1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
8 #define E810_OUT_PROP_DELAY_NS 1
10 #define UNKNOWN_INCVAL_E82X 0x100000000ULL
12 static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
13 /* name idx func chan */
14 { "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } },
15 { "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } },
16 { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
17 { "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } },
18 { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
22 * ice_get_sma_config_e810t
23 * @hw: pointer to the hw struct
24 * @ptp_pins: pointer to the ptp_pin_desc struture
26 * Read the configuration of the SMA control logic and put it into the
27 * ptp_pin_desc structure
30 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
35 /* Read initial pin state */
36 status = ice_read_sma_ctrl_e810t(hw, &data);
40 /* initialize with defaults */
41 for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
42 strscpy(ptp_pins[i].name, ice_pin_desc_e810t[i].name,
43 sizeof(ptp_pins[i].name));
44 ptp_pins[i].index = ice_pin_desc_e810t[i].index;
45 ptp_pins[i].func = ice_pin_desc_e810t[i].func;
46 ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
50 switch (data & ICE_SMA1_MASK_E810T) {
51 case ICE_SMA1_MASK_E810T:
53 ptp_pins[SMA1].func = PTP_PF_NONE;
54 ptp_pins[UFL1].func = PTP_PF_NONE;
56 case ICE_SMA1_DIR_EN_E810T:
57 ptp_pins[SMA1].func = PTP_PF_PEROUT;
58 ptp_pins[UFL1].func = PTP_PF_NONE;
60 case ICE_SMA1_TX_EN_E810T:
61 ptp_pins[SMA1].func = PTP_PF_EXTTS;
62 ptp_pins[UFL1].func = PTP_PF_NONE;
65 ptp_pins[SMA1].func = PTP_PF_EXTTS;
66 ptp_pins[UFL1].func = PTP_PF_PEROUT;
71 switch (data & ICE_SMA2_MASK_E810T) {
72 case ICE_SMA2_MASK_E810T:
74 ptp_pins[SMA2].func = PTP_PF_NONE;
75 ptp_pins[UFL2].func = PTP_PF_NONE;
77 case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
78 ptp_pins[SMA2].func = PTP_PF_EXTTS;
79 ptp_pins[UFL2].func = PTP_PF_NONE;
81 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
82 ptp_pins[SMA2].func = PTP_PF_PEROUT;
83 ptp_pins[UFL2].func = PTP_PF_NONE;
85 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
86 ptp_pins[SMA2].func = PTP_PF_NONE;
87 ptp_pins[UFL2].func = PTP_PF_EXTTS;
89 case ICE_SMA2_DIR_EN_E810T:
90 ptp_pins[SMA2].func = PTP_PF_PEROUT;
91 ptp_pins[UFL2].func = PTP_PF_EXTTS;
99 * ice_ptp_set_sma_config_e810t
100 * @hw: pointer to the hw struct
101 * @ptp_pins: pointer to the ptp_pin_desc struture
103 * Set the configuration of the SMA control logic based on the configuration in
107 ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
108 const struct ptp_pin_desc *ptp_pins)
113 /* SMA1 and UFL1 cannot be set to TX at the same time */
114 if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
115 ptp_pins[UFL1].func == PTP_PF_PEROUT)
118 /* SMA2 and UFL2 cannot be set to RX at the same time */
119 if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
120 ptp_pins[UFL2].func == PTP_PF_EXTTS)
123 /* Read initial pin state value */
124 status = ice_read_sma_ctrl_e810t(hw, &data);
128 /* Set the right sate based on the desired configuration */
129 data &= ~ICE_SMA1_MASK_E810T;
130 if (ptp_pins[SMA1].func == PTP_PF_NONE &&
131 ptp_pins[UFL1].func == PTP_PF_NONE) {
132 dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
133 data |= ICE_SMA1_MASK_E810T;
134 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
135 ptp_pins[UFL1].func == PTP_PF_NONE) {
136 dev_info(ice_hw_to_dev(hw), "SMA1 RX");
137 data |= ICE_SMA1_TX_EN_E810T;
138 } else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
139 ptp_pins[UFL1].func == PTP_PF_PEROUT) {
140 /* U.FL 1 TX will always enable SMA 1 RX */
141 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
142 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
143 ptp_pins[UFL1].func == PTP_PF_PEROUT) {
144 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
145 } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
146 ptp_pins[UFL1].func == PTP_PF_NONE) {
147 dev_info(ice_hw_to_dev(hw), "SMA1 TX");
148 data |= ICE_SMA1_DIR_EN_E810T;
151 data &= ~ICE_SMA2_MASK_E810T;
152 if (ptp_pins[SMA2].func == PTP_PF_NONE &&
153 ptp_pins[UFL2].func == PTP_PF_NONE) {
154 dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
155 data |= ICE_SMA2_MASK_E810T;
156 } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
157 ptp_pins[UFL2].func == PTP_PF_NONE) {
158 dev_info(ice_hw_to_dev(hw), "SMA2 RX");
159 data |= (ICE_SMA2_TX_EN_E810T |
160 ICE_SMA2_UFL2_RX_DIS_E810T);
161 } else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
162 ptp_pins[UFL2].func == PTP_PF_EXTTS) {
163 dev_info(ice_hw_to_dev(hw), "UFL2 RX");
164 data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
165 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
166 ptp_pins[UFL2].func == PTP_PF_NONE) {
167 dev_info(ice_hw_to_dev(hw), "SMA2 TX");
168 data |= (ICE_SMA2_DIR_EN_E810T |
169 ICE_SMA2_UFL2_RX_DIS_E810T);
170 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
171 ptp_pins[UFL2].func == PTP_PF_EXTTS) {
172 dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
173 data |= ICE_SMA2_DIR_EN_E810T;
176 return ice_write_sma_ctrl_e810t(hw, data);
180 * ice_ptp_set_sma_e810t
181 * @info: the driver's PTP info structure
182 * @pin: pin index in kernel structure
183 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
185 * Set the configuration of a single SMA pin
188 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
189 enum ptp_pin_function func)
191 struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
192 struct ice_pf *pf = ptp_info_to_pf(info);
193 struct ice_hw *hw = &pf->hw;
196 if (pin < SMA1 || func > PTP_PF_PEROUT)
199 err = ice_get_sma_config_e810t(hw, ptp_pins);
203 /* Disable the same function on the other pin sharing the channel */
204 if (pin == SMA1 && ptp_pins[UFL1].func == func)
205 ptp_pins[UFL1].func = PTP_PF_NONE;
206 if (pin == UFL1 && ptp_pins[SMA1].func == func)
207 ptp_pins[SMA1].func = PTP_PF_NONE;
209 if (pin == SMA2 && ptp_pins[UFL2].func == func)
210 ptp_pins[UFL2].func = PTP_PF_NONE;
211 if (pin == UFL2 && ptp_pins[SMA2].func == func)
212 ptp_pins[SMA2].func = PTP_PF_NONE;
214 /* Set up new pin function in the temp table */
215 ptp_pins[pin].func = func;
217 return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
221 * ice_verify_pin_e810t
222 * @info: the driver's PTP info structure
224 * @func: Assigned function
225 * @chan: Assigned channel
227 * Verify if pin supports requested pin function. If the Check pins consistency.
228 * Reconfigure the SMA logic attached to the given pin to enable its
229 * desired functionality
232 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
233 enum ptp_pin_function func, unsigned int chan)
235 /* Don't allow channel reassignment */
236 if (chan != ice_pin_desc_e810t[pin].chan)
239 /* Check if functions are properly assigned */
248 if (pin == UFL2 || pin == GNSS)
255 return ice_ptp_set_sma_e810t(info, pin, func);
259 * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device
260 * @pf: Board private structure
262 * Program the device to respond appropriately to the Tx timestamp interrupt
265 static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf)
267 struct ice_hw *hw = &pf->hw;
271 switch (pf->ptp.tx_interrupt_mode) {
272 case ICE_PTP_TX_INTERRUPT_ALL:
273 /* React to interrupts across all quads. */
274 wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
277 case ICE_PTP_TX_INTERRUPT_NONE:
278 /* Do not react to interrupts on any quad. */
279 wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
282 case ICE_PTP_TX_INTERRUPT_SELF:
284 enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON;
288 /* Configure the Tx timestamp interrupt */
289 val = rd32(hw, PFINT_OICR_ENA);
291 val |= PFINT_OICR_TSYN_TX_M;
293 val &= ~PFINT_OICR_TSYN_TX_M;
294 wr32(hw, PFINT_OICR_ENA, val);
298 * ice_set_rx_tstamp - Enable or disable Rx timestamping
299 * @pf: The PF pointer to search in
300 * @on: bool value for whether timestamps are enabled or disabled
302 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
307 vsi = ice_get_main_vsi(pf);
308 if (!vsi || !vsi->rx_rings)
311 /* Set the timestamp flag for all the Rx rings */
312 ice_for_each_rxq(vsi, i) {
313 if (!vsi->rx_rings[i])
315 vsi->rx_rings[i]->ptp_rx = on;
320 * ice_ptp_disable_timestamp_mode - Disable current timestamp mode
321 * @pf: Board private structure
323 * Called during preparation for reset to temporarily disable timestamping on
324 * the device. Called during remove to disable timestamping while cleaning up
327 static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf)
329 struct ice_hw *hw = &pf->hw;
332 val = rd32(hw, PFINT_OICR_ENA);
333 val &= ~PFINT_OICR_TSYN_TX_M;
334 wr32(hw, PFINT_OICR_ENA, val);
336 ice_set_rx_tstamp(pf, false);
340 * ice_ptp_restore_timestamp_mode - Restore timestamp configuration
341 * @pf: Board private structure
343 * Called at the end of rebuild to restore timestamp configuration after
346 void ice_ptp_restore_timestamp_mode(struct ice_pf *pf)
348 struct ice_hw *hw = &pf->hw;
351 ice_ptp_cfg_tx_interrupt(pf);
353 enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL;
354 ice_set_rx_tstamp(pf, enable_rx);
356 /* Trigger an immediate software interrupt to ensure that timestamps
357 * which occurred during reset are handled now.
359 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
364 * ice_ptp_read_src_clk_reg - Read the source clock register
365 * @pf: Board private structure
366 * @sts: Optional parameter for holding a pair of system timestamps from
367 * the system clock. Will be ignored if NULL is given.
370 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
372 struct ice_hw *hw = &pf->hw;
376 tmr_idx = ice_get_ptp_src_clock_index(hw);
377 /* Read the system timestamp pre PHC read */
378 ptp_read_system_prets(sts);
380 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
382 /* Read the system timestamp post PHC read */
383 ptp_read_system_postts(sts);
385 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
386 lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
389 /* if TIME_L rolled over read TIME_L again and update
392 ptp_read_system_prets(sts);
393 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
394 ptp_read_system_postts(sts);
395 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
398 return ((u64)hi << 32) | lo;
402 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
403 * @cached_phc_time: recently cached copy of PHC time
404 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
406 * Hardware captures timestamps which contain only 32 bits of nominal
407 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
408 * Note that the captured timestamp values may be 40 bits, but the lower
409 * 8 bits are sub-nanoseconds and generally discarded.
411 * Extend the 32bit nanosecond timestamp using the following algorithm and
414 * 1) have a recently cached copy of the PHC time
415 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
416 * seconds) before or after the PHC time was captured.
417 * 3) calculate the delta between the cached time and the timestamp
418 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
419 * captured after the PHC time. In this case, the full timestamp is just
420 * the cached PHC time plus the delta.
421 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
422 * timestamp was captured *before* the PHC time, i.e. because the PHC
423 * cache was updated after the timestamp was captured by hardware. In this
424 * case, the full timestamp is the cached time minus the inverse delta.
426 * This algorithm works even if the PHC time was updated after a Tx timestamp
427 * was requested, but before the Tx timestamp event was reported from
430 * This calculation primarily relies on keeping the cached PHC time up to
431 * date. If the timestamp was captured more than 2^31 nanoseconds after the
432 * PHC time, it is possible that the lower 32bits of PHC time have
433 * overflowed more than once, and we might generate an incorrect timestamp.
435 * This is prevented by (a) periodically updating the cached PHC time once
436 * a second, and (b) discarding any Tx timestamp packet if it has waited for
437 * a timestamp for more than one second.
439 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
441 u32 delta, phc_time_lo;
444 /* Extract the lower 32 bits of the PHC time */
445 phc_time_lo = (u32)cached_phc_time;
447 /* Calculate the delta between the lower 32bits of the cached PHC
448 * time and the in_tstamp value
450 delta = (in_tstamp - phc_time_lo);
452 /* Do not assume that the in_tstamp is always more recent than the
453 * cached PHC time. If the delta is large, it indicates that the
454 * in_tstamp was taken in the past, and should be converted
457 if (delta > (U32_MAX / 2)) {
458 /* reverse the delta calculation here */
459 delta = (phc_time_lo - in_tstamp);
460 ns = cached_phc_time - delta;
462 ns = cached_phc_time + delta;
469 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
470 * @pf: Board private structure
471 * @in_tstamp: Ingress/egress 40b timestamp value
473 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
474 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
476 * *--------------------------------------------------------------*
477 * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
478 * *--------------------------------------------------------------*
480 * The low bit is an indicator of whether the timestamp is valid. The next
481 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
482 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
484 * It is assumed that the caller verifies the timestamp is valid prior to
485 * calling this function.
487 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
488 * time stored in the device private PTP structure as the basis for timestamp
491 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
494 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
496 const u64 mask = GENMASK_ULL(31, 0);
497 unsigned long discard_time;
499 /* Discard the hardware timestamp if the cached PHC time is too old */
500 discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
501 if (time_is_before_jiffies(discard_time)) {
502 pf->ptp.tx_hwtstamp_discarded++;
506 return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
507 (in_tstamp >> 8) & mask);
511 * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
512 * @tx: the PTP Tx timestamp tracker to check
514 * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
515 * to accept new timestamp requests.
517 * Assumes the tx->lock spinlock is already held.
520 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
522 lockdep_assert_held(&tx->lock);
524 return tx->init && !tx->calibrating;
528 * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
529 * @tx: the PTP Tx timestamp tracker
531 * Process timestamps captured by the PHY associated with this port. To do
532 * this, loop over each index with a waiting skb.
534 * If a given index has a valid timestamp, perform the following steps:
536 * 1) check that the timestamp request is not stale
537 * 2) check that a timestamp is ready and available in the PHY memory bank
538 * 3) read and copy the timestamp out of the PHY register
539 * 4) unlock the index by clearing the associated in_use bit
540 * 5) check if the timestamp is stale, and discard if so
541 * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
542 * 7) send this 64 bit timestamp to the stack
544 * Note that we do not hold the tracking lock while reading the Tx timestamp.
545 * This is because reading the timestamp requires taking a mutex that might
548 * The only place where we set in_use is when a new timestamp is initiated
549 * with a slot index. This is only called in the hard xmit routine where an
550 * SKB has a request flag set. The only places where we clear this bit is this
551 * function, or during teardown when the Tx timestamp tracker is being
552 * removed. A timestamp index will never be re-used until the in_use bit for
553 * that index is cleared.
555 * If a Tx thread starts a new timestamp, we might not begin processing it
556 * right away but we will notice it at the end when we re-queue the task.
558 * If a Tx thread starts a new timestamp just after this function exits, the
559 * interrupt for that timestamp should re-trigger this function once
560 * a timestamp is ready.
562 * In cases where the PTP hardware clock was directly adjusted, some
563 * timestamps may not be able to safely use the timestamp extension math. In
564 * this case, software will set the stale bit for any outstanding Tx
565 * timestamps when the clock is adjusted. Then this function will discard
566 * those captured timestamps instead of sending them to the stack.
568 * If a Tx packet has been waiting for more than 2 seconds, it is not possible
569 * to correctly extend the timestamp using the cached PHC time. It is
570 * extremely unlikely that a packet will ever take this long to timestamp. If
571 * we detect a Tx timestamp request that has waited for this long we assume
572 * the packet will never be sent by hardware and discard it without reading
573 * the timestamp register.
575 static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
577 struct ice_ptp_port *ptp_port;
585 ptp_port = container_of(tx, struct ice_ptp_port, tx);
586 pf = ptp_port_to_pf(ptp_port);
589 /* Read the Tx ready status first */
590 err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
594 /* Drop packets if the link went down */
595 link_up = ptp_port->link_up;
597 for_each_set_bit(idx, tx->in_use, tx->len) {
598 struct skb_shared_hwtstamps shhwtstamps = {};
599 u8 phy_idx = idx + tx->offset;
600 u64 raw_tstamp = 0, tstamp;
601 bool drop_ts = !link_up;
604 /* Drop packets which have waited for more than 2 seconds */
605 if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
608 /* Count the number of Tx timestamps that timed out */
609 pf->ptp.tx_hwtstamp_timeouts++;
612 /* Only read a timestamp from the PHY if its marked as ready
613 * by the tstamp_ready register. This avoids unnecessary
614 * reading of timestamps which are not yet valid. This is
615 * important as we must read all timestamps which are valid
616 * and only timestamps which are valid during each interrupt.
617 * If we do not, the hardware logic for generating a new
618 * interrupt can get stuck on some devices.
620 if (!(tstamp_ready & BIT_ULL(phy_idx))) {
627 ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
629 err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
633 ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
635 /* For PHYs which don't implement a proper timestamp ready
636 * bitmap, verify that the timestamp value is different
637 * from the last cached timestamp. If it is not, skip this for
638 * now assuming it hasn't yet been captured by hardware.
640 if (!drop_ts && tx->verify_cached &&
641 raw_tstamp == tx->tstamps[idx].cached_tstamp)
644 /* Discard any timestamp value without the valid bit set */
645 if (!(raw_tstamp & ICE_PTP_TS_VALID))
649 spin_lock(&tx->lock);
650 if (tx->verify_cached && raw_tstamp)
651 tx->tstamps[idx].cached_tstamp = raw_tstamp;
652 clear_bit(idx, tx->in_use);
653 skb = tx->tstamps[idx].skb;
654 tx->tstamps[idx].skb = NULL;
655 if (test_and_clear_bit(idx, tx->stale))
657 spin_unlock(&tx->lock);
659 /* It is unlikely but possible that the SKB will have been
660 * flushed at this point due to link change or teardown.
666 dev_kfree_skb_any(skb);
670 /* Extend the timestamp using cached PHC time */
671 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
673 shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
674 ice_trace(tx_tstamp_complete, skb, idx);
677 skb_tstamp_tx(skb, &shhwtstamps);
678 dev_kfree_skb_any(skb);
683 * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
684 * @pf: Board private structure
686 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
688 struct ice_ptp_port *port;
691 mutex_lock(&pf->ptp.ports_owner.lock);
692 list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member) {
693 struct ice_ptp_tx *tx = &port->tx;
695 if (!tx || !tx->init)
698 ice_ptp_process_tx_tstamp(tx);
700 mutex_unlock(&pf->ptp.ports_owner.lock);
702 for (i = 0; i < ICE_MAX_QUAD; i++) {
706 /* Read the Tx ready status first */
707 err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
710 else if (tstamp_ready)
711 return ICE_TX_TSTAMP_WORK_PENDING;
714 return ICE_TX_TSTAMP_WORK_DONE;
718 * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
719 * @tx: Tx tracking structure to initialize
721 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
722 * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
724 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
726 bool more_timestamps;
729 return ICE_TX_TSTAMP_WORK_DONE;
731 /* Process the Tx timestamp tracker */
732 ice_ptp_process_tx_tstamp(tx);
734 /* Check if there are outstanding Tx timestamps */
735 spin_lock(&tx->lock);
736 more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
737 spin_unlock(&tx->lock);
740 return ICE_TX_TSTAMP_WORK_PENDING;
742 return ICE_TX_TSTAMP_WORK_DONE;
746 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
747 * @tx: Tx tracking structure to initialize
749 * Assumes that the length has already been initialized. Do not call directly,
750 * use the ice_ptp_init_tx_* instead.
753 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
755 unsigned long *in_use, *stale;
756 struct ice_tx_tstamp *tstamps;
758 tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
759 in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
760 stale = bitmap_zalloc(tx->len, GFP_KERNEL);
762 if (!tstamps || !in_use || !stale) {
770 tx->tstamps = tstamps;
775 spin_lock_init(&tx->lock);
781 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
782 * @pf: Board private structure
783 * @tx: the tracker to flush
785 * Called during teardown when a Tx tracker is being removed.
788 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
790 struct ice_hw *hw = &pf->hw;
795 err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
797 dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
800 /* If we fail to read the Tx timestamp ready bitmap just
801 * skip clearing the PHY timestamps.
806 for_each_set_bit(idx, tx->in_use, tx->len) {
807 u8 phy_idx = idx + tx->offset;
810 /* In case this timestamp is ready, we need to clear it. */
811 if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
812 ice_clear_phy_tstamp(hw, tx->block, phy_idx);
814 spin_lock(&tx->lock);
815 skb = tx->tstamps[idx].skb;
816 tx->tstamps[idx].skb = NULL;
817 clear_bit(idx, tx->in_use);
818 clear_bit(idx, tx->stale);
819 spin_unlock(&tx->lock);
821 /* Count the number of Tx timestamps flushed */
822 pf->ptp.tx_hwtstamp_flushed++;
824 /* Free the SKB after we've cleared the bit */
825 dev_kfree_skb_any(skb);
830 * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
831 * @tx: the tracker to mark
833 * Mark currently outstanding Tx timestamps as stale. This prevents sending
834 * their timestamp value to the stack. This is required to prevent extending
835 * the 40bit hardware timestamp incorrectly.
837 * This should be called when the PTP clock is modified such as after a set
841 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
843 spin_lock(&tx->lock);
844 bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
845 spin_unlock(&tx->lock);
849 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
850 * @pf: Board private structure
851 * @tx: Tx tracking structure to release
853 * Free memory associated with the Tx timestamp tracker.
856 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
858 spin_lock(&tx->lock);
860 spin_unlock(&tx->lock);
862 /* wait for potentially outstanding interrupt to complete */
863 synchronize_irq(pf->oicr_irq.virq);
865 ice_ptp_flush_tx_tracker(pf, tx);
870 bitmap_free(tx->in_use);
873 bitmap_free(tx->stale);
880 * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps
881 * @pf: Board private structure
882 * @tx: the Tx tracking structure to initialize
883 * @port: the port this structure tracks
885 * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
886 * the timestamp block is shared for all ports in the same quad. To avoid
887 * ports using the same timestamp index, logically break the block of
888 * registers into chunks based on the port number.
891 ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
893 tx->block = port / ICE_PORTS_PER_QUAD;
894 tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X;
895 tx->len = INDEX_PER_PORT_E82X;
896 tx->verify_cached = 0;
898 return ice_ptp_alloc_tx_tracker(tx);
902 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
903 * @pf: Board private structure
904 * @tx: the Tx tracking structure to initialize
906 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
907 * port has its own block of timestamps, independent of the other ports.
910 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
912 tx->block = pf->hw.port_info->lport;
914 tx->len = INDEX_PER_PORT_E810;
915 /* The E810 PHY does not provide a timestamp ready bitmap. Instead,
916 * verify new timestamps against cached copy of the last read
919 tx->verify_cached = 1;
921 return ice_ptp_alloc_tx_tracker(tx);
925 * ice_ptp_update_cached_phctime - Update the cached PHC time values
926 * @pf: Board specific private structure
928 * This function updates the system time values which are cached in the PF
929 * structure and the Rx rings.
931 * This function must be called periodically to ensure that the cached value
932 * is never more than 2 seconds old.
934 * Note that the cached copy in the PF PTP structure is always updated, even
935 * if we can't update the copy in the Rx rings.
938 * * 0 - OK, successfully updated
939 * * -EAGAIN - PF was busy, need to reschedule the update
941 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
943 struct device *dev = ice_pf_to_dev(pf);
944 unsigned long update_before;
948 update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
949 if (pf->ptp.cached_phc_time &&
950 time_is_before_jiffies(update_before)) {
951 unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
953 dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
954 jiffies_to_msecs(time_taken));
955 pf->ptp.late_cached_phc_updates++;
958 /* Read the current PHC time */
959 systime = ice_ptp_read_src_clk_reg(pf, NULL);
961 /* Update the cached PHC time stored in the PF structure */
962 WRITE_ONCE(pf->ptp.cached_phc_time, systime);
963 WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
965 if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
968 ice_for_each_vsi(pf, i) {
969 struct ice_vsi *vsi = pf->vsi[i];
975 if (vsi->type != ICE_VSI_PF)
978 ice_for_each_rxq(vsi, j) {
979 if (!vsi->rx_rings[j])
981 WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
984 clear_bit(ICE_CFG_BUSY, pf->state);
990 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
991 * @pf: Board specific private structure
993 * This function must be called when the cached PHC time is no longer valid,
994 * such as after a time adjustment. It marks any currently outstanding Tx
995 * timestamps as stale and updates the cached PHC time for both the PF and Rx
998 * If updating the PHC time cannot be done immediately, a warning message is
999 * logged and the work item is scheduled immediately to minimize the window
1000 * with a wrong cached timestamp.
1002 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1004 struct device *dev = ice_pf_to_dev(pf);
1007 /* Update the cached PHC time immediately if possible, otherwise
1008 * schedule the work item to execute soon.
1010 err = ice_ptp_update_cached_phctime(pf);
1012 /* If another thread is updating the Rx rings, we won't
1013 * properly reset them here. This could lead to reporting of
1014 * invalid timestamps, but there isn't much we can do.
1016 dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1019 /* Queue the work item to update the Rx rings when possible */
1020 kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1021 msecs_to_jiffies(10));
1024 /* Mark any outstanding timestamps as stale, since they might have
1025 * been captured in hardware before the time update. This could lead
1026 * to us extending them with the wrong cached value resulting in
1027 * incorrect timestamp values.
1029 ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1033 * ice_ptp_read_time - Read the time from the device
1034 * @pf: Board private structure
1035 * @ts: timespec structure to hold the current time value
1036 * @sts: Optional parameter for holding a pair of system timestamps from
1037 * the system clock. Will be ignored if NULL is given.
1039 * This function reads the source clock registers and stores them in a timespec.
1040 * However, since the registers are 64 bits of nanoseconds, we must convert the
1041 * result to a timespec before we can return.
1044 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
1045 struct ptp_system_timestamp *sts)
1047 u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
1049 *ts = ns_to_timespec64(time_ns);
1053 * ice_ptp_write_init - Set PHC time to provided value
1054 * @pf: Board private structure
1055 * @ts: timespec structure that holds the new time value
1057 * Set the PHC time to the specified time provided in the timespec.
1059 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1061 u64 ns = timespec64_to_ns(ts);
1062 struct ice_hw *hw = &pf->hw;
1064 return ice_ptp_init_time(hw, ns);
1068 * ice_ptp_write_adj - Adjust PHC clock time atomically
1069 * @pf: Board private structure
1070 * @adj: Adjustment in nanoseconds
1072 * Perform an atomic adjustment of the PHC time by the specified number of
1075 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1077 struct ice_hw *hw = &pf->hw;
1079 return ice_ptp_adj_clock(hw, adj);
1083 * ice_base_incval - Get base timer increment value
1084 * @pf: Board private structure
1086 * Look up the base timer increment value for this device. The base increment
1087 * value is used to define the nominal clock tick rate. This increment value
1088 * is programmed during device initialization. It is also used as the basis
1089 * for calculating adjustments using scaled_ppm.
1091 static u64 ice_base_incval(struct ice_pf *pf)
1093 struct ice_hw *hw = &pf->hw;
1096 if (ice_is_e810(hw))
1097 incval = ICE_PTP_NOMINAL_INCVAL_E810;
1098 else if (ice_e82x_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
1099 incval = ice_e82x_nominal_incval(ice_e82x_time_ref(hw));
1101 incval = UNKNOWN_INCVAL_E82X;
1103 dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1110 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1111 * @port: PTP port for which Tx FIFO is checked
1113 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1115 int quad = port->port_num / ICE_PORTS_PER_QUAD;
1116 int offs = port->port_num % ICE_PORTS_PER_QUAD;
1122 pf = ptp_port_to_pf(port);
1125 if (port->tx_fifo_busy_cnt == FIFO_OK)
1128 /* need to read FIFO state */
1129 if (offs == 0 || offs == 1)
1130 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS,
1133 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS,
1137 dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1138 port->port_num, err);
1143 phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
1145 phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
1147 if (phy_sts & FIFO_EMPTY) {
1148 port->tx_fifo_busy_cnt = FIFO_OK;
1152 port->tx_fifo_busy_cnt++;
1154 dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1155 port->tx_fifo_busy_cnt, port->port_num);
1157 if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1158 dev_dbg(ice_pf_to_dev(pf),
1159 "Port %d Tx FIFO still not empty; resetting quad %d\n",
1160 port->port_num, quad);
1161 ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
1162 port->tx_fifo_busy_cnt = FIFO_OK;
1170 * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1171 * @work: Pointer to the kthread_work structure for this task
1173 * Check whether hardware has completed measuring the Tx and Rx offset values
1174 * used to configure and enable vernier timestamp calibration.
1176 * Once the offset in either direction is measured, configure the associated
1177 * registers with the calibrated offset values and enable timestamping. The Tx
1178 * and Rx directions are configured independently as soon as their associated
1179 * offsets are known.
1181 * This function reschedules itself until both Tx and Rx calibration have
1184 static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1186 struct ice_ptp_port *port;
1192 port = container_of(work, struct ice_ptp_port, ov_work.work);
1193 pf = ptp_port_to_pf(port);
1196 if (ice_is_reset_in_progress(pf->state)) {
1197 /* wait for device driver to complete reset */
1198 kthread_queue_delayed_work(pf->ptp.kworker,
1200 msecs_to_jiffies(100));
1204 tx_err = ice_ptp_check_tx_fifo(port);
1206 tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num);
1207 rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num);
1208 if (tx_err || rx_err) {
1209 /* Tx and/or Rx offset not yet configured, try again later */
1210 kthread_queue_delayed_work(pf->ptp.kworker,
1212 msecs_to_jiffies(100));
1218 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1219 * @ptp_port: PTP port to stop
1222 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1224 struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1225 u8 port = ptp_port->port_num;
1226 struct ice_hw *hw = &pf->hw;
1229 if (ice_is_e810(hw))
1232 mutex_lock(&ptp_port->ps_lock);
1234 kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1236 err = ice_stop_phy_timer_e82x(hw, port, true);
1238 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1241 mutex_unlock(&ptp_port->ps_lock);
1247 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1248 * @ptp_port: PTP port for which the PHY start is set
1250 * Start the PHY timestamping block, and initiate Vernier timestamping
1251 * calibration. If timestamping cannot be calibrated (such as if link is down)
1252 * then disable the timestamping block instead.
1255 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1257 struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1258 u8 port = ptp_port->port_num;
1259 struct ice_hw *hw = &pf->hw;
1262 if (ice_is_e810(hw))
1265 if (!ptp_port->link_up)
1266 return ice_ptp_port_phy_stop(ptp_port);
1268 mutex_lock(&ptp_port->ps_lock);
1270 kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1272 /* temporarily disable Tx timestamps while calibrating PHY offset */
1273 spin_lock(&ptp_port->tx.lock);
1274 ptp_port->tx.calibrating = true;
1275 spin_unlock(&ptp_port->tx.lock);
1276 ptp_port->tx_fifo_busy_cnt = 0;
1278 /* Start the PHY timer in Vernier mode */
1279 err = ice_start_phy_timer_e82x(hw, port);
1283 /* Enable Tx timestamps right away */
1284 spin_lock(&ptp_port->tx.lock);
1285 ptp_port->tx.calibrating = false;
1286 spin_unlock(&ptp_port->tx.lock);
1288 kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
1292 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1295 mutex_unlock(&ptp_port->ps_lock);
1301 * ice_ptp_link_change - Reconfigure PTP after link status change
1302 * @pf: Board private structure
1303 * @port: Port for which the PHY start is set
1304 * @linkup: Link is up or down
1306 void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1308 struct ice_ptp_port *ptp_port;
1309 struct ice_hw *hw = &pf->hw;
1311 if (!test_bit(ICE_FLAG_PTP, pf->flags))
1314 if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS))
1317 ptp_port = &pf->ptp.port;
1318 if (WARN_ON_ONCE(ptp_port->port_num != port))
1321 /* Update cached link status for this port immediately */
1322 ptp_port->link_up = linkup;
1324 switch (hw->phy_model) {
1326 /* Do not reconfigure E810 PHY */
1329 ice_ptp_port_phy_restart(ptp_port);
1332 dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
1337 * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1338 * @pf: PF private structure
1339 * @ena: bool value to enable or disable interrupt
1340 * @threshold: Minimum number of packets at which intr is triggered
1342 * Utility function to enable or disable Tx timestamp interrupt and threshold
1344 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1346 struct ice_hw *hw = &pf->hw;
1351 ice_ptp_reset_ts_memory(hw);
1353 for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1354 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1360 val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1361 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1362 val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
1363 Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
1365 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1368 err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1375 dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1381 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1382 * @pf: Board private structure
1384 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1386 ice_ptp_port_phy_restart(&pf->ptp.port);
1390 * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
1391 * @pf: Board private structure
1393 static void ice_ptp_restart_all_phy(struct ice_pf *pf)
1395 struct list_head *entry;
1397 list_for_each(entry, &pf->ptp.ports_owner.ports) {
1398 struct ice_ptp_port *port = list_entry(entry,
1399 struct ice_ptp_port,
1403 ice_ptp_port_phy_restart(port);
1408 * ice_ptp_adjfine - Adjust clock increment rate
1409 * @info: the driver's PTP info structure
1410 * @scaled_ppm: Parts per million with 16-bit fractional field
1412 * Adjust the frequency of the clock by the indicated scaled ppm from the
1415 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1417 struct ice_pf *pf = ptp_info_to_pf(info);
1418 struct ice_hw *hw = &pf->hw;
1422 incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1423 err = ice_ptp_write_incval_locked(hw, incval);
1425 dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1434 * ice_ptp_extts_event - Process PTP external clock event
1435 * @pf: Board private structure
1437 void ice_ptp_extts_event(struct ice_pf *pf)
1439 struct ptp_clock_event event;
1440 struct ice_hw *hw = &pf->hw;
1444 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1445 /* Event time is captured by one of the two matched registers
1446 * GLTSYN_EVNT_L: 32 LSB of sampled time event
1447 * GLTSYN_EVNT_H: 32 MSB of sampled time event
1448 * Event is defined in GLTSYN_EVNT_0 register
1450 for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1451 /* Check if channel is enabled */
1452 if (pf->ptp.ext_ts_irq & (1 << chan)) {
1453 lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1454 hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1455 event.timestamp = (((u64)hi) << 32) | lo;
1456 event.type = PTP_CLOCK_EXTTS;
1460 ptp_clock_event(pf->ptp.clock, &event);
1461 pf->ptp.ext_ts_irq &= ~(1 << chan);
1467 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1468 * @pf: Board private structure
1469 * @ena: true to enable; false to disable
1470 * @chan: GPIO channel (0-3)
1471 * @gpio_pin: GPIO pin
1472 * @extts_flags: request flags from the ptp_extts_request.flags
1475 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1476 unsigned int extts_flags)
1478 u32 func, aux_reg, gpio_reg, irq_reg;
1479 struct ice_hw *hw = &pf->hw;
1482 if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1485 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1487 irq_reg = rd32(hw, PFINT_OICR_ENA);
1490 /* Enable the interrupt */
1491 irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1492 aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1494 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0)
1495 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1)
1497 /* set event level to requested edge */
1498 if (extts_flags & PTP_FALLING_EDGE)
1499 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1500 if (extts_flags & PTP_RISING_EDGE)
1501 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1503 /* Write GPIO CTL reg.
1504 * 0x1 is input sampled by EVENT register(channel)
1505 * + num_in_channels * tmr_idx
1507 func = 1 + chan + (tmr_idx * 3);
1508 gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
1509 GLGEN_GPIO_CTL_PIN_FUNC_M);
1510 pf->ptp.ext_ts_chan |= (1 << chan);
1512 /* clear the values we set to reset defaults */
1515 pf->ptp.ext_ts_chan &= ~(1 << chan);
1516 if (!pf->ptp.ext_ts_chan)
1517 irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1520 wr32(hw, PFINT_OICR_ENA, irq_reg);
1521 wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1522 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1528 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1529 * @pf: Board private structure
1530 * @chan: GPIO channel (0-3)
1531 * @config: desired periodic clk configuration. NULL will disable channel
1532 * @store: If set to true the values will be stored
1534 * Configure the internal clock generator modules to generate the clock wave of
1537 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1538 struct ice_perout_channel *config, bool store)
1540 u64 current_time, period, start_time, phase;
1541 struct ice_hw *hw = &pf->hw;
1542 u32 func, val, gpio_pin;
1545 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1547 /* 0. Reset mode & out_en in AUX_OUT */
1548 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1550 /* If we're disabling the output, clear out CLKO and TGT and keep
1553 if (!config || !config->ena) {
1554 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1555 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1556 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1558 val = GLGEN_GPIO_CTL_PIN_DIR_M;
1559 gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1560 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1562 /* Store the value if requested */
1564 memset(&pf->ptp.perout_channels[chan], 0,
1565 sizeof(struct ice_perout_channel));
1569 period = config->period;
1570 start_time = config->start_time;
1571 div64_u64_rem(start_time, period, &phase);
1572 gpio_pin = config->gpio_pin;
1574 /* 1. Write clkout with half of required period value */
1576 dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1582 /* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1585 if (period <= MIN_PULSE || period > U32_MAX) {
1586 dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1591 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1593 /* Allow time for programming before start_time is hit */
1594 current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1596 /* if start time is in the past start the timer at the nearest second
1599 if (start_time < current_time)
1600 start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1601 NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1603 if (ice_is_e810(hw))
1604 start_time -= E810_OUT_PROP_DELAY_NS;
1606 start_time -= ice_e82x_pps_delay(ice_e82x_time_ref(hw));
1608 /* 2. Write TARGET time */
1609 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1610 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1612 /* 3. Write AUX_OUT register */
1613 val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1614 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1616 /* 4. write GPIO CTL reg */
1617 func = 8 + chan + (tmr_idx * 4);
1618 val = GLGEN_GPIO_CTL_PIN_DIR_M |
1619 ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
1620 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1622 /* Store the value if requested */
1624 memcpy(&pf->ptp.perout_channels[chan], config,
1625 sizeof(struct ice_perout_channel));
1626 pf->ptp.perout_channels[chan].start_time = phase;
1631 dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1636 * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1637 * @pf: pointer to the PF structure
1639 * Disable all currently configured clock outputs. This is necessary before
1640 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1641 * re-enable the clocks again.
1643 static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1647 for (i = 0; i < pf->ptp.info.n_per_out; i++)
1648 if (pf->ptp.perout_channels[i].ena)
1649 ice_ptp_cfg_clkout(pf, i, NULL, false);
1653 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1654 * @pf: pointer to the PF structure
1656 * Enable all currently configured clock outputs. Use this after
1657 * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1658 * their configuration.
1660 static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1664 for (i = 0; i < pf->ptp.info.n_per_out; i++)
1665 if (pf->ptp.perout_channels[i].ena)
1666 ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1671 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1672 * @info: the driver's PTP info structure
1673 * @rq: The requested feature to change
1674 * @on: Enable/disable flag
1677 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1678 struct ptp_clock_request *rq, int on)
1680 struct ice_pf *pf = ptp_info_to_pf(info);
1681 struct ice_perout_channel clk_cfg = {0};
1682 bool sma_pres = false;
1687 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1691 case PTP_CLK_REQ_PEROUT:
1692 chan = rq->perout.index;
1694 if (chan == ice_pin_desc_e810t[SMA1].chan)
1695 clk_cfg.gpio_pin = GPIO_20;
1696 else if (chan == ice_pin_desc_e810t[SMA2].chan)
1697 clk_cfg.gpio_pin = GPIO_22;
1700 } else if (ice_is_e810t(&pf->hw)) {
1702 clk_cfg.gpio_pin = GPIO_20;
1704 clk_cfg.gpio_pin = GPIO_22;
1705 } else if (chan == PPS_CLK_GEN_CHAN) {
1706 clk_cfg.gpio_pin = PPS_PIN_INDEX;
1708 clk_cfg.gpio_pin = chan;
1711 clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1712 rq->perout.period.nsec);
1713 clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1714 rq->perout.start.nsec);
1717 err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1719 case PTP_CLK_REQ_EXTTS:
1720 chan = rq->extts.index;
1722 if (chan < ice_pin_desc_e810t[SMA2].chan)
1726 } else if (ice_is_e810t(&pf->hw)) {
1735 err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1746 * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC
1747 * @info: the driver's PTP info structure
1748 * @rq: The requested feature to change
1749 * @on: Enable/disable flag
1751 static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info,
1752 struct ptp_clock_request *rq, int on)
1754 struct ice_pf *pf = ptp_info_to_pf(info);
1755 struct ice_perout_channel clk_cfg = {0};
1759 case PTP_CLK_REQ_PPS:
1760 clk_cfg.gpio_pin = PPS_PIN_INDEX;
1761 clk_cfg.period = NSEC_PER_SEC;
1764 err = ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true);
1766 case PTP_CLK_REQ_EXTTS:
1767 err = ice_ptp_cfg_extts(pf, !!on, rq->extts.index,
1768 TIME_SYNC_PIN_INDEX, rq->extts.flags);
1778 * ice_ptp_gettimex64 - Get the time of the clock
1779 * @info: the driver's PTP info structure
1780 * @ts: timespec64 structure to hold the current time value
1781 * @sts: Optional parameter for holding a pair of system timestamps from
1782 * the system clock. Will be ignored if NULL is given.
1784 * Read the device clock and return the correct value on ns, after converting it
1785 * into a timespec struct.
1788 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1789 struct ptp_system_timestamp *sts)
1791 struct ice_pf *pf = ptp_info_to_pf(info);
1792 struct ice_hw *hw = &pf->hw;
1794 if (!ice_ptp_lock(hw)) {
1795 dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1799 ice_ptp_read_time(pf, ts, sts);
1806 * ice_ptp_settime64 - Set the time of the clock
1807 * @info: the driver's PTP info structure
1808 * @ts: timespec64 structure that holds the new time value
1810 * Set the device clock to the user input value. The conversion from timespec
1811 * to ns happens in the write function.
1814 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1816 struct ice_pf *pf = ptp_info_to_pf(info);
1817 struct timespec64 ts64 = *ts;
1818 struct ice_hw *hw = &pf->hw;
1821 /* For Vernier mode, we need to recalibrate after new settime
1822 * Start with disabling timestamp block
1824 if (pf->ptp.port.link_up)
1825 ice_ptp_port_phy_stop(&pf->ptp.port);
1827 if (!ice_ptp_lock(hw)) {
1832 /* Disable periodic outputs */
1833 ice_ptp_disable_all_clkout(pf);
1835 err = ice_ptp_write_init(pf, &ts64);
1839 ice_ptp_reset_cached_phctime(pf);
1841 /* Reenable periodic outputs */
1842 ice_ptp_enable_all_clkout(pf);
1844 /* Recalibrate and re-enable timestamp blocks for E822/E823 */
1845 if (hw->phy_model == ICE_PHY_E82X)
1846 ice_ptp_restart_all_phy(pf);
1849 dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1857 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1858 * @info: the driver's PTP info structure
1859 * @delta: Offset in nanoseconds to adjust the time by
1861 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1863 struct timespec64 now, then;
1866 then = ns_to_timespec64(delta);
1867 ret = ice_ptp_gettimex64(info, &now, NULL);
1870 now = timespec64_add(now, then);
1872 return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1876 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1877 * @info: the driver's PTP info structure
1878 * @delta: Offset in nanoseconds to adjust the time by
1880 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
1882 struct ice_pf *pf = ptp_info_to_pf(info);
1883 struct ice_hw *hw = &pf->hw;
1887 dev = ice_pf_to_dev(pf);
1889 /* Hardware only supports atomic adjustments using signed 32-bit
1890 * integers. For any adjustment outside this range, perform
1891 * a non-atomic get->adjust->set flow.
1893 if (delta > S32_MAX || delta < S32_MIN) {
1894 dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
1895 return ice_ptp_adjtime_nonatomic(info, delta);
1898 if (!ice_ptp_lock(hw)) {
1899 dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
1903 /* Disable periodic outputs */
1904 ice_ptp_disable_all_clkout(pf);
1906 err = ice_ptp_write_adj(pf, delta);
1908 /* Reenable periodic outputs */
1909 ice_ptp_enable_all_clkout(pf);
1914 dev_err(dev, "PTP failed to adjust time, err %d\n", err);
1918 ice_ptp_reset_cached_phctime(pf);
1923 #ifdef CONFIG_ICE_HWTS
1925 * ice_ptp_get_syncdevicetime - Get the cross time stamp info
1926 * @device: Current device time
1927 * @system: System counter value read synchronously with device time
1928 * @ctx: Context provided by timekeeping code
1930 * Read device and system (ART) clock simultaneously and return the corrected
1931 * clock values in ns.
1934 ice_ptp_get_syncdevicetime(ktime_t *device,
1935 struct system_counterval_t *system,
1938 struct ice_pf *pf = (struct ice_pf *)ctx;
1939 struct ice_hw *hw = &pf->hw;
1940 u32 hh_lock, hh_art_ctl;
1943 #define MAX_HH_HW_LOCK_TRIES 5
1944 #define MAX_HH_CTL_LOCK_TRIES 100
1946 for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) {
1947 /* Get the HW lock */
1948 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1949 if (hh_lock & PFHH_SEM_BUSY_M) {
1950 usleep_range(10000, 15000);
1955 if (hh_lock & PFHH_SEM_BUSY_M) {
1956 dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
1960 /* Program cmd to master timer */
1961 ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
1963 /* Start the ART and device clock sync sequence */
1964 hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1965 hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
1966 wr32(hw, GLHH_ART_CTL, hh_art_ctl);
1968 for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) {
1969 /* Wait for sync to complete */
1970 hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1971 if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
1975 u32 hh_ts_lo, hh_ts_hi, tmr_idx;
1978 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
1980 hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
1981 hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
1982 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1983 *system = convert_art_ns_to_tsc(hh_ts);
1984 /* Read Device source clock time */
1985 hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
1986 hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
1987 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1988 *device = ns_to_ktime(hh_ts);
1993 /* Clear the master timer */
1994 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
1996 /* Release HW lock */
1997 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1998 hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
1999 wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2001 if (i == MAX_HH_CTL_LOCK_TRIES)
2008 * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp
2009 * @info: the driver's PTP info structure
2010 * @cts: The memory to fill the cross timestamp info
2012 * Capture a cross timestamp between the ART and the device PTP hardware
2013 * clock. Fill the cross timestamp information and report it back to the
2016 * This is only valid for E822 and E823 devices which have support for
2017 * generating the cross timestamp via PCIe PTM.
2019 * In order to correctly correlate the ART timestamp back to the TSC time, the
2020 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2023 ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info,
2024 struct system_device_crosststamp *cts)
2026 struct ice_pf *pf = ptp_info_to_pf(info);
2028 return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2031 #endif /* CONFIG_ICE_HWTS */
2034 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2035 * @pf: Board private structure
2038 * Copy the timestamping config to user buffer
2040 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2042 struct hwtstamp_config *config;
2044 if (!test_bit(ICE_FLAG_PTP, pf->flags))
2047 config = &pf->ptp.tstamp_config;
2049 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2054 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2055 * @pf: Board private structure
2056 * @config: hwtstamp settings requested or saved
2059 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2061 switch (config->tx_type) {
2062 case HWTSTAMP_TX_OFF:
2063 pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
2065 case HWTSTAMP_TX_ON:
2066 pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
2072 switch (config->rx_filter) {
2073 case HWTSTAMP_FILTER_NONE:
2074 pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2076 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2077 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2078 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2079 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2080 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2081 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2082 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2083 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2084 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2085 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2086 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2087 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2088 case HWTSTAMP_FILTER_NTP_ALL:
2089 case HWTSTAMP_FILTER_ALL:
2090 pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
2096 /* Immediately update the device timestamping mode */
2097 ice_ptp_restore_timestamp_mode(pf);
2103 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2104 * @pf: Board private structure
2107 * Get the user config and store it
2109 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2111 struct hwtstamp_config config;
2114 if (!test_bit(ICE_FLAG_PTP, pf->flags))
2117 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2120 err = ice_ptp_set_timestamp_mode(pf, &config);
2124 /* Return the actual configuration set */
2125 config = pf->ptp.tstamp_config;
2127 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2132 * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns
2133 * @rx_desc: Receive descriptor
2134 * @pkt_ctx: Packet context to get the cached time
2136 * The driver receives a notification in the receive descriptor with timestamp.
2138 u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
2139 const struct ice_pkt_ctx *pkt_ctx)
2141 u64 ts_ns, cached_time;
2144 if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2147 cached_time = READ_ONCE(pkt_ctx->cached_phctime);
2149 /* Do not report a timestamp if we don't have a cached PHC time */
2153 /* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2154 * PHC value, rather than accessing the PF. This also allows us to
2155 * simply pass the upper 32bits of nanoseconds directly. Calling
2156 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2159 ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2160 ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2166 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
2167 * @pf: pointer to the PF structure
2168 * @info: PTP clock info structure
2170 * Disable the OS access to the SMA pins. Called to clear out the OS
2171 * indications of pin support when we fail to setup the E810-T SMA control
2175 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2177 struct device *dev = ice_pf_to_dev(pf);
2179 dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
2181 info->enable = NULL;
2182 info->verify = NULL;
2185 info->n_per_out = 0;
2189 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
2190 * @pf: pointer to the PF structure
2191 * @info: PTP clock info structure
2193 * Finish setting up the SMA pins by allocating pin_config, and setting it up
2194 * according to the current status of the SMA. On failure, disable all of the
2195 * extended SMA pin support.
2198 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2200 struct device *dev = ice_pf_to_dev(pf);
2203 /* Allocate memory for kernel pins interface */
2204 info->pin_config = devm_kcalloc(dev, info->n_pins,
2205 sizeof(*info->pin_config), GFP_KERNEL);
2206 if (!info->pin_config) {
2207 ice_ptp_disable_sma_pins_e810t(pf, info);
2211 /* Read current SMA status */
2212 err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
2214 ice_ptp_disable_sma_pins_e810t(pf, info);
2218 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
2219 * @pf: pointer to the PF instance
2220 * @info: PTP clock capabilities
2223 ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2225 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2226 info->n_ext_ts = N_EXT_TS_E810;
2227 info->n_per_out = N_PER_OUT_E810T;
2228 info->n_pins = NUM_PTP_PINS_E810T;
2229 info->verify = ice_verify_pin_e810t;
2231 /* Complete setup of the SMA pins */
2232 ice_ptp_setup_sma_pins_e810t(pf, info);
2233 } else if (ice_is_e810t(&pf->hw)) {
2234 info->n_ext_ts = N_EXT_TS_NO_SMA_E810T;
2235 info->n_per_out = N_PER_OUT_NO_SMA_E810T;
2237 info->n_per_out = N_PER_OUT_E810;
2238 info->n_ext_ts = N_EXT_TS_E810;
2243 * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs
2244 * @pf: pointer to the PF instance
2245 * @info: PTP clock capabilities
2248 ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2251 info->n_per_out = 0;
2256 * ice_ptp_set_funcs_e82x - Set specialized functions for E82x support
2257 * @pf: Board private structure
2258 * @info: PTP info to fill
2260 * Assign functions to the PTP capabiltiies structure for E82x devices.
2261 * Functions which operate across all device families should be set directly
2262 * in ice_ptp_set_caps. Only add functions here which are distinct for E82x
2266 ice_ptp_set_funcs_e82x(struct ice_pf *pf, struct ptp_clock_info *info)
2268 #ifdef CONFIG_ICE_HWTS
2269 if (boot_cpu_has(X86_FEATURE_ART) &&
2270 boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2271 info->getcrosststamp = ice_ptp_getcrosststamp_e82x;
2272 #endif /* CONFIG_ICE_HWTS */
2276 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2277 * @pf: Board private structure
2278 * @info: PTP info to fill
2280 * Assign functions to the PTP capabiltiies structure for E810 devices.
2281 * Functions which operate across all device families should be set directly
2282 * in ice_ptp_set_caps. Only add functions here which are distinct for e810
2286 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2288 info->enable = ice_ptp_gpio_enable_e810;
2289 ice_ptp_setup_pins_e810(pf, info);
2293 * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support
2294 * @pf: Board private structure
2295 * @info: PTP info to fill
2297 * Assign functions to the PTP capabiltiies structure for E823 devices.
2298 * Functions which operate across all device families should be set directly
2299 * in ice_ptp_set_caps. Only add functions here which are distinct for e823
2303 ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2305 ice_ptp_set_funcs_e82x(pf, info);
2307 info->enable = ice_ptp_gpio_enable_e823;
2308 ice_ptp_setup_pins_e823(pf, info);
2312 * ice_ptp_set_caps - Set PTP capabilities
2313 * @pf: Board private structure
2315 static void ice_ptp_set_caps(struct ice_pf *pf)
2317 struct ptp_clock_info *info = &pf->ptp.info;
2318 struct device *dev = ice_pf_to_dev(pf);
2320 snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2321 dev_driver_string(dev), dev_name(dev));
2322 info->owner = THIS_MODULE;
2323 info->max_adj = 100000000;
2324 info->adjtime = ice_ptp_adjtime;
2325 info->adjfine = ice_ptp_adjfine;
2326 info->gettimex64 = ice_ptp_gettimex64;
2327 info->settime64 = ice_ptp_settime64;
2329 if (ice_is_e810(&pf->hw))
2330 ice_ptp_set_funcs_e810(pf, info);
2331 else if (ice_is_e823(&pf->hw))
2332 ice_ptp_set_funcs_e823(pf, info);
2334 ice_ptp_set_funcs_e82x(pf, info);
2338 * ice_ptp_create_clock - Create PTP clock device for userspace
2339 * @pf: Board private structure
2341 * This function creates a new PTP clock device. It only creates one if we
2342 * don't already have one. Will return error if it can't create one, but success
2343 * if we already have a device. Should be used by ice_ptp_init to create clock
2344 * initially, and prevent global resets from creating new clock devices.
2346 static long ice_ptp_create_clock(struct ice_pf *pf)
2348 struct ptp_clock_info *info;
2351 /* No need to create a clock device if we already have one */
2355 ice_ptp_set_caps(pf);
2357 info = &pf->ptp.info;
2358 dev = ice_pf_to_dev(pf);
2360 /* Attempt to register the clock before enabling the hardware. */
2361 pf->ptp.clock = ptp_clock_register(info, dev);
2362 if (IS_ERR(pf->ptp.clock)) {
2363 dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
2364 return PTR_ERR(pf->ptp.clock);
2371 * ice_ptp_request_ts - Request an available Tx timestamp index
2372 * @tx: the PTP Tx timestamp tracker to request from
2373 * @skb: the SKB to associate with this timestamp request
2375 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2379 spin_lock(&tx->lock);
2381 /* Check that this tracker is accepting new timestamp requests */
2382 if (!ice_ptp_is_tx_tracker_up(tx)) {
2383 spin_unlock(&tx->lock);
2387 /* Find and set the first available index */
2388 idx = find_first_zero_bit(tx->in_use, tx->len);
2389 if (idx < tx->len) {
2390 /* We got a valid index that no other thread could have set. Store
2391 * a reference to the skb and the start time to allow discarding old
2394 set_bit(idx, tx->in_use);
2395 clear_bit(idx, tx->stale);
2396 tx->tstamps[idx].start = jiffies;
2397 tx->tstamps[idx].skb = skb_get(skb);
2398 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2399 ice_trace(tx_tstamp_request, skb, idx);
2402 spin_unlock(&tx->lock);
2404 /* return the appropriate PHY timestamp register index, -1 if no
2405 * indexes were available.
2410 return idx + tx->offset;
2414 * ice_ptp_process_ts - Process the PTP Tx timestamps
2415 * @pf: Board private structure
2417 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2418 * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2420 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2422 switch (pf->ptp.tx_interrupt_mode) {
2423 case ICE_PTP_TX_INTERRUPT_NONE:
2424 /* This device has the clock owner handle timestamps for it */
2425 return ICE_TX_TSTAMP_WORK_DONE;
2426 case ICE_PTP_TX_INTERRUPT_SELF:
2427 /* This device handles its own timestamps */
2428 return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2429 case ICE_PTP_TX_INTERRUPT_ALL:
2430 /* This device handles timestamps for all ports */
2431 return ice_ptp_tx_tstamp_owner(pf);
2433 WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
2434 pf->ptp.tx_interrupt_mode);
2435 return ICE_TX_TSTAMP_WORK_DONE;
2440 * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt
2441 * @pf: Board private structure
2443 * The device PHY issues Tx timestamp interrupts to the driver for processing
2444 * timestamp data from the PHY. It will not interrupt again until all
2445 * current timestamp data is read. In rare circumstances, it is possible that
2446 * the driver fails to read all outstanding data.
2448 * To avoid getting permanently stuck, periodically check if the PHY has
2449 * outstanding timestamp data. If so, trigger an interrupt from software to
2450 * process this data.
2452 static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf)
2454 struct device *dev = ice_pf_to_dev(pf);
2455 struct ice_hw *hw = &pf->hw;
2456 bool trigger_oicr = false;
2459 if (ice_is_e810(hw))
2462 if (!ice_pf_src_tmr_owned(pf))
2465 for (i = 0; i < ICE_MAX_QUAD; i++) {
2469 err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
2470 if (!err && tstamp_ready) {
2471 trigger_oicr = true;
2477 /* Trigger a software interrupt, to ensure this data
2480 dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n");
2482 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
2487 static void ice_ptp_periodic_work(struct kthread_work *work)
2489 struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2490 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2493 if (!test_bit(ICE_FLAG_PTP, pf->flags))
2496 err = ice_ptp_update_cached_phctime(pf);
2498 ice_ptp_maybe_trigger_tx_interrupt(pf);
2500 /* Run twice a second or reschedule if phc update failed */
2501 kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2502 msecs_to_jiffies(err ? 10 : 500));
2506 * ice_ptp_reset - Initialize PTP hardware clock support after reset
2507 * @pf: Board private structure
2509 void ice_ptp_reset(struct ice_pf *pf)
2511 struct ice_ptp *ptp = &pf->ptp;
2512 struct ice_hw *hw = &pf->hw;
2513 struct timespec64 ts;
2517 if (test_bit(ICE_PFR_REQ, pf->state) ||
2518 !ice_pf_src_tmr_owned(pf))
2521 err = ice_ptp_init_phc(hw);
2525 /* Acquire the global hardware lock */
2526 if (!ice_ptp_lock(hw)) {
2531 /* Write the increment time value to PHY and LAN */
2532 err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2538 /* Write the initial Time value to PHY and LAN using the cached PHC
2539 * time before the reset and time difference between stopping and
2540 * starting the clock.
2542 if (ptp->cached_phc_time) {
2543 time_diff = ktime_get_real_ns() - ptp->reset_time;
2544 ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2546 ts = ktime_to_timespec64(ktime_get_real());
2548 err = ice_ptp_write_init(pf, &ts);
2554 /* Release the global hardware lock */
2557 if (!ice_is_e810(hw)) {
2558 /* Enable quad interrupts */
2559 err = ice_ptp_tx_ena_intr(pf, true, itr);
2565 /* Init Tx structures */
2566 if (ice_is_e810(&pf->hw)) {
2567 err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2569 kthread_init_delayed_work(&ptp->port.ov_work,
2570 ice_ptp_wait_for_offsets);
2571 err = ice_ptp_init_tx_e82x(pf, &ptp->port.tx,
2572 ptp->port.port_num);
2577 set_bit(ICE_FLAG_PTP, pf->flags);
2579 /* Restart the PHY timestamping block */
2580 if (!test_bit(ICE_PFR_REQ, pf->state) &&
2581 ice_pf_src_tmr_owned(pf))
2582 ice_ptp_restart_all_phy(pf);
2584 /* Start periodic work going */
2585 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2587 dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2591 dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2595 * ice_ptp_aux_dev_to_aux_pf - Get auxiliary PF handle for the auxiliary device
2596 * @aux_dev: auxiliary device to get the auxiliary PF for
2598 static struct ice_pf *
2599 ice_ptp_aux_dev_to_aux_pf(struct auxiliary_device *aux_dev)
2601 struct ice_ptp_port *aux_port;
2602 struct ice_ptp *aux_ptp;
2604 aux_port = container_of(aux_dev, struct ice_ptp_port, aux_dev);
2605 aux_ptp = container_of(aux_port, struct ice_ptp, port);
2607 return container_of(aux_ptp, struct ice_pf, ptp);
2611 * ice_ptp_aux_dev_to_owner_pf - Get PF handle for the auxiliary device
2612 * @aux_dev: auxiliary device to get the PF for
2614 static struct ice_pf *
2615 ice_ptp_aux_dev_to_owner_pf(struct auxiliary_device *aux_dev)
2617 struct ice_ptp_port_owner *ports_owner;
2618 struct auxiliary_driver *aux_drv;
2619 struct ice_ptp *owner_ptp;
2621 if (!aux_dev->dev.driver)
2624 aux_drv = to_auxiliary_drv(aux_dev->dev.driver);
2625 ports_owner = container_of(aux_drv, struct ice_ptp_port_owner,
2627 owner_ptp = container_of(ports_owner, struct ice_ptp, ports_owner);
2628 return container_of(owner_ptp, struct ice_pf, ptp);
2632 * ice_ptp_auxbus_probe - Probe auxiliary devices
2633 * @aux_dev: PF's auxiliary device
2634 * @id: Auxiliary device ID
2636 static int ice_ptp_auxbus_probe(struct auxiliary_device *aux_dev,
2637 const struct auxiliary_device_id *id)
2639 struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2640 struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);
2642 if (WARN_ON(!owner_pf))
2645 INIT_LIST_HEAD(&aux_pf->ptp.port.list_member);
2646 mutex_lock(&owner_pf->ptp.ports_owner.lock);
2647 list_add(&aux_pf->ptp.port.list_member,
2648 &owner_pf->ptp.ports_owner.ports);
2649 mutex_unlock(&owner_pf->ptp.ports_owner.lock);
2655 * ice_ptp_auxbus_remove - Remove auxiliary devices from the bus
2656 * @aux_dev: PF's auxiliary device
2658 static void ice_ptp_auxbus_remove(struct auxiliary_device *aux_dev)
2660 struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2661 struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);
2663 mutex_lock(&owner_pf->ptp.ports_owner.lock);
2664 list_del(&aux_pf->ptp.port.list_member);
2665 mutex_unlock(&owner_pf->ptp.ports_owner.lock);
2669 * ice_ptp_auxbus_shutdown
2670 * @aux_dev: PF's auxiliary device
2672 static void ice_ptp_auxbus_shutdown(struct auxiliary_device *aux_dev)
2674 /* Doing nothing here, but handle to auxbus driver must be satisfied */
2678 * ice_ptp_auxbus_suspend
2679 * @aux_dev: PF's auxiliary device
2680 * @state: power management state indicator
2683 ice_ptp_auxbus_suspend(struct auxiliary_device *aux_dev, pm_message_t state)
2685 /* Doing nothing here, but handle to auxbus driver must be satisfied */
2690 * ice_ptp_auxbus_resume
2691 * @aux_dev: PF's auxiliary device
2693 static int ice_ptp_auxbus_resume(struct auxiliary_device *aux_dev)
2695 /* Doing nothing here, but handle to auxbus driver must be satisfied */
2700 * ice_ptp_auxbus_create_id_table - Create auxiliary device ID table
2701 * @pf: Board private structure
2702 * @name: auxiliary bus driver name
2704 static struct auxiliary_device_id *
2705 ice_ptp_auxbus_create_id_table(struct ice_pf *pf, const char *name)
2707 struct auxiliary_device_id *ids;
2709 /* Second id left empty to terminate the array */
2710 ids = devm_kcalloc(ice_pf_to_dev(pf), 2,
2711 sizeof(struct auxiliary_device_id), GFP_KERNEL);
2715 snprintf(ids[0].name, sizeof(ids[0].name), "ice.%s", name);
2721 * ice_ptp_register_auxbus_driver - Register PTP auxiliary bus driver
2722 * @pf: Board private structure
2724 static int ice_ptp_register_auxbus_driver(struct ice_pf *pf)
2726 struct auxiliary_driver *aux_driver;
2727 struct ice_ptp *ptp;
2733 dev = ice_pf_to_dev(pf);
2734 aux_driver = &ptp->ports_owner.aux_driver;
2735 INIT_LIST_HEAD(&ptp->ports_owner.ports);
2736 mutex_init(&ptp->ports_owner.lock);
2737 name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
2738 pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
2739 ice_get_ptp_src_clock_index(&pf->hw));
2741 aux_driver->name = name;
2742 aux_driver->shutdown = ice_ptp_auxbus_shutdown;
2743 aux_driver->suspend = ice_ptp_auxbus_suspend;
2744 aux_driver->remove = ice_ptp_auxbus_remove;
2745 aux_driver->resume = ice_ptp_auxbus_resume;
2746 aux_driver->probe = ice_ptp_auxbus_probe;
2747 aux_driver->id_table = ice_ptp_auxbus_create_id_table(pf, name);
2748 if (!aux_driver->id_table)
2751 err = auxiliary_driver_register(aux_driver);
2753 devm_kfree(dev, aux_driver->id_table);
2754 dev_err(dev, "Failed registering aux_driver, name <%s>\n",
2762 * ice_ptp_unregister_auxbus_driver - Unregister PTP auxiliary bus driver
2763 * @pf: Board private structure
2765 static void ice_ptp_unregister_auxbus_driver(struct ice_pf *pf)
2767 struct auxiliary_driver *aux_driver = &pf->ptp.ports_owner.aux_driver;
2769 auxiliary_driver_unregister(aux_driver);
2770 devm_kfree(ice_pf_to_dev(pf), aux_driver->id_table);
2772 mutex_destroy(&pf->ptp.ports_owner.lock);
2776 * ice_ptp_clock_index - Get the PTP clock index for this device
2777 * @pf: Board private structure
2779 * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
2782 int ice_ptp_clock_index(struct ice_pf *pf)
2784 struct auxiliary_device *aux_dev;
2785 struct ice_pf *owner_pf;
2786 struct ptp_clock *clock;
2788 aux_dev = &pf->ptp.port.aux_dev;
2789 owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2792 clock = owner_pf->ptp.clock;
2794 return clock ? ptp_clock_index(clock) : -1;
2798 * ice_ptp_prepare_for_reset - Prepare PTP for reset
2799 * @pf: Board private structure
2801 void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2803 struct ice_ptp *ptp = &pf->ptp;
2806 clear_bit(ICE_FLAG_PTP, pf->flags);
2808 /* Disable timestamping for both Tx and Rx */
2809 ice_ptp_disable_timestamp_mode(pf);
2811 kthread_cancel_delayed_work_sync(&ptp->work);
2813 if (test_bit(ICE_PFR_REQ, pf->state))
2816 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2818 /* Disable periodic outputs */
2819 ice_ptp_disable_all_clkout(pf);
2821 src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2823 /* Disable source clock */
2824 wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2826 /* Acquire PHC and system timer to restore after reset */
2827 ptp->reset_time = ktime_get_real_ns();
2831 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2832 * @pf: Board private structure
2834 * Setup and initialize a PTP clock device that represents the device hardware
2835 * clock. Save the clock index for other functions connected to the same
2836 * hardware resource.
2838 static int ice_ptp_init_owner(struct ice_pf *pf)
2840 struct ice_hw *hw = &pf->hw;
2841 struct timespec64 ts;
2844 err = ice_ptp_init_phc(hw);
2846 dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2851 /* Acquire the global hardware lock */
2852 if (!ice_ptp_lock(hw)) {
2857 /* Write the increment time value to PHY and LAN */
2858 err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2864 ts = ktime_to_timespec64(ktime_get_real());
2865 /* Write the initial Time value to PHY and LAN */
2866 err = ice_ptp_write_init(pf, &ts);
2872 /* Release the global hardware lock */
2875 if (!ice_is_e810(hw)) {
2876 /* Enable quad interrupts */
2877 err = ice_ptp_tx_ena_intr(pf, true, itr);
2882 /* Ensure we have a clock device */
2883 err = ice_ptp_create_clock(pf);
2887 err = ice_ptp_register_auxbus_driver(pf);
2889 dev_err(ice_pf_to_dev(pf), "Failed to register PTP auxbus driver");
2895 ptp_clock_unregister(pf->ptp.clock);
2897 pf->ptp.clock = NULL;
2903 * ice_ptp_init_work - Initialize PTP work threads
2904 * @pf: Board private structure
2905 * @ptp: PF PTP structure
2907 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
2909 struct kthread_worker *kworker;
2911 /* Initialize work functions */
2912 kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
2914 /* Allocate a kworker for handling work required for the ports
2915 * connected to the PTP hardware clock.
2917 kworker = kthread_create_worker(0, "ice-ptp-%s",
2918 dev_name(ice_pf_to_dev(pf)));
2919 if (IS_ERR(kworker))
2920 return PTR_ERR(kworker);
2922 ptp->kworker = kworker;
2924 /* Start periodic work going */
2925 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2931 * ice_ptp_init_port - Initialize PTP port structure
2932 * @pf: Board private structure
2933 * @ptp_port: PTP port structure
2935 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
2937 struct ice_hw *hw = &pf->hw;
2939 mutex_init(&ptp_port->ps_lock);
2941 switch (hw->phy_model) {
2943 return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
2945 kthread_init_delayed_work(&ptp_port->ov_work,
2946 ice_ptp_wait_for_offsets);
2948 return ice_ptp_init_tx_e82x(pf, &ptp_port->tx,
2949 ptp_port->port_num);
2956 * ice_ptp_release_auxbus_device
2957 * @dev: device that utilizes the auxbus
2959 static void ice_ptp_release_auxbus_device(struct device *dev)
2961 /* Doing nothing here, but handle to auxbux device must be satisfied */
2965 * ice_ptp_create_auxbus_device - Create PTP auxiliary bus device
2966 * @pf: Board private structure
2968 static int ice_ptp_create_auxbus_device(struct ice_pf *pf)
2970 struct auxiliary_device *aux_dev;
2971 struct ice_ptp *ptp;
2978 id = ptp->port.port_num;
2979 dev = ice_pf_to_dev(pf);
2981 aux_dev = &ptp->port.aux_dev;
2983 name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
2984 pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
2985 ice_get_ptp_src_clock_index(&pf->hw));
2987 aux_dev->name = name;
2989 aux_dev->dev.release = ice_ptp_release_auxbus_device;
2990 aux_dev->dev.parent = dev;
2992 err = auxiliary_device_init(aux_dev);
2996 err = auxiliary_device_add(aux_dev);
2998 auxiliary_device_uninit(aux_dev);
3004 dev_err(dev, "Failed to create PTP auxiliary bus device <%s>\n", name);
3005 devm_kfree(dev, name);
3010 * ice_ptp_remove_auxbus_device - Remove PTP auxiliary bus device
3011 * @pf: Board private structure
3013 static void ice_ptp_remove_auxbus_device(struct ice_pf *pf)
3015 struct auxiliary_device *aux_dev = &pf->ptp.port.aux_dev;
3017 auxiliary_device_delete(aux_dev);
3018 auxiliary_device_uninit(aux_dev);
3020 memset(aux_dev, 0, sizeof(*aux_dev));
3024 * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
3025 * @pf: Board private structure
3027 * Initialize the Tx timestamp interrupt mode for this device. For most device
3028 * types, each PF processes the interrupt and manages its own timestamps. For
3029 * E822-based devices, only the clock owner processes the timestamps. Other
3030 * PFs disable the interrupt and do not process their own timestamps.
3032 static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
3034 switch (pf->hw.phy_model) {
3036 /* E822 based PHY has the clock owner process the interrupt
3039 if (ice_pf_src_tmr_owned(pf))
3040 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
3042 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
3045 /* other PHY types handle their own Tx interrupt */
3046 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
3051 * ice_ptp_init - Initialize PTP hardware clock support
3052 * @pf: Board private structure
3054 * Set up the device for interacting with the PTP hardware clock for all
3055 * functions, both the function that owns the clock hardware, and the
3056 * functions connected to the clock hardware.
3058 * The clock owner will allocate and register a ptp_clock with the
3059 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
3060 * items used for asynchronous work such as Tx timestamps and periodic work.
3062 void ice_ptp_init(struct ice_pf *pf)
3064 struct ice_ptp *ptp = &pf->ptp;
3065 struct ice_hw *hw = &pf->hw;
3068 ice_ptp_init_phy_model(hw);
3070 ice_ptp_init_tx_interrupt_mode(pf);
3072 /* If this function owns the clock hardware, it must allocate and
3073 * configure the PTP clock device to represent it.
3075 if (ice_pf_src_tmr_owned(pf)) {
3076 err = ice_ptp_init_owner(pf);
3081 ptp->port.port_num = hw->pf_id;
3082 err = ice_ptp_init_port(pf, &ptp->port);
3086 /* Start the PHY timestamping block */
3087 ice_ptp_reset_phy_timestamping(pf);
3089 /* Configure initial Tx interrupt settings */
3090 ice_ptp_cfg_tx_interrupt(pf);
3092 set_bit(ICE_FLAG_PTP, pf->flags);
3093 err = ice_ptp_init_work(pf, ptp);
3097 err = ice_ptp_create_auxbus_device(pf);
3101 dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
3105 /* If we registered a PTP clock, release it */
3106 if (pf->ptp.clock) {
3107 ptp_clock_unregister(ptp->clock);
3108 pf->ptp.clock = NULL;
3110 clear_bit(ICE_FLAG_PTP, pf->flags);
3111 dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
3115 * ice_ptp_release - Disable the driver/HW support and unregister the clock
3116 * @pf: Board private structure
3118 * This function handles the cleanup work required from the initialization by
3119 * clearing out the important information and unregistering the clock
3121 void ice_ptp_release(struct ice_pf *pf)
3123 if (!test_bit(ICE_FLAG_PTP, pf->flags))
3126 /* Disable timestamping for both Tx and Rx */
3127 ice_ptp_disable_timestamp_mode(pf);
3129 ice_ptp_remove_auxbus_device(pf);
3131 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3133 clear_bit(ICE_FLAG_PTP, pf->flags);
3135 kthread_cancel_delayed_work_sync(&pf->ptp.work);
3137 ice_ptp_port_phy_stop(&pf->ptp.port);
3138 mutex_destroy(&pf->ptp.port.ps_lock);
3139 if (pf->ptp.kworker) {
3140 kthread_destroy_worker(pf->ptp.kworker);
3141 pf->ptp.kworker = NULL;
3147 /* Disable periodic outputs */
3148 ice_ptp_disable_all_clkout(pf);
3150 ptp_clock_unregister(pf->ptp.clock);
3151 pf->ptp.clock = NULL;
3153 ice_ptp_unregister_auxbus_driver(pf);
3155 dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");