]> Git Repo - J-linux.git/blob - include/linux/skbuff.h
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf...
[J-linux.git] / include / linux / skbuff.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *      Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *      Authors:
6  *              Alan Cox, <[email protected]>
7  *              Florian La Roche, <[email protected]>
8  */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40
41 /**
42  * DOC: skb checksums
43  *
44  * The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * IP checksum related features
48  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
49  *
50  * Drivers advertise checksum offload capabilities in the features of a device.
51  * From the stack's point of view these are capabilities offered by the driver.
52  * A driver typically only advertises features that it is capable of offloading
53  * to its device.
54  *
55  * .. flat-table:: Checksum related device features
56  *   :widths: 1 10
57  *
58  *   * - %NETIF_F_HW_CSUM
59  *     - The driver (or its device) is able to compute one
60  *       IP (one's complement) checksum for any combination
61  *       of protocols or protocol layering. The checksum is
62  *       computed and set in a packet per the CHECKSUM_PARTIAL
63  *       interface (see below).
64  *
65  *   * - %NETIF_F_IP_CSUM
66  *     - Driver (device) is only able to checksum plain
67  *       TCP or UDP packets over IPv4. These are specifically
68  *       unencapsulated packets of the form IPv4|TCP or
69  *       IPv4|UDP where the Protocol field in the IPv4 header
70  *       is TCP or UDP. The IPv4 header may contain IP options.
71  *       This feature cannot be set in features for a device
72  *       with NETIF_F_HW_CSUM also set. This feature is being
73  *       DEPRECATED (see below).
74  *
75  *   * - %NETIF_F_IPV6_CSUM
76  *     - Driver (device) is only able to checksum plain
77  *       TCP or UDP packets over IPv6. These are specifically
78  *       unencapsulated packets of the form IPv6|TCP or
79  *       IPv6|UDP where the Next Header field in the IPv6
80  *       header is either TCP or UDP. IPv6 extension headers
81  *       are not supported with this feature. This feature
82  *       cannot be set in features for a device with
83  *       NETIF_F_HW_CSUM also set. This feature is being
84  *       DEPRECATED (see below).
85  *
86  *   * - %NETIF_F_RXCSUM
87  *     - Driver (device) performs receive checksum offload.
88  *       This flag is only used to disable the RX checksum
89  *       feature for a device. The stack will accept receive
90  *       checksum indication in packets received on a device
91  *       regardless of whether NETIF_F_RXCSUM is set.
92  *
93  * Checksumming of received packets by device
94  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
95  *
96  * Indication of checksum verification is set in &sk_buff.ip_summed.
97  * Possible values are:
98  *
99  * - %CHECKSUM_NONE
100  *
101  *   Device did not checksum this packet e.g. due to lack of capabilities.
102  *   The packet contains full (though not verified) checksum in packet but
103  *   not in skb->csum. Thus, skb->csum is undefined in this case.
104  *
105  * - %CHECKSUM_UNNECESSARY
106  *
107  *   The hardware you're dealing with doesn't calculate the full checksum
108  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
109  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
110  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
111  *   though. A driver or device must never modify the checksum field in the
112  *   packet even if checksum is verified.
113  *
114  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
115  *
116  *     - TCP: IPv6 and IPv4.
117  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
118  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
119  *       may perform further validation in this case.
120  *     - GRE: only if the checksum is present in the header.
121  *     - SCTP: indicates the CRC in SCTP header has been validated.
122  *     - FCOE: indicates the CRC in FC frame has been validated.
123  *
124  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
125  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
126  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
127  *   and a device is able to verify the checksums for UDP (possibly zero),
128  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
129  *   two. If the device were only able to verify the UDP checksum and not
130  *   GRE, either because it doesn't support GRE checksum or because GRE
131  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
132  *   not considered in this case).
133  *
134  * - %CHECKSUM_COMPLETE
135  *
136  *   This is the most generic way. The device supplied checksum of the _whole_
137  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
138  *   hardware doesn't need to parse L3/L4 headers to implement this.
139  *
140  *   Notes:
141  *
142  *   - Even if device supports only some protocols, but is able to produce
143  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
144  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
145  *
146  * - %CHECKSUM_PARTIAL
147  *
148  *   A checksum is set up to be offloaded to a device as described in the
149  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
150  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
151  *   on the same host, or it may be set in the input path in GRO or remote
152  *   checksum offload. For the purposes of checksum verification, the checksum
153  *   referred to by skb->csum_start + skb->csum_offset and any preceding
154  *   checksums in the packet are considered verified. Any checksums in the
155  *   packet that are after the checksum being offloaded are not considered to
156  *   be verified.
157  *
158  * Checksumming on transmit for non-GSO
159  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
160  *
161  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
162  * Values are:
163  *
164  * - %CHECKSUM_PARTIAL
165  *
166  *   The driver is required to checksum the packet as seen by hard_start_xmit()
167  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
168  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
169  *   A driver may verify that the
170  *   csum_start and csum_offset values are valid values given the length and
171  *   offset of the packet, but it should not attempt to validate that the
172  *   checksum refers to a legitimate transport layer checksum -- it is the
173  *   purview of the stack to validate that csum_start and csum_offset are set
174  *   correctly.
175  *
176  *   When the stack requests checksum offload for a packet, the driver MUST
177  *   ensure that the checksum is set correctly. A driver can either offload the
178  *   checksum calculation to the device, or call skb_checksum_help (in the case
179  *   that the device does not support offload for a particular checksum).
180  *
181  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
182  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
183  *   checksum offload capability.
184  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
185  *   on network device checksumming capabilities: if a packet does not match
186  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
187  *   &sk_buff.csum_not_inet, see :ref:`crc`)
188  *   is called to resolve the checksum.
189  *
190  * - %CHECKSUM_NONE
191  *
192  *   The skb was already checksummed by the protocol, or a checksum is not
193  *   required.
194  *
195  * - %CHECKSUM_UNNECESSARY
196  *
197  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
198  *   output.
199  *
200  * - %CHECKSUM_COMPLETE
201  *
202  *   Not used in checksum output. If a driver observes a packet with this value
203  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
204  *
205  * .. _crc:
206  *
207  * Non-IP checksum (CRC) offloads
208  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
209  *
210  * .. flat-table::
211  *   :widths: 1 10
212  *
213  *   * - %NETIF_F_SCTP_CRC
214  *     - This feature indicates that a device is capable of
215  *       offloading the SCTP CRC in a packet. To perform this offload the stack
216  *       will set csum_start and csum_offset accordingly, set ip_summed to
217  *       %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
218  *       in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
219  *       A driver that supports both IP checksum offload and SCTP CRC32c offload
220  *       must verify which offload is configured for a packet by testing the
221  *       value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
222  *       resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
223  *
224  *   * - %NETIF_F_FCOE_CRC
225  *     - This feature indicates that a device is capable of offloading the FCOE
226  *       CRC in a packet. To perform this offload the stack will set ip_summed
227  *       to %CHECKSUM_PARTIAL and set csum_start and csum_offset
228  *       accordingly. Note that there is no indication in the skbuff that the
229  *       %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
230  *       both IP checksum offload and FCOE CRC offload must verify which offload
231  *       is configured for a packet, presumably by inspecting packet headers.
232  *
233  * Checksumming on output with GSO
234  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
235  *
236  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
237  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
238  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
239  * part of the GSO operation is implied. If a checksum is being offloaded
240  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
241  * csum_offset are set to refer to the outermost checksum being offloaded
242  * (two offloaded checksums are possible with UDP encapsulation).
243  */
244
245 /* Don't change this without changing skb_csum_unnecessary! */
246 #define CHECKSUM_NONE           0
247 #define CHECKSUM_UNNECESSARY    1
248 #define CHECKSUM_COMPLETE       2
249 #define CHECKSUM_PARTIAL        3
250
251 /* Maximum value in skb->csum_level */
252 #define SKB_MAX_CSUM_LEVEL      3
253
254 #define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
255 #define SKB_WITH_OVERHEAD(X)    \
256         ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
257
258 /* For X bytes available in skb->head, what is the minimal
259  * allocation needed, knowing struct skb_shared_info needs
260  * to be aligned.
261  */
262 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
263         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264
265 #define SKB_MAX_ORDER(X, ORDER) \
266         SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
267 #define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
268 #define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
269
270 /* return minimum truesize of one skb containing X bytes of data */
271 #define SKB_TRUESIZE(X) ((X) +                                          \
272                          SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
273                          SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
274
275 struct ahash_request;
276 struct net_device;
277 struct scatterlist;
278 struct pipe_inode_info;
279 struct iov_iter;
280 struct napi_struct;
281 struct bpf_prog;
282 union bpf_attr;
283 struct skb_ext;
284 struct ts_config;
285
286 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
287 struct nf_bridge_info {
288         enum {
289                 BRNF_PROTO_UNCHANGED,
290                 BRNF_PROTO_8021Q,
291                 BRNF_PROTO_PPPOE
292         } orig_proto:8;
293         u8                      pkt_otherhost:1;
294         u8                      in_prerouting:1;
295         u8                      bridged_dnat:1;
296         u8                      sabotage_in_done:1;
297         __u16                   frag_max_size;
298         struct net_device       *physindev;
299
300         /* always valid & non-NULL from FORWARD on, for physdev match */
301         struct net_device       *physoutdev;
302         union {
303                 /* prerouting: detect dnat in orig/reply direction */
304                 __be32          ipv4_daddr;
305                 struct in6_addr ipv6_daddr;
306
307                 /* after prerouting + nat detected: store original source
308                  * mac since neigh resolution overwrites it, only used while
309                  * skb is out in neigh layer.
310                  */
311                 char neigh_header[8];
312         };
313 };
314 #endif
315
316 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
317 /* Chain in tc_skb_ext will be used to share the tc chain with
318  * ovs recirc_id. It will be set to the current chain by tc
319  * and read by ovs to recirc_id.
320  */
321 struct tc_skb_ext {
322         union {
323                 u64 act_miss_cookie;
324                 __u32 chain;
325         };
326         __u16 mru;
327         __u16 zone;
328         u8 post_ct:1;
329         u8 post_ct_snat:1;
330         u8 post_ct_dnat:1;
331         u8 act_miss:1; /* Set if act_miss_cookie is used */
332         u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
333 };
334 #endif
335
336 struct sk_buff_head {
337         /* These two members must be first to match sk_buff. */
338         struct_group_tagged(sk_buff_list, list,
339                 struct sk_buff  *next;
340                 struct sk_buff  *prev;
341         );
342
343         __u32           qlen;
344         spinlock_t      lock;
345 };
346
347 struct sk_buff;
348
349 #ifndef CONFIG_MAX_SKB_FRAGS
350 # define CONFIG_MAX_SKB_FRAGS 17
351 #endif
352
353 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
354
355 extern int sysctl_max_skb_frags;
356
357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358  * segment using its current segmentation instead.
359  */
360 #define GSO_BY_FRAGS    0xFFFF
361
362 typedef struct bio_vec skb_frag_t;
363
364 /**
365  * skb_frag_size() - Returns the size of a skb fragment
366  * @frag: skb fragment
367  */
368 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
369 {
370         return frag->bv_len;
371 }
372
373 /**
374  * skb_frag_size_set() - Sets the size of a skb fragment
375  * @frag: skb fragment
376  * @size: size of fragment
377  */
378 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
379 {
380         frag->bv_len = size;
381 }
382
383 /**
384  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
385  * @frag: skb fragment
386  * @delta: value to add
387  */
388 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
389 {
390         frag->bv_len += delta;
391 }
392
393 /**
394  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
395  * @frag: skb fragment
396  * @delta: value to subtract
397  */
398 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
399 {
400         frag->bv_len -= delta;
401 }
402
403 /**
404  * skb_frag_must_loop - Test if %p is a high memory page
405  * @p: fragment's page
406  */
407 static inline bool skb_frag_must_loop(struct page *p)
408 {
409 #if defined(CONFIG_HIGHMEM)
410         if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
411                 return true;
412 #endif
413         return false;
414 }
415
416 /**
417  *      skb_frag_foreach_page - loop over pages in a fragment
418  *
419  *      @f:             skb frag to operate on
420  *      @f_off:         offset from start of f->bv_page
421  *      @f_len:         length from f_off to loop over
422  *      @p:             (temp var) current page
423  *      @p_off:         (temp var) offset from start of current page,
424  *                                 non-zero only on first page.
425  *      @p_len:         (temp var) length in current page,
426  *                                 < PAGE_SIZE only on first and last page.
427  *      @copied:        (temp var) length so far, excluding current p_len.
428  *
429  *      A fragment can hold a compound page, in which case per-page
430  *      operations, notably kmap_atomic, must be called for each
431  *      regular page.
432  */
433 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
434         for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),            \
435              p_off = (f_off) & (PAGE_SIZE - 1),                         \
436              p_len = skb_frag_must_loop(p) ?                            \
437              min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,              \
438              copied = 0;                                                \
439              copied < f_len;                                            \
440              copied += p_len, p++, p_off = 0,                           \
441              p_len = min_t(u32, f_len - copied, PAGE_SIZE))             \
442
443 /**
444  * struct skb_shared_hwtstamps - hardware time stamps
445  * @hwtstamp:           hardware time stamp transformed into duration
446  *                      since arbitrary point in time
447  * @netdev_data:        address/cookie of network device driver used as
448  *                      reference to actual hardware time stamp
449  *
450  * Software time stamps generated by ktime_get_real() are stored in
451  * skb->tstamp.
452  *
453  * hwtstamps can only be compared against other hwtstamps from
454  * the same device.
455  *
456  * This structure is attached to packets as part of the
457  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
458  */
459 struct skb_shared_hwtstamps {
460         union {
461                 ktime_t hwtstamp;
462                 void *netdev_data;
463         };
464 };
465
466 /* Definitions for tx_flags in struct skb_shared_info */
467 enum {
468         /* generate hardware time stamp */
469         SKBTX_HW_TSTAMP = 1 << 0,
470
471         /* generate software time stamp when queueing packet to NIC */
472         SKBTX_SW_TSTAMP = 1 << 1,
473
474         /* device driver is going to provide hardware time stamp */
475         SKBTX_IN_PROGRESS = 1 << 2,
476
477         /* generate hardware time stamp based on cycles if supported */
478         SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
479
480         /* generate wifi status information (where possible) */
481         SKBTX_WIFI_STATUS = 1 << 4,
482
483         /* determine hardware time stamp based on time or cycles */
484         SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485
486         /* generate software time stamp when entering packet scheduling */
487         SKBTX_SCHED_TSTAMP = 1 << 6,
488 };
489
490 #define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
491                                  SKBTX_SCHED_TSTAMP)
492 #define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | \
493                                  SKBTX_HW_TSTAMP_USE_CYCLES | \
494                                  SKBTX_ANY_SW_TSTAMP)
495
496 /* Definitions for flags in struct skb_shared_info */
497 enum {
498         /* use zcopy routines */
499         SKBFL_ZEROCOPY_ENABLE = BIT(0),
500
501         /* This indicates at least one fragment might be overwritten
502          * (as in vmsplice(), sendfile() ...)
503          * If we need to compute a TX checksum, we'll need to copy
504          * all frags to avoid possible bad checksum
505          */
506         SKBFL_SHARED_FRAG = BIT(1),
507
508         /* segment contains only zerocopy data and should not be
509          * charged to the kernel memory.
510          */
511         SKBFL_PURE_ZEROCOPY = BIT(2),
512
513         SKBFL_DONT_ORPHAN = BIT(3),
514
515         /* page references are managed by the ubuf_info, so it's safe to
516          * use frags only up until ubuf_info is released
517          */
518         SKBFL_MANAGED_FRAG_REFS = BIT(4),
519 };
520
521 #define SKBFL_ZEROCOPY_FRAG     (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522 #define SKBFL_ALL_ZEROCOPY      (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523                                  SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
524
525 /*
526  * The callback notifies userspace to release buffers when skb DMA is done in
527  * lower device, the skb last reference should be 0 when calling this.
528  * The zerocopy_success argument is true if zero copy transmit occurred,
529  * false on data copy or out of memory error caused by data copy attempt.
530  * The ctx field is used to track device context.
531  * The desc field is used to track userspace buffer index.
532  */
533 struct ubuf_info {
534         void (*callback)(struct sk_buff *, struct ubuf_info *,
535                          bool zerocopy_success);
536         refcount_t refcnt;
537         u8 flags;
538 };
539
540 struct ubuf_info_msgzc {
541         struct ubuf_info ubuf;
542
543         union {
544                 struct {
545                         unsigned long desc;
546                         void *ctx;
547                 };
548                 struct {
549                         u32 id;
550                         u16 len;
551                         u16 zerocopy:1;
552                         u32 bytelen;
553                 };
554         };
555
556         struct mmpin {
557                 struct user_struct *user;
558                 unsigned int num_pg;
559         } mmp;
560 };
561
562 #define skb_uarg(SKB)   ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
563 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
564                                              ubuf)
565
566 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
567 void mm_unaccount_pinned_pages(struct mmpin *mmp);
568
569 /* Preserve some data across TX submission and completion.
570  *
571  * Note, this state is stored in the driver. Extending the layout
572  * might need some special care.
573  */
574 struct xsk_tx_metadata_compl {
575         __u64 *tx_timestamp;
576 };
577
578 /* This data is invariant across clones and lives at
579  * the end of the header data, ie. at skb->end.
580  */
581 struct skb_shared_info {
582         __u8            flags;
583         __u8            meta_len;
584         __u8            nr_frags;
585         __u8            tx_flags;
586         unsigned short  gso_size;
587         /* Warning: this field is not always filled in (UFO)! */
588         unsigned short  gso_segs;
589         struct sk_buff  *frag_list;
590         union {
591                 struct skb_shared_hwtstamps hwtstamps;
592                 struct xsk_tx_metadata_compl xsk_meta;
593         };
594         unsigned int    gso_type;
595         u32             tskey;
596
597         /*
598          * Warning : all fields before dataref are cleared in __alloc_skb()
599          */
600         atomic_t        dataref;
601         unsigned int    xdp_frags_size;
602
603         /* Intermediate layers must ensure that destructor_arg
604          * remains valid until skb destructor */
605         void *          destructor_arg;
606
607         /* must be last field, see pskb_expand_head() */
608         skb_frag_t      frags[MAX_SKB_FRAGS];
609 };
610
611 /**
612  * DOC: dataref and headerless skbs
613  *
614  * Transport layers send out clones of payload skbs they hold for
615  * retransmissions. To allow lower layers of the stack to prepend their headers
616  * we split &skb_shared_info.dataref into two halves.
617  * The lower 16 bits count the overall number of references.
618  * The higher 16 bits indicate how many of the references are payload-only.
619  * skb_header_cloned() checks if skb is allowed to add / write the headers.
620  *
621  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
622  * (via __skb_header_release()). Any clone created from marked skb will get
623  * &sk_buff.hdr_len populated with the available headroom.
624  * If there's the only clone in existence it's able to modify the headroom
625  * at will. The sequence of calls inside the transport layer is::
626  *
627  *  <alloc skb>
628  *  skb_reserve()
629  *  __skb_header_release()
630  *  skb_clone()
631  *  // send the clone down the stack
632  *
633  * This is not a very generic construct and it depends on the transport layers
634  * doing the right thing. In practice there's usually only one payload-only skb.
635  * Having multiple payload-only skbs with different lengths of hdr_len is not
636  * possible. The payload-only skbs should never leave their owner.
637  */
638 #define SKB_DATAREF_SHIFT 16
639 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
640
641
642 enum {
643         SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
644         SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
645         SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
646 };
647
648 enum {
649         SKB_GSO_TCPV4 = 1 << 0,
650
651         /* This indicates the skb is from an untrusted source. */
652         SKB_GSO_DODGY = 1 << 1,
653
654         /* This indicates the tcp segment has CWR set. */
655         SKB_GSO_TCP_ECN = 1 << 2,
656
657         SKB_GSO_TCP_FIXEDID = 1 << 3,
658
659         SKB_GSO_TCPV6 = 1 << 4,
660
661         SKB_GSO_FCOE = 1 << 5,
662
663         SKB_GSO_GRE = 1 << 6,
664
665         SKB_GSO_GRE_CSUM = 1 << 7,
666
667         SKB_GSO_IPXIP4 = 1 << 8,
668
669         SKB_GSO_IPXIP6 = 1 << 9,
670
671         SKB_GSO_UDP_TUNNEL = 1 << 10,
672
673         SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
674
675         SKB_GSO_PARTIAL = 1 << 12,
676
677         SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
678
679         SKB_GSO_SCTP = 1 << 14,
680
681         SKB_GSO_ESP = 1 << 15,
682
683         SKB_GSO_UDP = 1 << 16,
684
685         SKB_GSO_UDP_L4 = 1 << 17,
686
687         SKB_GSO_FRAGLIST = 1 << 18,
688 };
689
690 #if BITS_PER_LONG > 32
691 #define NET_SKBUFF_DATA_USES_OFFSET 1
692 #endif
693
694 #ifdef NET_SKBUFF_DATA_USES_OFFSET
695 typedef unsigned int sk_buff_data_t;
696 #else
697 typedef unsigned char *sk_buff_data_t;
698 #endif
699
700 /**
701  * DOC: Basic sk_buff geometry
702  *
703  * struct sk_buff itself is a metadata structure and does not hold any packet
704  * data. All the data is held in associated buffers.
705  *
706  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
707  * into two parts:
708  *
709  *  - data buffer, containing headers and sometimes payload;
710  *    this is the part of the skb operated on by the common helpers
711  *    such as skb_put() or skb_pull();
712  *  - shared info (struct skb_shared_info) which holds an array of pointers
713  *    to read-only data in the (page, offset, length) format.
714  *
715  * Optionally &skb_shared_info.frag_list may point to another skb.
716  *
717  * Basic diagram may look like this::
718  *
719  *                                  ---------------
720  *                                 | sk_buff       |
721  *                                  ---------------
722  *     ,---------------------------  + head
723  *    /          ,-----------------  + data
724  *   /          /      ,-----------  + tail
725  *  |          |      |            , + end
726  *  |          |      |           |
727  *  v          v      v           v
728  *   -----------------------------------------------
729  *  | headroom | data |  tailroom | skb_shared_info |
730  *   -----------------------------------------------
731  *                                 + [page frag]
732  *                                 + [page frag]
733  *                                 + [page frag]
734  *                                 + [page frag]       ---------
735  *                                 + frag_list    --> | sk_buff |
736  *                                                     ---------
737  *
738  */
739
740 /**
741  *      struct sk_buff - socket buffer
742  *      @next: Next buffer in list
743  *      @prev: Previous buffer in list
744  *      @tstamp: Time we arrived/left
745  *      @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
746  *              for retransmit timer
747  *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
748  *      @list: queue head
749  *      @ll_node: anchor in an llist (eg socket defer_list)
750  *      @sk: Socket we are owned by
751  *      @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
752  *              fragmentation management
753  *      @dev: Device we arrived on/are leaving by
754  *      @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
755  *      @cb: Control buffer. Free for use by every layer. Put private vars here
756  *      @_skb_refdst: destination entry (with norefcount bit)
757  *      @sp: the security path, used for xfrm
758  *      @len: Length of actual data
759  *      @data_len: Data length
760  *      @mac_len: Length of link layer header
761  *      @hdr_len: writable header length of cloned skb
762  *      @csum: Checksum (must include start/offset pair)
763  *      @csum_start: Offset from skb->head where checksumming should start
764  *      @csum_offset: Offset from csum_start where checksum should be stored
765  *      @priority: Packet queueing priority
766  *      @ignore_df: allow local fragmentation
767  *      @cloned: Head may be cloned (check refcnt to be sure)
768  *      @ip_summed: Driver fed us an IP checksum
769  *      @nohdr: Payload reference only, must not modify header
770  *      @pkt_type: Packet class
771  *      @fclone: skbuff clone status
772  *      @ipvs_property: skbuff is owned by ipvs
773  *      @inner_protocol_type: whether the inner protocol is
774  *              ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
775  *      @remcsum_offload: remote checksum offload is enabled
776  *      @offload_fwd_mark: Packet was L2-forwarded in hardware
777  *      @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
778  *      @tc_skip_classify: do not classify packet. set by IFB device
779  *      @tc_at_ingress: used within tc_classify to distinguish in/egress
780  *      @redirected: packet was redirected by packet classifier
781  *      @from_ingress: packet was redirected from the ingress path
782  *      @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
783  *      @peeked: this packet has been seen already, so stats have been
784  *              done for it, don't do them again
785  *      @nf_trace: netfilter packet trace flag
786  *      @protocol: Packet protocol from driver
787  *      @destructor: Destruct function
788  *      @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
789  *      @_sk_redir: socket redirection information for skmsg
790  *      @_nfct: Associated connection, if any (with nfctinfo bits)
791  *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
792  *      @skb_iif: ifindex of device we arrived on
793  *      @tc_index: Traffic control index
794  *      @hash: the packet hash
795  *      @queue_mapping: Queue mapping for multiqueue devices
796  *      @head_frag: skb was allocated from page fragments,
797  *              not allocated by kmalloc() or vmalloc().
798  *      @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
799  *      @pp_recycle: mark the packet for recycling instead of freeing (implies
800  *              page_pool support on driver)
801  *      @active_extensions: active extensions (skb_ext_id types)
802  *      @ndisc_nodetype: router type (from link layer)
803  *      @ooo_okay: allow the mapping of a socket to a queue to be changed
804  *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
805  *              ports.
806  *      @sw_hash: indicates hash was computed in software stack
807  *      @wifi_acked_valid: wifi_acked was set
808  *      @wifi_acked: whether frame was acked on wifi or not
809  *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
810  *      @encapsulation: indicates the inner headers in the skbuff are valid
811  *      @encap_hdr_csum: software checksum is needed
812  *      @csum_valid: checksum is already valid
813  *      @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
814  *      @csum_complete_sw: checksum was completed by software
815  *      @csum_level: indicates the number of consecutive checksums found in
816  *              the packet minus one that have been verified as
817  *              CHECKSUM_UNNECESSARY (max 3)
818  *      @dst_pending_confirm: need to confirm neighbour
819  *      @decrypted: Decrypted SKB
820  *      @slow_gro: state present at GRO time, slower prepare step required
821  *      @mono_delivery_time: When set, skb->tstamp has the
822  *              delivery_time in mono clock base (i.e. EDT).  Otherwise, the
823  *              skb->tstamp has the (rcv) timestamp at ingress and
824  *              delivery_time at egress.
825  *      @napi_id: id of the NAPI struct this skb came from
826  *      @sender_cpu: (aka @napi_id) source CPU in XPS
827  *      @alloc_cpu: CPU which did the skb allocation.
828  *      @secmark: security marking
829  *      @mark: Generic packet mark
830  *      @reserved_tailroom: (aka @mark) number of bytes of free space available
831  *              at the tail of an sk_buff
832  *      @vlan_all: vlan fields (proto & tci)
833  *      @vlan_proto: vlan encapsulation protocol
834  *      @vlan_tci: vlan tag control information
835  *      @inner_protocol: Protocol (encapsulation)
836  *      @inner_ipproto: (aka @inner_protocol) stores ipproto when
837  *              skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
838  *      @inner_transport_header: Inner transport layer header (encapsulation)
839  *      @inner_network_header: Network layer header (encapsulation)
840  *      @inner_mac_header: Link layer header (encapsulation)
841  *      @transport_header: Transport layer header
842  *      @network_header: Network layer header
843  *      @mac_header: Link layer header
844  *      @kcov_handle: KCOV remote handle for remote coverage collection
845  *      @tail: Tail pointer
846  *      @end: End pointer
847  *      @head: Head of buffer
848  *      @data: Data head pointer
849  *      @truesize: Buffer size
850  *      @users: User count - see {datagram,tcp}.c
851  *      @extensions: allocated extensions, valid if active_extensions is nonzero
852  */
853
854 struct sk_buff {
855         union {
856                 struct {
857                         /* These two members must be first to match sk_buff_head. */
858                         struct sk_buff          *next;
859                         struct sk_buff          *prev;
860
861                         union {
862                                 struct net_device       *dev;
863                                 /* Some protocols might use this space to store information,
864                                  * while device pointer would be NULL.
865                                  * UDP receive path is one user.
866                                  */
867                                 unsigned long           dev_scratch;
868                         };
869                 };
870                 struct rb_node          rbnode; /* used in netem, ip4 defrag, and tcp stack */
871                 struct list_head        list;
872                 struct llist_node       ll_node;
873         };
874
875         union {
876                 struct sock             *sk;
877                 int                     ip_defrag_offset;
878         };
879
880         union {
881                 ktime_t         tstamp;
882                 u64             skb_mstamp_ns; /* earliest departure time */
883         };
884         /*
885          * This is the control buffer. It is free to use for every
886          * layer. Please put your private variables there. If you
887          * want to keep them across layers you have to do a skb_clone()
888          * first. This is owned by whoever has the skb queued ATM.
889          */
890         char                    cb[48] __aligned(8);
891
892         union {
893                 struct {
894                         unsigned long   _skb_refdst;
895                         void            (*destructor)(struct sk_buff *skb);
896                 };
897                 struct list_head        tcp_tsorted_anchor;
898 #ifdef CONFIG_NET_SOCK_MSG
899                 unsigned long           _sk_redir;
900 #endif
901         };
902
903 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
904         unsigned long            _nfct;
905 #endif
906         unsigned int            len,
907                                 data_len;
908         __u16                   mac_len,
909                                 hdr_len;
910
911         /* Following fields are _not_ copied in __copy_skb_header()
912          * Note that queue_mapping is here mostly to fill a hole.
913          */
914         __u16                   queue_mapping;
915
916 /* if you move cloned around you also must adapt those constants */
917 #ifdef __BIG_ENDIAN_BITFIELD
918 #define CLONED_MASK     (1 << 7)
919 #else
920 #define CLONED_MASK     1
921 #endif
922 #define CLONED_OFFSET           offsetof(struct sk_buff, __cloned_offset)
923
924         /* private: */
925         __u8                    __cloned_offset[0];
926         /* public: */
927         __u8                    cloned:1,
928                                 nohdr:1,
929                                 fclone:2,
930                                 peeked:1,
931                                 head_frag:1,
932                                 pfmemalloc:1,
933                                 pp_recycle:1; /* page_pool recycle indicator */
934 #ifdef CONFIG_SKB_EXTENSIONS
935         __u8                    active_extensions;
936 #endif
937
938         /* Fields enclosed in headers group are copied
939          * using a single memcpy() in __copy_skb_header()
940          */
941         struct_group(headers,
942
943         /* private: */
944         __u8                    __pkt_type_offset[0];
945         /* public: */
946         __u8                    pkt_type:3; /* see PKT_TYPE_MAX */
947         __u8                    ignore_df:1;
948         __u8                    dst_pending_confirm:1;
949         __u8                    ip_summed:2;
950         __u8                    ooo_okay:1;
951
952         /* private: */
953         __u8                    __mono_tc_offset[0];
954         /* public: */
955         __u8                    mono_delivery_time:1;   /* See SKB_MONO_DELIVERY_TIME_MASK */
956 #ifdef CONFIG_NET_XGRESS
957         __u8                    tc_at_ingress:1;        /* See TC_AT_INGRESS_MASK */
958         __u8                    tc_skip_classify:1;
959 #endif
960         __u8                    remcsum_offload:1;
961         __u8                    csum_complete_sw:1;
962         __u8                    csum_level:2;
963         __u8                    inner_protocol_type:1;
964
965         __u8                    l4_hash:1;
966         __u8                    sw_hash:1;
967 #ifdef CONFIG_WIRELESS
968         __u8                    wifi_acked_valid:1;
969         __u8                    wifi_acked:1;
970 #endif
971         __u8                    no_fcs:1;
972         /* Indicates the inner headers are valid in the skbuff. */
973         __u8                    encapsulation:1;
974         __u8                    encap_hdr_csum:1;
975         __u8                    csum_valid:1;
976 #ifdef CONFIG_IPV6_NDISC_NODETYPE
977         __u8                    ndisc_nodetype:2;
978 #endif
979
980 #if IS_ENABLED(CONFIG_IP_VS)
981         __u8                    ipvs_property:1;
982 #endif
983 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
984         __u8                    nf_trace:1;
985 #endif
986 #ifdef CONFIG_NET_SWITCHDEV
987         __u8                    offload_fwd_mark:1;
988         __u8                    offload_l3_fwd_mark:1;
989 #endif
990         __u8                    redirected:1;
991 #ifdef CONFIG_NET_REDIRECT
992         __u8                    from_ingress:1;
993 #endif
994 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
995         __u8                    nf_skip_egress:1;
996 #endif
997 #ifdef CONFIG_TLS_DEVICE
998         __u8                    decrypted:1;
999 #endif
1000         __u8                    slow_gro:1;
1001 #if IS_ENABLED(CONFIG_IP_SCTP)
1002         __u8                    csum_not_inet:1;
1003 #endif
1004
1005 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1006         __u16                   tc_index;       /* traffic control index */
1007 #endif
1008
1009         u16                     alloc_cpu;
1010
1011         union {
1012                 __wsum          csum;
1013                 struct {
1014                         __u16   csum_start;
1015                         __u16   csum_offset;
1016                 };
1017         };
1018         __u32                   priority;
1019         int                     skb_iif;
1020         __u32                   hash;
1021         union {
1022                 u32             vlan_all;
1023                 struct {
1024                         __be16  vlan_proto;
1025                         __u16   vlan_tci;
1026                 };
1027         };
1028 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1029         union {
1030                 unsigned int    napi_id;
1031                 unsigned int    sender_cpu;
1032         };
1033 #endif
1034 #ifdef CONFIG_NETWORK_SECMARK
1035         __u32           secmark;
1036 #endif
1037
1038         union {
1039                 __u32           mark;
1040                 __u32           reserved_tailroom;
1041         };
1042
1043         union {
1044                 __be16          inner_protocol;
1045                 __u8            inner_ipproto;
1046         };
1047
1048         __u16                   inner_transport_header;
1049         __u16                   inner_network_header;
1050         __u16                   inner_mac_header;
1051
1052         __be16                  protocol;
1053         __u16                   transport_header;
1054         __u16                   network_header;
1055         __u16                   mac_header;
1056
1057 #ifdef CONFIG_KCOV
1058         u64                     kcov_handle;
1059 #endif
1060
1061         ); /* end headers group */
1062
1063         /* These elements must be at the end, see alloc_skb() for details.  */
1064         sk_buff_data_t          tail;
1065         sk_buff_data_t          end;
1066         unsigned char           *head,
1067                                 *data;
1068         unsigned int            truesize;
1069         refcount_t              users;
1070
1071 #ifdef CONFIG_SKB_EXTENSIONS
1072         /* only usable after checking ->active_extensions != 0 */
1073         struct skb_ext          *extensions;
1074 #endif
1075 };
1076
1077 /* if you move pkt_type around you also must adapt those constants */
1078 #ifdef __BIG_ENDIAN_BITFIELD
1079 #define PKT_TYPE_MAX    (7 << 5)
1080 #else
1081 #define PKT_TYPE_MAX    7
1082 #endif
1083 #define PKT_TYPE_OFFSET         offsetof(struct sk_buff, __pkt_type_offset)
1084
1085 /* if you move tc_at_ingress or mono_delivery_time
1086  * around, you also must adapt these constants.
1087  */
1088 #ifdef __BIG_ENDIAN_BITFIELD
1089 #define SKB_MONO_DELIVERY_TIME_MASK     (1 << 7)
1090 #define TC_AT_INGRESS_MASK              (1 << 6)
1091 #else
1092 #define SKB_MONO_DELIVERY_TIME_MASK     (1 << 0)
1093 #define TC_AT_INGRESS_MASK              (1 << 1)
1094 #endif
1095 #define SKB_BF_MONO_TC_OFFSET           offsetof(struct sk_buff, __mono_tc_offset)
1096
1097 #ifdef __KERNEL__
1098 /*
1099  *      Handling routines are only of interest to the kernel
1100  */
1101
1102 #define SKB_ALLOC_FCLONE        0x01
1103 #define SKB_ALLOC_RX            0x02
1104 #define SKB_ALLOC_NAPI          0x04
1105
1106 /**
1107  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1108  * @skb: buffer
1109  */
1110 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1111 {
1112         return unlikely(skb->pfmemalloc);
1113 }
1114
1115 /*
1116  * skb might have a dst pointer attached, refcounted or not.
1117  * _skb_refdst low order bit is set if refcount was _not_ taken
1118  */
1119 #define SKB_DST_NOREF   1UL
1120 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1121
1122 /**
1123  * skb_dst - returns skb dst_entry
1124  * @skb: buffer
1125  *
1126  * Returns skb dst_entry, regardless of reference taken or not.
1127  */
1128 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1129 {
1130         /* If refdst was not refcounted, check we still are in a
1131          * rcu_read_lock section
1132          */
1133         WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1134                 !rcu_read_lock_held() &&
1135                 !rcu_read_lock_bh_held());
1136         return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1137 }
1138
1139 /**
1140  * skb_dst_set - sets skb dst
1141  * @skb: buffer
1142  * @dst: dst entry
1143  *
1144  * Sets skb dst, assuming a reference was taken on dst and should
1145  * be released by skb_dst_drop()
1146  */
1147 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1148 {
1149         skb->slow_gro |= !!dst;
1150         skb->_skb_refdst = (unsigned long)dst;
1151 }
1152
1153 /**
1154  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1155  * @skb: buffer
1156  * @dst: dst entry
1157  *
1158  * Sets skb dst, assuming a reference was not taken on dst.
1159  * If dst entry is cached, we do not take reference and dst_release
1160  * will be avoided by refdst_drop. If dst entry is not cached, we take
1161  * reference, so that last dst_release can destroy the dst immediately.
1162  */
1163 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1164 {
1165         WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1166         skb->slow_gro |= !!dst;
1167         skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1168 }
1169
1170 /**
1171  * skb_dst_is_noref - Test if skb dst isn't refcounted
1172  * @skb: buffer
1173  */
1174 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1175 {
1176         return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1177 }
1178
1179 /**
1180  * skb_rtable - Returns the skb &rtable
1181  * @skb: buffer
1182  */
1183 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1184 {
1185         return (struct rtable *)skb_dst(skb);
1186 }
1187
1188 /* For mangling skb->pkt_type from user space side from applications
1189  * such as nft, tc, etc, we only allow a conservative subset of
1190  * possible pkt_types to be set.
1191 */
1192 static inline bool skb_pkt_type_ok(u32 ptype)
1193 {
1194         return ptype <= PACKET_OTHERHOST;
1195 }
1196
1197 /**
1198  * skb_napi_id - Returns the skb's NAPI id
1199  * @skb: buffer
1200  */
1201 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1202 {
1203 #ifdef CONFIG_NET_RX_BUSY_POLL
1204         return skb->napi_id;
1205 #else
1206         return 0;
1207 #endif
1208 }
1209
1210 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1211 {
1212 #ifdef CONFIG_WIRELESS
1213         return skb->wifi_acked_valid;
1214 #else
1215         return 0;
1216 #endif
1217 }
1218
1219 /**
1220  * skb_unref - decrement the skb's reference count
1221  * @skb: buffer
1222  *
1223  * Returns true if we can free the skb.
1224  */
1225 static inline bool skb_unref(struct sk_buff *skb)
1226 {
1227         if (unlikely(!skb))
1228                 return false;
1229         if (likely(refcount_read(&skb->users) == 1))
1230                 smp_rmb();
1231         else if (likely(!refcount_dec_and_test(&skb->users)))
1232                 return false;
1233
1234         return true;
1235 }
1236
1237 void __fix_address
1238 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1239
1240 /**
1241  *      kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1242  *      @skb: buffer to free
1243  */
1244 static inline void kfree_skb(struct sk_buff *skb)
1245 {
1246         kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1247 }
1248
1249 void skb_release_head_state(struct sk_buff *skb);
1250 void kfree_skb_list_reason(struct sk_buff *segs,
1251                            enum skb_drop_reason reason);
1252 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1253 void skb_tx_error(struct sk_buff *skb);
1254
1255 static inline void kfree_skb_list(struct sk_buff *segs)
1256 {
1257         kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1258 }
1259
1260 #ifdef CONFIG_TRACEPOINTS
1261 void consume_skb(struct sk_buff *skb);
1262 #else
1263 static inline void consume_skb(struct sk_buff *skb)
1264 {
1265         return kfree_skb(skb);
1266 }
1267 #endif
1268
1269 void __consume_stateless_skb(struct sk_buff *skb);
1270 void  __kfree_skb(struct sk_buff *skb);
1271 extern struct kmem_cache *skbuff_cache;
1272
1273 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1274 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1275                       bool *fragstolen, int *delta_truesize);
1276
1277 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1278                             int node);
1279 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1280 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1281 struct sk_buff *build_skb_around(struct sk_buff *skb,
1282                                  void *data, unsigned int frag_size);
1283 void skb_attempt_defer_free(struct sk_buff *skb);
1284
1285 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1286 struct sk_buff *slab_build_skb(void *data);
1287
1288 /**
1289  * alloc_skb - allocate a network buffer
1290  * @size: size to allocate
1291  * @priority: allocation mask
1292  *
1293  * This function is a convenient wrapper around __alloc_skb().
1294  */
1295 static inline struct sk_buff *alloc_skb(unsigned int size,
1296                                         gfp_t priority)
1297 {
1298         return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1299 }
1300
1301 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1302                                      unsigned long data_len,
1303                                      int max_page_order,
1304                                      int *errcode,
1305                                      gfp_t gfp_mask);
1306 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1307
1308 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1309 struct sk_buff_fclones {
1310         struct sk_buff  skb1;
1311
1312         struct sk_buff  skb2;
1313
1314         refcount_t      fclone_ref;
1315 };
1316
1317 /**
1318  *      skb_fclone_busy - check if fclone is busy
1319  *      @sk: socket
1320  *      @skb: buffer
1321  *
1322  * Returns true if skb is a fast clone, and its clone is not freed.
1323  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1324  * so we also check that didn't happen.
1325  */
1326 static inline bool skb_fclone_busy(const struct sock *sk,
1327                                    const struct sk_buff *skb)
1328 {
1329         const struct sk_buff_fclones *fclones;
1330
1331         fclones = container_of(skb, struct sk_buff_fclones, skb1);
1332
1333         return skb->fclone == SKB_FCLONE_ORIG &&
1334                refcount_read(&fclones->fclone_ref) > 1 &&
1335                READ_ONCE(fclones->skb2.sk) == sk;
1336 }
1337
1338 /**
1339  * alloc_skb_fclone - allocate a network buffer from fclone cache
1340  * @size: size to allocate
1341  * @priority: allocation mask
1342  *
1343  * This function is a convenient wrapper around __alloc_skb().
1344  */
1345 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1346                                                gfp_t priority)
1347 {
1348         return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1349 }
1350
1351 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1352 void skb_headers_offset_update(struct sk_buff *skb, int off);
1353 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1354 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1355 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1356 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1357 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1358                                    gfp_t gfp_mask, bool fclone);
1359 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1360                                           gfp_t gfp_mask)
1361 {
1362         return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1363 }
1364
1365 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1366 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1367                                      unsigned int headroom);
1368 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1369 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1370                                 int newtailroom, gfp_t priority);
1371 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1372                                      int offset, int len);
1373 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1374                               int offset, int len);
1375 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1376 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1377
1378 /**
1379  *      skb_pad                 -       zero pad the tail of an skb
1380  *      @skb: buffer to pad
1381  *      @pad: space to pad
1382  *
1383  *      Ensure that a buffer is followed by a padding area that is zero
1384  *      filled. Used by network drivers which may DMA or transfer data
1385  *      beyond the buffer end onto the wire.
1386  *
1387  *      May return error in out of memory cases. The skb is freed on error.
1388  */
1389 static inline int skb_pad(struct sk_buff *skb, int pad)
1390 {
1391         return __skb_pad(skb, pad, true);
1392 }
1393 #define dev_kfree_skb(a)        consume_skb(a)
1394
1395 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1396                          int offset, size_t size, size_t max_frags);
1397
1398 struct skb_seq_state {
1399         __u32           lower_offset;
1400         __u32           upper_offset;
1401         __u32           frag_idx;
1402         __u32           stepped_offset;
1403         struct sk_buff  *root_skb;
1404         struct sk_buff  *cur_skb;
1405         __u8            *frag_data;
1406         __u32           frag_off;
1407 };
1408
1409 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1410                           unsigned int to, struct skb_seq_state *st);
1411 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1412                           struct skb_seq_state *st);
1413 void skb_abort_seq_read(struct skb_seq_state *st);
1414
1415 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1416                            unsigned int to, struct ts_config *config);
1417
1418 /*
1419  * Packet hash types specify the type of hash in skb_set_hash.
1420  *
1421  * Hash types refer to the protocol layer addresses which are used to
1422  * construct a packet's hash. The hashes are used to differentiate or identify
1423  * flows of the protocol layer for the hash type. Hash types are either
1424  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1425  *
1426  * Properties of hashes:
1427  *
1428  * 1) Two packets in different flows have different hash values
1429  * 2) Two packets in the same flow should have the same hash value
1430  *
1431  * A hash at a higher layer is considered to be more specific. A driver should
1432  * set the most specific hash possible.
1433  *
1434  * A driver cannot indicate a more specific hash than the layer at which a hash
1435  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1436  *
1437  * A driver may indicate a hash level which is less specific than the
1438  * actual layer the hash was computed on. For instance, a hash computed
1439  * at L4 may be considered an L3 hash. This should only be done if the
1440  * driver can't unambiguously determine that the HW computed the hash at
1441  * the higher layer. Note that the "should" in the second property above
1442  * permits this.
1443  */
1444 enum pkt_hash_types {
1445         PKT_HASH_TYPE_NONE,     /* Undefined type */
1446         PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
1447         PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
1448         PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
1449 };
1450
1451 static inline void skb_clear_hash(struct sk_buff *skb)
1452 {
1453         skb->hash = 0;
1454         skb->sw_hash = 0;
1455         skb->l4_hash = 0;
1456 }
1457
1458 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1459 {
1460         if (!skb->l4_hash)
1461                 skb_clear_hash(skb);
1462 }
1463
1464 static inline void
1465 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1466 {
1467         skb->l4_hash = is_l4;
1468         skb->sw_hash = is_sw;
1469         skb->hash = hash;
1470 }
1471
1472 static inline void
1473 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1474 {
1475         /* Used by drivers to set hash from HW */
1476         __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1477 }
1478
1479 static inline void
1480 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1481 {
1482         __skb_set_hash(skb, hash, true, is_l4);
1483 }
1484
1485 void __skb_get_hash(struct sk_buff *skb);
1486 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1487 u32 skb_get_poff(const struct sk_buff *skb);
1488 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1489                    const struct flow_keys_basic *keys, int hlen);
1490 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1491                             const void *data, int hlen_proto);
1492
1493 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1494                                         int thoff, u8 ip_proto)
1495 {
1496         return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1497 }
1498
1499 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1500                              const struct flow_dissector_key *key,
1501                              unsigned int key_count);
1502
1503 struct bpf_flow_dissector;
1504 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1505                      __be16 proto, int nhoff, int hlen, unsigned int flags);
1506
1507 bool __skb_flow_dissect(const struct net *net,
1508                         const struct sk_buff *skb,
1509                         struct flow_dissector *flow_dissector,
1510                         void *target_container, const void *data,
1511                         __be16 proto, int nhoff, int hlen, unsigned int flags);
1512
1513 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1514                                     struct flow_dissector *flow_dissector,
1515                                     void *target_container, unsigned int flags)
1516 {
1517         return __skb_flow_dissect(NULL, skb, flow_dissector,
1518                                   target_container, NULL, 0, 0, 0, flags);
1519 }
1520
1521 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1522                                               struct flow_keys *flow,
1523                                               unsigned int flags)
1524 {
1525         memset(flow, 0, sizeof(*flow));
1526         return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1527                                   flow, NULL, 0, 0, 0, flags);
1528 }
1529
1530 static inline bool
1531 skb_flow_dissect_flow_keys_basic(const struct net *net,
1532                                  const struct sk_buff *skb,
1533                                  struct flow_keys_basic *flow,
1534                                  const void *data, __be16 proto,
1535                                  int nhoff, int hlen, unsigned int flags)
1536 {
1537         memset(flow, 0, sizeof(*flow));
1538         return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1539                                   data, proto, nhoff, hlen, flags);
1540 }
1541
1542 void skb_flow_dissect_meta(const struct sk_buff *skb,
1543                            struct flow_dissector *flow_dissector,
1544                            void *target_container);
1545
1546 /* Gets a skb connection tracking info, ctinfo map should be a
1547  * map of mapsize to translate enum ip_conntrack_info states
1548  * to user states.
1549  */
1550 void
1551 skb_flow_dissect_ct(const struct sk_buff *skb,
1552                     struct flow_dissector *flow_dissector,
1553                     void *target_container,
1554                     u16 *ctinfo_map, size_t mapsize,
1555                     bool post_ct, u16 zone);
1556 void
1557 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1558                              struct flow_dissector *flow_dissector,
1559                              void *target_container);
1560
1561 void skb_flow_dissect_hash(const struct sk_buff *skb,
1562                            struct flow_dissector *flow_dissector,
1563                            void *target_container);
1564
1565 static inline __u32 skb_get_hash(struct sk_buff *skb)
1566 {
1567         if (!skb->l4_hash && !skb->sw_hash)
1568                 __skb_get_hash(skb);
1569
1570         return skb->hash;
1571 }
1572
1573 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1574 {
1575         if (!skb->l4_hash && !skb->sw_hash) {
1576                 struct flow_keys keys;
1577                 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1578
1579                 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1580         }
1581
1582         return skb->hash;
1583 }
1584
1585 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1586                            const siphash_key_t *perturb);
1587
1588 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1589 {
1590         return skb->hash;
1591 }
1592
1593 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1594 {
1595         to->hash = from->hash;
1596         to->sw_hash = from->sw_hash;
1597         to->l4_hash = from->l4_hash;
1598 };
1599
1600 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1601                                     const struct sk_buff *skb2)
1602 {
1603 #ifdef CONFIG_TLS_DEVICE
1604         return skb2->decrypted - skb1->decrypted;
1605 #else
1606         return 0;
1607 #endif
1608 }
1609
1610 static inline void skb_copy_decrypted(struct sk_buff *to,
1611                                       const struct sk_buff *from)
1612 {
1613 #ifdef CONFIG_TLS_DEVICE
1614         to->decrypted = from->decrypted;
1615 #endif
1616 }
1617
1618 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1619 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1620 {
1621         return skb->head + skb->end;
1622 }
1623
1624 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1625 {
1626         return skb->end;
1627 }
1628
1629 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1630 {
1631         skb->end = offset;
1632 }
1633 #else
1634 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1635 {
1636         return skb->end;
1637 }
1638
1639 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1640 {
1641         return skb->end - skb->head;
1642 }
1643
1644 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1645 {
1646         skb->end = skb->head + offset;
1647 }
1648 #endif
1649
1650 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1651                                        struct ubuf_info *uarg);
1652
1653 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1654
1655 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1656                            bool success);
1657
1658 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1659                             struct sk_buff *skb, struct iov_iter *from,
1660                             size_t length);
1661
1662 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1663                                           struct msghdr *msg, int len)
1664 {
1665         return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1666 }
1667
1668 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1669                              struct msghdr *msg, int len,
1670                              struct ubuf_info *uarg);
1671
1672 /* Internal */
1673 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1674
1675 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1676 {
1677         return &skb_shinfo(skb)->hwtstamps;
1678 }
1679
1680 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1681 {
1682         bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1683
1684         return is_zcopy ? skb_uarg(skb) : NULL;
1685 }
1686
1687 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1688 {
1689         return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1690 }
1691
1692 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1693 {
1694         return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1695 }
1696
1697 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1698                                        const struct sk_buff *skb2)
1699 {
1700         return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1701 }
1702
1703 static inline void net_zcopy_get(struct ubuf_info *uarg)
1704 {
1705         refcount_inc(&uarg->refcnt);
1706 }
1707
1708 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1709 {
1710         skb_shinfo(skb)->destructor_arg = uarg;
1711         skb_shinfo(skb)->flags |= uarg->flags;
1712 }
1713
1714 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1715                                  bool *have_ref)
1716 {
1717         if (skb && uarg && !skb_zcopy(skb)) {
1718                 if (unlikely(have_ref && *have_ref))
1719                         *have_ref = false;
1720                 else
1721                         net_zcopy_get(uarg);
1722                 skb_zcopy_init(skb, uarg);
1723         }
1724 }
1725
1726 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1727 {
1728         skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1729         skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1730 }
1731
1732 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1733 {
1734         return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1735 }
1736
1737 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1738 {
1739         return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1740 }
1741
1742 static inline void net_zcopy_put(struct ubuf_info *uarg)
1743 {
1744         if (uarg)
1745                 uarg->callback(NULL, uarg, true);
1746 }
1747
1748 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1749 {
1750         if (uarg) {
1751                 if (uarg->callback == msg_zerocopy_callback)
1752                         msg_zerocopy_put_abort(uarg, have_uref);
1753                 else if (have_uref)
1754                         net_zcopy_put(uarg);
1755         }
1756 }
1757
1758 /* Release a reference on a zerocopy structure */
1759 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1760 {
1761         struct ubuf_info *uarg = skb_zcopy(skb);
1762
1763         if (uarg) {
1764                 if (!skb_zcopy_is_nouarg(skb))
1765                         uarg->callback(skb, uarg, zerocopy_success);
1766
1767                 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1768         }
1769 }
1770
1771 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1772
1773 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1774 {
1775         if (unlikely(skb_zcopy_managed(skb)))
1776                 __skb_zcopy_downgrade_managed(skb);
1777 }
1778
1779 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1780 {
1781         skb->next = NULL;
1782 }
1783
1784 static inline void skb_poison_list(struct sk_buff *skb)
1785 {
1786 #ifdef CONFIG_DEBUG_NET
1787         skb->next = SKB_LIST_POISON_NEXT;
1788 #endif
1789 }
1790
1791 /* Iterate through singly-linked GSO fragments of an skb. */
1792 #define skb_list_walk_safe(first, skb, next_skb)                               \
1793         for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1794              (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1795
1796 static inline void skb_list_del_init(struct sk_buff *skb)
1797 {
1798         __list_del_entry(&skb->list);
1799         skb_mark_not_on_list(skb);
1800 }
1801
1802 /**
1803  *      skb_queue_empty - check if a queue is empty
1804  *      @list: queue head
1805  *
1806  *      Returns true if the queue is empty, false otherwise.
1807  */
1808 static inline int skb_queue_empty(const struct sk_buff_head *list)
1809 {
1810         return list->next == (const struct sk_buff *) list;
1811 }
1812
1813 /**
1814  *      skb_queue_empty_lockless - check if a queue is empty
1815  *      @list: queue head
1816  *
1817  *      Returns true if the queue is empty, false otherwise.
1818  *      This variant can be used in lockless contexts.
1819  */
1820 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1821 {
1822         return READ_ONCE(list->next) == (const struct sk_buff *) list;
1823 }
1824
1825
1826 /**
1827  *      skb_queue_is_last - check if skb is the last entry in the queue
1828  *      @list: queue head
1829  *      @skb: buffer
1830  *
1831  *      Returns true if @skb is the last buffer on the list.
1832  */
1833 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1834                                      const struct sk_buff *skb)
1835 {
1836         return skb->next == (const struct sk_buff *) list;
1837 }
1838
1839 /**
1840  *      skb_queue_is_first - check if skb is the first entry in the queue
1841  *      @list: queue head
1842  *      @skb: buffer
1843  *
1844  *      Returns true if @skb is the first buffer on the list.
1845  */
1846 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1847                                       const struct sk_buff *skb)
1848 {
1849         return skb->prev == (const struct sk_buff *) list;
1850 }
1851
1852 /**
1853  *      skb_queue_next - return the next packet in the queue
1854  *      @list: queue head
1855  *      @skb: current buffer
1856  *
1857  *      Return the next packet in @list after @skb.  It is only valid to
1858  *      call this if skb_queue_is_last() evaluates to false.
1859  */
1860 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1861                                              const struct sk_buff *skb)
1862 {
1863         /* This BUG_ON may seem severe, but if we just return then we
1864          * are going to dereference garbage.
1865          */
1866         BUG_ON(skb_queue_is_last(list, skb));
1867         return skb->next;
1868 }
1869
1870 /**
1871  *      skb_queue_prev - return the prev packet in the queue
1872  *      @list: queue head
1873  *      @skb: current buffer
1874  *
1875  *      Return the prev packet in @list before @skb.  It is only valid to
1876  *      call this if skb_queue_is_first() evaluates to false.
1877  */
1878 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1879                                              const struct sk_buff *skb)
1880 {
1881         /* This BUG_ON may seem severe, but if we just return then we
1882          * are going to dereference garbage.
1883          */
1884         BUG_ON(skb_queue_is_first(list, skb));
1885         return skb->prev;
1886 }
1887
1888 /**
1889  *      skb_get - reference buffer
1890  *      @skb: buffer to reference
1891  *
1892  *      Makes another reference to a socket buffer and returns a pointer
1893  *      to the buffer.
1894  */
1895 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1896 {
1897         refcount_inc(&skb->users);
1898         return skb;
1899 }
1900
1901 /*
1902  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1903  */
1904
1905 /**
1906  *      skb_cloned - is the buffer a clone
1907  *      @skb: buffer to check
1908  *
1909  *      Returns true if the buffer was generated with skb_clone() and is
1910  *      one of multiple shared copies of the buffer. Cloned buffers are
1911  *      shared data so must not be written to under normal circumstances.
1912  */
1913 static inline int skb_cloned(const struct sk_buff *skb)
1914 {
1915         return skb->cloned &&
1916                (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1917 }
1918
1919 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1920 {
1921         might_sleep_if(gfpflags_allow_blocking(pri));
1922
1923         if (skb_cloned(skb))
1924                 return pskb_expand_head(skb, 0, 0, pri);
1925
1926         return 0;
1927 }
1928
1929 /* This variant of skb_unclone() makes sure skb->truesize
1930  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1931  *
1932  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1933  * when various debugging features are in place.
1934  */
1935 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1936 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1937 {
1938         might_sleep_if(gfpflags_allow_blocking(pri));
1939
1940         if (skb_cloned(skb))
1941                 return __skb_unclone_keeptruesize(skb, pri);
1942         return 0;
1943 }
1944
1945 /**
1946  *      skb_header_cloned - is the header a clone
1947  *      @skb: buffer to check
1948  *
1949  *      Returns true if modifying the header part of the buffer requires
1950  *      the data to be copied.
1951  */
1952 static inline int skb_header_cloned(const struct sk_buff *skb)
1953 {
1954         int dataref;
1955
1956         if (!skb->cloned)
1957                 return 0;
1958
1959         dataref = atomic_read(&skb_shinfo(skb)->dataref);
1960         dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1961         return dataref != 1;
1962 }
1963
1964 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1965 {
1966         might_sleep_if(gfpflags_allow_blocking(pri));
1967
1968         if (skb_header_cloned(skb))
1969                 return pskb_expand_head(skb, 0, 0, pri);
1970
1971         return 0;
1972 }
1973
1974 /**
1975  * __skb_header_release() - allow clones to use the headroom
1976  * @skb: buffer to operate on
1977  *
1978  * See "DOC: dataref and headerless skbs".
1979  */
1980 static inline void __skb_header_release(struct sk_buff *skb)
1981 {
1982         skb->nohdr = 1;
1983         atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1984 }
1985
1986
1987 /**
1988  *      skb_shared - is the buffer shared
1989  *      @skb: buffer to check
1990  *
1991  *      Returns true if more than one person has a reference to this
1992  *      buffer.
1993  */
1994 static inline int skb_shared(const struct sk_buff *skb)
1995 {
1996         return refcount_read(&skb->users) != 1;
1997 }
1998
1999 /**
2000  *      skb_share_check - check if buffer is shared and if so clone it
2001  *      @skb: buffer to check
2002  *      @pri: priority for memory allocation
2003  *
2004  *      If the buffer is shared the buffer is cloned and the old copy
2005  *      drops a reference. A new clone with a single reference is returned.
2006  *      If the buffer is not shared the original buffer is returned. When
2007  *      being called from interrupt status or with spinlocks held pri must
2008  *      be GFP_ATOMIC.
2009  *
2010  *      NULL is returned on a memory allocation failure.
2011  */
2012 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2013 {
2014         might_sleep_if(gfpflags_allow_blocking(pri));
2015         if (skb_shared(skb)) {
2016                 struct sk_buff *nskb = skb_clone(skb, pri);
2017
2018                 if (likely(nskb))
2019                         consume_skb(skb);
2020                 else
2021                         kfree_skb(skb);
2022                 skb = nskb;
2023         }
2024         return skb;
2025 }
2026
2027 /*
2028  *      Copy shared buffers into a new sk_buff. We effectively do COW on
2029  *      packets to handle cases where we have a local reader and forward
2030  *      and a couple of other messy ones. The normal one is tcpdumping
2031  *      a packet that's being forwarded.
2032  */
2033
2034 /**
2035  *      skb_unshare - make a copy of a shared buffer
2036  *      @skb: buffer to check
2037  *      @pri: priority for memory allocation
2038  *
2039  *      If the socket buffer is a clone then this function creates a new
2040  *      copy of the data, drops a reference count on the old copy and returns
2041  *      the new copy with the reference count at 1. If the buffer is not a clone
2042  *      the original buffer is returned. When called with a spinlock held or
2043  *      from interrupt state @pri must be %GFP_ATOMIC
2044  *
2045  *      %NULL is returned on a memory allocation failure.
2046  */
2047 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2048                                           gfp_t pri)
2049 {
2050         might_sleep_if(gfpflags_allow_blocking(pri));
2051         if (skb_cloned(skb)) {
2052                 struct sk_buff *nskb = skb_copy(skb, pri);
2053
2054                 /* Free our shared copy */
2055                 if (likely(nskb))
2056                         consume_skb(skb);
2057                 else
2058                         kfree_skb(skb);
2059                 skb = nskb;
2060         }
2061         return skb;
2062 }
2063
2064 /**
2065  *      skb_peek - peek at the head of an &sk_buff_head
2066  *      @list_: list to peek at
2067  *
2068  *      Peek an &sk_buff. Unlike most other operations you _MUST_
2069  *      be careful with this one. A peek leaves the buffer on the
2070  *      list and someone else may run off with it. You must hold
2071  *      the appropriate locks or have a private queue to do this.
2072  *
2073  *      Returns %NULL for an empty list or a pointer to the head element.
2074  *      The reference count is not incremented and the reference is therefore
2075  *      volatile. Use with caution.
2076  */
2077 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2078 {
2079         struct sk_buff *skb = list_->next;
2080
2081         if (skb == (struct sk_buff *)list_)
2082                 skb = NULL;
2083         return skb;
2084 }
2085
2086 /**
2087  *      __skb_peek - peek at the head of a non-empty &sk_buff_head
2088  *      @list_: list to peek at
2089  *
2090  *      Like skb_peek(), but the caller knows that the list is not empty.
2091  */
2092 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2093 {
2094         return list_->next;
2095 }
2096
2097 /**
2098  *      skb_peek_next - peek skb following the given one from a queue
2099  *      @skb: skb to start from
2100  *      @list_: list to peek at
2101  *
2102  *      Returns %NULL when the end of the list is met or a pointer to the
2103  *      next element. The reference count is not incremented and the
2104  *      reference is therefore volatile. Use with caution.
2105  */
2106 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2107                 const struct sk_buff_head *list_)
2108 {
2109         struct sk_buff *next = skb->next;
2110
2111         if (next == (struct sk_buff *)list_)
2112                 next = NULL;
2113         return next;
2114 }
2115
2116 /**
2117  *      skb_peek_tail - peek at the tail of an &sk_buff_head
2118  *      @list_: list to peek at
2119  *
2120  *      Peek an &sk_buff. Unlike most other operations you _MUST_
2121  *      be careful with this one. A peek leaves the buffer on the
2122  *      list and someone else may run off with it. You must hold
2123  *      the appropriate locks or have a private queue to do this.
2124  *
2125  *      Returns %NULL for an empty list or a pointer to the tail element.
2126  *      The reference count is not incremented and the reference is therefore
2127  *      volatile. Use with caution.
2128  */
2129 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2130 {
2131         struct sk_buff *skb = READ_ONCE(list_->prev);
2132
2133         if (skb == (struct sk_buff *)list_)
2134                 skb = NULL;
2135         return skb;
2136
2137 }
2138
2139 /**
2140  *      skb_queue_len   - get queue length
2141  *      @list_: list to measure
2142  *
2143  *      Return the length of an &sk_buff queue.
2144  */
2145 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2146 {
2147         return list_->qlen;
2148 }
2149
2150 /**
2151  *      skb_queue_len_lockless  - get queue length
2152  *      @list_: list to measure
2153  *
2154  *      Return the length of an &sk_buff queue.
2155  *      This variant can be used in lockless contexts.
2156  */
2157 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2158 {
2159         return READ_ONCE(list_->qlen);
2160 }
2161
2162 /**
2163  *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2164  *      @list: queue to initialize
2165  *
2166  *      This initializes only the list and queue length aspects of
2167  *      an sk_buff_head object.  This allows to initialize the list
2168  *      aspects of an sk_buff_head without reinitializing things like
2169  *      the spinlock.  It can also be used for on-stack sk_buff_head
2170  *      objects where the spinlock is known to not be used.
2171  */
2172 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2173 {
2174         list->prev = list->next = (struct sk_buff *)list;
2175         list->qlen = 0;
2176 }
2177
2178 /*
2179  * This function creates a split out lock class for each invocation;
2180  * this is needed for now since a whole lot of users of the skb-queue
2181  * infrastructure in drivers have different locking usage (in hardirq)
2182  * than the networking core (in softirq only). In the long run either the
2183  * network layer or drivers should need annotation to consolidate the
2184  * main types of usage into 3 classes.
2185  */
2186 static inline void skb_queue_head_init(struct sk_buff_head *list)
2187 {
2188         spin_lock_init(&list->lock);
2189         __skb_queue_head_init(list);
2190 }
2191
2192 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2193                 struct lock_class_key *class)
2194 {
2195         skb_queue_head_init(list);
2196         lockdep_set_class(&list->lock, class);
2197 }
2198
2199 /*
2200  *      Insert an sk_buff on a list.
2201  *
2202  *      The "__skb_xxxx()" functions are the non-atomic ones that
2203  *      can only be called with interrupts disabled.
2204  */
2205 static inline void __skb_insert(struct sk_buff *newsk,
2206                                 struct sk_buff *prev, struct sk_buff *next,
2207                                 struct sk_buff_head *list)
2208 {
2209         /* See skb_queue_empty_lockless() and skb_peek_tail()
2210          * for the opposite READ_ONCE()
2211          */
2212         WRITE_ONCE(newsk->next, next);
2213         WRITE_ONCE(newsk->prev, prev);
2214         WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2215         WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2216         WRITE_ONCE(list->qlen, list->qlen + 1);
2217 }
2218
2219 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2220                                       struct sk_buff *prev,
2221                                       struct sk_buff *next)
2222 {
2223         struct sk_buff *first = list->next;
2224         struct sk_buff *last = list->prev;
2225
2226         WRITE_ONCE(first->prev, prev);
2227         WRITE_ONCE(prev->next, first);
2228
2229         WRITE_ONCE(last->next, next);
2230         WRITE_ONCE(next->prev, last);
2231 }
2232
2233 /**
2234  *      skb_queue_splice - join two skb lists, this is designed for stacks
2235  *      @list: the new list to add
2236  *      @head: the place to add it in the first list
2237  */
2238 static inline void skb_queue_splice(const struct sk_buff_head *list,
2239                                     struct sk_buff_head *head)
2240 {
2241         if (!skb_queue_empty(list)) {
2242                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2243                 head->qlen += list->qlen;
2244         }
2245 }
2246
2247 /**
2248  *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2249  *      @list: the new list to add
2250  *      @head: the place to add it in the first list
2251  *
2252  *      The list at @list is reinitialised
2253  */
2254 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2255                                          struct sk_buff_head *head)
2256 {
2257         if (!skb_queue_empty(list)) {
2258                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2259                 head->qlen += list->qlen;
2260                 __skb_queue_head_init(list);
2261         }
2262 }
2263
2264 /**
2265  *      skb_queue_splice_tail - join two skb lists, each list being a queue
2266  *      @list: the new list to add
2267  *      @head: the place to add it in the first list
2268  */
2269 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2270                                          struct sk_buff_head *head)
2271 {
2272         if (!skb_queue_empty(list)) {
2273                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2274                 head->qlen += list->qlen;
2275         }
2276 }
2277
2278 /**
2279  *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2280  *      @list: the new list to add
2281  *      @head: the place to add it in the first list
2282  *
2283  *      Each of the lists is a queue.
2284  *      The list at @list is reinitialised
2285  */
2286 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2287                                               struct sk_buff_head *head)
2288 {
2289         if (!skb_queue_empty(list)) {
2290                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2291                 head->qlen += list->qlen;
2292                 __skb_queue_head_init(list);
2293         }
2294 }
2295
2296 /**
2297  *      __skb_queue_after - queue a buffer at the list head
2298  *      @list: list to use
2299  *      @prev: place after this buffer
2300  *      @newsk: buffer to queue
2301  *
2302  *      Queue a buffer int the middle of a list. This function takes no locks
2303  *      and you must therefore hold required locks before calling it.
2304  *
2305  *      A buffer cannot be placed on two lists at the same time.
2306  */
2307 static inline void __skb_queue_after(struct sk_buff_head *list,
2308                                      struct sk_buff *prev,
2309                                      struct sk_buff *newsk)
2310 {
2311         __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2312 }
2313
2314 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2315                 struct sk_buff_head *list);
2316
2317 static inline void __skb_queue_before(struct sk_buff_head *list,
2318                                       struct sk_buff *next,
2319                                       struct sk_buff *newsk)
2320 {
2321         __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2322 }
2323
2324 /**
2325  *      __skb_queue_head - queue a buffer at the list head
2326  *      @list: list to use
2327  *      @newsk: buffer to queue
2328  *
2329  *      Queue a buffer at the start of a list. This function takes no locks
2330  *      and you must therefore hold required locks before calling it.
2331  *
2332  *      A buffer cannot be placed on two lists at the same time.
2333  */
2334 static inline void __skb_queue_head(struct sk_buff_head *list,
2335                                     struct sk_buff *newsk)
2336 {
2337         __skb_queue_after(list, (struct sk_buff *)list, newsk);
2338 }
2339 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2340
2341 /**
2342  *      __skb_queue_tail - queue a buffer at the list tail
2343  *      @list: list to use
2344  *      @newsk: buffer to queue
2345  *
2346  *      Queue a buffer at the end of a list. This function takes no locks
2347  *      and you must therefore hold required locks before calling it.
2348  *
2349  *      A buffer cannot be placed on two lists at the same time.
2350  */
2351 static inline void __skb_queue_tail(struct sk_buff_head *list,
2352                                    struct sk_buff *newsk)
2353 {
2354         __skb_queue_before(list, (struct sk_buff *)list, newsk);
2355 }
2356 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2357
2358 /*
2359  * remove sk_buff from list. _Must_ be called atomically, and with
2360  * the list known..
2361  */
2362 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2363 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2364 {
2365         struct sk_buff *next, *prev;
2366
2367         WRITE_ONCE(list->qlen, list->qlen - 1);
2368         next       = skb->next;
2369         prev       = skb->prev;
2370         skb->next  = skb->prev = NULL;
2371         WRITE_ONCE(next->prev, prev);
2372         WRITE_ONCE(prev->next, next);
2373 }
2374
2375 /**
2376  *      __skb_dequeue - remove from the head of the queue
2377  *      @list: list to dequeue from
2378  *
2379  *      Remove the head of the list. This function does not take any locks
2380  *      so must be used with appropriate locks held only. The head item is
2381  *      returned or %NULL if the list is empty.
2382  */
2383 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2384 {
2385         struct sk_buff *skb = skb_peek(list);
2386         if (skb)
2387                 __skb_unlink(skb, list);
2388         return skb;
2389 }
2390 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2391
2392 /**
2393  *      __skb_dequeue_tail - remove from the tail of the queue
2394  *      @list: list to dequeue from
2395  *
2396  *      Remove the tail of the list. This function does not take any locks
2397  *      so must be used with appropriate locks held only. The tail item is
2398  *      returned or %NULL if the list is empty.
2399  */
2400 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2401 {
2402         struct sk_buff *skb = skb_peek_tail(list);
2403         if (skb)
2404                 __skb_unlink(skb, list);
2405         return skb;
2406 }
2407 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2408
2409
2410 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2411 {
2412         return skb->data_len;
2413 }
2414
2415 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2416 {
2417         return skb->len - skb->data_len;
2418 }
2419
2420 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2421 {
2422         unsigned int i, len = 0;
2423
2424         for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2425                 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2426         return len;
2427 }
2428
2429 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2430 {
2431         return skb_headlen(skb) + __skb_pagelen(skb);
2432 }
2433
2434 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2435                                            struct page *page,
2436                                            int off, int size)
2437 {
2438         frag->bv_page = page;
2439         frag->bv_offset = off;
2440         skb_frag_size_set(frag, size);
2441 }
2442
2443 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2444                                               int i, struct page *page,
2445                                               int off, int size)
2446 {
2447         skb_frag_t *frag = &shinfo->frags[i];
2448
2449         skb_frag_fill_page_desc(frag, page, off, size);
2450 }
2451
2452 /**
2453  * skb_len_add - adds a number to len fields of skb
2454  * @skb: buffer to add len to
2455  * @delta: number of bytes to add
2456  */
2457 static inline void skb_len_add(struct sk_buff *skb, int delta)
2458 {
2459         skb->len += delta;
2460         skb->data_len += delta;
2461         skb->truesize += delta;
2462 }
2463
2464 /**
2465  * __skb_fill_page_desc - initialise a paged fragment in an skb
2466  * @skb: buffer containing fragment to be initialised
2467  * @i: paged fragment index to initialise
2468  * @page: the page to use for this fragment
2469  * @off: the offset to the data with @page
2470  * @size: the length of the data
2471  *
2472  * Initialises the @i'th fragment of @skb to point to &size bytes at
2473  * offset @off within @page.
2474  *
2475  * Does not take any additional reference on the fragment.
2476  */
2477 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2478                                         struct page *page, int off, int size)
2479 {
2480         __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2481
2482         /* Propagate page pfmemalloc to the skb if we can. The problem is
2483          * that not all callers have unique ownership of the page but rely
2484          * on page_is_pfmemalloc doing the right thing(tm).
2485          */
2486         page = compound_head(page);
2487         if (page_is_pfmemalloc(page))
2488                 skb->pfmemalloc = true;
2489 }
2490
2491 /**
2492  * skb_fill_page_desc - initialise a paged fragment in an skb
2493  * @skb: buffer containing fragment to be initialised
2494  * @i: paged fragment index to initialise
2495  * @page: the page to use for this fragment
2496  * @off: the offset to the data with @page
2497  * @size: the length of the data
2498  *
2499  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2500  * @skb to point to @size bytes at offset @off within @page. In
2501  * addition updates @skb such that @i is the last fragment.
2502  *
2503  * Does not take any additional reference on the fragment.
2504  */
2505 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2506                                       struct page *page, int off, int size)
2507 {
2508         __skb_fill_page_desc(skb, i, page, off, size);
2509         skb_shinfo(skb)->nr_frags = i + 1;
2510 }
2511
2512 /**
2513  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2514  * @skb: buffer containing fragment to be initialised
2515  * @i: paged fragment index to initialise
2516  * @page: the page to use for this fragment
2517  * @off: the offset to the data with @page
2518  * @size: the length of the data
2519  *
2520  * Variant of skb_fill_page_desc() which does not deal with
2521  * pfmemalloc, if page is not owned by us.
2522  */
2523 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2524                                             struct page *page, int off,
2525                                             int size)
2526 {
2527         struct skb_shared_info *shinfo = skb_shinfo(skb);
2528
2529         __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2530         shinfo->nr_frags = i + 1;
2531 }
2532
2533 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2534                      int size, unsigned int truesize);
2535
2536 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2537                           unsigned int truesize);
2538
2539 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2540
2541 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2542 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2543 {
2544         return skb->head + skb->tail;
2545 }
2546
2547 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2548 {
2549         skb->tail = skb->data - skb->head;
2550 }
2551
2552 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2553 {
2554         skb_reset_tail_pointer(skb);
2555         skb->tail += offset;
2556 }
2557
2558 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2559 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2560 {
2561         return skb->tail;
2562 }
2563
2564 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2565 {
2566         skb->tail = skb->data;
2567 }
2568
2569 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2570 {
2571         skb->tail = skb->data + offset;
2572 }
2573
2574 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2575
2576 static inline void skb_assert_len(struct sk_buff *skb)
2577 {
2578 #ifdef CONFIG_DEBUG_NET
2579         if (WARN_ONCE(!skb->len, "%s\n", __func__))
2580                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2581 #endif /* CONFIG_DEBUG_NET */
2582 }
2583
2584 /*
2585  *      Add data to an sk_buff
2586  */
2587 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2588 void *skb_put(struct sk_buff *skb, unsigned int len);
2589 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2590 {
2591         void *tmp = skb_tail_pointer(skb);
2592         SKB_LINEAR_ASSERT(skb);
2593         skb->tail += len;
2594         skb->len  += len;
2595         return tmp;
2596 }
2597
2598 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2599 {
2600         void *tmp = __skb_put(skb, len);
2601
2602         memset(tmp, 0, len);
2603         return tmp;
2604 }
2605
2606 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2607                                    unsigned int len)
2608 {
2609         void *tmp = __skb_put(skb, len);
2610
2611         memcpy(tmp, data, len);
2612         return tmp;
2613 }
2614
2615 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2616 {
2617         *(u8 *)__skb_put(skb, 1) = val;
2618 }
2619
2620 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2621 {
2622         void *tmp = skb_put(skb, len);
2623
2624         memset(tmp, 0, len);
2625
2626         return tmp;
2627 }
2628
2629 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2630                                  unsigned int len)
2631 {
2632         void *tmp = skb_put(skb, len);
2633
2634         memcpy(tmp, data, len);
2635
2636         return tmp;
2637 }
2638
2639 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2640 {
2641         *(u8 *)skb_put(skb, 1) = val;
2642 }
2643
2644 void *skb_push(struct sk_buff *skb, unsigned int len);
2645 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2646 {
2647         skb->data -= len;
2648         skb->len  += len;
2649         return skb->data;
2650 }
2651
2652 void *skb_pull(struct sk_buff *skb, unsigned int len);
2653 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2654 {
2655         skb->len -= len;
2656         if (unlikely(skb->len < skb->data_len)) {
2657 #if defined(CONFIG_DEBUG_NET)
2658                 skb->len += len;
2659                 pr_err("__skb_pull(len=%u)\n", len);
2660                 skb_dump(KERN_ERR, skb, false);
2661 #endif
2662                 BUG();
2663         }
2664         return skb->data += len;
2665 }
2666
2667 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2668 {
2669         return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2670 }
2671
2672 void *skb_pull_data(struct sk_buff *skb, size_t len);
2673
2674 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2675
2676 static inline enum skb_drop_reason
2677 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2678 {
2679         if (likely(len <= skb_headlen(skb)))
2680                 return SKB_NOT_DROPPED_YET;
2681
2682         if (unlikely(len > skb->len))
2683                 return SKB_DROP_REASON_PKT_TOO_SMALL;
2684
2685         if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2686                 return SKB_DROP_REASON_NOMEM;
2687
2688         return SKB_NOT_DROPPED_YET;
2689 }
2690
2691 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2692 {
2693         return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2694 }
2695
2696 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2697 {
2698         if (!pskb_may_pull(skb, len))
2699                 return NULL;
2700
2701         skb->len -= len;
2702         return skb->data += len;
2703 }
2704
2705 void skb_condense(struct sk_buff *skb);
2706
2707 /**
2708  *      skb_headroom - bytes at buffer head
2709  *      @skb: buffer to check
2710  *
2711  *      Return the number of bytes of free space at the head of an &sk_buff.
2712  */
2713 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2714 {
2715         return skb->data - skb->head;
2716 }
2717
2718 /**
2719  *      skb_tailroom - bytes at buffer end
2720  *      @skb: buffer to check
2721  *
2722  *      Return the number of bytes of free space at the tail of an sk_buff
2723  */
2724 static inline int skb_tailroom(const struct sk_buff *skb)
2725 {
2726         return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2727 }
2728
2729 /**
2730  *      skb_availroom - bytes at buffer end
2731  *      @skb: buffer to check
2732  *
2733  *      Return the number of bytes of free space at the tail of an sk_buff
2734  *      allocated by sk_stream_alloc()
2735  */
2736 static inline int skb_availroom(const struct sk_buff *skb)
2737 {
2738         if (skb_is_nonlinear(skb))
2739                 return 0;
2740
2741         return skb->end - skb->tail - skb->reserved_tailroom;
2742 }
2743
2744 /**
2745  *      skb_reserve - adjust headroom
2746  *      @skb: buffer to alter
2747  *      @len: bytes to move
2748  *
2749  *      Increase the headroom of an empty &sk_buff by reducing the tail
2750  *      room. This is only allowed for an empty buffer.
2751  */
2752 static inline void skb_reserve(struct sk_buff *skb, int len)
2753 {
2754         skb->data += len;
2755         skb->tail += len;
2756 }
2757
2758 /**
2759  *      skb_tailroom_reserve - adjust reserved_tailroom
2760  *      @skb: buffer to alter
2761  *      @mtu: maximum amount of headlen permitted
2762  *      @needed_tailroom: minimum amount of reserved_tailroom
2763  *
2764  *      Set reserved_tailroom so that headlen can be as large as possible but
2765  *      not larger than mtu and tailroom cannot be smaller than
2766  *      needed_tailroom.
2767  *      The required headroom should already have been reserved before using
2768  *      this function.
2769  */
2770 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2771                                         unsigned int needed_tailroom)
2772 {
2773         SKB_LINEAR_ASSERT(skb);
2774         if (mtu < skb_tailroom(skb) - needed_tailroom)
2775                 /* use at most mtu */
2776                 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2777         else
2778                 /* use up to all available space */
2779                 skb->reserved_tailroom = needed_tailroom;
2780 }
2781
2782 #define ENCAP_TYPE_ETHER        0
2783 #define ENCAP_TYPE_IPPROTO      1
2784
2785 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2786                                           __be16 protocol)
2787 {
2788         skb->inner_protocol = protocol;
2789         skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2790 }
2791
2792 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2793                                          __u8 ipproto)
2794 {
2795         skb->inner_ipproto = ipproto;
2796         skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2797 }
2798
2799 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2800 {
2801         skb->inner_mac_header = skb->mac_header;
2802         skb->inner_network_header = skb->network_header;
2803         skb->inner_transport_header = skb->transport_header;
2804 }
2805
2806 static inline void skb_reset_mac_len(struct sk_buff *skb)
2807 {
2808         skb->mac_len = skb->network_header - skb->mac_header;
2809 }
2810
2811 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2812                                                         *skb)
2813 {
2814         return skb->head + skb->inner_transport_header;
2815 }
2816
2817 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2818 {
2819         return skb_inner_transport_header(skb) - skb->data;
2820 }
2821
2822 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2823 {
2824         skb->inner_transport_header = skb->data - skb->head;
2825 }
2826
2827 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2828                                                    const int offset)
2829 {
2830         skb_reset_inner_transport_header(skb);
2831         skb->inner_transport_header += offset;
2832 }
2833
2834 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2835 {
2836         return skb->head + skb->inner_network_header;
2837 }
2838
2839 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2840 {
2841         skb->inner_network_header = skb->data - skb->head;
2842 }
2843
2844 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2845                                                 const int offset)
2846 {
2847         skb_reset_inner_network_header(skb);
2848         skb->inner_network_header += offset;
2849 }
2850
2851 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2852 {
2853         return skb->head + skb->inner_mac_header;
2854 }
2855
2856 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2857 {
2858         skb->inner_mac_header = skb->data - skb->head;
2859 }
2860
2861 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2862                                             const int offset)
2863 {
2864         skb_reset_inner_mac_header(skb);
2865         skb->inner_mac_header += offset;
2866 }
2867 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2868 {
2869         return skb->transport_header != (typeof(skb->transport_header))~0U;
2870 }
2871
2872 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2873 {
2874         DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2875         return skb->head + skb->transport_header;
2876 }
2877
2878 static inline void skb_reset_transport_header(struct sk_buff *skb)
2879 {
2880         skb->transport_header = skb->data - skb->head;
2881 }
2882
2883 static inline void skb_set_transport_header(struct sk_buff *skb,
2884                                             const int offset)
2885 {
2886         skb_reset_transport_header(skb);
2887         skb->transport_header += offset;
2888 }
2889
2890 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2891 {
2892         return skb->head + skb->network_header;
2893 }
2894
2895 static inline void skb_reset_network_header(struct sk_buff *skb)
2896 {
2897         skb->network_header = skb->data - skb->head;
2898 }
2899
2900 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2901 {
2902         skb_reset_network_header(skb);
2903         skb->network_header += offset;
2904 }
2905
2906 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2907 {
2908         return skb->mac_header != (typeof(skb->mac_header))~0U;
2909 }
2910
2911 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2912 {
2913         DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2914         return skb->head + skb->mac_header;
2915 }
2916
2917 static inline int skb_mac_offset(const struct sk_buff *skb)
2918 {
2919         return skb_mac_header(skb) - skb->data;
2920 }
2921
2922 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2923 {
2924         DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2925         return skb->network_header - skb->mac_header;
2926 }
2927
2928 static inline void skb_unset_mac_header(struct sk_buff *skb)
2929 {
2930         skb->mac_header = (typeof(skb->mac_header))~0U;
2931 }
2932
2933 static inline void skb_reset_mac_header(struct sk_buff *skb)
2934 {
2935         skb->mac_header = skb->data - skb->head;
2936 }
2937
2938 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2939 {
2940         skb_reset_mac_header(skb);
2941         skb->mac_header += offset;
2942 }
2943
2944 static inline void skb_pop_mac_header(struct sk_buff *skb)
2945 {
2946         skb->mac_header = skb->network_header;
2947 }
2948
2949 static inline void skb_probe_transport_header(struct sk_buff *skb)
2950 {
2951         struct flow_keys_basic keys;
2952
2953         if (skb_transport_header_was_set(skb))
2954                 return;
2955
2956         if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2957                                              NULL, 0, 0, 0, 0))
2958                 skb_set_transport_header(skb, keys.control.thoff);
2959 }
2960
2961 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2962 {
2963         if (skb_mac_header_was_set(skb)) {
2964                 const unsigned char *old_mac = skb_mac_header(skb);
2965
2966                 skb_set_mac_header(skb, -skb->mac_len);
2967                 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2968         }
2969 }
2970
2971 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2972 {
2973         return skb->csum_start - skb_headroom(skb);
2974 }
2975
2976 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2977 {
2978         return skb->head + skb->csum_start;
2979 }
2980
2981 static inline int skb_transport_offset(const struct sk_buff *skb)
2982 {
2983         return skb_transport_header(skb) - skb->data;
2984 }
2985
2986 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2987 {
2988         return skb->transport_header - skb->network_header;
2989 }
2990
2991 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2992 {
2993         return skb->inner_transport_header - skb->inner_network_header;
2994 }
2995
2996 static inline int skb_network_offset(const struct sk_buff *skb)
2997 {
2998         return skb_network_header(skb) - skb->data;
2999 }
3000
3001 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3002 {
3003         return skb_inner_network_header(skb) - skb->data;
3004 }
3005
3006 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3007 {
3008         return pskb_may_pull(skb, skb_network_offset(skb) + len);
3009 }
3010
3011 /*
3012  * CPUs often take a performance hit when accessing unaligned memory
3013  * locations. The actual performance hit varies, it can be small if the
3014  * hardware handles it or large if we have to take an exception and fix it
3015  * in software.
3016  *
3017  * Since an ethernet header is 14 bytes network drivers often end up with
3018  * the IP header at an unaligned offset. The IP header can be aligned by
3019  * shifting the start of the packet by 2 bytes. Drivers should do this
3020  * with:
3021  *
3022  * skb_reserve(skb, NET_IP_ALIGN);
3023  *
3024  * The downside to this alignment of the IP header is that the DMA is now
3025  * unaligned. On some architectures the cost of an unaligned DMA is high
3026  * and this cost outweighs the gains made by aligning the IP header.
3027  *
3028  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3029  * to be overridden.
3030  */
3031 #ifndef NET_IP_ALIGN
3032 #define NET_IP_ALIGN    2
3033 #endif
3034
3035 /*
3036  * The networking layer reserves some headroom in skb data (via
3037  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3038  * the header has to grow. In the default case, if the header has to grow
3039  * 32 bytes or less we avoid the reallocation.
3040  *
3041  * Unfortunately this headroom changes the DMA alignment of the resulting
3042  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3043  * on some architectures. An architecture can override this value,
3044  * perhaps setting it to a cacheline in size (since that will maintain
3045  * cacheline alignment of the DMA). It must be a power of 2.
3046  *
3047  * Various parts of the networking layer expect at least 32 bytes of
3048  * headroom, you should not reduce this.
3049  *
3050  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3051  * to reduce average number of cache lines per packet.
3052  * get_rps_cpu() for example only access one 64 bytes aligned block :
3053  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3054  */
3055 #ifndef NET_SKB_PAD
3056 #define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
3057 #endif
3058
3059 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3060
3061 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3062 {
3063         if (WARN_ON(skb_is_nonlinear(skb)))
3064                 return;
3065         skb->len = len;
3066         skb_set_tail_pointer(skb, len);
3067 }
3068
3069 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3070 {
3071         __skb_set_length(skb, len);
3072 }
3073
3074 void skb_trim(struct sk_buff *skb, unsigned int len);
3075
3076 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3077 {
3078         if (skb->data_len)
3079                 return ___pskb_trim(skb, len);
3080         __skb_trim(skb, len);
3081         return 0;
3082 }
3083
3084 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3085 {
3086         return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3087 }
3088
3089 /**
3090  *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3091  *      @skb: buffer to alter
3092  *      @len: new length
3093  *
3094  *      This is identical to pskb_trim except that the caller knows that
3095  *      the skb is not cloned so we should never get an error due to out-
3096  *      of-memory.
3097  */
3098 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3099 {
3100         int err = pskb_trim(skb, len);
3101         BUG_ON(err);
3102 }
3103
3104 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3105 {
3106         unsigned int diff = len - skb->len;
3107
3108         if (skb_tailroom(skb) < diff) {
3109                 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3110                                            GFP_ATOMIC);
3111                 if (ret)
3112                         return ret;
3113         }
3114         __skb_set_length(skb, len);
3115         return 0;
3116 }
3117
3118 /**
3119  *      skb_orphan - orphan a buffer
3120  *      @skb: buffer to orphan
3121  *
3122  *      If a buffer currently has an owner then we call the owner's
3123  *      destructor function and make the @skb unowned. The buffer continues
3124  *      to exist but is no longer charged to its former owner.
3125  */
3126 static inline void skb_orphan(struct sk_buff *skb)
3127 {
3128         if (skb->destructor) {
3129                 skb->destructor(skb);
3130                 skb->destructor = NULL;
3131                 skb->sk         = NULL;
3132         } else {
3133                 BUG_ON(skb->sk);
3134         }
3135 }
3136
3137 /**
3138  *      skb_orphan_frags - orphan the frags contained in a buffer
3139  *      @skb: buffer to orphan frags from
3140  *      @gfp_mask: allocation mask for replacement pages
3141  *
3142  *      For each frag in the SKB which needs a destructor (i.e. has an
3143  *      owner) create a copy of that frag and release the original
3144  *      page by calling the destructor.
3145  */
3146 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3147 {
3148         if (likely(!skb_zcopy(skb)))
3149                 return 0;
3150         if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3151                 return 0;
3152         return skb_copy_ubufs(skb, gfp_mask);
3153 }
3154
3155 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3156 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3157 {
3158         if (likely(!skb_zcopy(skb)))
3159                 return 0;
3160         return skb_copy_ubufs(skb, gfp_mask);
3161 }
3162
3163 /**
3164  *      __skb_queue_purge_reason - empty a list
3165  *      @list: list to empty
3166  *      @reason: drop reason
3167  *
3168  *      Delete all buffers on an &sk_buff list. Each buffer is removed from
3169  *      the list and one reference dropped. This function does not take the
3170  *      list lock and the caller must hold the relevant locks to use it.
3171  */
3172 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3173                                             enum skb_drop_reason reason)
3174 {
3175         struct sk_buff *skb;
3176
3177         while ((skb = __skb_dequeue(list)) != NULL)
3178                 kfree_skb_reason(skb, reason);
3179 }
3180
3181 static inline void __skb_queue_purge(struct sk_buff_head *list)
3182 {
3183         __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3184 }
3185
3186 void skb_queue_purge_reason(struct sk_buff_head *list,
3187                             enum skb_drop_reason reason);
3188
3189 static inline void skb_queue_purge(struct sk_buff_head *list)
3190 {
3191         skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3192 }
3193
3194 unsigned int skb_rbtree_purge(struct rb_root *root);
3195 void skb_errqueue_purge(struct sk_buff_head *list);
3196
3197 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3198
3199 /**
3200  * netdev_alloc_frag - allocate a page fragment
3201  * @fragsz: fragment size
3202  *
3203  * Allocates a frag from a page for receive buffer.
3204  * Uses GFP_ATOMIC allocations.
3205  */
3206 static inline void *netdev_alloc_frag(unsigned int fragsz)
3207 {
3208         return __netdev_alloc_frag_align(fragsz, ~0u);
3209 }
3210
3211 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3212                                             unsigned int align)
3213 {
3214         WARN_ON_ONCE(!is_power_of_2(align));
3215         return __netdev_alloc_frag_align(fragsz, -align);
3216 }
3217
3218 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3219                                    gfp_t gfp_mask);
3220
3221 /**
3222  *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
3223  *      @dev: network device to receive on
3224  *      @length: length to allocate
3225  *
3226  *      Allocate a new &sk_buff and assign it a usage count of one. The
3227  *      buffer has unspecified headroom built in. Users should allocate
3228  *      the headroom they think they need without accounting for the
3229  *      built in space. The built in space is used for optimisations.
3230  *
3231  *      %NULL is returned if there is no free memory. Although this function
3232  *      allocates memory it can be called from an interrupt.
3233  */
3234 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3235                                                unsigned int length)
3236 {
3237         return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3238 }
3239
3240 /* legacy helper around __netdev_alloc_skb() */
3241 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3242                                               gfp_t gfp_mask)
3243 {
3244         return __netdev_alloc_skb(NULL, length, gfp_mask);
3245 }
3246
3247 /* legacy helper around netdev_alloc_skb() */
3248 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3249 {
3250         return netdev_alloc_skb(NULL, length);
3251 }
3252
3253
3254 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3255                 unsigned int length, gfp_t gfp)
3256 {
3257         struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3258
3259         if (NET_IP_ALIGN && skb)
3260                 skb_reserve(skb, NET_IP_ALIGN);
3261         return skb;
3262 }
3263
3264 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3265                 unsigned int length)
3266 {
3267         return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3268 }
3269
3270 static inline void skb_free_frag(void *addr)
3271 {
3272         page_frag_free(addr);
3273 }
3274
3275 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3276
3277 static inline void *napi_alloc_frag(unsigned int fragsz)
3278 {
3279         return __napi_alloc_frag_align(fragsz, ~0u);
3280 }
3281
3282 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3283                                           unsigned int align)
3284 {
3285         WARN_ON_ONCE(!is_power_of_2(align));
3286         return __napi_alloc_frag_align(fragsz, -align);
3287 }
3288
3289 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3290                                  unsigned int length, gfp_t gfp_mask);
3291 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3292                                              unsigned int length)
3293 {
3294         return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3295 }
3296 void napi_consume_skb(struct sk_buff *skb, int budget);
3297
3298 void napi_skb_free_stolen_head(struct sk_buff *skb);
3299 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3300
3301 /**
3302  * __dev_alloc_pages - allocate page for network Rx
3303  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3304  * @order: size of the allocation
3305  *
3306  * Allocate a new page.
3307  *
3308  * %NULL is returned if there is no free memory.
3309 */
3310 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3311                                              unsigned int order)
3312 {
3313         /* This piece of code contains several assumptions.
3314          * 1.  This is for device Rx, therefore a cold page is preferred.
3315          * 2.  The expectation is the user wants a compound page.
3316          * 3.  If requesting a order 0 page it will not be compound
3317          *     due to the check to see if order has a value in prep_new_page
3318          * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3319          *     code in gfp_to_alloc_flags that should be enforcing this.
3320          */
3321         gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3322
3323         return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3324 }
3325
3326 static inline struct page *dev_alloc_pages(unsigned int order)
3327 {
3328         return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3329 }
3330
3331 /**
3332  * __dev_alloc_page - allocate a page for network Rx
3333  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3334  *
3335  * Allocate a new page.
3336  *
3337  * %NULL is returned if there is no free memory.
3338  */
3339 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3340 {
3341         return __dev_alloc_pages(gfp_mask, 0);
3342 }
3343
3344 static inline struct page *dev_alloc_page(void)
3345 {
3346         return dev_alloc_pages(0);
3347 }
3348
3349 /**
3350  * dev_page_is_reusable - check whether a page can be reused for network Rx
3351  * @page: the page to test
3352  *
3353  * A page shouldn't be considered for reusing/recycling if it was allocated
3354  * under memory pressure or at a distant memory node.
3355  *
3356  * Returns false if this page should be returned to page allocator, true
3357  * otherwise.
3358  */
3359 static inline bool dev_page_is_reusable(const struct page *page)
3360 {
3361         return likely(page_to_nid(page) == numa_mem_id() &&
3362                       !page_is_pfmemalloc(page));
3363 }
3364
3365 /**
3366  *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3367  *      @page: The page that was allocated from skb_alloc_page
3368  *      @skb: The skb that may need pfmemalloc set
3369  */
3370 static inline void skb_propagate_pfmemalloc(const struct page *page,
3371                                             struct sk_buff *skb)
3372 {
3373         if (page_is_pfmemalloc(page))
3374                 skb->pfmemalloc = true;
3375 }
3376
3377 /**
3378  * skb_frag_off() - Returns the offset of a skb fragment
3379  * @frag: the paged fragment
3380  */
3381 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3382 {
3383         return frag->bv_offset;
3384 }
3385
3386 /**
3387  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3388  * @frag: skb fragment
3389  * @delta: value to add
3390  */
3391 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3392 {
3393         frag->bv_offset += delta;
3394 }
3395
3396 /**
3397  * skb_frag_off_set() - Sets the offset of a skb fragment
3398  * @frag: skb fragment
3399  * @offset: offset of fragment
3400  */
3401 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3402 {
3403         frag->bv_offset = offset;
3404 }
3405
3406 /**
3407  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3408  * @fragto: skb fragment where offset is set
3409  * @fragfrom: skb fragment offset is copied from
3410  */
3411 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3412                                      const skb_frag_t *fragfrom)
3413 {
3414         fragto->bv_offset = fragfrom->bv_offset;
3415 }
3416
3417 /**
3418  * skb_frag_page - retrieve the page referred to by a paged fragment
3419  * @frag: the paged fragment
3420  *
3421  * Returns the &struct page associated with @frag.
3422  */
3423 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3424 {
3425         return frag->bv_page;
3426 }
3427
3428 /**
3429  * __skb_frag_ref - take an addition reference on a paged fragment.
3430  * @frag: the paged fragment
3431  *
3432  * Takes an additional reference on the paged fragment @frag.
3433  */
3434 static inline void __skb_frag_ref(skb_frag_t *frag)
3435 {
3436         get_page(skb_frag_page(frag));
3437 }
3438
3439 /**
3440  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3441  * @skb: the buffer
3442  * @f: the fragment offset.
3443  *
3444  * Takes an additional reference on the @f'th paged fragment of @skb.
3445  */
3446 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3447 {
3448         __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3449 }
3450
3451 bool napi_pp_put_page(struct page *page, bool napi_safe);
3452
3453 static inline void
3454 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3455 {
3456         struct page *page = skb_frag_page(frag);
3457
3458 #ifdef CONFIG_PAGE_POOL
3459         if (recycle && napi_pp_put_page(page, napi_safe))
3460                 return;
3461 #endif
3462         put_page(page);
3463 }
3464
3465 /**
3466  * __skb_frag_unref - release a reference on a paged fragment.
3467  * @frag: the paged fragment
3468  * @recycle: recycle the page if allocated via page_pool
3469  *
3470  * Releases a reference on the paged fragment @frag
3471  * or recycles the page via the page_pool API.
3472  */
3473 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3474 {
3475         napi_frag_unref(frag, recycle, false);
3476 }
3477
3478 /**
3479  * skb_frag_unref - release a reference on a paged fragment of an skb.
3480  * @skb: the buffer
3481  * @f: the fragment offset
3482  *
3483  * Releases a reference on the @f'th paged fragment of @skb.
3484  */
3485 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3486 {
3487         struct skb_shared_info *shinfo = skb_shinfo(skb);
3488
3489         if (!skb_zcopy_managed(skb))
3490                 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3491 }
3492
3493 /**
3494  * skb_frag_address - gets the address of the data contained in a paged fragment
3495  * @frag: the paged fragment buffer
3496  *
3497  * Returns the address of the data within @frag. The page must already
3498  * be mapped.
3499  */
3500 static inline void *skb_frag_address(const skb_frag_t *frag)
3501 {
3502         return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3503 }
3504
3505 /**
3506  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3507  * @frag: the paged fragment buffer
3508  *
3509  * Returns the address of the data within @frag. Checks that the page
3510  * is mapped and returns %NULL otherwise.
3511  */
3512 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3513 {
3514         void *ptr = page_address(skb_frag_page(frag));
3515         if (unlikely(!ptr))
3516                 return NULL;
3517
3518         return ptr + skb_frag_off(frag);
3519 }
3520
3521 /**
3522  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3523  * @fragto: skb fragment where page is set
3524  * @fragfrom: skb fragment page is copied from
3525  */
3526 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3527                                       const skb_frag_t *fragfrom)
3528 {
3529         fragto->bv_page = fragfrom->bv_page;
3530 }
3531
3532 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3533
3534 /**
3535  * skb_frag_dma_map - maps a paged fragment via the DMA API
3536  * @dev: the device to map the fragment to
3537  * @frag: the paged fragment to map
3538  * @offset: the offset within the fragment (starting at the
3539  *          fragment's own offset)
3540  * @size: the number of bytes to map
3541  * @dir: the direction of the mapping (``PCI_DMA_*``)
3542  *
3543  * Maps the page associated with @frag to @device.
3544  */
3545 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3546                                           const skb_frag_t *frag,
3547                                           size_t offset, size_t size,
3548                                           enum dma_data_direction dir)
3549 {
3550         return dma_map_page(dev, skb_frag_page(frag),
3551                             skb_frag_off(frag) + offset, size, dir);
3552 }
3553
3554 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3555                                         gfp_t gfp_mask)
3556 {
3557         return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3558 }
3559
3560
3561 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3562                                                   gfp_t gfp_mask)
3563 {
3564         return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3565 }
3566
3567
3568 /**
3569  *      skb_clone_writable - is the header of a clone writable
3570  *      @skb: buffer to check
3571  *      @len: length up to which to write
3572  *
3573  *      Returns true if modifying the header part of the cloned buffer
3574  *      does not requires the data to be copied.
3575  */
3576 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3577 {
3578         return !skb_header_cloned(skb) &&
3579                skb_headroom(skb) + len <= skb->hdr_len;
3580 }
3581
3582 static inline int skb_try_make_writable(struct sk_buff *skb,
3583                                         unsigned int write_len)
3584 {
3585         return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3586                pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3587 }
3588
3589 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3590                             int cloned)
3591 {
3592         int delta = 0;
3593
3594         if (headroom > skb_headroom(skb))
3595                 delta = headroom - skb_headroom(skb);
3596
3597         if (delta || cloned)
3598                 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3599                                         GFP_ATOMIC);
3600         return 0;
3601 }
3602
3603 /**
3604  *      skb_cow - copy header of skb when it is required
3605  *      @skb: buffer to cow
3606  *      @headroom: needed headroom
3607  *
3608  *      If the skb passed lacks sufficient headroom or its data part
3609  *      is shared, data is reallocated. If reallocation fails, an error
3610  *      is returned and original skb is not changed.
3611  *
3612  *      The result is skb with writable area skb->head...skb->tail
3613  *      and at least @headroom of space at head.
3614  */
3615 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3616 {
3617         return __skb_cow(skb, headroom, skb_cloned(skb));
3618 }
3619
3620 /**
3621  *      skb_cow_head - skb_cow but only making the head writable
3622  *      @skb: buffer to cow
3623  *      @headroom: needed headroom
3624  *
3625  *      This function is identical to skb_cow except that we replace the
3626  *      skb_cloned check by skb_header_cloned.  It should be used when
3627  *      you only need to push on some header and do not need to modify
3628  *      the data.
3629  */
3630 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3631 {
3632         return __skb_cow(skb, headroom, skb_header_cloned(skb));
3633 }
3634
3635 /**
3636  *      skb_padto       - pad an skbuff up to a minimal size
3637  *      @skb: buffer to pad
3638  *      @len: minimal length
3639  *
3640  *      Pads up a buffer to ensure the trailing bytes exist and are
3641  *      blanked. If the buffer already contains sufficient data it
3642  *      is untouched. Otherwise it is extended. Returns zero on
3643  *      success. The skb is freed on error.
3644  */
3645 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3646 {
3647         unsigned int size = skb->len;
3648         if (likely(size >= len))
3649                 return 0;
3650         return skb_pad(skb, len - size);
3651 }
3652
3653 /**
3654  *      __skb_put_padto - increase size and pad an skbuff up to a minimal size
3655  *      @skb: buffer to pad
3656  *      @len: minimal length
3657  *      @free_on_error: free buffer on error
3658  *
3659  *      Pads up a buffer to ensure the trailing bytes exist and are
3660  *      blanked. If the buffer already contains sufficient data it
3661  *      is untouched. Otherwise it is extended. Returns zero on
3662  *      success. The skb is freed on error if @free_on_error is true.
3663  */
3664 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3665                                                unsigned int len,
3666                                                bool free_on_error)
3667 {
3668         unsigned int size = skb->len;
3669
3670         if (unlikely(size < len)) {
3671                 len -= size;
3672                 if (__skb_pad(skb, len, free_on_error))
3673                         return -ENOMEM;
3674                 __skb_put(skb, len);
3675         }
3676         return 0;
3677 }
3678
3679 /**
3680  *      skb_put_padto - increase size and pad an skbuff up to a minimal size
3681  *      @skb: buffer to pad
3682  *      @len: minimal length
3683  *
3684  *      Pads up a buffer to ensure the trailing bytes exist and are
3685  *      blanked. If the buffer already contains sufficient data it
3686  *      is untouched. Otherwise it is extended. Returns zero on
3687  *      success. The skb is freed on error.
3688  */
3689 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3690 {
3691         return __skb_put_padto(skb, len, true);
3692 }
3693
3694 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3695         __must_check;
3696
3697 static inline int skb_add_data(struct sk_buff *skb,
3698                                struct iov_iter *from, int copy)
3699 {
3700         const int off = skb->len;
3701
3702         if (skb->ip_summed == CHECKSUM_NONE) {
3703                 __wsum csum = 0;
3704                 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3705                                                  &csum, from)) {
3706                         skb->csum = csum_block_add(skb->csum, csum, off);
3707                         return 0;
3708                 }
3709         } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3710                 return 0;
3711
3712         __skb_trim(skb, off);
3713         return -EFAULT;
3714 }
3715
3716 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3717                                     const struct page *page, int off)
3718 {
3719         if (skb_zcopy(skb))
3720                 return false;
3721         if (i) {
3722                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3723
3724                 return page == skb_frag_page(frag) &&
3725                        off == skb_frag_off(frag) + skb_frag_size(frag);
3726         }
3727         return false;
3728 }
3729
3730 static inline int __skb_linearize(struct sk_buff *skb)
3731 {
3732         return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3733 }
3734
3735 /**
3736  *      skb_linearize - convert paged skb to linear one
3737  *      @skb: buffer to linarize
3738  *
3739  *      If there is no free memory -ENOMEM is returned, otherwise zero
3740  *      is returned and the old skb data released.
3741  */
3742 static inline int skb_linearize(struct sk_buff *skb)
3743 {
3744         return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3745 }
3746
3747 /**
3748  * skb_has_shared_frag - can any frag be overwritten
3749  * @skb: buffer to test
3750  *
3751  * Return true if the skb has at least one frag that might be modified
3752  * by an external entity (as in vmsplice()/sendfile())
3753  */
3754 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3755 {
3756         return skb_is_nonlinear(skb) &&
3757                skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3758 }
3759
3760 /**
3761  *      skb_linearize_cow - make sure skb is linear and writable
3762  *      @skb: buffer to process
3763  *
3764  *      If there is no free memory -ENOMEM is returned, otherwise zero
3765  *      is returned and the old skb data released.
3766  */
3767 static inline int skb_linearize_cow(struct sk_buff *skb)
3768 {
3769         return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3770                __skb_linearize(skb) : 0;
3771 }
3772
3773 static __always_inline void
3774 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3775                      unsigned int off)
3776 {
3777         if (skb->ip_summed == CHECKSUM_COMPLETE)
3778                 skb->csum = csum_block_sub(skb->csum,
3779                                            csum_partial(start, len, 0), off);
3780         else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3781                  skb_checksum_start_offset(skb) < 0)
3782                 skb->ip_summed = CHECKSUM_NONE;
3783 }
3784
3785 /**
3786  *      skb_postpull_rcsum - update checksum for received skb after pull
3787  *      @skb: buffer to update
3788  *      @start: start of data before pull
3789  *      @len: length of data pulled
3790  *
3791  *      After doing a pull on a received packet, you need to call this to
3792  *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3793  *      CHECKSUM_NONE so that it can be recomputed from scratch.
3794  */
3795 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3796                                       const void *start, unsigned int len)
3797 {
3798         if (skb->ip_summed == CHECKSUM_COMPLETE)
3799                 skb->csum = wsum_negate(csum_partial(start, len,
3800                                                      wsum_negate(skb->csum)));
3801         else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3802                  skb_checksum_start_offset(skb) < 0)
3803                 skb->ip_summed = CHECKSUM_NONE;
3804 }
3805
3806 static __always_inline void
3807 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3808                      unsigned int off)
3809 {
3810         if (skb->ip_summed == CHECKSUM_COMPLETE)
3811                 skb->csum = csum_block_add(skb->csum,
3812                                            csum_partial(start, len, 0), off);
3813 }
3814
3815 /**
3816  *      skb_postpush_rcsum - update checksum for received skb after push
3817  *      @skb: buffer to update
3818  *      @start: start of data after push
3819  *      @len: length of data pushed
3820  *
3821  *      After doing a push on a received packet, you need to call this to
3822  *      update the CHECKSUM_COMPLETE checksum.
3823  */
3824 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3825                                       const void *start, unsigned int len)
3826 {
3827         __skb_postpush_rcsum(skb, start, len, 0);
3828 }
3829
3830 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3831
3832 /**
3833  *      skb_push_rcsum - push skb and update receive checksum
3834  *      @skb: buffer to update
3835  *      @len: length of data pulled
3836  *
3837  *      This function performs an skb_push on the packet and updates
3838  *      the CHECKSUM_COMPLETE checksum.  It should be used on
3839  *      receive path processing instead of skb_push unless you know
3840  *      that the checksum difference is zero (e.g., a valid IP header)
3841  *      or you are setting ip_summed to CHECKSUM_NONE.
3842  */
3843 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3844 {
3845         skb_push(skb, len);
3846         skb_postpush_rcsum(skb, skb->data, len);
3847         return skb->data;
3848 }
3849
3850 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3851 /**
3852  *      pskb_trim_rcsum - trim received skb and update checksum
3853  *      @skb: buffer to trim
3854  *      @len: new length
3855  *
3856  *      This is exactly the same as pskb_trim except that it ensures the
3857  *      checksum of received packets are still valid after the operation.
3858  *      It can change skb pointers.
3859  */
3860
3861 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3862 {
3863         if (likely(len >= skb->len))
3864                 return 0;
3865         return pskb_trim_rcsum_slow(skb, len);
3866 }
3867
3868 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3869 {
3870         if (skb->ip_summed == CHECKSUM_COMPLETE)
3871                 skb->ip_summed = CHECKSUM_NONE;
3872         __skb_trim(skb, len);
3873         return 0;
3874 }
3875
3876 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3877 {
3878         if (skb->ip_summed == CHECKSUM_COMPLETE)
3879                 skb->ip_summed = CHECKSUM_NONE;
3880         return __skb_grow(skb, len);
3881 }
3882
3883 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3884 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3885 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3886 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3887 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3888
3889 #define skb_queue_walk(queue, skb) \
3890                 for (skb = (queue)->next;                                       \
3891                      skb != (struct sk_buff *)(queue);                          \
3892                      skb = skb->next)
3893
3894 #define skb_queue_walk_safe(queue, skb, tmp)                                    \
3895                 for (skb = (queue)->next, tmp = skb->next;                      \
3896                      skb != (struct sk_buff *)(queue);                          \
3897                      skb = tmp, tmp = skb->next)
3898
3899 #define skb_queue_walk_from(queue, skb)                                         \
3900                 for (; skb != (struct sk_buff *)(queue);                        \
3901                      skb = skb->next)
3902
3903 #define skb_rbtree_walk(skb, root)                                              \
3904                 for (skb = skb_rb_first(root); skb != NULL;                     \
3905                      skb = skb_rb_next(skb))
3906
3907 #define skb_rbtree_walk_from(skb)                                               \
3908                 for (; skb != NULL;                                             \
3909                      skb = skb_rb_next(skb))
3910
3911 #define skb_rbtree_walk_from_safe(skb, tmp)                                     \
3912                 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);      \
3913                      skb = tmp)
3914
3915 #define skb_queue_walk_from_safe(queue, skb, tmp)                               \
3916                 for (tmp = skb->next;                                           \
3917                      skb != (struct sk_buff *)(queue);                          \
3918                      skb = tmp, tmp = skb->next)
3919
3920 #define skb_queue_reverse_walk(queue, skb) \
3921                 for (skb = (queue)->prev;                                       \
3922                      skb != (struct sk_buff *)(queue);                          \
3923                      skb = skb->prev)
3924
3925 #define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
3926                 for (skb = (queue)->prev, tmp = skb->prev;                      \
3927                      skb != (struct sk_buff *)(queue);                          \
3928                      skb = tmp, tmp = skb->prev)
3929
3930 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
3931                 for (tmp = skb->prev;                                           \
3932                      skb != (struct sk_buff *)(queue);                          \
3933                      skb = tmp, tmp = skb->prev)
3934
3935 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3936 {
3937         return skb_shinfo(skb)->frag_list != NULL;
3938 }
3939
3940 static inline void skb_frag_list_init(struct sk_buff *skb)
3941 {
3942         skb_shinfo(skb)->frag_list = NULL;
3943 }
3944
3945 #define skb_walk_frags(skb, iter)       \
3946         for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3947
3948
3949 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3950                                 int *err, long *timeo_p,
3951                                 const struct sk_buff *skb);
3952 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3953                                           struct sk_buff_head *queue,
3954                                           unsigned int flags,
3955                                           int *off, int *err,
3956                                           struct sk_buff **last);
3957 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3958                                         struct sk_buff_head *queue,
3959                                         unsigned int flags, int *off, int *err,
3960                                         struct sk_buff **last);
3961 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3962                                     struct sk_buff_head *sk_queue,
3963                                     unsigned int flags, int *off, int *err);
3964 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3965 __poll_t datagram_poll(struct file *file, struct socket *sock,
3966                            struct poll_table_struct *wait);
3967 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3968                            struct iov_iter *to, int size);
3969 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3970                                         struct msghdr *msg, int size)
3971 {
3972         return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3973 }
3974 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3975                                    struct msghdr *msg);
3976 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3977                            struct iov_iter *to, int len,
3978                            struct ahash_request *hash);
3979 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3980                                  struct iov_iter *from, int len);
3981 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3982 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3983 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3984 static inline void skb_free_datagram_locked(struct sock *sk,
3985                                             struct sk_buff *skb)
3986 {
3987         __skb_free_datagram_locked(sk, skb, 0);
3988 }
3989 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3990 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3991 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3992 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3993                               int len);
3994 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3995                     struct pipe_inode_info *pipe, unsigned int len,
3996                     unsigned int flags);
3997 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3998                          int len);
3999 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4000 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4001 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4002 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4003                  int len, int hlen);
4004 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4005 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4006 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4007 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4008 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4009                                  unsigned int offset);
4010 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4011 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4012 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4013 int skb_vlan_pop(struct sk_buff *skb);
4014 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4015 int skb_eth_pop(struct sk_buff *skb);
4016 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4017                  const unsigned char *src);
4018 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4019                   int mac_len, bool ethernet);
4020 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4021                  bool ethernet);
4022 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4023 int skb_mpls_dec_ttl(struct sk_buff *skb);
4024 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4025                              gfp_t gfp);
4026
4027 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4028 {
4029         return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4030 }
4031
4032 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4033 {
4034         return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4035 }
4036
4037 struct skb_checksum_ops {
4038         __wsum (*update)(const void *mem, int len, __wsum wsum);
4039         __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4040 };
4041
4042 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4043
4044 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4045                       __wsum csum, const struct skb_checksum_ops *ops);
4046 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4047                     __wsum csum);
4048
4049 static inline void * __must_check
4050 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4051                      const void *data, int hlen, void *buffer)
4052 {
4053         if (likely(hlen - offset >= len))
4054                 return (void *)data + offset;
4055
4056         if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4057                 return NULL;
4058
4059         return buffer;
4060 }
4061
4062 static inline void * __must_check
4063 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4064 {
4065         return __skb_header_pointer(skb, offset, len, skb->data,
4066                                     skb_headlen(skb), buffer);
4067 }
4068
4069 static inline void * __must_check
4070 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4071 {
4072         if (likely(skb_headlen(skb) - offset >= len))
4073                 return skb->data + offset;
4074         return NULL;
4075 }
4076
4077 /**
4078  *      skb_needs_linearize - check if we need to linearize a given skb
4079  *                            depending on the given device features.
4080  *      @skb: socket buffer to check
4081  *      @features: net device features
4082  *
4083  *      Returns true if either:
4084  *      1. skb has frag_list and the device doesn't support FRAGLIST, or
4085  *      2. skb is fragmented and the device does not support SG.
4086  */
4087 static inline bool skb_needs_linearize(struct sk_buff *skb,
4088                                        netdev_features_t features)
4089 {
4090         return skb_is_nonlinear(skb) &&
4091                ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4092                 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4093 }
4094
4095 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4096                                              void *to,
4097                                              const unsigned int len)
4098 {
4099         memcpy(to, skb->data, len);
4100 }
4101
4102 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4103                                                     const int offset, void *to,
4104                                                     const unsigned int len)
4105 {
4106         memcpy(to, skb->data + offset, len);
4107 }
4108
4109 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4110                                            const void *from,
4111                                            const unsigned int len)
4112 {
4113         memcpy(skb->data, from, len);
4114 }
4115
4116 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4117                                                   const int offset,
4118                                                   const void *from,
4119                                                   const unsigned int len)
4120 {
4121         memcpy(skb->data + offset, from, len);
4122 }
4123
4124 void skb_init(void);
4125
4126 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4127 {
4128         return skb->tstamp;
4129 }
4130
4131 /**
4132  *      skb_get_timestamp - get timestamp from a skb
4133  *      @skb: skb to get stamp from
4134  *      @stamp: pointer to struct __kernel_old_timeval to store stamp in
4135  *
4136  *      Timestamps are stored in the skb as offsets to a base timestamp.
4137  *      This function converts the offset back to a struct timeval and stores
4138  *      it in stamp.
4139  */
4140 static inline void skb_get_timestamp(const struct sk_buff *skb,
4141                                      struct __kernel_old_timeval *stamp)
4142 {
4143         *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4144 }
4145
4146 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4147                                          struct __kernel_sock_timeval *stamp)
4148 {
4149         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4150
4151         stamp->tv_sec = ts.tv_sec;
4152         stamp->tv_usec = ts.tv_nsec / 1000;
4153 }
4154
4155 static inline void skb_get_timestampns(const struct sk_buff *skb,
4156                                        struct __kernel_old_timespec *stamp)
4157 {
4158         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4159
4160         stamp->tv_sec = ts.tv_sec;
4161         stamp->tv_nsec = ts.tv_nsec;
4162 }
4163
4164 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4165                                            struct __kernel_timespec *stamp)
4166 {
4167         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4168
4169         stamp->tv_sec = ts.tv_sec;
4170         stamp->tv_nsec = ts.tv_nsec;
4171 }
4172
4173 static inline void __net_timestamp(struct sk_buff *skb)
4174 {
4175         skb->tstamp = ktime_get_real();
4176         skb->mono_delivery_time = 0;
4177 }
4178
4179 static inline ktime_t net_timedelta(ktime_t t)
4180 {
4181         return ktime_sub(ktime_get_real(), t);
4182 }
4183
4184 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4185                                          bool mono)
4186 {
4187         skb->tstamp = kt;
4188         skb->mono_delivery_time = kt && mono;
4189 }
4190
4191 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4192
4193 /* It is used in the ingress path to clear the delivery_time.
4194  * If needed, set the skb->tstamp to the (rcv) timestamp.
4195  */
4196 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4197 {
4198         if (skb->mono_delivery_time) {
4199                 skb->mono_delivery_time = 0;
4200                 if (static_branch_unlikely(&netstamp_needed_key))
4201                         skb->tstamp = ktime_get_real();
4202                 else
4203                         skb->tstamp = 0;
4204         }
4205 }
4206
4207 static inline void skb_clear_tstamp(struct sk_buff *skb)
4208 {
4209         if (skb->mono_delivery_time)
4210                 return;
4211
4212         skb->tstamp = 0;
4213 }
4214
4215 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4216 {
4217         if (skb->mono_delivery_time)
4218                 return 0;
4219
4220         return skb->tstamp;
4221 }
4222
4223 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4224 {
4225         if (!skb->mono_delivery_time && skb->tstamp)
4226                 return skb->tstamp;
4227
4228         if (static_branch_unlikely(&netstamp_needed_key) || cond)
4229                 return ktime_get_real();
4230
4231         return 0;
4232 }
4233
4234 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4235 {
4236         return skb_shinfo(skb)->meta_len;
4237 }
4238
4239 static inline void *skb_metadata_end(const struct sk_buff *skb)
4240 {
4241         return skb_mac_header(skb);
4242 }
4243
4244 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4245                                           const struct sk_buff *skb_b,
4246                                           u8 meta_len)
4247 {
4248         const void *a = skb_metadata_end(skb_a);
4249         const void *b = skb_metadata_end(skb_b);
4250         u64 diffs = 0;
4251
4252         if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4253             BITS_PER_LONG != 64)
4254                 goto slow;
4255
4256         /* Using more efficient variant than plain call to memcmp(). */
4257         switch (meta_len) {
4258 #define __it(x, op) (x -= sizeof(u##op))
4259 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4260         case 32: diffs |= __it_diff(a, b, 64);
4261                 fallthrough;
4262         case 24: diffs |= __it_diff(a, b, 64);
4263                 fallthrough;
4264         case 16: diffs |= __it_diff(a, b, 64);
4265                 fallthrough;
4266         case  8: diffs |= __it_diff(a, b, 64);
4267                 break;
4268         case 28: diffs |= __it_diff(a, b, 64);
4269                 fallthrough;
4270         case 20: diffs |= __it_diff(a, b, 64);
4271                 fallthrough;
4272         case 12: diffs |= __it_diff(a, b, 64);
4273                 fallthrough;
4274         case  4: diffs |= __it_diff(a, b, 32);
4275                 break;
4276         default:
4277 slow:
4278                 return memcmp(a - meta_len, b - meta_len, meta_len);
4279         }
4280         return diffs;
4281 }
4282
4283 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4284                                         const struct sk_buff *skb_b)
4285 {
4286         u8 len_a = skb_metadata_len(skb_a);
4287         u8 len_b = skb_metadata_len(skb_b);
4288
4289         if (!(len_a | len_b))
4290                 return false;
4291
4292         return len_a != len_b ?
4293                true : __skb_metadata_differs(skb_a, skb_b, len_a);
4294 }
4295
4296 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4297 {
4298         skb_shinfo(skb)->meta_len = meta_len;
4299 }
4300
4301 static inline void skb_metadata_clear(struct sk_buff *skb)
4302 {
4303         skb_metadata_set(skb, 0);
4304 }
4305
4306 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4307
4308 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4309
4310 void skb_clone_tx_timestamp(struct sk_buff *skb);
4311 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4312
4313 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4314
4315 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4316 {
4317 }
4318
4319 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4320 {
4321         return false;
4322 }
4323
4324 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4325
4326 /**
4327  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4328  *
4329  * PHY drivers may accept clones of transmitted packets for
4330  * timestamping via their phy_driver.txtstamp method. These drivers
4331  * must call this function to return the skb back to the stack with a
4332  * timestamp.
4333  *
4334  * @skb: clone of the original outgoing packet
4335  * @hwtstamps: hardware time stamps
4336  *
4337  */
4338 void skb_complete_tx_timestamp(struct sk_buff *skb,
4339                                struct skb_shared_hwtstamps *hwtstamps);
4340
4341 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4342                      struct skb_shared_hwtstamps *hwtstamps,
4343                      struct sock *sk, int tstype);
4344
4345 /**
4346  * skb_tstamp_tx - queue clone of skb with send time stamps
4347  * @orig_skb:   the original outgoing packet
4348  * @hwtstamps:  hardware time stamps, may be NULL if not available
4349  *
4350  * If the skb has a socket associated, then this function clones the
4351  * skb (thus sharing the actual data and optional structures), stores
4352  * the optional hardware time stamping information (if non NULL) or
4353  * generates a software time stamp (otherwise), then queues the clone
4354  * to the error queue of the socket.  Errors are silently ignored.
4355  */
4356 void skb_tstamp_tx(struct sk_buff *orig_skb,
4357                    struct skb_shared_hwtstamps *hwtstamps);
4358
4359 /**
4360  * skb_tx_timestamp() - Driver hook for transmit timestamping
4361  *
4362  * Ethernet MAC Drivers should call this function in their hard_xmit()
4363  * function immediately before giving the sk_buff to the MAC hardware.
4364  *
4365  * Specifically, one should make absolutely sure that this function is
4366  * called before TX completion of this packet can trigger.  Otherwise
4367  * the packet could potentially already be freed.
4368  *
4369  * @skb: A socket buffer.
4370  */
4371 static inline void skb_tx_timestamp(struct sk_buff *skb)
4372 {
4373         skb_clone_tx_timestamp(skb);
4374         if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4375                 skb_tstamp_tx(skb, NULL);
4376 }
4377
4378 /**
4379  * skb_complete_wifi_ack - deliver skb with wifi status
4380  *
4381  * @skb: the original outgoing packet
4382  * @acked: ack status
4383  *
4384  */
4385 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4386
4387 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4388 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4389
4390 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4391 {
4392         return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4393                 skb->csum_valid ||
4394                 (skb->ip_summed == CHECKSUM_PARTIAL &&
4395                  skb_checksum_start_offset(skb) >= 0));
4396 }
4397
4398 /**
4399  *      skb_checksum_complete - Calculate checksum of an entire packet
4400  *      @skb: packet to process
4401  *
4402  *      This function calculates the checksum over the entire packet plus
4403  *      the value of skb->csum.  The latter can be used to supply the
4404  *      checksum of a pseudo header as used by TCP/UDP.  It returns the
4405  *      checksum.
4406  *
4407  *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
4408  *      this function can be used to verify that checksum on received
4409  *      packets.  In that case the function should return zero if the
4410  *      checksum is correct.  In particular, this function will return zero
4411  *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4412  *      hardware has already verified the correctness of the checksum.
4413  */
4414 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4415 {
4416         return skb_csum_unnecessary(skb) ?
4417                0 : __skb_checksum_complete(skb);
4418 }
4419
4420 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4421 {
4422         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4423                 if (skb->csum_level == 0)
4424                         skb->ip_summed = CHECKSUM_NONE;
4425                 else
4426                         skb->csum_level--;
4427         }
4428 }
4429
4430 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4431 {
4432         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4433                 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4434                         skb->csum_level++;
4435         } else if (skb->ip_summed == CHECKSUM_NONE) {
4436                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4437                 skb->csum_level = 0;
4438         }
4439 }
4440
4441 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4442 {
4443         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4444                 skb->ip_summed = CHECKSUM_NONE;
4445                 skb->csum_level = 0;
4446         }
4447 }
4448
4449 /* Check if we need to perform checksum complete validation.
4450  *
4451  * Returns true if checksum complete is needed, false otherwise
4452  * (either checksum is unnecessary or zero checksum is allowed).
4453  */
4454 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4455                                                   bool zero_okay,
4456                                                   __sum16 check)
4457 {
4458         if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4459                 skb->csum_valid = 1;
4460                 __skb_decr_checksum_unnecessary(skb);
4461                 return false;
4462         }
4463
4464         return true;
4465 }
4466
4467 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4468  * in checksum_init.
4469  */
4470 #define CHECKSUM_BREAK 76
4471
4472 /* Unset checksum-complete
4473  *
4474  * Unset checksum complete can be done when packet is being modified
4475  * (uncompressed for instance) and checksum-complete value is
4476  * invalidated.
4477  */
4478 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4479 {
4480         if (skb->ip_summed == CHECKSUM_COMPLETE)
4481                 skb->ip_summed = CHECKSUM_NONE;
4482 }
4483
4484 /* Validate (init) checksum based on checksum complete.
4485  *
4486  * Return values:
4487  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4488  *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4489  *      checksum is stored in skb->csum for use in __skb_checksum_complete
4490  *   non-zero: value of invalid checksum
4491  *
4492  */
4493 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4494                                                        bool complete,
4495                                                        __wsum psum)
4496 {
4497         if (skb->ip_summed == CHECKSUM_COMPLETE) {
4498                 if (!csum_fold(csum_add(psum, skb->csum))) {
4499                         skb->csum_valid = 1;
4500                         return 0;
4501                 }
4502         }
4503
4504         skb->csum = psum;
4505
4506         if (complete || skb->len <= CHECKSUM_BREAK) {
4507                 __sum16 csum;
4508
4509                 csum = __skb_checksum_complete(skb);
4510                 skb->csum_valid = !csum;
4511                 return csum;
4512         }
4513
4514         return 0;
4515 }
4516
4517 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4518 {
4519         return 0;
4520 }
4521
4522 /* Perform checksum validate (init). Note that this is a macro since we only
4523  * want to calculate the pseudo header which is an input function if necessary.
4524  * First we try to validate without any computation (checksum unnecessary) and
4525  * then calculate based on checksum complete calling the function to compute
4526  * pseudo header.
4527  *
4528  * Return values:
4529  *   0: checksum is validated or try to in skb_checksum_complete
4530  *   non-zero: value of invalid checksum
4531  */
4532 #define __skb_checksum_validate(skb, proto, complete,                   \
4533                                 zero_okay, check, compute_pseudo)       \
4534 ({                                                                      \
4535         __sum16 __ret = 0;                                              \
4536         skb->csum_valid = 0;                                            \
4537         if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
4538                 __ret = __skb_checksum_validate_complete(skb,           \
4539                                 complete, compute_pseudo(skb, proto));  \
4540         __ret;                                                          \
4541 })
4542
4543 #define skb_checksum_init(skb, proto, compute_pseudo)                   \
4544         __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4545
4546 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4547         __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4548
4549 #define skb_checksum_validate(skb, proto, compute_pseudo)               \
4550         __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4551
4552 #define skb_checksum_validate_zero_check(skb, proto, check,             \
4553                                          compute_pseudo)                \
4554         __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4555
4556 #define skb_checksum_simple_validate(skb)                               \
4557         __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4558
4559 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4560 {
4561         return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4562 }
4563
4564 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4565 {
4566         skb->csum = ~pseudo;
4567         skb->ip_summed = CHECKSUM_COMPLETE;
4568 }
4569
4570 #define skb_checksum_try_convert(skb, proto, compute_pseudo)    \
4571 do {                                                                    \
4572         if (__skb_checksum_convert_check(skb))                          \
4573                 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4574 } while (0)
4575
4576 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4577                                               u16 start, u16 offset)
4578 {
4579         skb->ip_summed = CHECKSUM_PARTIAL;
4580         skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4581         skb->csum_offset = offset - start;
4582 }
4583
4584 /* Update skbuf and packet to reflect the remote checksum offload operation.
4585  * When called, ptr indicates the starting point for skb->csum when
4586  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4587  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4588  */
4589 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4590                                        int start, int offset, bool nopartial)
4591 {
4592         __wsum delta;
4593
4594         if (!nopartial) {
4595                 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4596                 return;
4597         }
4598
4599         if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4600                 __skb_checksum_complete(skb);
4601                 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4602         }
4603
4604         delta = remcsum_adjust(ptr, skb->csum, start, offset);
4605
4606         /* Adjust skb->csum since we changed the packet */
4607         skb->csum = csum_add(skb->csum, delta);
4608 }
4609
4610 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4611 {
4612 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4613         return (void *)(skb->_nfct & NFCT_PTRMASK);
4614 #else
4615         return NULL;
4616 #endif
4617 }
4618
4619 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4620 {
4621 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4622         return skb->_nfct;
4623 #else
4624         return 0UL;
4625 #endif
4626 }
4627
4628 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4629 {
4630 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4631         skb->slow_gro |= !!nfct;
4632         skb->_nfct = nfct;
4633 #endif
4634 }
4635
4636 #ifdef CONFIG_SKB_EXTENSIONS
4637 enum skb_ext_id {
4638 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4639         SKB_EXT_BRIDGE_NF,
4640 #endif
4641 #ifdef CONFIG_XFRM
4642         SKB_EXT_SEC_PATH,
4643 #endif
4644 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4645         TC_SKB_EXT,
4646 #endif
4647 #if IS_ENABLED(CONFIG_MPTCP)
4648         SKB_EXT_MPTCP,
4649 #endif
4650 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4651         SKB_EXT_MCTP,
4652 #endif
4653         SKB_EXT_NUM, /* must be last */
4654 };
4655
4656 /**
4657  *      struct skb_ext - sk_buff extensions
4658  *      @refcnt: 1 on allocation, deallocated on 0
4659  *      @offset: offset to add to @data to obtain extension address
4660  *      @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4661  *      @data: start of extension data, variable sized
4662  *
4663  *      Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4664  *      to use 'u8' types while allowing up to 2kb worth of extension data.
4665  */
4666 struct skb_ext {
4667         refcount_t refcnt;
4668         u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4669         u8 chunks;              /* same */
4670         char data[] __aligned(8);
4671 };
4672
4673 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4674 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4675                     struct skb_ext *ext);
4676 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4677 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4678 void __skb_ext_put(struct skb_ext *ext);
4679
4680 static inline void skb_ext_put(struct sk_buff *skb)
4681 {
4682         if (skb->active_extensions)
4683                 __skb_ext_put(skb->extensions);
4684 }
4685
4686 static inline void __skb_ext_copy(struct sk_buff *dst,
4687                                   const struct sk_buff *src)
4688 {
4689         dst->active_extensions = src->active_extensions;
4690
4691         if (src->active_extensions) {
4692                 struct skb_ext *ext = src->extensions;
4693
4694                 refcount_inc(&ext->refcnt);
4695                 dst->extensions = ext;
4696         }
4697 }
4698
4699 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4700 {
4701         skb_ext_put(dst);
4702         __skb_ext_copy(dst, src);
4703 }
4704
4705 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4706 {
4707         return !!ext->offset[i];
4708 }
4709
4710 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4711 {
4712         return skb->active_extensions & (1 << id);
4713 }
4714
4715 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4716 {
4717         if (skb_ext_exist(skb, id))
4718                 __skb_ext_del(skb, id);
4719 }
4720
4721 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4722 {
4723         if (skb_ext_exist(skb, id)) {
4724                 struct skb_ext *ext = skb->extensions;
4725
4726                 return (void *)ext + (ext->offset[id] << 3);
4727         }
4728
4729         return NULL;
4730 }
4731
4732 static inline void skb_ext_reset(struct sk_buff *skb)
4733 {
4734         if (unlikely(skb->active_extensions)) {
4735                 __skb_ext_put(skb->extensions);
4736                 skb->active_extensions = 0;
4737         }
4738 }
4739
4740 static inline bool skb_has_extensions(struct sk_buff *skb)
4741 {
4742         return unlikely(skb->active_extensions);
4743 }
4744 #else
4745 static inline void skb_ext_put(struct sk_buff *skb) {}
4746 static inline void skb_ext_reset(struct sk_buff *skb) {}
4747 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4748 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4749 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4750 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4751 #endif /* CONFIG_SKB_EXTENSIONS */
4752
4753 static inline void nf_reset_ct(struct sk_buff *skb)
4754 {
4755 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4756         nf_conntrack_put(skb_nfct(skb));
4757         skb->_nfct = 0;
4758 #endif
4759 }
4760
4761 static inline void nf_reset_trace(struct sk_buff *skb)
4762 {
4763 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4764         skb->nf_trace = 0;
4765 #endif
4766 }
4767
4768 static inline void ipvs_reset(struct sk_buff *skb)
4769 {
4770 #if IS_ENABLED(CONFIG_IP_VS)
4771         skb->ipvs_property = 0;
4772 #endif
4773 }
4774
4775 /* Note: This doesn't put any conntrack info in dst. */
4776 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4777                              bool copy)
4778 {
4779 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4780         dst->_nfct = src->_nfct;
4781         nf_conntrack_get(skb_nfct(src));
4782 #endif
4783 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4784         if (copy)
4785                 dst->nf_trace = src->nf_trace;
4786 #endif
4787 }
4788
4789 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4790 {
4791 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4792         nf_conntrack_put(skb_nfct(dst));
4793 #endif
4794         dst->slow_gro = src->slow_gro;
4795         __nf_copy(dst, src, true);
4796 }
4797
4798 #ifdef CONFIG_NETWORK_SECMARK
4799 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4800 {
4801         to->secmark = from->secmark;
4802 }
4803
4804 static inline void skb_init_secmark(struct sk_buff *skb)
4805 {
4806         skb->secmark = 0;
4807 }
4808 #else
4809 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4810 { }
4811
4812 static inline void skb_init_secmark(struct sk_buff *skb)
4813 { }
4814 #endif
4815
4816 static inline int secpath_exists(const struct sk_buff *skb)
4817 {
4818 #ifdef CONFIG_XFRM
4819         return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4820 #else
4821         return 0;
4822 #endif
4823 }
4824
4825 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4826 {
4827         return !skb->destructor &&
4828                 !secpath_exists(skb) &&
4829                 !skb_nfct(skb) &&
4830                 !skb->_skb_refdst &&
4831                 !skb_has_frag_list(skb);
4832 }
4833
4834 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4835 {
4836         skb->queue_mapping = queue_mapping;
4837 }
4838
4839 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4840 {
4841         return skb->queue_mapping;
4842 }
4843
4844 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4845 {
4846         to->queue_mapping = from->queue_mapping;
4847 }
4848
4849 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4850 {
4851         skb->queue_mapping = rx_queue + 1;
4852 }
4853
4854 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4855 {
4856         return skb->queue_mapping - 1;
4857 }
4858
4859 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4860 {
4861         return skb->queue_mapping != 0;
4862 }
4863
4864 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4865 {
4866         skb->dst_pending_confirm = val;
4867 }
4868
4869 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4870 {
4871         return skb->dst_pending_confirm != 0;
4872 }
4873
4874 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4875 {
4876 #ifdef CONFIG_XFRM
4877         return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4878 #else
4879         return NULL;
4880 #endif
4881 }
4882
4883 static inline bool skb_is_gso(const struct sk_buff *skb)
4884 {
4885         return skb_shinfo(skb)->gso_size;
4886 }
4887
4888 /* Note: Should be called only if skb_is_gso(skb) is true */
4889 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4890 {
4891         return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4892 }
4893
4894 /* Note: Should be called only if skb_is_gso(skb) is true */
4895 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4896 {
4897         return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4898 }
4899
4900 /* Note: Should be called only if skb_is_gso(skb) is true */
4901 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4902 {
4903         return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4904 }
4905
4906 static inline void skb_gso_reset(struct sk_buff *skb)
4907 {
4908         skb_shinfo(skb)->gso_size = 0;
4909         skb_shinfo(skb)->gso_segs = 0;
4910         skb_shinfo(skb)->gso_type = 0;
4911 }
4912
4913 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4914                                          u16 increment)
4915 {
4916         if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4917                 return;
4918         shinfo->gso_size += increment;
4919 }
4920
4921 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4922                                          u16 decrement)
4923 {
4924         if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4925                 return;
4926         shinfo->gso_size -= decrement;
4927 }
4928
4929 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4930
4931 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4932 {
4933         /* LRO sets gso_size but not gso_type, whereas if GSO is really
4934          * wanted then gso_type will be set. */
4935         const struct skb_shared_info *shinfo = skb_shinfo(skb);
4936
4937         if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4938             unlikely(shinfo->gso_type == 0)) {
4939                 __skb_warn_lro_forwarding(skb);
4940                 return true;
4941         }
4942         return false;
4943 }
4944
4945 static inline void skb_forward_csum(struct sk_buff *skb)
4946 {
4947         /* Unfortunately we don't support this one.  Any brave souls? */
4948         if (skb->ip_summed == CHECKSUM_COMPLETE)
4949                 skb->ip_summed = CHECKSUM_NONE;
4950 }
4951
4952 /**
4953  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4954  * @skb: skb to check
4955  *
4956  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4957  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4958  * use this helper, to document places where we make this assertion.
4959  */
4960 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4961 {
4962         DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4963 }
4964
4965 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4966
4967 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4968 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4969                                      unsigned int transport_len,
4970                                      __sum16(*skb_chkf)(struct sk_buff *skb));
4971
4972 /**
4973  * skb_head_is_locked - Determine if the skb->head is locked down
4974  * @skb: skb to check
4975  *
4976  * The head on skbs build around a head frag can be removed if they are
4977  * not cloned.  This function returns true if the skb head is locked down
4978  * due to either being allocated via kmalloc, or by being a clone with
4979  * multiple references to the head.
4980  */
4981 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4982 {
4983         return !skb->head_frag || skb_cloned(skb);
4984 }
4985
4986 /* Local Checksum Offload.
4987  * Compute outer checksum based on the assumption that the
4988  * inner checksum will be offloaded later.
4989  * See Documentation/networking/checksum-offloads.rst for
4990  * explanation of how this works.
4991  * Fill in outer checksum adjustment (e.g. with sum of outer
4992  * pseudo-header) before calling.
4993  * Also ensure that inner checksum is in linear data area.
4994  */
4995 static inline __wsum lco_csum(struct sk_buff *skb)
4996 {
4997         unsigned char *csum_start = skb_checksum_start(skb);
4998         unsigned char *l4_hdr = skb_transport_header(skb);
4999         __wsum partial;
5000
5001         /* Start with complement of inner checksum adjustment */
5002         partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5003                                                     skb->csum_offset));
5004
5005         /* Add in checksum of our headers (incl. outer checksum
5006          * adjustment filled in by caller) and return result.
5007          */
5008         return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5009 }
5010
5011 static inline bool skb_is_redirected(const struct sk_buff *skb)
5012 {
5013         return skb->redirected;
5014 }
5015
5016 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5017 {
5018         skb->redirected = 1;
5019 #ifdef CONFIG_NET_REDIRECT
5020         skb->from_ingress = from_ingress;
5021         if (skb->from_ingress)
5022                 skb_clear_tstamp(skb);
5023 #endif
5024 }
5025
5026 static inline void skb_reset_redirect(struct sk_buff *skb)
5027 {
5028         skb->redirected = 0;
5029 }
5030
5031 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5032                                               bool from_ingress)
5033 {
5034         skb->redirected = 1;
5035 #ifdef CONFIG_NET_REDIRECT
5036         skb->from_ingress = from_ingress;
5037 #endif
5038 }
5039
5040 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5041 {
5042 #if IS_ENABLED(CONFIG_IP_SCTP)
5043         return skb->csum_not_inet;
5044 #else
5045         return 0;
5046 #endif
5047 }
5048
5049 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5050 {
5051         skb->ip_summed = CHECKSUM_NONE;
5052 #if IS_ENABLED(CONFIG_IP_SCTP)
5053         skb->csum_not_inet = 0;
5054 #endif
5055 }
5056
5057 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5058                                        const u64 kcov_handle)
5059 {
5060 #ifdef CONFIG_KCOV
5061         skb->kcov_handle = kcov_handle;
5062 #endif
5063 }
5064
5065 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5066 {
5067 #ifdef CONFIG_KCOV
5068         return skb->kcov_handle;
5069 #else
5070         return 0;
5071 #endif
5072 }
5073
5074 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5075 {
5076 #ifdef CONFIG_PAGE_POOL
5077         skb->pp_recycle = 1;
5078 #endif
5079 }
5080
5081 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5082                              ssize_t maxsize, gfp_t gfp);
5083
5084 #endif  /* __KERNEL__ */
5085 #endif  /* _LINUX_SKBUFF_H */
This page took 0.316323 seconds and 4 git commands to generate.