expand_head(skb, 0, 0, pri);
1929 /* This variant of skb_unclone() makes sure skb->truesize
1930 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1932 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1933 * when various debugging features are in place.
1935 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1936 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1938 might_sleep_if(gfpflags_allow_blocking(pri));
1940 if (skb_cloned(skb))
1941 return __skb_unclone_keeptruesize(skb, pri);
1946 * skb_header_cloned - is the header a clone
1947 * @skb: buffer to check
1949 * Returns true if modifying the header part of the buffer requires
1950 * the data to be copied.
1952 static inline int skb_header_cloned(const struct sk_buff *skb)
1959 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1960 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1961 return dataref != 1;
1964 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1966 might_sleep_if(gfpflags_allow_blocking(pri));
1968 if (skb_header_cloned(skb))
1969 return pskb_expand_head(skb, 0, 0, pri);
1975 * __skb_header_release() - allow clones to use the headroom
1976 * @skb: buffer to operate on
1978 * See "DOC: dataref and headerless skbs".
1980 static inline void __skb_header_release(struct sk_buff *skb)
1983 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1988 * skb_shared - is the buffer shared
1989 * @skb: buffer to check
1991 * Returns true if more than one person has a reference to this
1994 static inline int skb_shared(const struct sk_buff *skb)
1996 return refcount_read(&skb->users) != 1;
2000 * skb_share_check - check if buffer is shared and if so clone it
2001 * @skb: buffer to check
2002 * @pri: priority for memory allocation
2004 * If the buffer is shared the buffer is cloned and the old copy
2005 * drops a reference. A new clone with a single reference is returned.
2006 * If the buffer is not shared the original buffer is returned. When
2007 * being called from interrupt status or with spinlocks held pri must
2010 * NULL is returned on a memory allocation failure.
2012 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2014 might_sleep_if(gfpflags_allow_blocking(pri));
2015 if (skb_shared(skb)) {
2016 struct sk_buff *nskb = skb_clone(skb, pri);
2028 * Copy shared buffers into a new sk_buff. We effectively do COW on
2029 * packets to handle cases where we have a local reader and forward
2030 * and a couple of other messy ones. The normal one is tcpdumping
2031 * a packet that's being forwarded.
2035 * skb_unshare - make a copy of a shared buffer
2036 * @skb: buffer to check
2037 * @pri: priority for memory allocation
2039 * If the socket buffer is a clone then this function creates a new
2040 * copy of the data, drops a reference count on the old copy and returns
2041 * the new copy with the reference count at 1. If the buffer is not a clone
2042 * the original buffer is returned. When called with a spinlock held or
2043 * from interrupt state @pri must be %GFP_ATOMIC
2045 * %NULL is returned on a memory allocation failure.
2047 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2050 might_sleep_if(gfpflags_allow_blocking(pri));
2051 if (skb_cloned(skb)) {
2052 struct sk_buff *nskb = skb_copy(skb, pri);
2054 /* Free our shared copy */
2065 * skb_peek - peek at the head of an &sk_buff_head
2066 * @list_: list to peek at
2068 * Peek an &sk_buff. Unlike most other operations you _MUST_
2069 * be careful with this one. A peek leaves the buffer on the
2070 * list and someone else may run off with it. You must hold
2071 * the appropriate locks or have a private queue to do this.
2073 * Returns %NULL for an empty list or a pointer to the head element.
2074 * The reference count is not incremented and the reference is therefore
2075 * volatile. Use with caution.
2077 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2079 struct sk_buff *skb = list_->next;
2081 if (skb == (struct sk_buff *)list_)
2087 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2088 * @list_: list to peek at
2090 * Like skb_peek(), but the caller knows that the list is not empty.
2092 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2098 * skb_peek_next - peek skb following the given one from a queue
2099 * @skb: skb to start from
2100 * @list_: list to peek at
2102 * Returns %NULL when the end of the list is met or a pointer to the
2103 * next element. The reference count is not incremented and the
2104 * reference is therefore volatile. Use with caution.
2106 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2107 const struct sk_buff_head *list_)
2109 struct sk_buff *next = skb->next;
2111 if (next == (struct sk_buff *)list_)
2117 * skb_peek_tail - peek at the tail of an &sk_buff_head
2118 * @list_: list to peek at
2120 * Peek an &sk_buff. Unlike most other operations you _MUST_
2121 * be careful with this one. A peek leaves the buffer on the
2122 * list and someone else may run off with it. You must hold
2123 * the appropriate locks or have a private queue to do this.
2125 * Returns %NULL for an empty list or a pointer to the tail element.
2126 * The reference count is not incremented and the reference is therefore
2127 * volatile. Use with caution.
2129 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2131 struct sk_buff *skb = READ_ONCE(list_->prev);
2133 if (skb == (struct sk_buff *)list_)
2140 * skb_queue_len - get queue length
2141 * @list_: list to measure
2143 * Return the length of an &sk_buff queue.
2145 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2151 * skb_queue_len_lockless - get queue length
2152 * @list_: list to measure
2154 * Return the length of an &sk_buff queue.
2155 * This variant can be used in lockless contexts.
2157 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2159 return READ_ONCE(list_->qlen);
2163 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2164 * @list: queue to initialize
2166 * This initializes only the list and queue length aspects of
2167 * an sk_buff_head object. This allows to initialize the list
2168 * aspects of an sk_buff_head without reinitializing things like
2169 * the spinlock. It can also be used for on-stack sk_buff_head
2170 * objects where the spinlock is known to not be used.
2172 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2174 list->prev = list->next = (struct sk_buff *)list;
2179 * This function creates a split out lock class for each invocation;
2180 * this is needed for now since a whole lot of users of the skb-queue
2181 * infrastructure in drivers have different locking usage (in hardirq)
2182 * than the networking core (in softirq only). In the long run either the
2183 * network layer or drivers should need annotation to consolidate the
2184 * main types of usage into 3 classes.
2186 static inline void skb_queue_head_init(struct sk_buff_head *list)
2188 spin_lock_init(&list->lock);
2189 __skb_queue_head_init(list);
2192 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2193 struct lock_class_key *class)
2195 skb_queue_head_init(list);
2196 lockdep_set_class(&list->lock, class);
2200 * Insert an sk_buff on a list.
2202 * The "__skb_xxxx()" functions are the non-atomic ones that
2203 * can only be called with interrupts disabled.
2205 static inline void __skb_insert(struct sk_buff *newsk,
2206 struct sk_buff *prev, struct sk_buff *next,
2207 struct sk_buff_head *list)
2209 /* See skb_queue_empty_lockless() and skb_peek_tail()
2210 * for the opposite READ_ONCE()
2212 WRITE_ONCE(newsk->next, next);
2213 WRITE_ONCE(newsk->prev, prev);
2214 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2215 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2216 WRITE_ONCE(list->qlen, list->qlen + 1);
2219 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2220 struct sk_buff *prev,
2221 struct sk_buff *next)
2223 struct sk_buff *first = list->next;
2224 struct sk_buff *last = list->prev;
2226 WRITE_ONCE(first->prev, prev);
2227 WRITE_ONCE(prev->next, first);
2229 WRITE_ONCE(last->next, next);
2230 WRITE_ONCE(next->prev, last);
2234 * skb_queue_splice - join two skb lists, this is designed for stacks
2235 * @list: the new list to add
2236 * @head: the place to add it in the first list
2238 static inline void skb_queue_splice(const struct sk_buff_head *list,
2239 struct sk_buff_head *head)
2241 if (!skb_queue_empty(list)) {
2242 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2243 head->qlen += list->qlen;
2248 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2249 * @list: the new list to add
2250 * @head: the place to add it in the first list
2252 * The list at @list is reinitialised
2254 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2255 struct sk_buff_head *head)
2257 if (!skb_queue_empty(list)) {
2258 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2259 head->qlen += list->qlen;
2260 __skb_queue_head_init(list);
2265 * skb_queue_splice_tail - join two skb lists, each list being a queue
2266 * @list: the new list to add
2267 * @head: the place to add it in the first list
2269 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2270 struct sk_buff_head *head)
2272 if (!skb_queue_empty(list)) {
2273 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2274 head->qlen += list->qlen;
2279 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2280 * @list: the new list to add
2281 * @head: the place to add it in the first list
2283 * Each of the lists is a queue.
2284 * The list at @list is reinitialised
2286 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2287 struct sk_buff_head *head)
2289 if (!skb_queue_empty(list)) {
2290 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2291 head->qlen += list->qlen;
2292 __skb_queue_head_init(list);
2297 * __skb_queue_after - queue a buffer at the list head
2298 * @list: list to use
2299 * @prev: place after this buffer
2300 * @newsk: buffer to queue
2302 * Queue a buffer int the middle of a list. This function takes no locks
2303 * and you must therefore hold required locks before calling it.
2305 * A buffer cannot be placed on two lists at the same time.
2307 static inline void __skb_queue_after(struct sk_buff_head *list,
2308 struct sk_buff *prev,
2309 struct sk_buff *newsk)
2311 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2314 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2315 struct sk_buff_head *list);
2317 static inline void __skb_queue_before(struct sk_buff_head *list,
2318 struct sk_buff *next,
2319 struct sk_buff *newsk)
2321 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2325 * __skb_queue_head - queue a buffer at the list head
2326 * @list: list to use
2327 * @newsk: buffer to queue
2329 * Queue a buffer at the start of a list. This function takes no locks
2330 * and you must therefore hold required locks before calling it.
2332 * A buffer cannot be placed on two lists at the same time.
2334 static inline void __skb_queue_head(struct sk_buff_head *list,
2335 struct sk_buff *newsk)
2337 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2339 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2342 * __skb_queue_tail - queue a buffer at the list tail
2343 * @list: list to use
2344 * @newsk: buffer to queue
2346 * Queue a buffer at the end of a list. This function takes no locks
2347 * and you must therefore hold required locks before calling it.
2349 * A buffer cannot be placed on two lists at the same time.
2351 static inline void __skb_queue_tail(struct sk_buff_head *list,
2352 struct sk_buff *newsk)
2354 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2356 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2359 * remove sk_buff from list. _Must_ be called atomically, and with
2362 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2363 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2365 struct sk_buff *next, *prev;
2367 WRITE_ONCE(list->qlen, list->qlen - 1);
2370 skb->next = skb->prev = NULL;
2371 WRITE_ONCE(next->prev, prev);
2372 WRITE_ONCE(prev->next, next);
2376 * __skb_dequeue - remove from the head of the queue
2377 * @list: list to dequeue from
2379 * Remove the head of the list. This function does not take any locks
2380 * so must be used with appropriate locks held only. The head item is
2381 * returned or %NULL if the list is empty.
2383 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2385 struct sk_buff *skb = skb_peek(list);
2387 __skb_unlink(skb, list);
2390 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2393 * __skb_dequeue_tail - remove from the tail of the queue
2394 * @list: list to dequeue from
2396 * Remove the tail of the list. This function does not take any locks
2397 * so must be used with appropriate locks held only. The tail item is
2398 * returned or %NULL if the list is empty.
2400 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2402 struct sk_buff *skb = skb_peek_tail(list);
2404 __skb_unlink(skb, list);
2407 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2410 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2412 return skb->data_len;
2415 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2417 return skb->len - skb->data_len;
2420 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2422 unsigned int i, len = 0;
2424 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2425 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2429 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2431 return skb_headlen(skb) + __skb_pagelen(skb);
2434 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2438 frag->bv_page = page;
2439 frag->bv_offset = off;
2440 skb_frag_size_set(frag, size);
2443 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2444 int i, struct page *page,
2447 skb_frag_t *frag = &shinfo->frags[i];
2449 skb_frag_fill_page_desc(frag, page, off, size);
2453 * skb_len_add - adds a number to len fields of skb
2454 * @skb: buffer to add len to
2455 * @delta: number of bytes to add
2457 static inline void skb_len_add(struct sk_buff *skb, int delta)
2460 skb->data_len += delta;
2461 skb->truesize += delta;
2465 * __skb_fill_page_desc - initialise a paged fragment in an skb
2466 * @skb: buffer containing fragment to be initialised
2467 * @i: paged fragment index to initialise
2468 * @page: the page to use for this fragment
2469 * @off: the offset to the data with @page
2470 * @size: the length of the data
2472 * Initialises the @i'th fragment of @skb to point to &size bytes at
2473 * offset @off within @page.
2475 * Does not take any additional reference on the fragment.
2477 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2478 struct page *page, int off, int size)
2480 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2482 /* Propagate page pfmemalloc to the skb if we can. The problem is
2483 * that not all callers have unique ownership of the page but rely
2484 * on page_is_pfmemalloc doing the right thing(tm).
2486 page = compound_head(page);
2487 if (page_is_pfmemalloc(page))
2488 skb->pfmemalloc = true;
2492 * skb_fill_page_desc - initialise a paged fragment in an skb
2493 * @skb: buffer containing fragment to be initialised
2494 * @i: paged fragment index to initialise
2495 * @page: the page to use for this fragment
2496 * @off: the offset to the data with @page
2497 * @size: the length of the data
2499 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2500 * @skb to point to @size bytes at offset @off within @page. In
2501 * addition updates @skb such that @i is the last fragment.
2503 * Does not take any additional reference on the fragment.
2505 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2506 struct page *page, int off, int size)
2508 __skb_fill_page_desc(skb, i, page, off, size);
2509 skb_shinfo(skb)->nr_frags = i + 1;
2513 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2514 * @skb: buffer containing fragment to be initialised
2515 * @i: paged fragment index to initialise
2516 * @page: the page to use for this fragment
2517 * @off: the offset to the data with @page
2518 * @size: the length of the data
2520 * Variant of skb_fill_page_desc() which does not deal with
2521 * pfmemalloc, if page is not owned by us.
2523 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2524 struct page *page, int off,
2527 struct skb_shared_info *shinfo = skb_shinfo(skb);
2529 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2530 shinfo->nr_frags = i + 1;
2533 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2534 int size, unsigned int truesize);
2536 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2537 unsigned int truesize);
2539 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2541 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2542 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2544 return skb->head + skb->tail;
2547 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2549 skb->tail = skb->data - skb->head;
2552 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2554 skb_reset_tail_pointer(skb);
2555 skb->tail += offset;
2558 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2559 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2564 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2566 skb->tail = skb->data;
2569 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2571 skb->tail = skb->data + offset;
2574 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2576 static inline void skb_assert_len(struct sk_buff *skb)
2578 #ifdef CONFIG_DEBUG_NET
2579 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2580 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2581 #endif /* CONFIG_DEBUG_NET */
2585 * Add data to an sk_buff
2587 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2588 void *skb_put(struct sk_buff *skb, unsigned int len);
2589 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2591 void *tmp = skb_tail_pointer(skb);
2592 SKB_LINEAR_ASSERT(skb);
2598 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2600 void *tmp = __skb_put(skb, len);
2602 memset(tmp, 0, len);
2606 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2609 void *tmp = __skb_put(skb, len);
2611 memcpy(tmp, data, len);
2615 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2617 *(u8 *)__skb_put(skb, 1) = val;
2620 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2622 void *tmp = skb_put(skb, len);
2624 memset(tmp, 0, len);
2629 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2632 void *tmp = skb_put(skb, len);
2634 memcpy(tmp, data, len);
2639 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2641 *(u8 *)skb_put(skb, 1) = val;
2644 void *skb_push(struct sk_buff *skb, unsigned int len);
2645 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2652 void *skb_pull(struct sk_buff *skb, unsigned int len);
2653 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2656 if (unlikely(skb->len < skb->data_len)) {
2657 #if defined(CONFIG_DEBUG_NET)
2659 pr_err("__skb_pull(len=%u)\n", len);
2660 skb_dump(KERN_ERR, skb, false);
2664 return skb->data += len;
2667 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2669 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2672 void *skb_pull_data(struct sk_buff *skb, size_t len);
2674 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2676 static inline enum skb_drop_reason
2677 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2679 if (likely(len <= skb_headlen(skb)))
2680 return SKB_NOT_DROPPED_YET;
2682 if (unlikely(len > skb->len))
2683 return SKB_DROP_REASON_PKT_TOO_SMALL;
2685 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2686 return SKB_DROP_REASON_NOMEM;
2688 return SKB_NOT_DROPPED_YET;
2691 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2693 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2696 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2698 if (!pskb_may_pull(skb, len))
2702 return skb->data += len;
2705 void skb_condense(struct sk_buff *skb);
2708 * skb_headroom - bytes at buffer head
2709 * @skb: buffer to check
2711 * Return the number of bytes of free space at the head of an &sk_buff.
2713 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2715 return skb->data - skb->head;
2719 * skb_tailroom - bytes at buffer end
2720 * @skb: buffer to check
2722 * Return the number of bytes of free space at the tail of an sk_buff
2724 static inline int skb_tailroom(const struct sk_buff *skb)
2726 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2730 * skb_availroom - bytes at buffer end
2731 * @skb: buffer to check
2733 * Return the number of bytes of free space at the tail of an sk_buff
2734 * allocated by sk_stream_alloc()
2736 static inline int skb_availroom(const struct sk_buff *skb)
2738 if (skb_is_nonlinear(skb))
2741 return skb->end - skb->tail - skb->reserved_tailroom;
2745 * skb_reserve - adjust headroom
2746 * @skb: buffer to alter
2747 * @len: bytes to move
2749 * Increase the headroom of an empty &sk_buff by reducing the tail
2750 * room. This is only allowed for an empty buffer.
2752 static inline void skb_reserve(struct sk_buff *skb, int len)
2759 * skb_tailroom_reserve - adjust reserved_tailroom
2760 * @skb: buffer to alter
2761 * @mtu: maximum amount of headlen permitted
2762 * @needed_tailroom: minimum amount of reserved_tailroom
2764 * Set reserved_tailroom so that headlen can be as large as possible but
2765 * not larger than mtu and tailroom cannot be smaller than
2767 * The required headroom should already have been reserved before using
2770 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2771 unsigned int needed_tailroom)
2773 SKB_LINEAR_ASSERT(skb);
2774 if (mtu < skb_tailroom(skb) - needed_tailroom)
2775 /* use at most mtu */
2776 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2778 /* use up to all available space */
2779 skb->reserved_tailroom = needed_tailroom;
2782 #define ENCAP_TYPE_ETHER 0
2783 #define ENCAP_TYPE_IPPROTO 1
2785 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2788 skb->inner_protocol = protocol;
2789 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2792 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2795 skb->inner_ipproto = ipproto;
2796 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2799 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2801 skb->inner_mac_header = skb->mac_header;
2802 skb->inner_network_header = skb->network_header;
2803 skb->inner_transport_header = skb->transport_header;
2806 static inline void skb_reset_mac_len(struct sk_buff *skb)
2808 skb->mac_len = skb->network_header - skb->mac_header;
2811 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2814 return skb->head + skb->inner_transport_header;
2817 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2819 return skb_inner_transport_header(skb) - skb->data;
2822 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2824 skb->inner_transport_header = skb->data - skb->head;
2827 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2830 skb_reset_inner_transport_header(skb);
2831 skb->inner_transport_header += offset;
2834 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2836 return skb->head + skb->inner_network_header;
2839 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2841 skb->inner_network_header = skb->data - skb->head;
2844 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2847 skb_reset_inner_network_header(skb);
2848 skb->inner_network_header += offset;
2851 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2853 return skb->head + skb->inner_mac_header;
2856 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2858 skb->inner_mac_header = skb->data - skb->head;
2861 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2864 skb_reset_inner_mac_header(skb);
2865 skb->inner_mac_header += offset;
2867 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2869 return skb->transport_header != (typeof(skb->transport_header))~0U;
2872 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2874 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2875 return skb->head + skb->transport_header;
2878 static inline void skb_reset_transport_header(struct sk_buff *skb)
2880 skb->transport_header = skb->data - skb->head;
2883 static inline void skb_set_transport_header(struct sk_buff *skb,
2886 skb_reset_transport_header(skb);
2887 skb->transport_header += offset;
2890 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2892 return skb->head + skb->network_header;
2895 static inline void skb_reset_network_header(struct sk_buff *skb)
2897 skb->network_header = skb->data - skb->head;
2900 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2902 skb_reset_network_header(skb);
2903 skb->network_header += offset;
2906 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2908 return skb->mac_header != (typeof(skb->mac_header))~0U;
2911 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2913 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2914 return skb->head + skb->mac_header;
2917 static inline int skb_mac_offset(const struct sk_buff *skb)
2919 return skb_mac_header(skb) - skb->data;
2922 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2924 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2925 return skb->network_header - skb->mac_header;
2928 static inline void skb_unset_mac_header(struct sk_buff *skb)
2930 skb->mac_header = (typeof(skb->mac_header))~0U;
2933 static inline void skb_reset_mac_header(struct sk_buff *skb)
2935 skb->mac_header = skb->data - skb->head;
2938 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2940 skb_reset_mac_header(skb);
2941 skb->mac_header += offset;
2944 static inline void skb_pop_mac_header(struct sk_buff *skb)
2946 skb->mac_header = skb->network_header;
2949 static inline void skb_probe_transport_header(struct sk_buff *skb)
2951 struct flow_keys_basic keys;
2953 if (skb_transport_header_was_set(skb))
2956 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2958 skb_set_transport_header(skb, keys.control.thoff);
2961 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2963 if (skb_mac_header_was_set(skb)) {
2964 const unsigned char *old_mac = skb_mac_header(skb);
2966 skb_set_mac_header(skb, -skb->mac_len);
2967 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2971 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2973 return skb->csum_start - skb_headroom(skb);
2976 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2978 return skb->head + skb->csum_start;
2981 static inline int skb_transport_offset(const struct sk_buff *skb)
2983 return skb_transport_header(skb) - skb->data;
2986 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2988 return skb->transport_header - skb->network_header;
2991 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2993 return skb->inner_transport_header - skb->inner_network_header;
2996 static inline int skb_network_offset(const struct sk_buff *skb)
2998 return skb_network_header(skb) - skb->data;
3001 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3003 return skb_inner_network_header(skb) - skb->data;
3006 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3008 return pskb_may_pull(skb, skb_network_offset(skb) + len);
3012 * CPUs often take a performance hit when accessing unaligned memory
3013 * locations. The actual performance hit varies, it can be small if the
3014 * hardware handles it or large if we have to take an exception and fix it
3017 * Since an ethernet header is 14 bytes network drivers often end up with
3018 * the IP header at an unaligned offset. The IP header can be aligned by
3019 * shifting the start of the packet by 2 bytes. Drivers should do this
3022 * skb_reserve(skb, NET_IP_ALIGN);
3024 * The downside to this alignment of the IP header is that the DMA is now
3025 * unaligned. On some architectures the cost of an unaligned DMA is high
3026 * and this cost outweighs the gains made by aligning the IP header.
3028 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3031 #ifndef NET_IP_ALIGN
3032 #define NET_IP_ALIGN 2
3036 * The networking layer reserves some headroom in skb data (via
3037 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3038 * the header has to grow. In the default case, if the header has to grow
3039 * 32 bytes or less we avoid the reallocation.
3041 * Unfortunately this headroom changes the DMA alignment of the resulting
3042 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3043 * on some architectures. An architecture can override this value,
3044 * perhaps setting it to a cacheline in size (since that will maintain
3045 * cacheline alignment of the DMA). It must be a power of 2.
3047 * Various parts of the networking layer expect at least 32 bytes of
3048 * headroom, you should not reduce this.
3050 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3051 * to reduce average number of cache lines per packet.
3052 * get_rps_cpu() for example only access one 64 bytes aligned block :
3053 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3056 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
3059 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3061 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3063 if (WARN_ON(skb_is_nonlinear(skb)))
3066 skb_set_tail_pointer(skb, len);
3069 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3071 __skb_set_length(skb, len);
3074 void skb_trim(struct sk_buff *skb, unsigned int len);
3076 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3079 return ___pskb_trim(skb, len);
3080 __skb_trim(skb, len);
3084 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3086 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3090 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3091 * @skb: buffer to alter
3094 * This is identical to pskb_trim except that the caller knows that
3095 * the skb is not cloned so we should never get an error due to out-
3098 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3100 int err = pskb_trim(skb, len);
3104 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3106 unsigned int diff = len - skb->len;
3108 if (skb_tailroom(skb) < diff) {
3109 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3114 __skb_set_length(skb, len);
3119 * skb_orphan - orphan a buffer
3120 * @skb: buffer to orphan
3122 * If a buffer currently has an owner then we call the owner's
3123 * destructor function and make the @skb unowned. The buffer continues
3124 * to exist but is no longer charged to its former owner.
3126 static inline void skb_orphan(struct sk_buff *skb)
3128 if (skb->destructor) {
3129 skb->destructor(skb);
3130 skb->destructor = NULL;
3138 * skb_orphan_frags - orphan the frags contained in a buffer
3139 * @skb: buffer to orphan frags from
3140 * @gfp_mask: allocation mask for replacement pages
3142 * For each frag in the SKB which needs a destructor (i.e. has an
3143 * owner) create a copy of that frag and release the original
3144 * page by calling the destructor.
3146 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3148 if (likely(!skb_zcopy(skb)))
3150 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3152 return skb_copy_ubufs(skb, gfp_mask);
3155 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3156 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3158 if (likely(!skb_zcopy(skb)))
3160 return skb_copy_ubufs(skb, gfp_mask);
3164 * __skb_queue_purge_reason - empty a list
3165 * @list: list to empty
3166 * @reason: drop reason
3168 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3169 * the list and one reference dropped. This function does not take the
3170 * list lock and the caller must hold the relevant locks to use it.
3172 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3173 enum skb_drop_reason reason)
3175 struct sk_buff *skb;
3177 while ((skb = __skb_dequeue(list)) != NULL)
3178 kfree_skb_reason(skb, reason);
3181 static inline void __skb_queue_purge(struct sk_buff_head *list)
3183 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3186 void skb_queue_purge_reason(struct sk_buff_head *list,
3187 enum skb_drop_reason reason);
3189 static inline void skb_queue_purge(struct sk_buff_head *list)
3191 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3194 unsigned int skb_rbtree_purge(struct rb_root *root);
3195 void skb_errqueue_purge(struct sk_buff_head *list);
3197 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3200 * netdev_alloc_frag - allocate a page fragment
3201 * @fragsz: fragment size
3203 * Allocates a frag from a page for receive buffer.
3204 * Uses GFP_ATOMIC allocations.
3206 static inline void *netdev_alloc_frag(unsigned int fragsz)
3208 return __netdev_alloc_frag_align(fragsz, ~0u);
3211 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3214 WARN_ON_ONCE(!is_power_of_2(align));
3215 return __netdev_alloc_frag_align(fragsz, -align);
3218 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3222 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3223 * @dev: network device to receive on
3224 * @length: length to allocate
3226 * Allocate a new &sk_buff and assign it a usage count of one. The
3227 * buffer has unspecified headroom built in. Users should allocate
3228 * the headroom they think they need without accounting for the
3229 * built in space. The built in space is used for optimisations.
3231 * %NULL is returned if there is no free memory. Although this function
3232 * allocates memory it can be called from an interrupt.
3234 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3235 unsigned int length)
3237 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3240 /* legacy helper around __netdev_alloc_skb() */
3241 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3244 return __netdev_alloc_skb(NULL, length, gfp_mask);
3247 /* legacy helper around netdev_alloc_skb() */
3248 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3250 return netdev_alloc_skb(NULL, length);
3254 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3255 unsigned int length, gfp_t gfp)
3257 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3259 if (NET_IP_ALIGN && skb)
3260 skb_reserve(skb, NET_IP_ALIGN);
3264 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3265 unsigned int length)
3267 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3270 static inline void skb_free_frag(void *addr)
3272 page_frag_free(addr);
3275 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3277 static inline void *napi_alloc_frag(unsigned int fragsz)
3279 return __napi_alloc_frag_align(fragsz, ~0u);
3282 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3285 WARN_ON_ONCE(!is_power_of_2(align));
3286 return __napi_alloc_frag_align(fragsz, -align);
3289 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3290 unsigned int length, gfp_t gfp_mask);
3291 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3292 unsigned int length)
3294 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3296 void napi_consume_skb(struct sk_buff *skb, int budget);
3298 void napi_skb_free_stolen_head(struct sk_buff *skb);
3299 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3302 * __dev_alloc_pages - allocate page for network Rx
3303 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3304 * @order: size of the allocation
3306 * Allocate a new page.
3308 * %NULL is returned if there is no free memory.
3310 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3313 /* This piece of code contains several assumptions.
3314 * 1. This is for device Rx, therefore a cold page is preferred.
3315 * 2. The expectation is the user wants a compound page.
3316 * 3. If requesting a order 0 page it will not be compound
3317 * due to the check to see if order has a value in prep_new_page
3318 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3319 * code in gfp_to_alloc_flags that should be enforcing this.
3321 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3323 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3326 static inline struct page *dev_alloc_pages(unsigned int order)
3328 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3332 * __dev_alloc_page - allocate a page for network Rx
3333 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3335 * Allocate a new page.
3337 * %NULL is returned if there is no free memory.
3339 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3341 return __dev_alloc_pages(gfp_mask, 0);
3344 static inline struct page *dev_alloc_page(void)
3346 return dev_alloc_pages(0);
3350 * dev_page_is_reusable - check whether a page can be reused for network Rx
3351 * @page: the page to test
3353 * A page shouldn't be considered for reusing/recycling if it was allocated
3354 * under memory pressure or at a distant memory node.
3356 * Returns false if this page should be returned to page allocator, true
3359 static inline bool dev_page_is_reusable(const struct page *page)
3361 return likely(page_to_nid(page) == numa_mem_id() &&
3362 !page_is_pfmemalloc(page));
3366 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3367 * @page: The page that was allocated from skb_alloc_page
3368 * @skb: The skb that may need pfmemalloc set
3370 static inline void skb_propagate_pfmemalloc(const struct page *page,
3371 struct sk_buff *skb)
3373 if (page_is_pfmemalloc(page))
3374 skb->pfmemalloc = true;
3378 * skb_frag_off() - Returns the offset of a skb fragment
3379 * @frag: the paged fragment
3381 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3383 return frag->bv_offset;
3387 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3388 * @frag: skb fragment
3389 * @delta: value to add
3391 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3393 frag->bv_offset += delta;
3397 * skb_frag_off_set() - Sets the offset of a skb fragment
3398 * @frag: skb fragment
3399 * @offset: offset of fragment
3401 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3403 frag->bv_offset = offset;
3407 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3408 * @fragto: skb fragment where offset is set
3409 * @fragfrom: skb fragment offset is copied from
3411 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3412 const skb_frag_t *fragfrom)
3414 fragto->bv_offset = fragfrom->bv_offset;
3418 * skb_frag_page - retrieve the page referred to by a paged fragment
3419 * @frag: the paged fragment
3421 * Returns the &struct page associated with @frag.
3423 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3425 return frag->bv_page;
3429 * __skb_frag_ref - take an addition reference on a paged fragment.
3430 * @frag: the paged fragment
3432 * Takes an additional reference on the paged fragment @frag.
3434 static inline void __skb_frag_ref(skb_frag_t *frag)
3436 get_page(skb_frag_page(frag));
3440 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3442 * @f: the fragment offset.
3444 * Takes an additional reference on the @f'th paged fragment of @skb.
3446 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3448 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3451 bool napi_pp_put_page(struct page *page, bool napi_safe);
3454 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3456 struct page *page = skb_frag_page(frag);
3458 #ifdef CONFIG_PAGE_POOL
3459 if (recycle && napi_pp_put_page(page, napi_safe))
3466 * __skb_frag_unref - release a reference on a paged fragment.
3467 * @frag: the paged fragment
3468 * @recycle: recycle the page if allocated via page_pool
3470 * Releases a reference on the paged fragment @frag
3471 * or recycles the page via the page_pool API.
3473 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3475 napi_frag_unref(frag, recycle, false);
3479 * skb_frag_unref - release a reference on a paged fragment of an skb.
3481 * @f: the fragment offset
3483 * Releases a reference on the @f'th paged fragment of @skb.
3485 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3487 struct skb_shared_info *shinfo = skb_shinfo(skb);
3489 if (!skb_zcopy_managed(skb))
3490 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3494 * skb_frag_address - gets the address of the data contained in a paged fragment
3495 * @frag: the paged fragment buffer
3497 * Returns the address of the data within @frag. The page must already
3500 static inline void *skb_frag_address(const skb_frag_t *frag)
3502 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3506 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3507 * @frag: the paged fragment buffer
3509 * Returns the address of the data within @frag. Checks that the page
3510 * is mapped and returns %NULL otherwise.
3512 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3514 void *ptr = page_address(skb_frag_page(frag));
3518 return ptr + skb_frag_off(frag);
3522 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3523 * @fragto: skb fragment where page is set
3524 * @fragfrom: skb fragment page is copied from
3526 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3527 const skb_frag_t *fragfrom)
3529 fragto->bv_page = fragfrom->bv_page;
3532 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3535 * skb_frag_dma_map - maps a paged fragment via the DMA API
3536 * @dev: the device to map the fragment to
3537 * @frag: the paged fragment to map
3538 * @offset: the offset within the fragment (starting at the
3539 * fragment's own offset)
3540 * @size: the number of bytes to map
3541 * @dir: the direction of the mapping (``PCI_DMA_*``)
3543 * Maps the page associated with @frag to @device.
3545 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3546 const skb_frag_t *frag,
3547 size_t offset, size_t size,
3548 enum dma_data_direction dir)
3550 return dma_map_page(dev, skb_frag_page(frag),
3551 skb_frag_off(frag) + offset, size, dir);
3554 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3557 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3561 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3564 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3569 * skb_clone_writable - is the header of a clone writable
3570 * @skb: buffer to check
3571 * @len: length up to which to write
3573 * Returns true if modifying the header part of the cloned buffer
3574 * does not requires the data to be copied.
3576 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3578 return !skb_header_cloned(skb) &&
3579 skb_headroom(skb) + len <= skb->hdr_len;
3582 static inline int skb_try_make_writable(struct sk_buff *skb,
3583 unsigned int write_len)
3585 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3586 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3589 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3594 if (headroom > skb_headroom(skb))
3595 delta = headroom - skb_headroom(skb);
3597 if (delta || cloned)
3598 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3604 * skb_cow - copy header of skb when it is required
3605 * @skb: buffer to cow
3606 * @headroom: needed headroom
3608 * If the skb passed lacks sufficient headroom or its data part
3609 * is shared, data is reallocated. If reallocation fails, an error
3610 * is returned and original skb is not changed.
3612 * The result is skb with writable area skb->head...skb->tail
3613 * and at least @headroom of space at head.
3615 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3617 return __skb_cow(skb, headroom, skb_cloned(skb));
3621 * skb_cow_head - skb_cow but only making the head writable
3622 * @skb: buffer to cow
3623 * @headroom: needed headroom
3625 * This function is identical to skb_cow except that we replace the
3626 * skb_cloned check by skb_header_cloned. It should be used when
3627 * you only need to push on some header and do not need to modify
3630 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3632 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3636 * skb_padto - pad an skbuff up to a minimal size
3637 * @skb: buffer to pad
3638 * @len: minimal length
3640 * Pads up a buffer to ensure the trailing bytes exist and are
3641 * blanked. If the buffer already contains sufficient data it
3642 * is untouched. Otherwise it is extended. Returns zero on
3643 * success. The skb is freed on error.
3645 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3647 unsigned int size = skb->len;
3648 if (likely(size >= len))
3650 return skb_pad(skb, len - size);
3654 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3655 * @skb: buffer to pad
3656 * @len: minimal length
3657 * @free_on_error: free buffer on error
3659 * Pads up a buffer to ensure the trailing bytes exist and are
3660 * blanked. If the buffer already contains sufficient data it
3661 * is untouched. Otherwise it is extended. Returns zero on
3662 * success. The skb is freed on error if @free_on_error is true.
3664 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3668 unsigned int size = skb->len;
3670 if (unlikely(size < len)) {
3672 if (__skb_pad(skb, len, free_on_error))
3674 __skb_put(skb, len);
3680 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3681 * @skb: buffer to pad
3682 * @len: minimal length
3684 * Pads up a buffer to ensure the trailing bytes exist and are
3685 * blanked. If the buffer already contains sufficient data it
3686 * is untouched. Otherwise it is extended. Returns zero on
3687 * success. The skb is freed on error.
3689 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3691 return __skb_put_padto(skb, len, true);
3694 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3697 static inline int skb_add_data(struct sk_buff *skb,
3698 struct iov_iter *from, int copy)
3700 const int off = skb->len;
3702 if (skb->ip_summed == CHECKSUM_NONE) {
3704 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3706 skb->csum = csum_block_add(skb->csum, csum, off);
3709 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3712 __skb_trim(skb, off);
3716 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3717 const struct page *page, int off)
3722 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3724 return page == skb_frag_page(frag) &&
3725 off == skb_frag_off(frag) + skb_frag_size(frag);
3730 static inline int __skb_linearize(struct sk_buff *skb)
3732 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3736 * skb_linearize - convert paged skb to linear one
3737 * @skb: buffer to linarize
3739 * If there is no free memory -ENOMEM is returned, otherwise zero
3740 * is returned and the old skb data released.
3742 static inline int skb_linearize(struct sk_buff *skb)
3744 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3748 * skb_has_shared_frag - can any frag be overwritten
3749 * @skb: buffer to test
3751 * Return true if the skb has at least one frag that might be modified
3752 * by an external entity (as in vmsplice()/sendfile())
3754 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3756 return skb_is_nonlinear(skb) &&
3757 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3761 * skb_linearize_cow - make sure skb is linear and writable
3762 * @skb: buffer to process
3764 * If there is no free memory -ENOMEM is returned, otherwise zero
3765 * is returned and the old skb data released.
3767 static inline int skb_linearize_cow(struct sk_buff *skb)
3769 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3770 __skb_linearize(skb) : 0;
3773 static __always_inline void
3774 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3777 if (skb->ip_summed == CHECKSUM_COMPLETE)
3778 skb->csum = csum_block_sub(skb->csum,
3779 csum_partial(start, len, 0), off);
3780 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3781 skb_checksum_start_offset(skb) < 0)
3782 skb->ip_summed = CHECKSUM_NONE;
3786 * skb_postpull_rcsum - update checksum for received skb after pull
3787 * @skb: buffer to update
3788 * @start: start of data before pull
3789 * @len: length of data pulled
3791 * After doing a pull on a received packet, you need to call this to
3792 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3793 * CHECKSUM_NONE so that it can be recomputed from scratch.
3795 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3796 const void *start, unsigned int len)
3798 if (skb->ip_summed == CHECKSUM_COMPLETE)
3799 skb->csum = wsum_negate(csum_partial(start, len,
3800 wsum_negate(skb->csum)));
3801 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3802 skb_checksum_start_offset(skb) < 0)
3803 skb->ip_summed = CHECKSUM_NONE;
3806 static __always_inline void
3807 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3810 if (skb->ip_summed == CHECKSUM_COMPLETE)
3811 skb->csum = csum_block_add(skb->csum,
3812 csum_partial(start, len, 0), off);
3816 * skb_postpush_rcsum - update checksum for received skb after push
3817 * @skb: buffer to update
3818 * @start: start of data after push
3819 * @len: length of data pushed
3821 * After doing a push on a received packet, you need to call this to
3822 * update the CHECKSUM_COMPLETE checksum.
3824 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3825 const void *start, unsigned int len)
3827 __skb_postpush_rcsum(skb, start, len, 0);
3830 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3833 * skb_push_rcsum - push skb and update receive checksum
3834 * @skb: buffer to update
3835 * @len: length of data pulled
3837 * This function performs an skb_push on the packet and updates
3838 * the CHECKSUM_COMPLETE checksum. It should be used on
3839 * receive path processing instead of skb_push unless you know
3840 * that the checksum difference is zero (e.g., a valid IP header)
3841 * or you are setting ip_summed to CHECKSUM_NONE.
3843 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3846 skb_postpush_rcsum(skb, skb->data, len);
3850 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3852 * pskb_trim_rcsum - trim received skb and update checksum
3853 * @skb: buffer to trim
3856 * This is exactly the same as pskb_trim except that it ensures the
3857 * checksum of received packets are still valid after the operation.
3858 * It can change skb pointers.
3861 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3863 if (likely(len >= skb->len))
3865 return pskb_trim_rcsum_slow(skb, len);
3868 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3870 if (skb->ip_summed == CHECKSUM_COMPLETE)
3871 skb->ip_summed = CHECKSUM_NONE;
3872 __skb_trim(skb, len);
3876 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3878 if (skb->ip_summed == CHECKSUM_COMPLETE)
3879 skb->ip_summed = CHECKSUM_NONE;
3880 return __skb_grow(skb, len);
3883 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3884 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3885 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3886 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3887 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3889 #define skb_queue_walk(queue, skb) \
3890 for (skb = (queue)->next; \
3891 skb != (struct sk_buff *)(queue); \
3894 #define skb_queue_walk_safe(queue, skb, tmp) \
3895 for (skb = (queue)->next, tmp = skb->next; \
3896 skb != (struct sk_buff *)(queue); \
3897 skb = tmp, tmp = skb->next)
3899 #define skb_queue_walk_from(queue, skb) \
3900 for (; skb != (struct sk_buff *)(queue); \
3903 #define skb_rbtree_walk(skb, root) \
3904 for (skb = skb_rb_first(root); skb != NULL; \
3905 skb = skb_rb_next(skb))
3907 #define skb_rbtree_walk_from(skb) \
3908 for (; skb != NULL; \
3909 skb = skb_rb_next(skb))
3911 #define skb_rbtree_walk_from_safe(skb, tmp) \
3912 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3915 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3916 for (tmp = skb->next; \
3917 skb != (struct sk_buff *)(queue); \
3918 skb = tmp, tmp = skb->next)
3920 #define skb_queue_reverse_walk(queue, skb) \
3921 for (skb = (queue)->prev; \
3922 skb != (struct sk_buff *)(queue); \
3925 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3926 for (skb = (queue)->prev, tmp = skb->prev; \
3927 skb != (struct sk_buff *)(queue); \
3928 skb = tmp, tmp = skb->prev)
3930 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3931 for (tmp = skb->prev; \
3932 skb != (struct sk_buff *)(queue); \
3933 skb = tmp, tmp = skb->prev)
3935 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3937 return skb_shinfo(skb)->frag_list != NULL;
3940 static inline void skb_frag_list_init(struct sk_buff *skb)
3942 skb_shinfo(skb)->frag_list = NULL;
3945 #define skb_walk_frags(skb, iter) \
3946 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3949 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3950 int *err, long *timeo_p,
3951 const struct sk_buff *skb);
3952 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3953 struct sk_buff_head *queue,
3956 struct sk_buff **last);
3957 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3958 struct sk_buff_head *queue,
3959 unsigned int flags, int *off, int *err,
3960 struct sk_buff **last);
3961 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3962 struct sk_buff_head *sk_queue,
3963 unsigned int flags, int *off, int *err);
3964 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3965 __poll_t datagram_poll(struct file *file, struct socket *sock,
3966 struct poll_table_struct *wait);
3967 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3968 struct iov_iter *to, int size);
3969 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3970 struct msghdr *msg, int size)
3972 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3974 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3975 struct msghdr *msg);
3976 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3977 struct iov_iter *to, int len,
3978 struct ahash_request *hash);
3979 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3980 struct iov_iter *from, int len);
3981 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3982 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3983 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3984 static inline void skb_free_datagram_locked(struct sock *sk,
3985 struct sk_buff *skb)
3987 __skb_free_datagram_locked(sk, skb, 0);
3989 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3990 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3991 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3992 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3994 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3995 struct pipe_inode_info *pipe, unsigned int len,
3996 unsigned int flags);
3997 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3999 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4000 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4001 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4002 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4004 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4005 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4006 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4007 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4008 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4009 unsigned int offset);
4010 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4011 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4012 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4013 int skb_vlan_pop(struct sk_buff *skb);
4014 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4015 int skb_eth_pop(struct sk_buff *skb);
4016 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4017 const unsigned char *src);
4018 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4019 int mac_len, bool ethernet);
4020 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4022 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4023 int skb_mpls_dec_ttl(struct sk_buff *skb);
4024 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4027 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4029 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4032 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4034 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4037 struct skb_checksum_ops {
4038 __wsum (*update)(const void *mem, int len, __wsum wsum);
4039 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4042 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4044 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4045 __wsum csum, const struct skb_checksum_ops *ops);
4046 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4049 static inline void * __must_check
4050 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4051 const void *data, int hlen, void *buffer)
4053 if (likely(hlen - offset >= len))
4054 return (void *)data + offset;
4056 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4062 static inline void * __must_check
4063 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4065 return __skb_header_pointer(skb, offset, len, skb->data,
4066 skb_headlen(skb), buffer);
4069 static inline void * __must_check
4070 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4072 if (likely(skb_headlen(skb) - offset >= len))
4073 return skb->data + offset;
4078 * skb_needs_linearize - check if we need to linearize a given skb
4079 * depending on the given device features.
4080 * @skb: socket buffer to check
4081 * @features: net device features
4083 * Returns true if either:
4084 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4085 * 2. skb is fragmented and the device does not support SG.
4087 static inline bool skb_needs_linearize(struct sk_buff *skb,
4088 netdev_features_t features)
4090 return skb_is_nonlinear(skb) &&
4091 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4092 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4095 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4097 const unsigned int len)
4099 memcpy(to, skb->data, len);
4102 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4103 const int offset, void *to,
4104 const unsigned int len)
4106 memcpy(to, skb->data + offset, len);
4109 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4111 const unsigned int len)
4113 memcpy(skb->data, from, len);
4116 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4119 const unsigned int len)
4121 memcpy(skb->data + offset, from, len);
4124 void skb_init(void);
4126 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4132 * skb_get_timestamp - get timestamp from a skb
4133 * @skb: skb to get stamp from
4134 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4136 * Timestamps are stored in the skb as offsets to a base timestamp.
4137 * This function converts the offset back to a struct timeval and stores
4140 static inline void skb_get_timestamp(const struct sk_buff *skb,
4141 struct __kernel_old_timeval *stamp)
4143 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4146 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4147 struct __kernel_sock_timeval *stamp)
4149 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4151 stamp->tv_sec = ts.tv_sec;
4152 stamp->tv_usec = ts.tv_nsec / 1000;
4155 static inline void skb_get_timestampns(const struct sk_buff *skb,
4156 struct __kernel_old_timespec *stamp)
4158 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4160 stamp->tv_sec = ts.tv_sec;
4161 stamp->tv_nsec = ts.tv_nsec;
4164 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4165 struct __kernel_timespec *stamp)
4167 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4169 stamp->tv_sec = ts.tv_sec;
4170 stamp->tv_nsec = ts.tv_nsec;
4173 static inline void __net_timestamp(struct sk_buff *skb)
4175 skb->tstamp = ktime_get_real();
4176 skb->mono_delivery_time = 0;
4179 static inline ktime_t net_timedelta(ktime_t t)
4181 return ktime_sub(ktime_get_real(), t);
4184 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4188 skb->mono_delivery_time = kt && mono;
4191 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4193 /* It is used in the ingress path to clear the delivery_time.
4194 * If needed, set the skb->tstamp to the (rcv) timestamp.
4196 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4198 if (skb->mono_delivery_time) {
4199 skb->mono_delivery_time = 0;
4200 if (static_branch_unlikely(&netstamp_needed_key))
4201 skb->tstamp = ktime_get_real();
4207 static inline void skb_clear_tstamp(struct sk_buff *skb)
4209 if (skb->mono_delivery_time)
4215 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4217 if (skb->mono_delivery_time)
4223 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4225 if (!skb->mono_delivery_time && skb->tstamp)
4228 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4229 return ktime_get_real();
4234 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4236 return skb_shinfo(skb)->meta_len;
4239 static inline void *skb_metadata_end(const struct sk_buff *skb)
4241 return skb_mac_header(skb);
4244 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4245 const struct sk_buff *skb_b,
4248 const void *a = skb_metadata_end(skb_a);
4249 const void *b = skb_metadata_end(skb_b);
4252 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4253 BITS_PER_LONG != 64)
4256 /* Using more efficient variant than plain call to memcmp(). */
4258 #define __it(x, op) (x -= sizeof(u##op))
4259 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4260 case 32: diffs |= __it_diff(a, b, 64);
4262 case 24: diffs |= __it_diff(a, b, 64);
4264 case 16: diffs |= __it_diff(a, b, 64);
4266 case 8: diffs |= __it_diff(a, b, 64);
4268 case 28: diffs |= __it_diff(a, b, 64);
4270 case 20: diffs |= __it_diff(a, b, 64);
4272 case 12: diffs |= __it_diff(a, b, 64);
4274 case 4: diffs |= __it_diff(a, b, 32);
4278 return memcmp(a - meta_len, b - meta_len, meta_len);
4283 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4284 const struct sk_buff *skb_b)
4286 u8 len_a = skb_metadata_len(skb_a);
4287 u8 len_b = skb_metadata_len(skb_b);
4289 if (!(len_a | len_b))
4292 return len_a != len_b ?
4293 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4296 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4298 skb_shinfo(skb)->meta_len = meta_len;
4301 static inline void skb_metadata_clear(struct sk_buff *skb)
4303 skb_metadata_set(skb, 0);
4306 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4308 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4310 void skb_clone_tx_timestamp(struct sk_buff *skb);
4311 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4313 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4315 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4319 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4324 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4327 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4329 * PHY drivers may accept clones of transmitted packets for
4330 * timestamping via their phy_driver.txtstamp method. These drivers
4331 * must call this function to return the skb back to the stack with a
4334 * @skb: clone of the original outgoing packet
4335 * @hwtstamps: hardware time stamps
4338 void skb_complete_tx_timestamp(struct sk_buff *skb,
4339 struct skb_shared_hwtstamps *hwtstamps);
4341 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4342 struct skb_shared_hwtstamps *hwtstamps,
4343 struct sock *sk, int tstype);
4346 * skb_tstamp_tx - queue clone of skb with send time stamps
4347 * @orig_skb: the original outgoing packet
4348 * @hwtstamps: hardware time stamps, may be NULL if not available
4350 * If the skb has a socket associated, then this function clones the
4351 * skb (thus sharing the actual data and optional structures), stores
4352 * the optional hardware time stamping information (if non NULL) or
4353 * generates a software time stamp (otherwise), then queues the clone
4354 * to the error queue of the socket. Errors are silently ignored.
4356 void skb_tstamp_tx(struct sk_buff *orig_skb,
4357 struct skb_shared_hwtstamps *hwtstamps);
4360 * skb_tx_timestamp() - Driver hook for transmit timestamping
4362 * Ethernet MAC Drivers should call this function in their hard_xmit()
4363 * function immediately before giving the sk_buff to the MAC hardware.
4365 * Specifically, one should make absolutely sure that this function is
4366 * called before TX completion of this packet can trigger. Otherwise
4367 * the packet could potentially already be freed.
4369 * @skb: A socket buffer.
4371 static inline void skb_tx_timestamp(struct sk_buff *skb)
4373 skb_clone_tx_timestamp(skb);
4374 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4375 skb_tstamp_tx(skb, NULL);
4379 * skb_complete_wifi_ack - deliver skb with wifi status
4381 * @skb: the original outgoing packet
4382 * @acked: ack status
4385 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4387 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4388 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4390 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4392 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4394 (skb->ip_summed == CHECKSUM_PARTIAL &&
4395 skb_checksum_start_offset(skb) >= 0));
4399 * skb_checksum_complete - Calculate checksum of an entire packet
4400 * @skb: packet to process
4402 * This function calculates the checksum over the entire packet plus
4403 * the value of skb->csum. The latter can be used to supply the
4404 * checksum of a pseudo header as used by TCP/UDP. It returns the
4407 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4408 * this function can be used to verify that checksum on received
4409 * packets. In that case the function should return zero if the
4410 * checksum is correct. In particular, this function will return zero
4411 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4412 * hardware has already verified the correctness of the checksum.
4414 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4416 return skb_csum_unnecessary(skb) ?
4417 0 : __skb_checksum_complete(skb);
4420 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4422 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4423 if (skb->csum_level == 0)
4424 skb->ip_summed = CHECKSUM_NONE;
4430 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4432 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4433 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4435 } else if (skb->ip_summed == CHECKSUM_NONE) {
4436 skb->ip_summed = CHECKSUM_UNNECESSARY;
4437 skb->csum_level = 0;
4441 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4443 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4444 skb->ip_summed = CHECKSUM_NONE;
4445 skb->csum_level = 0;
4449 /* Check if we need to perform checksum complete validation.
4451 * Returns true if checksum complete is needed, false otherwise
4452 * (either checksum is unnecessary or zero checksum is allowed).
4454 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4458 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4459 skb->csum_valid = 1;
4460 __skb_decr_checksum_unnecessary(skb);
4467 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4470 #define CHECKSUM_BREAK 76
4472 /* Unset checksum-complete
4474 * Unset checksum complete can be done when packet is being modified
4475 * (uncompressed for instance) and checksum-complete value is
4478 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4480 if (skb->ip_summed == CHECKSUM_COMPLETE)
4481 skb->ip_summed = CHECKSUM_NONE;
4484 /* Validate (init) checksum based on checksum complete.
4487 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4488 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4489 * checksum is stored in skb->csum for use in __skb_checksum_complete
4490 * non-zero: value of invalid checksum
4493 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4497 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4498 if (!csum_fold(csum_add(psum, skb->csum))) {
4499 skb->csum_valid = 1;
4506 if (complete || skb->len <= CHECKSUM_BREAK) {
4509 csum = __skb_checksum_complete(skb);
4510 skb->csum_valid = !csum;
4517 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4522 /* Perform checksum validate (init). Note that this is a macro since we only
4523 * want to calculate the pseudo header which is an input function if necessary.
4524 * First we try to validate without any computation (checksum unnecessary) and
4525 * then calculate based on checksum complete calling the function to compute
4529 * 0: checksum is validated or try to in skb_checksum_complete
4530 * non-zero: value of invalid checksum
4532 #define __skb_checksum_validate(skb, proto, complete, \
4533 zero_okay, check, compute_pseudo) \
4535 __sum16 __ret = 0; \
4536 skb->csum_valid = 0; \
4537 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4538 __ret = __skb_checksum_validate_complete(skb, \
4539 complete, compute_pseudo(skb, proto)); \
4543 #define skb_checksum_init(skb, proto, compute_pseudo) \
4544 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4546 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4547 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4549 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4550 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4552 #define skb_checksum_validate_zero_check(skb, proto, check, \
4554 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4556 #define skb_checksum_simple_validate(skb) \
4557 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4559 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4561 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4564 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4566 skb->csum = ~pseudo;
4567 skb->ip_summed = CHECKSUM_COMPLETE;
4570 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4572 if (__skb_checksum_convert_check(skb)) \
4573 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4576 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4577 u16 start, u16 offset)
4579 skb->ip_summed = CHECKSUM_PARTIAL;
4580 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4581 skb->csum_offset = offset - start;
4584 /* Update skbuf and packet to reflect the remote checksum offload operation.
4585 * When called, ptr indicates the starting point for skb->csum when
4586 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4587 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4589 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4590 int start, int offset, bool nopartial)
4595 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4599 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4600 __skb_checksum_complete(skb);
4601 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4604 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4606 /* Adjust skb->csum since we changed the packet */
4607 skb->csum = csum_add(skb->csum, delta);
4610 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4612 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4613 return (void *)(skb->_nfct & NFCT_PTRMASK);
4619 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4621 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4628 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4630 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4631 skb->slow_gro |= !!nfct;
4636 #ifdef CONFIG_SKB_EXTENSIONS
4638 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4644 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4647 #if IS_ENABLED(CONFIG_MPTCP)
4650 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4653 SKB_EXT_NUM, /* must be last */
4657 * struct skb_ext - sk_buff extensions
4658 * @refcnt: 1 on allocation, deallocated on 0
4659 * @offset: offset to add to @data to obtain extension address
4660 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4661 * @data: start of extension data, variable sized
4663 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4664 * to use 'u8' types while allowing up to 2kb worth of extension data.
4668 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4669 u8 chunks; /* same */
4670 char data[] __aligned(8);
4673 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4674 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4675 struct skb_ext *ext);
4676 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4677 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4678 void __skb_ext_put(struct skb_ext *ext);
4680 static inline void skb_ext_put(struct sk_buff *skb)
4682 if (skb->active_extensions)
4683 __skb_ext_put(skb->extensions);
4686 static inline void __skb_ext_copy(struct sk_buff *dst,
4687 const struct sk_buff *src)
4689 dst->active_extensions = src->active_extensions;
4691 if (src->active_extensions) {
4692 struct skb_ext *ext = src->extensions;
4694 refcount_inc(&ext->refcnt);
4695 dst->extensions = ext;
4699 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4702 __skb_ext_copy(dst, src);
4705 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4707 return !!ext->offset[i];
4710 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4712 return skb->active_extensions & (1 << id);
4715 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4717 if (skb_ext_exist(skb, id))
4718 __skb_ext_del(skb, id);
4721 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4723 if (skb_ext_exist(skb, id)) {
4724 struct skb_ext *ext = skb->extensions;
4726 return (void *)ext + (ext->offset[id] << 3);
4732 static inline void skb_ext_reset(struct sk_buff *skb)
4734 if (unlikely(skb->active_extensions)) {
4735 __skb_ext_put(skb->extensions);
4736 skb->active_extensions = 0;
4740 static inline bool skb_has_extensions(struct sk_buff *skb)
4742 return unlikely(skb->active_extensions);
4745 static inline void skb_ext_put(struct sk_buff *skb) {}
4746 static inline void skb_ext_reset(struct sk_buff *skb) {}
4747 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4748 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4749 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4750 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4751 #endif /* CONFIG_SKB_EXTENSIONS */
4753 static inline void nf_reset_ct(struct sk_buff *skb)
4755 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4756 nf_conntrack_put(skb_nfct(skb));
4761 static inline void nf_reset_trace(struct sk_buff *skb)
4763 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4768 static inline void ipvs_reset(struct sk_buff *skb)
4770 #if IS_ENABLED(CONFIG_IP_VS)
4771 skb->ipvs_property = 0;
4775 /* Note: This doesn't put any conntrack info in dst. */
4776 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4779 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4780 dst->_nfct = src->_nfct;
4781 nf_conntrack_get(skb_nfct(src));
4783 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4785 dst->nf_trace = src->nf_trace;
4789 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4791 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4792 nf_conntrack_put(skb_nfct(dst));
4794 dst->slow_gro = src->slow_gro;
4795 __nf_copy(dst, src, true);
4798 #ifdef CONFIG_NETWORK_SECMARK
4799 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4801 to->secmark = from->secmark;
4804 static inline void skb_init_secmark(struct sk_buff *skb)
4809 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4812 static inline void skb_init_secmark(struct sk_buff *skb)
4816 static inline int secpath_exists(const struct sk_buff *skb)
4819 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4825 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4827 return !skb->destructor &&
4828 !secpath_exists(skb) &&
4830 !skb->_skb_refdst &&
4831 !skb_has_frag_list(skb);
4834 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4836 skb->queue_mapping = queue_mapping;
4839 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4841 return skb->queue_mapping;
4844 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4846 to->queue_mapping = from->queue_mapping;
4849 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4851 skb->queue_mapping = rx_queue + 1;
4854 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4856 return skb->queue_mapping - 1;
4859 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4861 return skb->queue_mapping != 0;
4864 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4866 skb->dst_pending_confirm = val;
4869 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4871 return skb->dst_pending_confirm != 0;
4874 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4877 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4883 static inline bool skb_is_gso(const struct sk_buff *skb)
4885 return skb_shinfo(skb)->gso_size;
4888 /* Note: Should be called only if skb_is_gso(skb) is true */
4889 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4891 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4894 /* Note: Should be called only if skb_is_gso(skb) is true */
4895 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4897 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4900 /* Note: Should be called only if skb_is_gso(skb) is true */
4901 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4903 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4906 static inline void skb_gso_reset(struct sk_buff *skb)
4908 skb_shinfo(skb)->gso_size = 0;
4909 skb_shinfo(skb)->gso_segs = 0;
4910 skb_shinfo(skb)->gso_type = 0;
4913 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4916 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4918 shinfo->gso_size += increment;
4921 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4924 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4926 shinfo->gso_size -= decrement;
4929 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4931 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4933 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4934 * wanted then gso_type will be set. */
4935 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4937 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4938 unlikely(shinfo->gso_type == 0)) {
4939 __skb_warn_lro_forwarding(skb);
4945 static inline void skb_forward_csum(struct sk_buff *skb)
4947 /* Unfortunately we don't support this one. Any brave souls? */
4948 if (skb->ip_summed == CHECKSUM_COMPLETE)
4949 skb->ip_summed = CHECKSUM_NONE;
4953 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4954 * @skb: skb to check
4956 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4957 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4958 * use this helper, to document places where we make this assertion.
4960 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4962 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4965 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4967 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4968 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4969 unsigned int transport_len,
4970 __sum16(*skb_chkf)(struct sk_buff *skb));
4973 * skb_head_is_locked - Determine if the skb->head is locked down
4974 * @skb: skb to check
4976 * The head on skbs build around a head frag can be removed if they are
4977 * not cloned. This function returns true if the skb head is locked down
4978 * due to either being allocated via kmalloc, or by being a clone with
4979 * multiple references to the head.
4981 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4983 return !skb->head_frag || skb_cloned(skb);
4986 /* Local Checksum Offload.
4987 * Compute outer checksum based on the assumption that the
4988 * inner checksum will be offloaded later.
4989 * See Documentation/networking/checksum-offloads.rst for
4990 * explanation of how this works.
4991 * Fill in outer checksum adjustment (e.g. with sum of outer
4992 * pseudo-header) before calling.
4993 * Also ensure that inner checksum is in linear data area.
4995 static inline __wsum lco_csum(struct sk_buff *skb)
4997 unsigned char *csum_start = skb_checksum_start(skb);
4998 unsigned char *l4_hdr = skb_transport_header(skb);
5001 /* Start with complement of inner checksum adjustment */
5002 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5005 /* Add in checksum of our headers (incl. outer checksum
5006 * adjustment filled in by caller) and return result.
5008 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5011 static inline bool skb_is_redirected(const struct sk_buff *skb)
5013 return skb->redirected;
5016 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5018 skb->redirected = 1;
5019 #ifdef CONFIG_NET_REDIRECT
5020 skb->from_ingress = from_ingress;
5021 if (skb->from_ingress)
5022 skb_clear_tstamp(skb);
5026 static inline void skb_reset_redirect(struct sk_buff *skb)
5028 skb->redirected = 0;
5031 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5034 skb->redirected = 1;
5035 #ifdef CONFIG_NET_REDIRECT
5036 skb->from_ingress = from_ingress;
5040 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5042 #if IS_ENABLED(CONFIG_IP_SCTP)
5043 return skb->csum_not_inet;
5049 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5051 skb->ip_summed = CHECKSUM_NONE;
5052 #if IS_ENABLED(CONFIG_IP_SCTP)
5053 skb->csum_not_inet = 0;
5057 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5058 const u64 kcov_handle)
5061 skb->kcov_handle = kcov_handle;
5065 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5068 return skb->kcov_handle;
5074 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5076 #ifdef CONFIG_PAGE_POOL
5077 skb->pp_recycle = 1;
5081 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5082 ssize_t maxsize, gfp_t gfp);
5084 #endif /* __KERNEL__ */
5085 #endif /* _LINUX_SKBUFF_H */