]> Git Repo - J-linux.git/blob - drivers/gpu/drm/i915/gvt/cmd_parser.c
drm/i915/gvt: Support PPGTT table load command
[J-linux.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <[email protected]>
26  *    Zhiyuan Lv <[email protected]>
27  *
28  * Contributors:
29  *    Min He <[email protected]>
30  *    Ping Gao <[email protected]>
31  *    Tina Zhang <[email protected]>
32  *    Yulei Zhang <[email protected]>
33  *    Zhi Wang <[email protected]>
34  *
35  */
36
37 #include <linux/slab.h>
38
39 #include "i915_drv.h"
40 #include "gt/intel_ring.h"
41 #include "gvt.h"
42 #include "i915_pvinfo.h"
43 #include "trace.h"
44
45 #define INVALID_OP    (~0U)
46
47 #define OP_LEN_MI           9
48 #define OP_LEN_2D           10
49 #define OP_LEN_3D_MEDIA     16
50 #define OP_LEN_MFX_VC       16
51 #define OP_LEN_VEBOX        16
52
53 #define CMD_TYPE(cmd)   (((cmd) >> 29) & 7)
54
55 struct sub_op_bits {
56         int hi;
57         int low;
58 };
59 struct decode_info {
60         const char *name;
61         int op_len;
62         int nr_sub_op;
63         const struct sub_op_bits *sub_op;
64 };
65
66 #define   MAX_CMD_BUDGET                        0x7fffffff
67 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
68 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
69 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
70
71 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
72 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
73 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
74
75 /* Render Command Map */
76
77 /* MI_* command Opcode (28:23) */
78 #define OP_MI_NOOP                          0x0
79 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
80 #define OP_MI_USER_INTERRUPT                0x2
81 #define OP_MI_WAIT_FOR_EVENT                0x3
82 #define OP_MI_FLUSH                         0x4
83 #define OP_MI_ARB_CHECK                     0x5
84 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
85 #define OP_MI_REPORT_HEAD                   0x7
86 #define OP_MI_ARB_ON_OFF                    0x8
87 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
88 #define OP_MI_BATCH_BUFFER_END              0xA
89 #define OP_MI_SUSPEND_FLUSH                 0xB
90 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
91 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
92 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
93 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
94 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
95 #define OP_MI_DISPLAY_FLIP                  0x14
96 #define OP_MI_SEMAPHORE_MBOX                0x16
97 #define OP_MI_SET_CONTEXT                   0x18
98 #define OP_MI_MATH                          0x1A
99 #define OP_MI_URB_CLEAR                     0x19
100 #define OP_MI_SEMAPHORE_SIGNAL              0x1B  /* BDW+ */
101 #define OP_MI_SEMAPHORE_WAIT                0x1C  /* BDW+ */
102
103 #define OP_MI_STORE_DATA_IMM                0x20
104 #define OP_MI_STORE_DATA_INDEX              0x21
105 #define OP_MI_LOAD_REGISTER_IMM             0x22
106 #define OP_MI_UPDATE_GTT                    0x23
107 #define OP_MI_STORE_REGISTER_MEM            0x24
108 #define OP_MI_FLUSH_DW                      0x26
109 #define OP_MI_CLFLUSH                       0x27
110 #define OP_MI_REPORT_PERF_COUNT             0x28
111 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
112 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
113 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
114 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
115 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
116 #define OP_MI_2E                            0x2E  /* BDW+ */
117 #define OP_MI_2F                            0x2F  /* BDW+ */
118 #define OP_MI_BATCH_BUFFER_START            0x31
119
120 /* Bit definition for dword 0 */
121 #define _CMDBIT_BB_START_IN_PPGTT       (1UL << 8)
122
123 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
124
125 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
126 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
127 #define BATCH_BUFFER_ADR_SPACE_BIT(x)   (((x) >> 8) & 1U)
128 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
129
130 /* 2D command: Opcode (28:22) */
131 #define OP_2D(x)    ((2<<7) | x)
132
133 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
134 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
135 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
136 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
137 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
138 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
139 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
140 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
141 #define OP_XY_PAT_BLT                               OP_2D(0x51)
142 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
143 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
144 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
145 #define OP_XY_FULL_BLT                              OP_2D(0x55)
146 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
147 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
148 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
149 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
150 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
151 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
152 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
153 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
154 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
155 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
156 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
157
158 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
159 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
160         ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
161
162 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
163
164 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
165 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
166 #define OP_3D_MEDIA_0_1_4                       OP_3D_MEDIA(0x0, 0x1, 0x04)
167
168 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
169
170 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
171
172 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
173 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
174 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
175 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
176 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
177 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
178
179 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
180 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
181 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
182 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
183
184 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
185 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
186 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
187 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
188 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
189 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
190 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
191 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
192 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
193 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
194 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
195 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
196 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
197 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
198 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
199 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
200 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
201 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
202 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
203 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
204 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
205 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
206 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
207 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
208 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
209 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
210 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
211 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
212 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
213 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
214 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
215 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
226 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
227 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
228 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
229 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
233 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
234 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
239 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
240 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
241 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
242 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
243 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
244 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
248 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
249 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
250
251 #define OP_3DSTATE_VF_INSTANCING                OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
252 #define OP_3DSTATE_VF_SGVS                      OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
253 #define OP_3DSTATE_VF_TOPOLOGY                  OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
254 #define OP_3DSTATE_WM_CHROMAKEY                 OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
255 #define OP_3DSTATE_PS_BLEND                     OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
256 #define OP_3DSTATE_WM_DEPTH_STENCIL             OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
257 #define OP_3DSTATE_PS_EXTRA                     OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
258 #define OP_3DSTATE_RASTER                       OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
259 #define OP_3DSTATE_SBE_SWIZ                     OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
260 #define OP_3DSTATE_WM_HZ_OP                     OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
261 #define OP_3DSTATE_COMPONENT_PACKING            OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
262
263 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
264 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
265 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
266 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
267 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
268 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
269 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
270 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
271 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
272 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
273 #define OP_3DSTATE_MULTISAMPLE_BDW              OP_3D_MEDIA(0x3, 0x0, 0x0D)
274 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
275 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
276 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
277 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
283 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
284 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
285 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
286 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
287 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
288 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
289 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
290 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
291
292 /* VCCP Command Parser */
293
294 /*
295  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
296  * git://anongit.freedesktop.org/vaapi/intel-driver
297  * src/i965_defines.h
298  *
299  */
300
301 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
302         (3 << 13 | \
303          (pipeline) << 11 | \
304          (op) << 8 | \
305          (sub_opa) << 5 | \
306          (sub_opb))
307
308 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
309 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
310 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
311 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
312 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
313 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
314 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
315 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
316 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
317 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
318 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
319
320 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
321
322 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
323 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
324 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
325 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
326 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
327 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
328 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
329 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
330 #define OP_MFD_AVC_DPB_STATE                       OP_MFX(2, 1, 1, 6) /* IVB+ */
331 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
332 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
333 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
334
335 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
336 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
337 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
338 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
339 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
340
341 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
342 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
343 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
344 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
345 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
346
347 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
348 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
349 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
350
351 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
352 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
353 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
354
355 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
356         (3 << 13 | \
357          (pipeline) << 11 | \
358          (op) << 8 | \
359          (sub_opa) << 5 | \
360          (sub_opb))
361
362 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
363 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
364 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
365
366 struct parser_exec_state;
367
368 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
369
370 #define GVT_CMD_HASH_BITS   7
371
372 /* which DWords need address fix */
373 #define ADDR_FIX_1(x1)                  (1 << (x1))
374 #define ADDR_FIX_2(x1, x2)              (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
375 #define ADDR_FIX_3(x1, x2, x3)          (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
376 #define ADDR_FIX_4(x1, x2, x3, x4)      (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
377 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
378
379 #define DWORD_FIELD(dword, end, start) \
380         FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
381
382 #define OP_LENGTH_BIAS 2
383 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
384
385 static int gvt_check_valid_cmd_length(int len, int valid_len)
386 {
387         if (valid_len != len) {
388                 gvt_err("len is not valid:  len=%u  valid_len=%u\n",
389                         len, valid_len);
390                 return -EFAULT;
391         }
392         return 0;
393 }
394
395 struct cmd_info {
396         const char *name;
397         u32 opcode;
398
399 #define F_LEN_MASK      3U
400 #define F_LEN_CONST  1U
401 #define F_LEN_VAR    0U
402 /* value is const although LEN maybe variable */
403 #define F_LEN_VAR_FIXED    (1<<1)
404
405 /*
406  * command has its own ip advance logic
407  * e.g. MI_BATCH_START, MI_BATCH_END
408  */
409 #define F_IP_ADVANCE_CUSTOM (1<<2)
410         u32 flag;
411
412 #define R_RCS   BIT(RCS0)
413 #define R_VCS1  BIT(VCS0)
414 #define R_VCS2  BIT(VCS1)
415 #define R_VCS   (R_VCS1 | R_VCS2)
416 #define R_BCS   BIT(BCS0)
417 #define R_VECS  BIT(VECS0)
418 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
419         /* rings that support this cmd: BLT/RCS/VCS/VECS */
420         u16 rings;
421
422         /* devices that support this cmd: SNB/IVB/HSW/... */
423         u16 devices;
424
425         /* which DWords are address that need fix up.
426          * bit 0 means a 32-bit non address operand in command
427          * bit 1 means address operand, which could be 32-bit
428          * or 64-bit depending on different architectures.(
429          * defined by "gmadr_bytes_in_cmd" in intel_gvt.
430          * No matter the address length, each address only takes
431          * one bit in the bitmap.
432          */
433         u16 addr_bitmap;
434
435         /* flag == F_LEN_CONST : command length
436          * flag == F_LEN_VAR : length bias bits
437          * Note: length is in DWord
438          */
439         u32 len;
440
441         parser_cmd_handler handler;
442
443         /* valid length in DWord */
444         u32 valid_len;
445 };
446
447 struct cmd_entry {
448         struct hlist_node hlist;
449         const struct cmd_info *info;
450 };
451
452 enum {
453         RING_BUFFER_INSTRUCTION,
454         BATCH_BUFFER_INSTRUCTION,
455         BATCH_BUFFER_2ND_LEVEL,
456 };
457
458 enum {
459         GTT_BUFFER,
460         PPGTT_BUFFER
461 };
462
463 struct parser_exec_state {
464         struct intel_vgpu *vgpu;
465         const struct intel_engine_cs *engine;
466
467         int buf_type;
468
469         /* batch buffer address type */
470         int buf_addr_type;
471
472         /* graphics memory address of ring buffer start */
473         unsigned long ring_start;
474         unsigned long ring_size;
475         unsigned long ring_head;
476         unsigned long ring_tail;
477
478         /* instruction graphics memory address */
479         unsigned long ip_gma;
480
481         /* mapped va of the instr_gma */
482         void *ip_va;
483         void *rb_va;
484
485         void *ret_bb_va;
486         /* next instruction when return from  batch buffer to ring buffer */
487         unsigned long ret_ip_gma_ring;
488
489         /* next instruction when return from 2nd batch buffer to batch buffer */
490         unsigned long ret_ip_gma_bb;
491
492         /* batch buffer address type (GTT or PPGTT)
493          * used when ret from 2nd level batch buffer
494          */
495         int saved_buf_addr_type;
496         bool is_ctx_wa;
497
498         const struct cmd_info *info;
499
500         struct intel_vgpu_workload *workload;
501 };
502
503 #define gmadr_dw_number(s)      \
504         (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
505
506 static unsigned long bypass_scan_mask = 0;
507
508 /* ring ALL, type = 0 */
509 static const struct sub_op_bits sub_op_mi[] = {
510         {31, 29},
511         {28, 23},
512 };
513
514 static const struct decode_info decode_info_mi = {
515         "MI",
516         OP_LEN_MI,
517         ARRAY_SIZE(sub_op_mi),
518         sub_op_mi,
519 };
520
521 /* ring RCS, command type 2 */
522 static const struct sub_op_bits sub_op_2d[] = {
523         {31, 29},
524         {28, 22},
525 };
526
527 static const struct decode_info decode_info_2d = {
528         "2D",
529         OP_LEN_2D,
530         ARRAY_SIZE(sub_op_2d),
531         sub_op_2d,
532 };
533
534 /* ring RCS, command type 3 */
535 static const struct sub_op_bits sub_op_3d_media[] = {
536         {31, 29},
537         {28, 27},
538         {26, 24},
539         {23, 16},
540 };
541
542 static const struct decode_info decode_info_3d_media = {
543         "3D_Media",
544         OP_LEN_3D_MEDIA,
545         ARRAY_SIZE(sub_op_3d_media),
546         sub_op_3d_media,
547 };
548
549 /* ring VCS, command type 3 */
550 static const struct sub_op_bits sub_op_mfx_vc[] = {
551         {31, 29},
552         {28, 27},
553         {26, 24},
554         {23, 21},
555         {20, 16},
556 };
557
558 static const struct decode_info decode_info_mfx_vc = {
559         "MFX_VC",
560         OP_LEN_MFX_VC,
561         ARRAY_SIZE(sub_op_mfx_vc),
562         sub_op_mfx_vc,
563 };
564
565 /* ring VECS, command type 3 */
566 static const struct sub_op_bits sub_op_vebox[] = {
567         {31, 29},
568         {28, 27},
569         {26, 24},
570         {23, 21},
571         {20, 16},
572 };
573
574 static const struct decode_info decode_info_vebox = {
575         "VEBOX",
576         OP_LEN_VEBOX,
577         ARRAY_SIZE(sub_op_vebox),
578         sub_op_vebox,
579 };
580
581 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
582         [RCS0] = {
583                 &decode_info_mi,
584                 NULL,
585                 NULL,
586                 &decode_info_3d_media,
587                 NULL,
588                 NULL,
589                 NULL,
590                 NULL,
591         },
592
593         [VCS0] = {
594                 &decode_info_mi,
595                 NULL,
596                 NULL,
597                 &decode_info_mfx_vc,
598                 NULL,
599                 NULL,
600                 NULL,
601                 NULL,
602         },
603
604         [BCS0] = {
605                 &decode_info_mi,
606                 NULL,
607                 &decode_info_2d,
608                 NULL,
609                 NULL,
610                 NULL,
611                 NULL,
612                 NULL,
613         },
614
615         [VECS0] = {
616                 &decode_info_mi,
617                 NULL,
618                 NULL,
619                 &decode_info_vebox,
620                 NULL,
621                 NULL,
622                 NULL,
623                 NULL,
624         },
625
626         [VCS1] = {
627                 &decode_info_mi,
628                 NULL,
629                 NULL,
630                 &decode_info_mfx_vc,
631                 NULL,
632                 NULL,
633                 NULL,
634                 NULL,
635         },
636 };
637
638 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
639 {
640         const struct decode_info *d_info;
641
642         d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
643         if (d_info == NULL)
644                 return INVALID_OP;
645
646         return cmd >> (32 - d_info->op_len);
647 }
648
649 static inline const struct cmd_info *
650 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
651                const struct intel_engine_cs *engine)
652 {
653         struct cmd_entry *e;
654
655         hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
656                 if (opcode == e->info->opcode &&
657                     e->info->rings & engine->mask)
658                         return e->info;
659         }
660         return NULL;
661 }
662
663 static inline const struct cmd_info *
664 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
665              const struct intel_engine_cs *engine)
666 {
667         u32 opcode;
668
669         opcode = get_opcode(cmd, engine);
670         if (opcode == INVALID_OP)
671                 return NULL;
672
673         return find_cmd_entry(gvt, opcode, engine);
674 }
675
676 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
677 {
678         return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
679 }
680
681 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
682 {
683         const struct decode_info *d_info;
684         int i;
685
686         d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
687         if (d_info == NULL)
688                 return;
689
690         gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
691                         cmd >> (32 - d_info->op_len), d_info->name);
692
693         for (i = 0; i < d_info->nr_sub_op; i++)
694                 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
695                                         d_info->sub_op[i].low));
696
697         pr_err("\n");
698 }
699
700 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
701 {
702         return s->ip_va + (index << 2);
703 }
704
705 static inline u32 cmd_val(struct parser_exec_state *s, int index)
706 {
707         return *cmd_ptr(s, index);
708 }
709
710 static void parser_exec_state_dump(struct parser_exec_state *s)
711 {
712         int cnt = 0;
713         int i;
714
715         gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
716                     " ring_head(%08lx) ring_tail(%08lx)\n",
717                     s->vgpu->id, s->engine->name,
718                     s->ring_start, s->ring_start + s->ring_size,
719                     s->ring_head, s->ring_tail);
720
721         gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
722                         s->buf_type == RING_BUFFER_INSTRUCTION ?
723                         "RING_BUFFER" : "BATCH_BUFFER",
724                         s->buf_addr_type == GTT_BUFFER ?
725                         "GTT" : "PPGTT", s->ip_gma);
726
727         if (s->ip_va == NULL) {
728                 gvt_dbg_cmd(" ip_va(NULL)");
729                 return;
730         }
731
732         gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
733                         s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
734                         cmd_val(s, 2), cmd_val(s, 3));
735
736         print_opcode(cmd_val(s, 0), s->engine);
737
738         s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
739
740         while (cnt < 1024) {
741                 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
742                 for (i = 0; i < 8; i++)
743                         gvt_dbg_cmd("%08x ", cmd_val(s, i));
744                 gvt_dbg_cmd("\n");
745
746                 s->ip_va += 8 * sizeof(u32);
747                 cnt += 8;
748         }
749 }
750
751 static inline void update_ip_va(struct parser_exec_state *s)
752 {
753         unsigned long len = 0;
754
755         if (WARN_ON(s->ring_head == s->ring_tail))
756                 return;
757
758         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
759                 unsigned long ring_top = s->ring_start + s->ring_size;
760
761                 if (s->ring_head > s->ring_tail) {
762                         if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
763                                 len = (s->ip_gma - s->ring_head);
764                         else if (s->ip_gma >= s->ring_start &&
765                                         s->ip_gma <= s->ring_tail)
766                                 len = (ring_top - s->ring_head) +
767                                         (s->ip_gma - s->ring_start);
768                 } else
769                         len = (s->ip_gma - s->ring_head);
770
771                 s->ip_va = s->rb_va + len;
772         } else {/* shadow batch buffer */
773                 s->ip_va = s->ret_bb_va;
774         }
775 }
776
777 static inline int ip_gma_set(struct parser_exec_state *s,
778                 unsigned long ip_gma)
779 {
780         WARN_ON(!IS_ALIGNED(ip_gma, 4));
781
782         s->ip_gma = ip_gma;
783         update_ip_va(s);
784         return 0;
785 }
786
787 static inline int ip_gma_advance(struct parser_exec_state *s,
788                 unsigned int dw_len)
789 {
790         s->ip_gma += (dw_len << 2);
791
792         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
793                 if (s->ip_gma >= s->ring_start + s->ring_size)
794                         s->ip_gma -= s->ring_size;
795                 update_ip_va(s);
796         } else {
797                 s->ip_va += (dw_len << 2);
798         }
799
800         return 0;
801 }
802
803 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
804 {
805         if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
806                 return info->len;
807         else
808                 return (cmd & ((1U << info->len) - 1)) + 2;
809         return 0;
810 }
811
812 static inline int cmd_length(struct parser_exec_state *s)
813 {
814         return get_cmd_length(s->info, cmd_val(s, 0));
815 }
816
817 /* do not remove this, some platform may need clflush here */
818 #define patch_value(s, addr, val) do { \
819         *addr = val; \
820 } while (0)
821
822 static bool is_shadowed_mmio(unsigned int offset)
823 {
824         bool ret = false;
825
826         if ((offset == 0x2168) || /*BB current head register UDW */
827             (offset == 0x2140) || /*BB current header register */
828             (offset == 0x211c) || /*second BB header register UDW */
829             (offset == 0x2114)) { /*second BB header register UDW */
830                 ret = true;
831         }
832         return ret;
833 }
834
835 static inline bool is_force_nonpriv_mmio(unsigned int offset)
836 {
837         return (offset >= 0x24d0 && offset < 0x2500);
838 }
839
840 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
841                 unsigned int offset, unsigned int index, char *cmd)
842 {
843         struct intel_gvt *gvt = s->vgpu->gvt;
844         unsigned int data;
845         u32 ring_base;
846         u32 nopid;
847
848         if (!strcmp(cmd, "lri"))
849                 data = cmd_val(s, index + 1);
850         else {
851                 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
852                         offset, cmd);
853                 return -EINVAL;
854         }
855
856         ring_base = s->engine->mmio_base;
857         nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
858
859         if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
860                         data != nopid) {
861                 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
862                         offset, data);
863                 patch_value(s, cmd_ptr(s, index), nopid);
864                 return 0;
865         }
866         return 0;
867 }
868
869 static inline bool is_mocs_mmio(unsigned int offset)
870 {
871         return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
872                 ((offset >= 0xb020) && (offset <= 0xb0a0));
873 }
874
875 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
876                                 unsigned int offset, unsigned int index)
877 {
878         if (!is_mocs_mmio(offset))
879                 return -EINVAL;
880         vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
881         return 0;
882 }
883
884 static int is_cmd_update_pdps(unsigned int offset,
885                               struct parser_exec_state *s)
886 {
887         u32 base = s->workload->engine->mmio_base;
888         return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
889 }
890
891 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
892                                        unsigned int offset, unsigned int index)
893 {
894         struct intel_vgpu *vgpu = s->vgpu;
895         struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
896         struct intel_vgpu_mm *mm;
897         u64 pdps[GEN8_3LVL_PDPES];
898
899         if (shadow_mm->ppgtt_mm.root_entry_type ==
900             GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
901                 pdps[0] = (u64)cmd_val(s, 2) << 32;
902                 pdps[0] |= cmd_val(s, 4);
903
904                 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
905                 if (!mm) {
906                         gvt_vgpu_err("failed to get the 4-level shadow vm\n");
907                         return -EINVAL;
908                 }
909                 intel_vgpu_mm_get(mm);
910                 list_add_tail(&mm->ppgtt_mm.link,
911                               &s->workload->lri_shadow_mm);
912                 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
913                 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
914         } else {
915                 /* Currently all guests use PML4 table and now can't
916                  * have a guest with 3-level table but uses LRI for
917                  * PPGTT update. So this is simply un-testable. */
918                 GEM_BUG_ON(1);
919                 gvt_vgpu_err("invalid shared shadow vm type\n");
920                 return -EINVAL;
921         }
922         return 0;
923 }
924
925 static int cmd_reg_handler(struct parser_exec_state *s,
926         unsigned int offset, unsigned int index, char *cmd)
927 {
928         struct intel_vgpu *vgpu = s->vgpu;
929         struct intel_gvt *gvt = vgpu->gvt;
930         u32 ctx_sr_ctl;
931
932         if (offset + 4 > gvt->device_info.mmio_size) {
933                 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
934                                 cmd, offset);
935                 return -EFAULT;
936         }
937
938         if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
939                 gvt_vgpu_err("%s access to non-render register (%x)\n",
940                                 cmd, offset);
941                 return -EBADRQC;
942         }
943
944         if (is_shadowed_mmio(offset)) {
945                 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
946                 return 0;
947         }
948
949         if (is_mocs_mmio(offset) &&
950             mocs_cmd_reg_handler(s, offset, index))
951                 return -EINVAL;
952
953         if (is_force_nonpriv_mmio(offset) &&
954                 force_nonpriv_reg_handler(s, offset, index, cmd))
955                 return -EPERM;
956
957         if (offset == i915_mmio_reg_offset(DERRMR) ||
958                 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
959                 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
960                 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
961         }
962
963         if (is_cmd_update_pdps(offset, s) &&
964             cmd_pdp_mmio_update_handler(s, offset, index))
965                 return -EINVAL;
966
967         /* TODO
968          * In order to let workload with inhibit context to generate
969          * correct image data into memory, vregs values will be loaded to
970          * hw via LRIs in the workload with inhibit context. But as
971          * indirect context is loaded prior to LRIs in workload, we don't
972          * want reg values specified in indirect context overwritten by
973          * LRIs in workloads. So, when scanning an indirect context, we
974          * update reg values in it into vregs, so LRIs in workload with
975          * inhibit context will restore with correct values
976          */
977         if (IS_GEN(s->engine->i915, 9) &&
978             intel_gvt_mmio_is_in_ctx(gvt, offset) &&
979             !strncmp(cmd, "lri", 3)) {
980                 intel_gvt_hypervisor_read_gpa(s->vgpu,
981                         s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
982                 /* check inhibit context */
983                 if (ctx_sr_ctl & 1) {
984                         u32 data = cmd_val(s, index + 1);
985
986                         if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
987                                 intel_vgpu_mask_mmio_write(vgpu,
988                                                         offset, &data, 4);
989                         else
990                                 vgpu_vreg(vgpu, offset) = data;
991                 }
992         }
993
994         /* TODO: Update the global mask if this MMIO is a masked-MMIO */
995         intel_gvt_mmio_set_cmd_accessed(gvt, offset);
996         return 0;
997 }
998
999 #define cmd_reg(s, i) \
1000         (cmd_val(s, i) & GENMASK(22, 2))
1001
1002 #define cmd_reg_inhibit(s, i) \
1003         (cmd_val(s, i) & GENMASK(22, 18))
1004
1005 #define cmd_gma(s, i) \
1006         (cmd_val(s, i) & GENMASK(31, 2))
1007
1008 #define cmd_gma_hi(s, i) \
1009         (cmd_val(s, i) & GENMASK(15, 0))
1010
1011 static int cmd_handler_lri(struct parser_exec_state *s)
1012 {
1013         int i, ret = 0;
1014         int cmd_len = cmd_length(s);
1015         u32 valid_len = CMD_LEN(1);
1016
1017         /*
1018          * Official intel docs are somewhat sloppy , check the definition of
1019          * MI_LOAD_REGISTER_IMM.
1020          */
1021         #define MAX_VALID_LEN 127
1022         if ((cmd_len < valid_len) || (cmd_len > MAX_VALID_LEN)) {
1023                 gvt_err("len is not valid:  len=%u  valid_len=%u\n",
1024                         cmd_len, valid_len);
1025                 return -EFAULT;
1026         }
1027
1028         for (i = 1; i < cmd_len; i += 2) {
1029                 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1030                         if (s->engine->id == BCS0 &&
1031                             cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1032                                 ret |= 0;
1033                         else
1034                                 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1035                 }
1036                 if (ret)
1037                         break;
1038                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1039                 if (ret)
1040                         break;
1041         }
1042         return ret;
1043 }
1044
1045 static int cmd_handler_lrr(struct parser_exec_state *s)
1046 {
1047         int i, ret = 0;
1048         int cmd_len = cmd_length(s);
1049
1050         for (i = 1; i < cmd_len; i += 2) {
1051                 if (IS_BROADWELL(s->engine->i915))
1052                         ret |= ((cmd_reg_inhibit(s, i) ||
1053                                  (cmd_reg_inhibit(s, i + 1)))) ?
1054                                 -EBADRQC : 0;
1055                 if (ret)
1056                         break;
1057                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1058                 if (ret)
1059                         break;
1060                 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1061                 if (ret)
1062                         break;
1063         }
1064         return ret;
1065 }
1066
1067 static inline int cmd_address_audit(struct parser_exec_state *s,
1068                 unsigned long guest_gma, int op_size, bool index_mode);
1069
1070 static int cmd_handler_lrm(struct parser_exec_state *s)
1071 {
1072         struct intel_gvt *gvt = s->vgpu->gvt;
1073         int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1074         unsigned long gma;
1075         int i, ret = 0;
1076         int cmd_len = cmd_length(s);
1077
1078         for (i = 1; i < cmd_len;) {
1079                 if (IS_BROADWELL(s->engine->i915))
1080                         ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1081                 if (ret)
1082                         break;
1083                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1084                 if (ret)
1085                         break;
1086                 if (cmd_val(s, 0) & (1 << 22)) {
1087                         gma = cmd_gma(s, i + 1);
1088                         if (gmadr_bytes == 8)
1089                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1090                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1091                         if (ret)
1092                                 break;
1093                 }
1094                 i += gmadr_dw_number(s) + 1;
1095         }
1096         return ret;
1097 }
1098
1099 static int cmd_handler_srm(struct parser_exec_state *s)
1100 {
1101         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1102         unsigned long gma;
1103         int i, ret = 0;
1104         int cmd_len = cmd_length(s);
1105
1106         for (i = 1; i < cmd_len;) {
1107                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1108                 if (ret)
1109                         break;
1110                 if (cmd_val(s, 0) & (1 << 22)) {
1111                         gma = cmd_gma(s, i + 1);
1112                         if (gmadr_bytes == 8)
1113                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1114                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1115                         if (ret)
1116                                 break;
1117                 }
1118                 i += gmadr_dw_number(s) + 1;
1119         }
1120         return ret;
1121 }
1122
1123 struct cmd_interrupt_event {
1124         int pipe_control_notify;
1125         int mi_flush_dw;
1126         int mi_user_interrupt;
1127 };
1128
1129 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1130         [RCS0] = {
1131                 .pipe_control_notify = RCS_PIPE_CONTROL,
1132                 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1133                 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1134         },
1135         [BCS0] = {
1136                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1137                 .mi_flush_dw = BCS_MI_FLUSH_DW,
1138                 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1139         },
1140         [VCS0] = {
1141                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1142                 .mi_flush_dw = VCS_MI_FLUSH_DW,
1143                 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1144         },
1145         [VCS1] = {
1146                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1147                 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1148                 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1149         },
1150         [VECS0] = {
1151                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1152                 .mi_flush_dw = VECS_MI_FLUSH_DW,
1153                 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1154         },
1155 };
1156
1157 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1158 {
1159         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1160         unsigned long gma;
1161         bool index_mode = false;
1162         unsigned int post_sync;
1163         int ret = 0;
1164         u32 hws_pga, val;
1165
1166         post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1167
1168         /* LRI post sync */
1169         if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1170                 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1171         /* post sync */
1172         else if (post_sync) {
1173                 if (post_sync == 2)
1174                         ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1175                 else if (post_sync == 3)
1176                         ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1177                 else if (post_sync == 1) {
1178                         /* check ggtt*/
1179                         if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1180                                 gma = cmd_val(s, 2) & GENMASK(31, 3);
1181                                 if (gmadr_bytes == 8)
1182                                         gma |= (cmd_gma_hi(s, 3)) << 32;
1183                                 /* Store Data Index */
1184                                 if (cmd_val(s, 1) & (1 << 21))
1185                                         index_mode = true;
1186                                 ret |= cmd_address_audit(s, gma, sizeof(u64),
1187                                                 index_mode);
1188                                 if (ret)
1189                                         return ret;
1190                                 if (index_mode) {
1191                                         hws_pga = s->vgpu->hws_pga[s->engine->id];
1192                                         gma = hws_pga + gma;
1193                                         patch_value(s, cmd_ptr(s, 2), gma);
1194                                         val = cmd_val(s, 1) & (~(1 << 21));
1195                                         patch_value(s, cmd_ptr(s, 1), val);
1196                                 }
1197                         }
1198                 }
1199         }
1200
1201         if (ret)
1202                 return ret;
1203
1204         if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1205                 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1206                         s->workload->pending_events);
1207         return 0;
1208 }
1209
1210 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1211 {
1212         set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1213                 s->workload->pending_events);
1214         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1215         return 0;
1216 }
1217
1218 static int cmd_advance_default(struct parser_exec_state *s)
1219 {
1220         return ip_gma_advance(s, cmd_length(s));
1221 }
1222
1223 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1224 {
1225         int ret;
1226
1227         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1228                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1229                 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1230                 s->buf_addr_type = s->saved_buf_addr_type;
1231         } else {
1232                 s->buf_type = RING_BUFFER_INSTRUCTION;
1233                 s->buf_addr_type = GTT_BUFFER;
1234                 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1235                         s->ret_ip_gma_ring -= s->ring_size;
1236                 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1237         }
1238         return ret;
1239 }
1240
1241 struct mi_display_flip_command_info {
1242         int pipe;
1243         int plane;
1244         int event;
1245         i915_reg_t stride_reg;
1246         i915_reg_t ctrl_reg;
1247         i915_reg_t surf_reg;
1248         u64 stride_val;
1249         u64 tile_val;
1250         u64 surf_val;
1251         bool async_flip;
1252 };
1253
1254 struct plane_code_mapping {
1255         int pipe;
1256         int plane;
1257         int event;
1258 };
1259
1260 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1261                 struct mi_display_flip_command_info *info)
1262 {
1263         struct drm_i915_private *dev_priv = s->engine->i915;
1264         struct plane_code_mapping gen8_plane_code[] = {
1265                 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1266                 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1267                 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1268                 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1269                 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1270                 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1271         };
1272         u32 dword0, dword1, dword2;
1273         u32 v;
1274
1275         dword0 = cmd_val(s, 0);
1276         dword1 = cmd_val(s, 1);
1277         dword2 = cmd_val(s, 2);
1278
1279         v = (dword0 & GENMASK(21, 19)) >> 19;
1280         if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1281                 return -EBADRQC;
1282
1283         info->pipe = gen8_plane_code[v].pipe;
1284         info->plane = gen8_plane_code[v].plane;
1285         info->event = gen8_plane_code[v].event;
1286         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1287         info->tile_val = (dword1 & 0x1);
1288         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1289         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1290
1291         if (info->plane == PLANE_A) {
1292                 info->ctrl_reg = DSPCNTR(info->pipe);
1293                 info->stride_reg = DSPSTRIDE(info->pipe);
1294                 info->surf_reg = DSPSURF(info->pipe);
1295         } else if (info->plane == PLANE_B) {
1296                 info->ctrl_reg = SPRCTL(info->pipe);
1297                 info->stride_reg = SPRSTRIDE(info->pipe);
1298                 info->surf_reg = SPRSURF(info->pipe);
1299         } else {
1300                 drm_WARN_ON(&dev_priv->drm, 1);
1301                 return -EBADRQC;
1302         }
1303         return 0;
1304 }
1305
1306 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1307                 struct mi_display_flip_command_info *info)
1308 {
1309         struct drm_i915_private *dev_priv = s->engine->i915;
1310         struct intel_vgpu *vgpu = s->vgpu;
1311         u32 dword0 = cmd_val(s, 0);
1312         u32 dword1 = cmd_val(s, 1);
1313         u32 dword2 = cmd_val(s, 2);
1314         u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1315
1316         info->plane = PRIMARY_PLANE;
1317
1318         switch (plane) {
1319         case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1320                 info->pipe = PIPE_A;
1321                 info->event = PRIMARY_A_FLIP_DONE;
1322                 break;
1323         case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1324                 info->pipe = PIPE_B;
1325                 info->event = PRIMARY_B_FLIP_DONE;
1326                 break;
1327         case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1328                 info->pipe = PIPE_C;
1329                 info->event = PRIMARY_C_FLIP_DONE;
1330                 break;
1331
1332         case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1333                 info->pipe = PIPE_A;
1334                 info->event = SPRITE_A_FLIP_DONE;
1335                 info->plane = SPRITE_PLANE;
1336                 break;
1337         case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1338                 info->pipe = PIPE_B;
1339                 info->event = SPRITE_B_FLIP_DONE;
1340                 info->plane = SPRITE_PLANE;
1341                 break;
1342         case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1343                 info->pipe = PIPE_C;
1344                 info->event = SPRITE_C_FLIP_DONE;
1345                 info->plane = SPRITE_PLANE;
1346                 break;
1347
1348         default:
1349                 gvt_vgpu_err("unknown plane code %d\n", plane);
1350                 return -EBADRQC;
1351         }
1352
1353         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1354         info->tile_val = (dword1 & GENMASK(2, 0));
1355         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1356         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1357
1358         info->ctrl_reg = DSPCNTR(info->pipe);
1359         info->stride_reg = DSPSTRIDE(info->pipe);
1360         info->surf_reg = DSPSURF(info->pipe);
1361
1362         return 0;
1363 }
1364
1365 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1366                 struct mi_display_flip_command_info *info)
1367 {
1368         u32 stride, tile;
1369
1370         if (!info->async_flip)
1371                 return 0;
1372
1373         if (INTEL_GEN(s->engine->i915) >= 9) {
1374                 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1375                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1376                                 GENMASK(12, 10)) >> 10;
1377         } else {
1378                 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1379                                 GENMASK(15, 6)) >> 6;
1380                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1381         }
1382
1383         if (stride != info->stride_val)
1384                 gvt_dbg_cmd("cannot change stride during async flip\n");
1385
1386         if (tile != info->tile_val)
1387                 gvt_dbg_cmd("cannot change tile during async flip\n");
1388
1389         return 0;
1390 }
1391
1392 static int gen8_update_plane_mmio_from_mi_display_flip(
1393                 struct parser_exec_state *s,
1394                 struct mi_display_flip_command_info *info)
1395 {
1396         struct drm_i915_private *dev_priv = s->engine->i915;
1397         struct intel_vgpu *vgpu = s->vgpu;
1398
1399         set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1400                       info->surf_val << 12);
1401         if (INTEL_GEN(dev_priv) >= 9) {
1402                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1403                               info->stride_val);
1404                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1405                               info->tile_val << 10);
1406         } else {
1407                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1408                               info->stride_val << 6);
1409                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1410                               info->tile_val << 10);
1411         }
1412
1413         if (info->plane == PLANE_PRIMARY)
1414                 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1415
1416         if (info->async_flip)
1417                 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1418         else
1419                 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1420
1421         return 0;
1422 }
1423
1424 static int decode_mi_display_flip(struct parser_exec_state *s,
1425                 struct mi_display_flip_command_info *info)
1426 {
1427         if (IS_BROADWELL(s->engine->i915))
1428                 return gen8_decode_mi_display_flip(s, info);
1429         if (INTEL_GEN(s->engine->i915) >= 9)
1430                 return skl_decode_mi_display_flip(s, info);
1431
1432         return -ENODEV;
1433 }
1434
1435 static int check_mi_display_flip(struct parser_exec_state *s,
1436                 struct mi_display_flip_command_info *info)
1437 {
1438         return gen8_check_mi_display_flip(s, info);
1439 }
1440
1441 static int update_plane_mmio_from_mi_display_flip(
1442                 struct parser_exec_state *s,
1443                 struct mi_display_flip_command_info *info)
1444 {
1445         return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1446 }
1447
1448 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1449 {
1450         struct mi_display_flip_command_info info;
1451         struct intel_vgpu *vgpu = s->vgpu;
1452         int ret;
1453         int i;
1454         int len = cmd_length(s);
1455         u32 valid_len = CMD_LEN(1);
1456
1457         /* Flip Type == Stereo 3D Flip */
1458         if (DWORD_FIELD(2, 1, 0) == 2)
1459                 valid_len++;
1460         ret = gvt_check_valid_cmd_length(cmd_length(s),
1461                         valid_len);
1462         if (ret)
1463                 return ret;
1464
1465         ret = decode_mi_display_flip(s, &info);
1466         if (ret) {
1467                 gvt_vgpu_err("fail to decode MI display flip command\n");
1468                 return ret;
1469         }
1470
1471         ret = check_mi_display_flip(s, &info);
1472         if (ret) {
1473                 gvt_vgpu_err("invalid MI display flip command\n");
1474                 return ret;
1475         }
1476
1477         ret = update_plane_mmio_from_mi_display_flip(s, &info);
1478         if (ret) {
1479                 gvt_vgpu_err("fail to update plane mmio\n");
1480                 return ret;
1481         }
1482
1483         for (i = 0; i < len; i++)
1484                 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1485         return 0;
1486 }
1487
1488 static bool is_wait_for_flip_pending(u32 cmd)
1489 {
1490         return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1491                         MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1492                         MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1493                         MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1494                         MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1495                         MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1496 }
1497
1498 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1499 {
1500         u32 cmd = cmd_val(s, 0);
1501
1502         if (!is_wait_for_flip_pending(cmd))
1503                 return 0;
1504
1505         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1506         return 0;
1507 }
1508
1509 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1510 {
1511         unsigned long addr;
1512         unsigned long gma_high, gma_low;
1513         struct intel_vgpu *vgpu = s->vgpu;
1514         int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1515
1516         if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1517                 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1518                 return INTEL_GVT_INVALID_ADDR;
1519         }
1520
1521         gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1522         if (gmadr_bytes == 4) {
1523                 addr = gma_low;
1524         } else {
1525                 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1526                 addr = (((unsigned long)gma_high) << 32) | gma_low;
1527         }
1528         return addr;
1529 }
1530
1531 static inline int cmd_address_audit(struct parser_exec_state *s,
1532                 unsigned long guest_gma, int op_size, bool index_mode)
1533 {
1534         struct intel_vgpu *vgpu = s->vgpu;
1535         u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1536         int i;
1537         int ret;
1538
1539         if (op_size > max_surface_size) {
1540                 gvt_vgpu_err("command address audit fail name %s\n",
1541                         s->info->name);
1542                 return -EFAULT;
1543         }
1544
1545         if (index_mode) {
1546                 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1547                         ret = -EFAULT;
1548                         goto err;
1549                 }
1550         } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1551                 ret = -EFAULT;
1552                 goto err;
1553         }
1554
1555         return 0;
1556
1557 err:
1558         gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1559                         s->info->name, guest_gma, op_size);
1560
1561         pr_err("cmd dump: ");
1562         for (i = 0; i < cmd_length(s); i++) {
1563                 if (!(i % 4))
1564                         pr_err("\n%08x ", cmd_val(s, i));
1565                 else
1566                         pr_err("%08x ", cmd_val(s, i));
1567         }
1568         pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1569                         vgpu->id,
1570                         vgpu_aperture_gmadr_base(vgpu),
1571                         vgpu_aperture_gmadr_end(vgpu),
1572                         vgpu_hidden_gmadr_base(vgpu),
1573                         vgpu_hidden_gmadr_end(vgpu));
1574         return ret;
1575 }
1576
1577 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1578 {
1579         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1580         int op_size = (cmd_length(s) - 3) * sizeof(u32);
1581         int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1582         unsigned long gma, gma_low, gma_high;
1583         u32 valid_len = CMD_LEN(2);
1584         int ret = 0;
1585
1586         /* check ppggt */
1587         if (!(cmd_val(s, 0) & (1 << 22)))
1588                 return 0;
1589
1590         /* check if QWORD */
1591         if (DWORD_FIELD(0, 21, 21))
1592                 valid_len++;
1593         ret = gvt_check_valid_cmd_length(cmd_length(s),
1594                         valid_len);
1595         if (ret)
1596                 return ret;
1597
1598         gma = cmd_val(s, 2) & GENMASK(31, 2);
1599
1600         if (gmadr_bytes == 8) {
1601                 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1602                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1603                 gma = (gma_high << 32) | gma_low;
1604                 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1605         }
1606         ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1607         return ret;
1608 }
1609
1610 static inline int unexpected_cmd(struct parser_exec_state *s)
1611 {
1612         struct intel_vgpu *vgpu = s->vgpu;
1613
1614         gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1615
1616         return -EBADRQC;
1617 }
1618
1619 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1620 {
1621         return unexpected_cmd(s);
1622 }
1623
1624 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1625 {
1626         return unexpected_cmd(s);
1627 }
1628
1629 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1630 {
1631         return unexpected_cmd(s);
1632 }
1633
1634 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1635 {
1636         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1637         int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1638                         sizeof(u32);
1639         unsigned long gma, gma_high;
1640         u32 valid_len = CMD_LEN(1);
1641         int ret = 0;
1642
1643         if (!(cmd_val(s, 0) & (1 << 22)))
1644                 return ret;
1645
1646         /* check inline data */
1647         if (cmd_val(s, 0) & BIT(18))
1648                 valid_len = CMD_LEN(9);
1649         ret = gvt_check_valid_cmd_length(cmd_length(s),
1650                         valid_len);
1651         if (ret)
1652                 return ret;
1653
1654         gma = cmd_val(s, 1) & GENMASK(31, 2);
1655         if (gmadr_bytes == 8) {
1656                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1657                 gma = (gma_high << 32) | gma;
1658         }
1659         ret = cmd_address_audit(s, gma, op_size, false);
1660         return ret;
1661 }
1662
1663 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1664 {
1665         return unexpected_cmd(s);
1666 }
1667
1668 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1669 {
1670         return unexpected_cmd(s);
1671 }
1672
1673 static int cmd_handler_mi_conditional_batch_buffer_end(
1674                 struct parser_exec_state *s)
1675 {
1676         return unexpected_cmd(s);
1677 }
1678
1679 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1680 {
1681         return unexpected_cmd(s);
1682 }
1683
1684 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1685 {
1686         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1687         unsigned long gma;
1688         bool index_mode = false;
1689         int ret = 0;
1690         u32 hws_pga, val;
1691         u32 valid_len = CMD_LEN(2);
1692
1693         ret = gvt_check_valid_cmd_length(cmd_length(s),
1694                         valid_len);
1695         if (ret) {
1696                 /* Check again for Qword */
1697                 ret = gvt_check_valid_cmd_length(cmd_length(s),
1698                         ++valid_len);
1699                 return ret;
1700         }
1701
1702         /* Check post-sync and ppgtt bit */
1703         if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1704                 gma = cmd_val(s, 1) & GENMASK(31, 3);
1705                 if (gmadr_bytes == 8)
1706                         gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1707                 /* Store Data Index */
1708                 if (cmd_val(s, 0) & (1 << 21))
1709                         index_mode = true;
1710                 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1711                 if (ret)
1712                         return ret;
1713                 if (index_mode) {
1714                         hws_pga = s->vgpu->hws_pga[s->engine->id];
1715                         gma = hws_pga + gma;
1716                         patch_value(s, cmd_ptr(s, 1), gma);
1717                         val = cmd_val(s, 0) & (~(1 << 21));
1718                         patch_value(s, cmd_ptr(s, 0), val);
1719                 }
1720         }
1721         /* Check notify bit */
1722         if ((cmd_val(s, 0) & (1 << 8)))
1723                 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1724                         s->workload->pending_events);
1725         return ret;
1726 }
1727
1728 static void addr_type_update_snb(struct parser_exec_state *s)
1729 {
1730         if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1731                         (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1732                 s->buf_addr_type = PPGTT_BUFFER;
1733         }
1734 }
1735
1736
1737 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1738                 unsigned long gma, unsigned long end_gma, void *va)
1739 {
1740         unsigned long copy_len, offset;
1741         unsigned long len = 0;
1742         unsigned long gpa;
1743
1744         while (gma != end_gma) {
1745                 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1746                 if (gpa == INTEL_GVT_INVALID_ADDR) {
1747                         gvt_vgpu_err("invalid gma address: %lx\n", gma);
1748                         return -EFAULT;
1749                 }
1750
1751                 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1752
1753                 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1754                         I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1755
1756                 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1757
1758                 len += copy_len;
1759                 gma += copy_len;
1760         }
1761         return len;
1762 }
1763
1764
1765 /*
1766  * Check whether a batch buffer needs to be scanned. Currently
1767  * the only criteria is based on privilege.
1768  */
1769 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1770 {
1771         /* Decide privilege based on address space */
1772         if (cmd_val(s, 0) & BIT(8) &&
1773             !(s->vgpu->scan_nonprivbb & s->engine->mask))
1774                 return 0;
1775
1776         return 1;
1777 }
1778
1779 static const char *repr_addr_type(unsigned int type)
1780 {
1781         return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1782 }
1783
1784 static int find_bb_size(struct parser_exec_state *s,
1785                         unsigned long *bb_size,
1786                         unsigned long *bb_end_cmd_offset)
1787 {
1788         unsigned long gma = 0;
1789         const struct cmd_info *info;
1790         u32 cmd_len = 0;
1791         bool bb_end = false;
1792         struct intel_vgpu *vgpu = s->vgpu;
1793         u32 cmd;
1794         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1795                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1796
1797         *bb_size = 0;
1798         *bb_end_cmd_offset = 0;
1799
1800         /* get the start gm address of the batch buffer */
1801         gma = get_gma_bb_from_cmd(s, 1);
1802         if (gma == INTEL_GVT_INVALID_ADDR)
1803                 return -EFAULT;
1804
1805         cmd = cmd_val(s, 0);
1806         info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1807         if (info == NULL) {
1808                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1809                              cmd, get_opcode(cmd, s->engine),
1810                              repr_addr_type(s->buf_addr_type),
1811                              s->engine->name, s->workload);
1812                 return -EBADRQC;
1813         }
1814         do {
1815                 if (copy_gma_to_hva(s->vgpu, mm,
1816                                     gma, gma + 4, &cmd) < 0)
1817                         return -EFAULT;
1818                 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1819                 if (info == NULL) {
1820                         gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1821                                      cmd, get_opcode(cmd, s->engine),
1822                                      repr_addr_type(s->buf_addr_type),
1823                                      s->engine->name, s->workload);
1824                         return -EBADRQC;
1825                 }
1826
1827                 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1828                         bb_end = true;
1829                 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1830                         if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1831                                 /* chained batch buffer */
1832                                 bb_end = true;
1833                 }
1834
1835                 if (bb_end)
1836                         *bb_end_cmd_offset = *bb_size;
1837
1838                 cmd_len = get_cmd_length(info, cmd) << 2;
1839                 *bb_size += cmd_len;
1840                 gma += cmd_len;
1841         } while (!bb_end);
1842
1843         return 0;
1844 }
1845
1846 static int audit_bb_end(struct parser_exec_state *s, void *va)
1847 {
1848         struct intel_vgpu *vgpu = s->vgpu;
1849         u32 cmd = *(u32 *)va;
1850         const struct cmd_info *info;
1851
1852         info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1853         if (info == NULL) {
1854                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1855                              cmd, get_opcode(cmd, s->engine),
1856                              repr_addr_type(s->buf_addr_type),
1857                              s->engine->name, s->workload);
1858                 return -EBADRQC;
1859         }
1860
1861         if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1862             ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1863              (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1864                 return 0;
1865
1866         return -EBADRQC;
1867 }
1868
1869 static int perform_bb_shadow(struct parser_exec_state *s)
1870 {
1871         struct intel_vgpu *vgpu = s->vgpu;
1872         struct intel_vgpu_shadow_bb *bb;
1873         unsigned long gma = 0;
1874         unsigned long bb_size;
1875         unsigned long bb_end_cmd_offset;
1876         int ret = 0;
1877         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1878                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1879         unsigned long start_offset = 0;
1880
1881         /* get the start gm address of the batch buffer */
1882         gma = get_gma_bb_from_cmd(s, 1);
1883         if (gma == INTEL_GVT_INVALID_ADDR)
1884                 return -EFAULT;
1885
1886         ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1887         if (ret)
1888                 return ret;
1889
1890         bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1891         if (!bb)
1892                 return -ENOMEM;
1893
1894         bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1895
1896         /* the start_offset stores the batch buffer's start gma's
1897          * offset relative to page boundary. so for non-privileged batch
1898          * buffer, the shadowed gem object holds exactly the same page
1899          * layout as original gem object. This is for the convience of
1900          * replacing the whole non-privilged batch buffer page to this
1901          * shadowed one in PPGTT at the same gma address. (this replacing
1902          * action is not implemented yet now, but may be necessary in
1903          * future).
1904          * for prileged batch buffer, we just change start gma address to
1905          * that of shadowed page.
1906          */
1907         if (bb->ppgtt)
1908                 start_offset = gma & ~I915_GTT_PAGE_MASK;
1909
1910         bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1911                                                round_up(bb_size + start_offset,
1912                                                         PAGE_SIZE));
1913         if (IS_ERR(bb->obj)) {
1914                 ret = PTR_ERR(bb->obj);
1915                 goto err_free_bb;
1916         }
1917
1918         ret = i915_gem_object_prepare_write(bb->obj, &bb->clflush);
1919         if (ret)
1920                 goto err_free_obj;
1921
1922         bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1923         if (IS_ERR(bb->va)) {
1924                 ret = PTR_ERR(bb->va);
1925                 goto err_finish_shmem_access;
1926         }
1927
1928         if (bb->clflush & CLFLUSH_BEFORE) {
1929                 drm_clflush_virt_range(bb->va, bb->obj->base.size);
1930                 bb->clflush &= ~CLFLUSH_BEFORE;
1931         }
1932
1933         ret = copy_gma_to_hva(s->vgpu, mm,
1934                               gma, gma + bb_size,
1935                               bb->va + start_offset);
1936         if (ret < 0) {
1937                 gvt_vgpu_err("fail to copy guest ring buffer\n");
1938                 ret = -EFAULT;
1939                 goto err_unmap;
1940         }
1941
1942         ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1943         if (ret)
1944                 goto err_unmap;
1945
1946         INIT_LIST_HEAD(&bb->list);
1947         list_add(&bb->list, &s->workload->shadow_bb);
1948
1949         bb->accessing = true;
1950         bb->bb_start_cmd_va = s->ip_va;
1951
1952         if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1953                 bb->bb_offset = s->ip_va - s->rb_va;
1954         else
1955                 bb->bb_offset = 0;
1956
1957         /*
1958          * ip_va saves the virtual address of the shadow batch buffer, while
1959          * ip_gma saves the graphics address of the original batch buffer.
1960          * As the shadow batch buffer is just a copy from the originial one,
1961          * it should be right to use shadow batch buffer'va and original batch
1962          * buffer's gma in pair. After all, we don't want to pin the shadow
1963          * buffer here (too early).
1964          */
1965         s->ip_va = bb->va + start_offset;
1966         s->ip_gma = gma;
1967         return 0;
1968 err_unmap:
1969         i915_gem_object_unpin_map(bb->obj);
1970 err_finish_shmem_access:
1971         i915_gem_object_finish_access(bb->obj);
1972 err_free_obj:
1973         i915_gem_object_put(bb->obj);
1974 err_free_bb:
1975         kfree(bb);
1976         return ret;
1977 }
1978
1979 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1980 {
1981         bool second_level;
1982         int ret = 0;
1983         struct intel_vgpu *vgpu = s->vgpu;
1984
1985         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1986                 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1987                 return -EFAULT;
1988         }
1989
1990         second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1991         if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1992                 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1993                 return -EFAULT;
1994         }
1995
1996         s->saved_buf_addr_type = s->buf_addr_type;
1997         addr_type_update_snb(s);
1998         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1999                 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2000                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
2001         } else if (second_level) {
2002                 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2003                 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2004                 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2005         }
2006
2007         if (batch_buffer_needs_scan(s)) {
2008                 ret = perform_bb_shadow(s);
2009                 if (ret < 0)
2010                         gvt_vgpu_err("invalid shadow batch buffer\n");
2011         } else {
2012                 /* emulate a batch buffer end to do return right */
2013                 ret = cmd_handler_mi_batch_buffer_end(s);
2014                 if (ret < 0)
2015                         return ret;
2016         }
2017         return ret;
2018 }
2019
2020 static int mi_noop_index;
2021
2022 static const struct cmd_info cmd_info[] = {
2023         {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2024
2025         {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2026                 0, 1, NULL},
2027
2028         {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2029                 0, 1, cmd_handler_mi_user_interrupt},
2030
2031         {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2032                 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2033
2034         {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2035
2036         {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2037                 NULL},
2038
2039         {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2040                 NULL},
2041
2042         {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2043                 NULL},
2044
2045         {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2046                 NULL},
2047
2048         {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2049                 D_ALL, 0, 1, NULL},
2050
2051         {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2052                 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2053                 cmd_handler_mi_batch_buffer_end},
2054
2055         {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2056                 0, 1, NULL},
2057
2058         {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2059                 NULL},
2060
2061         {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2062                 D_ALL, 0, 1, NULL},
2063
2064         {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2065                 NULL},
2066
2067         {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2068                 NULL},
2069
2070         {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2071                 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2072
2073         {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2074                 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2075
2076         {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2077
2078         {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2079                 D_ALL, 0, 8, NULL, CMD_LEN(0)},
2080
2081         {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2082                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2083                 NULL, CMD_LEN(0)},
2084
2085         {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2086                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2087                 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2088
2089         {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2090                 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2091
2092         {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2093                 0, 8, cmd_handler_mi_store_data_index},
2094
2095         {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2096                 D_ALL, 0, 8, cmd_handler_lri},
2097
2098         {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2099                 cmd_handler_mi_update_gtt},
2100
2101         {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2102                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2103                 cmd_handler_srm, CMD_LEN(2)},
2104
2105         {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2106                 cmd_handler_mi_flush_dw},
2107
2108         {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2109                 10, cmd_handler_mi_clflush},
2110
2111         {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2112                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2113                 cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2114
2115         {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2116                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2117                 cmd_handler_lrm, CMD_LEN(2)},
2118
2119         {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2120                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2121                 cmd_handler_lrr, CMD_LEN(1)},
2122
2123         {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2124                 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2125                 8, NULL, CMD_LEN(2)},
2126
2127         {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2128                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2129
2130         {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2131                 ADDR_FIX_1(2), 8, NULL},
2132
2133         {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2134                 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2135
2136         {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2137                 8, cmd_handler_mi_op_2f},
2138
2139         {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2140                 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2141                 cmd_handler_mi_batch_buffer_start},
2142
2143         {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2144                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2145                 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2146
2147         {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2148                 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2149
2150         {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2151                 ADDR_FIX_2(4, 7), 8, NULL},
2152
2153         {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2154                 0, 8, NULL},
2155
2156         {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2157                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2158
2159         {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2160
2161         {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2162                 0, 8, NULL},
2163
2164         {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2165                 ADDR_FIX_1(3), 8, NULL},
2166
2167         {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2168                 D_ALL, 0, 8, NULL},
2169
2170         {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2171                 ADDR_FIX_1(4), 8, NULL},
2172
2173         {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2174                 ADDR_FIX_2(4, 5), 8, NULL},
2175
2176         {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2177                 ADDR_FIX_1(4), 8, NULL},
2178
2179         {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2180                 ADDR_FIX_2(4, 7), 8, NULL},
2181
2182         {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2183                 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2184
2185         {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2186
2187         {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2188                 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2189
2190         {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2191                 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2192
2193         {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2194                 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2195                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2196
2197         {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2198                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2199
2200         {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2201                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2202
2203         {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2204                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2205
2206         {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2207                 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2208
2209         {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2210                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2211
2212         {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2213                 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2214                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2215
2216         {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2217                 ADDR_FIX_2(4, 5), 8, NULL},
2218
2219         {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2220                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2221
2222         {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2223                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2224                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2225
2226         {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2227                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2228                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2229
2230         {"3DSTATE_BLEND_STATE_POINTERS",
2231                 OP_3DSTATE_BLEND_STATE_POINTERS,
2232                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2233
2234         {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2235                 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2236                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2237
2238         {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2239                 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2240                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2241
2242         {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2243                 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2244                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2245
2246         {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2247                 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2248                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2249
2250         {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2251                 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2252                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2253
2254         {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2255                 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2256                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2257
2258         {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2259                 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2260                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2261
2262         {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2263                 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2264                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2265
2266         {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2267                 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2268                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2269
2270         {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2271                 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2272                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2273
2274         {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2275                 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2276                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2277
2278         {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2279                 0, 8, NULL},
2280
2281         {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2282                 0, 8, NULL},
2283
2284         {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2285                 0, 8, NULL},
2286
2287         {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2288                 0, 8, NULL},
2289
2290         {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2291                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2292
2293         {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2294                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2295
2296         {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2297                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2298
2299         {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2300                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2301
2302         {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2303                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2304
2305         {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2306                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2307
2308         {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2309                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2310
2311         {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2312                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2313
2314         {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2315                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2316
2317         {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2318                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2319
2320         {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2321                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2322
2323         {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2324                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2325
2326         {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2327                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2328
2329         {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2330                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2331
2332         {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2333                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2334
2335         {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2336                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2337
2338         {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2339                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2340
2341         {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2342                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2343
2344         {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2345                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2346
2347         {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2348                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2349
2350         {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2351                 D_BDW_PLUS, 0, 8, NULL},
2352
2353         {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2354                 NULL},
2355
2356         {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2357                 D_BDW_PLUS, 0, 8, NULL},
2358
2359         {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2360                 D_BDW_PLUS, 0, 8, NULL},
2361
2362         {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2363                 8, NULL},
2364
2365         {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2366                 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2367
2368         {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2369                 8, NULL},
2370
2371         {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2372                 NULL},
2373
2374         {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2375                 NULL},
2376
2377         {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2378                 NULL},
2379
2380         {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2381                 D_BDW_PLUS, 0, 8, NULL},
2382
2383         {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2384                 R_RCS, D_ALL, 0, 8, NULL},
2385
2386         {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2387                 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2388
2389         {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2390                 R_RCS, D_ALL, 0, 1, NULL},
2391
2392         {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2393
2394         {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2395                 R_RCS, D_ALL, 0, 8, NULL},
2396
2397         {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2398                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2399
2400         {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2401
2402         {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2403
2404         {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2405
2406         {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2407                 D_BDW_PLUS, 0, 8, NULL},
2408
2409         {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2410                 D_BDW_PLUS, 0, 8, NULL},
2411
2412         {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2413                 D_ALL, 0, 8, NULL},
2414
2415         {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2416                 D_BDW_PLUS, 0, 8, NULL},
2417
2418         {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2419                 D_BDW_PLUS, 0, 8, NULL},
2420
2421         {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2422
2423         {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2424
2425         {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2426
2427         {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2428                 D_ALL, 0, 8, NULL},
2429
2430         {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2431
2432         {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2433
2434         {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2435                 R_RCS, D_ALL, 0, 8, NULL},
2436
2437         {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2438                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2439
2440         {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2441                 0, 8, NULL},
2442
2443         {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2444                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2445
2446         {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2447                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2448
2449         {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2450                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2451
2452         {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2453                 D_ALL, 0, 8, NULL},
2454
2455         {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2456                 D_ALL, 0, 8, NULL},
2457
2458         {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2459                 D_ALL, 0, 8, NULL},
2460
2461         {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2462                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2463
2464         {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2465                 D_BDW_PLUS, 0, 8, NULL},
2466
2467         {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2468                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2469
2470         {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2471                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2472
2473         {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2474                 R_RCS, D_ALL, 0, 8, NULL},
2475
2476         {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2477                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2478
2479         {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2480                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2481
2482         {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2483                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2484
2485         {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2486                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2487
2488         {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2489                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2490
2491         {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2492                 R_RCS, D_ALL, 0, 8, NULL},
2493
2494         {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2495                 D_ALL, 0, 9, NULL},
2496
2497         {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2498                 ADDR_FIX_2(2, 4), 8, NULL},
2499
2500         {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2501                 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2502                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2503
2504         {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2505                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2506
2507         {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2508                 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2509                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2510
2511         {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2512                 D_BDW_PLUS, 0, 8, NULL},
2513
2514         {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2515                 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2516
2517         {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2518
2519         {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2520                 1, NULL},
2521
2522         {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2523                 ADDR_FIX_1(1), 8, NULL},
2524
2525         {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2526
2527         {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2528                 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2529
2530         {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2531                 ADDR_FIX_1(1), 8, NULL},
2532
2533         {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2534
2535         {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2536
2537         {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2538                 0, 8, NULL},
2539
2540         {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2541                 D_SKL_PLUS, 0, 8, NULL},
2542
2543         {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2544                 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2545
2546         {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2547                 0, 16, NULL},
2548
2549         {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2550                 0, 16, NULL},
2551
2552         {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2553                 0, 16, NULL},
2554
2555         {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2556
2557         {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2558                 0, 16, NULL},
2559
2560         {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2561                 0, 16, NULL},
2562
2563         {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2564                 0, 16, NULL},
2565
2566         {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2567                 0, 8, NULL},
2568
2569         {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2570                 NULL},
2571
2572         {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2573                 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2574
2575         {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2576                 R_VCS, D_ALL, 0, 12, NULL},
2577
2578         {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2579                 R_VCS, D_ALL, 0, 12, NULL},
2580
2581         {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2582                 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2583
2584         {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2585                 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2586
2587         {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2588                 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2589
2590         {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2591
2592         {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2593                 R_VCS, D_ALL, 0, 12, NULL},
2594
2595         {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2596                 R_VCS, D_ALL, 0, 12, NULL},
2597
2598         {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2599                 R_VCS, D_ALL, 0, 12, NULL},
2600
2601         {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2602                 R_VCS, D_ALL, 0, 12, NULL},
2603
2604         {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2605                 R_VCS, D_ALL, 0, 12, NULL},
2606
2607         {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2608                 R_VCS, D_ALL, 0, 12, NULL},
2609
2610         {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2611                 R_VCS, D_ALL, 0, 6, NULL},
2612
2613         {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2614                 R_VCS, D_ALL, 0, 12, NULL},
2615
2616         {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2617                 R_VCS, D_ALL, 0, 12, NULL},
2618
2619         {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2620                 R_VCS, D_ALL, 0, 12, NULL},
2621
2622         {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2623                 R_VCS, D_ALL, 0, 12, NULL},
2624
2625         {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2626                 R_VCS, D_ALL, 0, 12, NULL},
2627
2628         {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2629                 R_VCS, D_ALL, 0, 12, NULL},
2630
2631         {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2632                 R_VCS, D_ALL, 0, 12, NULL},
2633         {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2634                 R_VCS, D_ALL, 0, 12, NULL},
2635
2636         {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2637                 R_VCS, D_ALL, 0, 12, NULL},
2638
2639         {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2640                 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2641
2642         {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2643                 R_VCS, D_ALL, 0, 12, NULL},
2644
2645         {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2646                 R_VCS, D_ALL, 0, 12, NULL},
2647
2648         {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2649                 R_VCS, D_ALL, 0, 12, NULL},
2650
2651         {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2652                 R_VCS, D_ALL, 0, 12, NULL},
2653
2654         {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2655                 R_VCS, D_ALL, 0, 12, NULL},
2656
2657         {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2658                 R_VCS, D_ALL, 0, 12, NULL},
2659
2660         {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2661                 R_VCS, D_ALL, 0, 12, NULL},
2662
2663         {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2664                 R_VCS, D_ALL, 0, 12, NULL},
2665
2666         {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2667                 R_VCS, D_ALL, 0, 12, NULL},
2668
2669         {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2670                 R_VCS, D_ALL, 0, 12, NULL},
2671
2672         {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2673                 R_VCS, D_ALL, 0, 12, NULL},
2674
2675         {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2676                 0, 16, NULL},
2677
2678         {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2679
2680         {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2681
2682         {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2683                 R_VCS, D_ALL, 0, 12, NULL},
2684
2685         {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2686                 R_VCS, D_ALL, 0, 12, NULL},
2687
2688         {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2689                 R_VCS, D_ALL, 0, 12, NULL},
2690
2691         {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2692
2693         {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2694                 0, 12, NULL},
2695
2696         {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2697                 0, 12, NULL},
2698 };
2699
2700 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2701 {
2702         hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2703 }
2704
2705 /* call the cmd handler, and advance ip */
2706 static int cmd_parser_exec(struct parser_exec_state *s)
2707 {
2708         struct intel_vgpu *vgpu = s->vgpu;
2709         const struct cmd_info *info;
2710         u32 cmd;
2711         int ret = 0;
2712
2713         cmd = cmd_val(s, 0);
2714
2715         /* fastpath for MI_NOOP */
2716         if (cmd == MI_NOOP)
2717                 info = &cmd_info[mi_noop_index];
2718         else
2719                 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2720
2721         if (info == NULL) {
2722                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2723                              cmd, get_opcode(cmd, s->engine),
2724                              repr_addr_type(s->buf_addr_type),
2725                              s->engine->name, s->workload);
2726                 return -EBADRQC;
2727         }
2728
2729         s->info = info;
2730
2731         trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2732                           cmd_length(s), s->buf_type, s->buf_addr_type,
2733                           s->workload, info->name);
2734
2735         if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2736                 ret = gvt_check_valid_cmd_length(cmd_length(s),
2737                                                  info->valid_len);
2738                 if (ret)
2739                         return ret;
2740         }
2741
2742         if (info->handler) {
2743                 ret = info->handler(s);
2744                 if (ret < 0) {
2745                         gvt_vgpu_err("%s handler error\n", info->name);
2746                         return ret;
2747                 }
2748         }
2749
2750         if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2751                 ret = cmd_advance_default(s);
2752                 if (ret) {
2753                         gvt_vgpu_err("%s IP advance error\n", info->name);
2754                         return ret;
2755                 }
2756         }
2757         return 0;
2758 }
2759
2760 static inline bool gma_out_of_range(unsigned long gma,
2761                 unsigned long gma_head, unsigned int gma_tail)
2762 {
2763         if (gma_tail >= gma_head)
2764                 return (gma < gma_head) || (gma > gma_tail);
2765         else
2766                 return (gma > gma_tail) && (gma < gma_head);
2767 }
2768
2769 /* Keep the consistent return type, e.g EBADRQC for unknown
2770  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2771  * works as the input of VM healthy status.
2772  */
2773 static int command_scan(struct parser_exec_state *s,
2774                 unsigned long rb_head, unsigned long rb_tail,
2775                 unsigned long rb_start, unsigned long rb_len)
2776 {
2777
2778         unsigned long gma_head, gma_tail, gma_bottom;
2779         int ret = 0;
2780         struct intel_vgpu *vgpu = s->vgpu;
2781
2782         gma_head = rb_start + rb_head;
2783         gma_tail = rb_start + rb_tail;
2784         gma_bottom = rb_start +  rb_len;
2785
2786         while (s->ip_gma != gma_tail) {
2787                 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2788                         if (!(s->ip_gma >= rb_start) ||
2789                                 !(s->ip_gma < gma_bottom)) {
2790                                 gvt_vgpu_err("ip_gma %lx out of ring scope."
2791                                         "(base:0x%lx, bottom: 0x%lx)\n",
2792                                         s->ip_gma, rb_start,
2793                                         gma_bottom);
2794                                 parser_exec_state_dump(s);
2795                                 return -EFAULT;
2796                         }
2797                         if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2798                                 gvt_vgpu_err("ip_gma %lx out of range."
2799                                         "base 0x%lx head 0x%lx tail 0x%lx\n",
2800                                         s->ip_gma, rb_start,
2801                                         rb_head, rb_tail);
2802                                 parser_exec_state_dump(s);
2803                                 break;
2804                         }
2805                 }
2806                 ret = cmd_parser_exec(s);
2807                 if (ret) {
2808                         gvt_vgpu_err("cmd parser error\n");
2809                         parser_exec_state_dump(s);
2810                         break;
2811                 }
2812         }
2813
2814         return ret;
2815 }
2816
2817 static int scan_workload(struct intel_vgpu_workload *workload)
2818 {
2819         unsigned long gma_head, gma_tail, gma_bottom;
2820         struct parser_exec_state s;
2821         int ret = 0;
2822
2823         /* ring base is page aligned */
2824         if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2825                 return -EINVAL;
2826
2827         gma_head = workload->rb_start + workload->rb_head;
2828         gma_tail = workload->rb_start + workload->rb_tail;
2829         gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2830
2831         s.buf_type = RING_BUFFER_INSTRUCTION;
2832         s.buf_addr_type = GTT_BUFFER;
2833         s.vgpu = workload->vgpu;
2834         s.engine = workload->engine;
2835         s.ring_start = workload->rb_start;
2836         s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2837         s.ring_head = gma_head;
2838         s.ring_tail = gma_tail;
2839         s.rb_va = workload->shadow_ring_buffer_va;
2840         s.workload = workload;
2841         s.is_ctx_wa = false;
2842
2843         if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2844                 return 0;
2845
2846         ret = ip_gma_set(&s, gma_head);
2847         if (ret)
2848                 goto out;
2849
2850         ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2851                 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2852
2853 out:
2854         return ret;
2855 }
2856
2857 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2858 {
2859
2860         unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2861         struct parser_exec_state s;
2862         int ret = 0;
2863         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2864                                 struct intel_vgpu_workload,
2865                                 wa_ctx);
2866
2867         /* ring base is page aligned */
2868         if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2869                                         I915_GTT_PAGE_SIZE)))
2870                 return -EINVAL;
2871
2872         ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2873         ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2874                         PAGE_SIZE);
2875         gma_head = wa_ctx->indirect_ctx.guest_gma;
2876         gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2877         gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2878
2879         s.buf_type = RING_BUFFER_INSTRUCTION;
2880         s.buf_addr_type = GTT_BUFFER;
2881         s.vgpu = workload->vgpu;
2882         s.engine = workload->engine;
2883         s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2884         s.ring_size = ring_size;
2885         s.ring_head = gma_head;
2886         s.ring_tail = gma_tail;
2887         s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2888         s.workload = workload;
2889         s.is_ctx_wa = true;
2890
2891         ret = ip_gma_set(&s, gma_head);
2892         if (ret)
2893                 goto out;
2894
2895         ret = command_scan(&s, 0, ring_tail,
2896                 wa_ctx->indirect_ctx.guest_gma, ring_size);
2897 out:
2898         return ret;
2899 }
2900
2901 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2902 {
2903         struct intel_vgpu *vgpu = workload->vgpu;
2904         struct intel_vgpu_submission *s = &vgpu->submission;
2905         unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2906         void *shadow_ring_buffer_va;
2907         int ret;
2908
2909         guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2910
2911         /* calculate workload ring buffer size */
2912         workload->rb_len = (workload->rb_tail + guest_rb_size -
2913                         workload->rb_head) % guest_rb_size;
2914
2915         gma_head = workload->rb_start + workload->rb_head;
2916         gma_tail = workload->rb_start + workload->rb_tail;
2917         gma_top = workload->rb_start + guest_rb_size;
2918
2919         if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2920                 void *p;
2921
2922                 /* realloc the new ring buffer if needed */
2923                 p = krealloc(s->ring_scan_buffer[workload->engine->id],
2924                              workload->rb_len, GFP_KERNEL);
2925                 if (!p) {
2926                         gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2927                         return -ENOMEM;
2928                 }
2929                 s->ring_scan_buffer[workload->engine->id] = p;
2930                 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2931         }
2932
2933         shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2934
2935         /* get shadow ring buffer va */
2936         workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2937
2938         /* head > tail --> copy head <-> top */
2939         if (gma_head > gma_tail) {
2940                 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2941                                       gma_head, gma_top, shadow_ring_buffer_va);
2942                 if (ret < 0) {
2943                         gvt_vgpu_err("fail to copy guest ring buffer\n");
2944                         return ret;
2945                 }
2946                 shadow_ring_buffer_va += ret;
2947                 gma_head = workload->rb_start;
2948         }
2949
2950         /* copy head or start <-> tail */
2951         ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2952                                 shadow_ring_buffer_va);
2953         if (ret < 0) {
2954                 gvt_vgpu_err("fail to copy guest ring buffer\n");
2955                 return ret;
2956         }
2957         return 0;
2958 }
2959
2960 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2961 {
2962         int ret;
2963         struct intel_vgpu *vgpu = workload->vgpu;
2964
2965         ret = shadow_workload_ring_buffer(workload);
2966         if (ret) {
2967                 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2968                 return ret;
2969         }
2970
2971         ret = scan_workload(workload);
2972         if (ret) {
2973                 gvt_vgpu_err("scan workload error\n");
2974                 return ret;
2975         }
2976         return 0;
2977 }
2978
2979 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2980 {
2981         int ctx_size = wa_ctx->indirect_ctx.size;
2982         unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2983         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2984                                         struct intel_vgpu_workload,
2985                                         wa_ctx);
2986         struct intel_vgpu *vgpu = workload->vgpu;
2987         struct drm_i915_gem_object *obj;
2988         int ret = 0;
2989         void *map;
2990
2991         obj = i915_gem_object_create_shmem(workload->engine->i915,
2992                                            roundup(ctx_size + CACHELINE_BYTES,
2993                                                    PAGE_SIZE));
2994         if (IS_ERR(obj))
2995                 return PTR_ERR(obj);
2996
2997         /* get the va of the shadow batch buffer */
2998         map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2999         if (IS_ERR(map)) {
3000                 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3001                 ret = PTR_ERR(map);
3002                 goto put_obj;
3003         }
3004
3005         i915_gem_object_lock(obj);
3006         ret = i915_gem_object_set_to_cpu_domain(obj, false);
3007         i915_gem_object_unlock(obj);
3008         if (ret) {
3009                 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3010                 goto unmap_src;
3011         }
3012
3013         ret = copy_gma_to_hva(workload->vgpu,
3014                                 workload->vgpu->gtt.ggtt_mm,
3015                                 guest_gma, guest_gma + ctx_size,
3016                                 map);
3017         if (ret < 0) {
3018                 gvt_vgpu_err("fail to copy guest indirect ctx\n");
3019                 goto unmap_src;
3020         }
3021
3022         wa_ctx->indirect_ctx.obj = obj;
3023         wa_ctx->indirect_ctx.shadow_va = map;
3024         return 0;
3025
3026 unmap_src:
3027         i915_gem_object_unpin_map(obj);
3028 put_obj:
3029         i915_gem_object_put(obj);
3030         return ret;
3031 }
3032
3033 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3034 {
3035         u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3036         unsigned char *bb_start_sva;
3037
3038         if (!wa_ctx->per_ctx.valid)
3039                 return 0;
3040
3041         per_ctx_start[0] = 0x18800001;
3042         per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3043
3044         bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3045                                 wa_ctx->indirect_ctx.size;
3046
3047         memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3048
3049         return 0;
3050 }
3051
3052 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3053 {
3054         int ret;
3055         struct intel_vgpu_workload *workload = container_of(wa_ctx,
3056                                         struct intel_vgpu_workload,
3057                                         wa_ctx);
3058         struct intel_vgpu *vgpu = workload->vgpu;
3059
3060         if (wa_ctx->indirect_ctx.size == 0)
3061                 return 0;
3062
3063         ret = shadow_indirect_ctx(wa_ctx);
3064         if (ret) {
3065                 gvt_vgpu_err("fail to shadow indirect ctx\n");
3066                 return ret;
3067         }
3068
3069         combine_wa_ctx(wa_ctx);
3070
3071         ret = scan_wa_ctx(wa_ctx);
3072         if (ret) {
3073                 gvt_vgpu_err("scan wa ctx error\n");
3074                 return ret;
3075         }
3076
3077         return 0;
3078 }
3079
3080 static int init_cmd_table(struct intel_gvt *gvt)
3081 {
3082         unsigned int gen_type = intel_gvt_get_device_type(gvt);
3083         int i;
3084
3085         for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3086                 struct cmd_entry *e;
3087
3088                 if (!(cmd_info[i].devices & gen_type))
3089                         continue;
3090
3091                 e = kzalloc(sizeof(*e), GFP_KERNEL);
3092                 if (!e)
3093                         return -ENOMEM;
3094
3095                 e->info = &cmd_info[i];
3096                 if (cmd_info[i].opcode == OP_MI_NOOP)
3097                         mi_noop_index = i;
3098
3099                 INIT_HLIST_NODE(&e->hlist);
3100                 add_cmd_entry(gvt, e);
3101                 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3102                             e->info->name, e->info->opcode, e->info->flag,
3103                             e->info->devices, e->info->rings);
3104         }
3105
3106         return 0;
3107 }
3108
3109 static void clean_cmd_table(struct intel_gvt *gvt)
3110 {
3111         struct hlist_node *tmp;
3112         struct cmd_entry *e;
3113         int i;
3114
3115         hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3116                 kfree(e);
3117
3118         hash_init(gvt->cmd_table);
3119 }
3120
3121 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3122 {
3123         clean_cmd_table(gvt);
3124 }
3125
3126 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3127 {
3128         int ret;
3129
3130         ret = init_cmd_table(gvt);
3131         if (ret) {
3132                 intel_gvt_clean_cmd_parser(gvt);
3133                 return ret;
3134         }
3135         return 0;
3136 }
This page took 0.221413 seconds and 4 git commands to generate.