1 // SPDX-License-Identifier: MIT
3 * Copyright © 2020 Intel Corporation
6 #include <asm/set_memory.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
11 #include <drm/drm_managed.h>
12 #include <drm/i915_drm.h>
13 #include <drm/intel-gtt.h>
15 #include "display/intel_display.h"
16 #include "gem/i915_gem_lmem.h"
18 #include "intel_context.h"
19 #include "intel_ggtt_gmch.h"
20 #include "intel_gpu_commands.h"
22 #include "intel_gt_regs.h"
23 #include "intel_pci_config.h"
24 #include "intel_ring.h"
27 #include "i915_request.h"
28 #include "i915_scatterlist.h"
29 #include "i915_utils.h"
30 #include "i915_vgpu.h"
32 #include "intel_gtt.h"
33 #include "gen8_ppgtt.h"
34 #include "intel_engine_pm.h"
36 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
41 if (i915_node_color_differs(node, color))
42 *start += I915_GTT_PAGE_SIZE;
45 * Also leave a space between the unallocated reserved node after the
46 * GTT and any objects within the GTT, i.e. we use the color adjustment
47 * to insert a guard page to prevent prefetches crossing over the
50 node = list_next_entry(node, node_list);
51 if (node->color != color)
52 *end -= I915_GTT_PAGE_SIZE;
55 static int ggtt_init_hw(struct i915_ggtt *ggtt)
57 struct drm_i915_private *i915 = ggtt->vm.i915;
59 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
61 ggtt->vm.is_ggtt = true;
63 /* Only VLV supports read-only GGTT mappings */
64 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
66 if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
67 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
69 if (ggtt->mappable_end) {
70 if (!io_mapping_init_wc(&ggtt->iomap,
72 ggtt->mappable_end)) {
73 ggtt->vm.cleanup(&ggtt->vm);
77 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
81 intel_ggtt_init_fences(ggtt);
87 * i915_ggtt_init_hw - Initialize GGTT hardware
90 int i915_ggtt_init_hw(struct drm_i915_private *i915)
95 * Note that we use page colouring to enforce a guard page at the
96 * end of the address space. This is required as the CS may prefetch
97 * beyond the end of the batch buffer, across the page boundary,
98 * and beyond the end of the GTT if we do not provide a guard.
100 ret = ggtt_init_hw(to_gt(i915)->ggtt);
108 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
109 * @vm: The VM to suspend the mappings for
111 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
114 void i915_ggtt_suspend_vm(struct i915_address_space *vm)
116 struct i915_vma *vma, *vn;
117 int save_skip_rewrite;
119 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
122 i915_gem_drain_freed_objects(vm->i915);
124 mutex_lock(&vm->mutex);
127 * Skip rewriting PTE on VMA unbind.
128 * FIXME: Use an argument to i915_vma_unbind() instead?
130 save_skip_rewrite = vm->skip_pte_rewrite;
131 vm->skip_pte_rewrite = true;
133 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
134 struct drm_i915_gem_object *obj = vma->obj;
136 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
138 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
141 /* unlikely to race when GPU is idle, so no worry about slowpath.. */
142 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
144 * No dead objects should appear here, GPU should be
145 * completely idle, and userspace suspended
147 i915_gem_object_get(obj);
149 mutex_unlock(&vm->mutex);
151 i915_gem_object_lock(obj, NULL);
152 GEM_WARN_ON(i915_vma_unbind(vma));
153 i915_gem_object_unlock(obj);
154 i915_gem_object_put(obj);
156 vm->skip_pte_rewrite = save_skip_rewrite;
160 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
161 i915_vma_wait_for_bind(vma);
163 __i915_vma_evict(vma, false);
164 drm_mm_remove_node(&vma->node);
167 i915_gem_object_unlock(obj);
170 vm->clear_range(vm, 0, vm->total);
172 vm->skip_pte_rewrite = save_skip_rewrite;
174 mutex_unlock(&vm->mutex);
177 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
181 i915_ggtt_suspend_vm(&ggtt->vm);
182 ggtt->invalidate(ggtt);
184 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
185 intel_gt_check_and_clear_faults(gt);
188 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
190 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
192 spin_lock_irq(&uncore->lock);
193 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
194 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
195 spin_unlock_irq(&uncore->lock);
198 static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915)
201 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
202 * will be dropped. For WC mappings in general we have 64 byte burst
203 * writes when the WC buffer is flushed, so we can't use it, but have to
204 * resort to an uncached mapping. The WC issue is easily caught by the
205 * readback check when writing GTT PTE entries.
207 if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11)
213 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
215 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
218 * Note that as an uncached mmio write, this will flush the
219 * WCB of the writes into the GGTT before it triggers the invalidate.
221 * Only perform this when GGTT is mapped as WC, see ggtt_probe_common().
223 if (needs_wc_ggtt_mapping(ggtt->vm.i915))
224 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6,
228 static void guc_ggtt_ct_invalidate(struct intel_gt *gt)
230 struct intel_uncore *uncore = gt->uncore;
231 intel_wakeref_t wakeref;
233 with_intel_runtime_pm_if_active(uncore->rpm, wakeref) {
234 struct intel_guc *guc = >->uc.guc;
236 intel_guc_invalidate_tlb_guc(guc);
240 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
242 struct drm_i915_private *i915 = ggtt->vm.i915;
245 gen8_ggtt_invalidate(ggtt);
247 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) {
248 if (intel_guc_tlb_invalidation_is_available(>->uc.guc)) {
249 guc_ggtt_ct_invalidate(gt);
250 } else if (GRAPHICS_VER(i915) >= 12) {
251 intel_uncore_write_fw(gt->uncore,
252 GEN12_GUC_TLB_INV_CR,
253 GEN12_GUC_TLB_INV_CR_INVALIDATE);
255 intel_uncore_write_fw(gt->uncore,
256 GEN8_GTCR, GEN8_GTCR_INVALIDATE);
261 static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
262 unsigned int pat_index,
265 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
267 WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
270 pte |= GEN12_GGTT_PTE_LM;
272 if (pat_index & BIT(0))
273 pte |= MTL_GGTT_PTE_PAT0;
275 if (pat_index & BIT(1))
276 pte |= MTL_GGTT_PTE_PAT1;
281 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
282 unsigned int pat_index,
285 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
288 pte |= GEN12_GGTT_PTE_LM;
293 static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt)
295 struct intel_gt *gt = ggtt->vm.gt;
297 return intel_gt_is_bind_context_ready(gt);
300 static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt)
302 struct intel_context *ce;
303 struct intel_gt *gt = ggtt->vm.gt;
305 if (intel_gt_is_wedged(gt))
308 ce = gt->engine[BCS0]->bind_context;
312 * If the GT is not awake already at this stage then fallback
313 * to pci based GGTT update otherwise __intel_wakeref_get_first()
314 * would conflict with fs_reclaim trying to allocate memory while
315 * doing rpm_resume().
317 if (!intel_gt_pm_get_if_awake(gt))
320 intel_engine_pm_get(ce->engine);
325 static void gen8_ggtt_bind_put_ce(struct intel_context *ce)
327 intel_engine_pm_put(ce->engine);
328 intel_gt_pm_put(ce->engine->gt);
331 static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset,
332 struct sg_table *pages, u32 num_entries,
333 const gen8_pte_t pte)
335 struct i915_sched_attr attr = {};
336 struct intel_gt *gt = ggtt->vm.gt;
337 const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode;
338 struct sgt_iter iter;
339 struct i915_request *rq;
340 struct intel_context *ce;
346 ce = gen8_ggtt_bind_get_ce(ggtt);
351 iter = __sgt_iter(pages->sgl, true);
353 while (num_entries) {
357 * MI_UPDATE_GTT can update 512 entries in a single command but
358 * that end up with engine reset, 511 works.
360 u32 n_ptes = min_t(u32, 511, num_entries);
362 if (mutex_lock_interruptible(&ce->timeline->mutex))
365 intel_context_enter(ce);
366 rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC);
367 intel_context_exit(ce);
369 GT_TRACE(gt, "Failed to get bind request\n");
370 mutex_unlock(&ce->timeline->mutex);
374 cs = intel_ring_begin(rq, 2 * n_ptes + 2);
376 GT_TRACE(gt, "Failed to ring space for GGTT bind\n");
377 i915_request_set_error_once(rq, PTR_ERR(cs));
378 /* once a request is created, it must be queued */
382 *cs++ = MI_UPDATE_GTT | (2 * n_ptes);
383 *cs++ = offset << 12;
386 for_each_sgt_daddr_next(addr, iter) {
389 *cs++ = lower_32_bits(pte | addr);
390 *cs++ = upper_32_bits(pte | addr);
393 /* fill remaining with scratch pte, if any */
394 if (count < n_ptes) {
395 memset64((u64 *)cs, scratch_pte,
397 cs += (n_ptes - count) * 2;
400 memset64((u64 *)cs, pte, n_ptes);
404 intel_ring_advance(rq, cs);
406 i915_request_get(rq);
407 __i915_request_commit(rq);
408 __i915_request_queue(rq, &attr);
410 mutex_unlock(&ce->timeline->mutex);
411 /* This will break if the request is complete or after engine reset */
412 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
416 i915_request_put(rq);
418 num_entries -= n_ptes;
422 gen8_ggtt_bind_put_ce(ce);
426 i915_request_put(rq);
428 gen8_ggtt_bind_put_ce(ce);
432 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
437 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
440 unsigned int pat_index,
443 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
444 gen8_pte_t __iomem *pte =
445 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
447 gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
449 ggtt->invalidate(ggtt);
452 static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm,
453 dma_addr_t addr, u64 offset,
454 unsigned int pat_index, u32 flags)
456 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
459 pte = ggtt->vm.pte_encode(addr, pat_index, flags);
460 if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
461 gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte))
462 return ggtt->invalidate(ggtt);
464 gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags);
467 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
468 struct i915_vma_resource *vma_res,
469 unsigned int pat_index,
472 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
473 const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
474 gen8_pte_t __iomem *gte;
475 gen8_pte_t __iomem *end;
476 struct sgt_iter iter;
480 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
481 * not to allow the user to override access to a read only page.
484 gte = (gen8_pte_t __iomem *)ggtt->gsm;
485 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
486 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
488 gen8_set_pte(gte++, vm->scratch[0]->encode);
489 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
491 for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
492 gen8_set_pte(gte++, pte_encode | addr);
493 GEM_BUG_ON(gte > end);
495 /* Fill the allocated but "unused" space beyond the end of the buffer */
497 gen8_set_pte(gte++, vm->scratch[0]->encode);
500 * We want to flush the TLBs only after we're certain all the PTE
501 * updates have finished.
503 ggtt->invalidate(ggtt);
506 static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
507 struct i915_vma_resource *vma_res,
508 unsigned int pat_index, u32 flags)
510 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
511 gen8_pte_t scratch_pte = vm->scratch[0]->encode;
512 gen8_pte_t pte_encode;
515 pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
516 start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
517 end = start + vma_res->guard / I915_GTT_PAGE_SIZE;
518 if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
522 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
523 if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages,
524 vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode))
527 start += vma_res->node_size / I915_GTT_PAGE_SIZE;
528 if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
537 static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
538 struct i915_vma_resource *vma_res,
539 unsigned int pat_index, u32 flags)
541 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
543 if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
544 __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags))
545 return ggtt->invalidate(ggtt);
547 gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags);
550 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
551 u64 start, u64 length)
553 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
554 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
555 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
556 const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
557 gen8_pte_t __iomem *gtt_base =
558 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
559 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
562 if (WARN(num_entries > max_entries,
563 "First entry = %d; Num entries = %d (max=%d)\n",
564 first_entry, num_entries, max_entries))
565 num_entries = max_entries;
567 for (i = 0; i < num_entries; i++)
568 gen8_set_pte(>t_base[i], scratch_pte);
571 static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm,
572 u64 start, u64 length)
574 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
575 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
576 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
577 const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
578 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
580 if (WARN(num_entries > max_entries,
581 "First entry = %d; Num entries = %d (max=%d)\n",
582 first_entry, num_entries, max_entries))
583 num_entries = max_entries;
585 if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry,
586 NULL, num_entries, scratch_pte))
587 return ggtt->invalidate(ggtt);
589 gen8_ggtt_clear_range(vm, start, length);
592 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
595 unsigned int pat_index,
598 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
599 gen6_pte_t __iomem *pte =
600 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
602 iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
604 ggtt->invalidate(ggtt);
608 * Binds an object into the global gtt with the specified cache level.
609 * The object will be accessible to the GPU via commands whose operands
610 * reference offsets within the global GTT as well as accessible by the GPU
611 * through the GMADR mapped BAR (i915->mm.gtt->gtt).
613 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
614 struct i915_vma_resource *vma_res,
615 unsigned int pat_index,
618 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
619 gen6_pte_t __iomem *gte;
620 gen6_pte_t __iomem *end;
621 struct sgt_iter iter;
624 gte = (gen6_pte_t __iomem *)ggtt->gsm;
625 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
627 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
629 iowrite32(vm->scratch[0]->encode, gte++);
630 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
631 for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
632 iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
633 GEM_BUG_ON(gte > end);
635 /* Fill the allocated but "unused" space beyond the end of the buffer */
637 iowrite32(vm->scratch[0]->encode, gte++);
640 * We want to flush the TLBs only after we're certain all the PTE
641 * updates have finished.
643 ggtt->invalidate(ggtt);
646 static void nop_clear_range(struct i915_address_space *vm,
647 u64 start, u64 length)
651 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
654 * Make sure the internal GAM fifo has been cleared of all GTT
655 * writes before exiting stop_machine(). This guarantees that
656 * any aperture accesses waiting to start in another process
657 * cannot back up behind the GTT writes causing a hang.
658 * The register can be any arbitrary GAM register.
660 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
664 struct i915_address_space *vm;
667 unsigned int pat_index;
670 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
672 struct insert_page *arg = _arg;
674 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
676 bxt_vtd_ggtt_wa(arg->vm);
681 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
684 unsigned int pat_index,
687 struct insert_page arg = { vm, addr, offset, pat_index };
689 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
692 struct insert_entries {
693 struct i915_address_space *vm;
694 struct i915_vma_resource *vma_res;
695 unsigned int pat_index;
699 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
701 struct insert_entries *arg = _arg;
703 gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
704 arg->pat_index, arg->flags);
705 bxt_vtd_ggtt_wa(arg->vm);
710 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
711 struct i915_vma_resource *vma_res,
712 unsigned int pat_index,
715 struct insert_entries arg = { vm, vma_res, pat_index, flags };
717 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
720 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
721 u64 start, u64 length)
723 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
724 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
725 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
726 gen6_pte_t scratch_pte, __iomem *gtt_base =
727 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
728 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
731 if (WARN(num_entries > max_entries,
732 "First entry = %d; Num entries = %d (max=%d)\n",
733 first_entry, num_entries, max_entries))
734 num_entries = max_entries;
736 scratch_pte = vm->scratch[0]->encode;
737 for (i = 0; i < num_entries; i++)
738 iowrite32(scratch_pte, >t_base[i]);
741 void intel_ggtt_bind_vma(struct i915_address_space *vm,
742 struct i915_vm_pt_stash *stash,
743 struct i915_vma_resource *vma_res,
744 unsigned int pat_index,
749 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
752 vma_res->bound_flags |= flags;
754 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
756 if (vma_res->bi.readonly)
757 pte_flags |= PTE_READ_ONLY;
758 if (vma_res->bi.lmem)
761 vm->insert_entries(vm, vma_res, pat_index, pte_flags);
762 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
765 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
766 struct i915_vma_resource *vma_res)
768 vm->clear_range(vm, vma_res->start, vma_res->vma_size);
772 * Reserve the top of the GuC address space for firmware images. Addresses
773 * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
774 * which makes for a suitable range to hold GuC/HuC firmware images if the
775 * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
776 * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
777 * of the same size anyway, which is far more than needed, to keep the logic
778 * in uc_fw_ggtt_offset() simple.
780 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
782 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
787 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
790 GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
791 offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
793 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
794 GUC_TOP_RESERVE_SIZE, offset,
795 I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
797 drm_dbg(&ggtt->vm.i915->drm,
798 "Failed to reserve top of GGTT for GuC\n");
803 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
805 if (drm_mm_node_allocated(&ggtt->uc_fw))
806 drm_mm_remove_node(&ggtt->uc_fw);
809 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
811 ggtt_release_guc_top(ggtt);
812 if (drm_mm_node_allocated(&ggtt->error_capture))
813 drm_mm_remove_node(&ggtt->error_capture);
814 mutex_destroy(&ggtt->error_mutex);
817 static int init_ggtt(struct i915_ggtt *ggtt)
820 * Let GEM Manage all of the aperture.
822 * However, leave one page at the end still bound to the scratch page.
823 * There are a number of places where the hardware apparently prefetches
824 * past the end of the object, and we've seen multiple hangs with the
825 * GPU head pointer stuck in a batchbuffer bound at the last page of the
826 * aperture. One page should be enough to keep any prefetching inside
829 unsigned long hole_start, hole_end;
830 struct drm_mm_node *entry;
834 * GuC requires all resources that we're sharing with it to be placed in
835 * non-WOPCM memory. If GuC is not present or not in use we still need a
836 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
839 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
840 intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
842 ret = intel_vgt_balloon(ggtt);
846 mutex_init(&ggtt->error_mutex);
847 if (ggtt->mappable_end) {
849 * Reserve a mappable slot for our lockless error capture.
851 * We strongly prefer taking address 0x0 in order to protect
852 * other critical buffers against accidental overwrites,
853 * as writing to address 0 is a very common mistake.
855 * Since 0 may already be in use by the system (e.g. the BIOS
856 * framebuffer), we let the reservation fail quietly and hope
857 * 0 remains reserved always.
859 * If we fail to reserve 0, and then fail to find any space
860 * for an error-capture, remain silent. We can afford not
861 * to reserve an error_capture node as we have fallback
862 * paths, and we trust that 0 will remain reserved. However,
863 * the only likely reason for failure to insert is a driver
864 * bug, which we expect to cause other failures...
866 * Since CPU can perform speculative reads on error capture
867 * (write-combining allows it) add scratch page after error
868 * capture to avoid DMAR errors.
870 ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
871 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
872 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
873 drm_mm_insert_node_in_range(&ggtt->vm.mm,
874 &ggtt->error_capture,
875 ggtt->error_capture.size, 0,
876 ggtt->error_capture.color,
877 0, ggtt->mappable_end,
880 if (drm_mm_node_allocated(&ggtt->error_capture)) {
881 u64 start = ggtt->error_capture.start;
882 u64 size = ggtt->error_capture.size;
884 ggtt->vm.scratch_range(&ggtt->vm, start, size);
885 drm_dbg(&ggtt->vm.i915->drm,
886 "Reserved GGTT:[%llx, %llx] for use by error capture\n",
887 start, start + size);
891 * The upper portion of the GuC address space has a sizeable hole
892 * (several MB) that is inaccessible by GuC. Reserve this range within
893 * GGTT as it can comfortably hold GuC/HuC firmware images.
895 ret = ggtt_reserve_guc_top(ggtt);
899 /* Clear any non-preallocated blocks */
900 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
901 drm_dbg(&ggtt->vm.i915->drm,
902 "clearing unused GTT space: [%lx, %lx]\n",
903 hole_start, hole_end);
904 ggtt->vm.clear_range(&ggtt->vm, hole_start,
905 hole_end - hole_start);
908 /* And finally clear the reserved guard page */
909 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
914 cleanup_init_ggtt(ggtt);
918 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
919 struct i915_vm_pt_stash *stash,
920 struct i915_vma_resource *vma_res,
921 unsigned int pat_index,
926 /* Currently applicable only to VLV */
928 if (vma_res->bi.readonly)
929 pte_flags |= PTE_READ_ONLY;
931 if (flags & I915_VMA_LOCAL_BIND)
932 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
933 stash, vma_res, pat_index, flags);
935 if (flags & I915_VMA_GLOBAL_BIND)
936 vm->insert_entries(vm, vma_res, pat_index, pte_flags);
938 vma_res->bound_flags |= flags;
941 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
942 struct i915_vma_resource *vma_res)
944 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
945 vm->clear_range(vm, vma_res->start, vma_res->vma_size);
947 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
948 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
951 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
953 struct i915_vm_pt_stash stash = {};
954 struct i915_ppgtt *ppgtt;
957 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
959 return PTR_ERR(ppgtt);
961 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
966 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
970 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
971 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
972 i915_gem_object_unlock(ppgtt->vm.scratch[0]);
977 * Note we only pre-allocate as far as the end of the global
978 * GTT. On 48b / 4-level page-tables, the difference is very,
979 * very significant! We have to preallocate as GVT/vgpu does
980 * not like the page directory disappearing.
982 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
985 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
987 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
988 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
990 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
991 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
993 i915_vm_free_pt_stash(&ppgtt->vm, &stash);
997 i915_vm_free_pt_stash(&ppgtt->vm, &stash);
999 i915_vm_put(&ppgtt->vm);
1003 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
1005 struct i915_ppgtt *ppgtt;
1007 ppgtt = fetch_and_zero(&ggtt->alias);
1011 i915_vm_put(&ppgtt->vm);
1013 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1014 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1017 int i915_init_ggtt(struct drm_i915_private *i915)
1021 ret = init_ggtt(to_gt(i915)->ggtt);
1025 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
1026 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
1028 cleanup_init_ggtt(to_gt(i915)->ggtt);
1034 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
1036 struct i915_vma *vma, *vn;
1038 flush_workqueue(ggtt->vm.i915->wq);
1039 i915_gem_drain_freed_objects(ggtt->vm.i915);
1041 mutex_lock(&ggtt->vm.mutex);
1043 ggtt->vm.skip_pte_rewrite = true;
1045 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
1046 struct drm_i915_gem_object *obj = vma->obj;
1049 trylock = i915_gem_object_trylock(obj, NULL);
1052 WARN_ON(__i915_vma_unbind(vma));
1054 i915_gem_object_unlock(obj);
1057 if (drm_mm_node_allocated(&ggtt->error_capture))
1058 drm_mm_remove_node(&ggtt->error_capture);
1059 mutex_destroy(&ggtt->error_mutex);
1061 ggtt_release_guc_top(ggtt);
1062 intel_vgt_deballoon(ggtt);
1064 ggtt->vm.cleanup(&ggtt->vm);
1066 mutex_unlock(&ggtt->vm.mutex);
1067 i915_address_space_fini(&ggtt->vm);
1069 arch_phys_wc_del(ggtt->mtrr);
1071 if (ggtt->iomap.size)
1072 io_mapping_fini(&ggtt->iomap);
1076 * i915_ggtt_driver_release - Clean up GGTT hardware initialization
1077 * @i915: i915 device
1079 void i915_ggtt_driver_release(struct drm_i915_private *i915)
1081 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1083 fini_aliasing_ppgtt(ggtt);
1085 intel_ggtt_fini_fences(ggtt);
1086 ggtt_cleanup_hw(ggtt);
1090 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
1091 * all free objects have been drained.
1092 * @i915: i915 device
1094 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
1096 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1098 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
1099 dma_resv_fini(&ggtt->vm._resv);
1102 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1104 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1105 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1106 return snb_gmch_ctl << 20;
1109 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1111 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1112 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1114 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1116 #ifdef CONFIG_X86_32
1117 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
1118 if (bdw_gmch_ctl > 4)
1122 return bdw_gmch_ctl << 20;
1125 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1127 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1128 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1131 return 1 << (20 + gmch_ctrl);
1136 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
1139 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
1140 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
1142 GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
1143 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
1146 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
1148 return gen6_gttmmadr_size(i915) / 2;
1151 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
1153 struct drm_i915_private *i915 = ggtt->vm.i915;
1154 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1155 phys_addr_t phys_addr;
1159 GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
1160 phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
1162 if (needs_wc_ggtt_mapping(i915))
1163 ggtt->gsm = ioremap_wc(phys_addr, size);
1165 ggtt->gsm = ioremap(phys_addr, size);
1168 drm_err(&i915->drm, "Failed to map the ggtt page table\n");
1172 kref_init(&ggtt->vm.resv_ref);
1173 ret = setup_scratch_page(&ggtt->vm);
1175 drm_err(&i915->drm, "Scratch setup failed\n");
1176 /* iounmap will also get called at remove, but meh */
1182 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
1183 pte_flags |= PTE_LM;
1185 ggtt->vm.scratch[0]->encode =
1186 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
1187 i915_gem_get_pat_index(i915,
1194 static void gen6_gmch_remove(struct i915_address_space *vm)
1196 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1202 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1204 return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1205 pci_resource_len(pdev, bar));
1208 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1210 struct drm_i915_private *i915 = ggtt->vm.i915;
1211 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1215 if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
1216 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1219 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1220 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1223 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1224 if (IS_CHERRYVIEW(i915))
1225 size = chv_get_total_gtt_size(snb_gmch_ctl);
1227 size = gen8_get_total_gtt_size(snb_gmch_ctl);
1229 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1230 ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1231 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
1233 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1234 ggtt->vm.cleanup = gen6_gmch_remove;
1235 ggtt->vm.insert_page = gen8_ggtt_insert_page;
1236 ggtt->vm.clear_range = nop_clear_range;
1237 ggtt->vm.scratch_range = gen8_ggtt_clear_range;
1239 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1242 * Serialize GTT updates with aperture access on BXT if VT-d is on,
1243 * and always on CHV.
1245 if (intel_vm_no_concurrent_access_wa(i915)) {
1246 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1247 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
1250 * Calling stop_machine() version of GGTT update function
1251 * at error capture/reset path will raise lockdep warning.
1252 * Allow calling gen8_ggtt_insert_* directly at reset path
1253 * which is safe from parallel GGTT updates.
1255 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1256 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
1258 ggtt->vm.bind_async_flags =
1259 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
1262 if (i915_ggtt_require_binder(i915)) {
1263 ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind;
1264 ggtt->vm.insert_page = gen8_ggtt_insert_page_bind;
1265 ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind;
1267 * On GPU is hung, we might bind VMAs for error capture.
1268 * Fallback to CPU GGTT updates in that case.
1270 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1273 if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc))
1274 ggtt->invalidate = guc_ggtt_invalidate;
1276 ggtt->invalidate = gen8_ggtt_invalidate;
1278 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1279 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1281 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1282 ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
1284 ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
1286 return ggtt_probe_common(ggtt, size);
1290 * For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
1291 * so the switch-case statements in these PTE encode functions are still valid.
1292 * See translation table LEGACY_CACHELEVEL.
1294 static u64 snb_pte_encode(dma_addr_t addr,
1295 unsigned int pat_index,
1298 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1300 switch (pat_index) {
1301 case I915_CACHE_L3_LLC:
1302 case I915_CACHE_LLC:
1303 pte |= GEN6_PTE_CACHE_LLC;
1305 case I915_CACHE_NONE:
1306 pte |= GEN6_PTE_UNCACHED;
1309 MISSING_CASE(pat_index);
1315 static u64 ivb_pte_encode(dma_addr_t addr,
1316 unsigned int pat_index,
1319 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1321 switch (pat_index) {
1322 case I915_CACHE_L3_LLC:
1323 pte |= GEN7_PTE_CACHE_L3_LLC;
1325 case I915_CACHE_LLC:
1326 pte |= GEN6_PTE_CACHE_LLC;
1328 case I915_CACHE_NONE:
1329 pte |= GEN6_PTE_UNCACHED;
1332 MISSING_CASE(pat_index);
1338 static u64 byt_pte_encode(dma_addr_t addr,
1339 unsigned int pat_index,
1342 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1344 if (!(flags & PTE_READ_ONLY))
1345 pte |= BYT_PTE_WRITEABLE;
1347 if (pat_index != I915_CACHE_NONE)
1348 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1353 static u64 hsw_pte_encode(dma_addr_t addr,
1354 unsigned int pat_index,
1357 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1359 if (pat_index != I915_CACHE_NONE)
1360 pte |= HSW_WB_LLC_AGE3;
1365 static u64 iris_pte_encode(dma_addr_t addr,
1366 unsigned int pat_index,
1369 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1371 switch (pat_index) {
1372 case I915_CACHE_NONE:
1375 pte |= HSW_WT_ELLC_LLC_AGE3;
1378 pte |= HSW_WB_ELLC_LLC_AGE3;
1385 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1387 struct drm_i915_private *i915 = ggtt->vm.i915;
1388 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1392 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1395 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1396 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1399 * 64/512MB is the current min/max we actually know of, but this is
1400 * just a coarse sanity check.
1402 if (ggtt->mappable_end < (64 << 20) ||
1403 ggtt->mappable_end > (512 << 20)) {
1404 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1405 &ggtt->mappable_end);
1409 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1411 size = gen6_get_total_gtt_size(snb_gmch_ctl);
1412 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1414 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1415 ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1417 ggtt->vm.clear_range = nop_clear_range;
1418 if (!HAS_FULL_PPGTT(i915))
1419 ggtt->vm.clear_range = gen6_ggtt_clear_range;
1420 ggtt->vm.scratch_range = gen6_ggtt_clear_range;
1421 ggtt->vm.insert_page = gen6_ggtt_insert_page;
1422 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1423 ggtt->vm.cleanup = gen6_gmch_remove;
1425 ggtt->invalidate = gen6_ggtt_invalidate;
1427 if (HAS_EDRAM(i915))
1428 ggtt->vm.pte_encode = iris_pte_encode;
1429 else if (IS_HASWELL(i915))
1430 ggtt->vm.pte_encode = hsw_pte_encode;
1431 else if (IS_VALLEYVIEW(i915))
1432 ggtt->vm.pte_encode = byt_pte_encode;
1433 else if (GRAPHICS_VER(i915) >= 7)
1434 ggtt->vm.pte_encode = ivb_pte_encode;
1436 ggtt->vm.pte_encode = snb_pte_encode;
1438 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1439 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1441 return ggtt_probe_common(ggtt, size);
1444 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1446 struct drm_i915_private *i915 = gt->i915;
1450 ggtt->vm.i915 = i915;
1451 ggtt->vm.dma = i915->drm.dev;
1452 dma_resv_init(&ggtt->vm._resv);
1454 if (GRAPHICS_VER(i915) >= 8)
1455 ret = gen8_gmch_probe(ggtt);
1456 else if (GRAPHICS_VER(i915) >= 6)
1457 ret = gen6_gmch_probe(ggtt);
1459 ret = intel_ggtt_gmch_probe(ggtt);
1462 dma_resv_fini(&ggtt->vm._resv);
1466 if ((ggtt->vm.total - 1) >> 32) {
1468 "We never expected a Global GTT with more than 32bits"
1469 " of address space! Found %lldM!\n",
1470 ggtt->vm.total >> 20);
1471 ggtt->vm.total = 1ULL << 32;
1472 ggtt->mappable_end =
1473 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1476 if (ggtt->mappable_end > ggtt->vm.total) {
1478 "mappable aperture extends past end of GGTT,"
1479 " aperture=%pa, total=%llx\n",
1480 &ggtt->mappable_end, ggtt->vm.total);
1481 ggtt->mappable_end = ggtt->vm.total;
1484 /* GMADR is the PCI mmio aperture into the global GTT. */
1485 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1486 drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1487 (u64)ggtt->mappable_end >> 20);
1488 drm_dbg(&i915->drm, "DSM size = %lluM\n",
1489 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1495 * i915_ggtt_probe_hw - Probe GGTT hardware location
1496 * @i915: i915 device
1498 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1500 struct intel_gt *gt;
1503 for_each_gt(gt, i915, i) {
1504 ret = intel_gt_assign_ggtt(gt);
1509 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1513 if (i915_vtd_active(i915))
1514 drm_info(&i915->drm, "VT-d active for gfx access\n");
1519 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
1521 struct i915_ggtt *ggtt;
1523 ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
1525 return ERR_PTR(-ENOMEM);
1527 INIT_LIST_HEAD(&ggtt->gt_list);
1532 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1534 if (GRAPHICS_VER(i915) < 6)
1535 return intel_ggtt_gmch_enable_hw(i915);
1541 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1542 * @vm: The VM to restore the mappings for
1544 * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1547 * Returns %true if restoring the mapping for any object that was in a write
1548 * domain before suspend.
1550 bool i915_ggtt_resume_vm(struct i915_address_space *vm)
1552 struct i915_vma *vma;
1553 bool write_domain_objs = false;
1555 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1557 /* First fill our portion of the GTT with scratch pages */
1558 vm->clear_range(vm, 0, vm->total);
1560 /* clflush objects bound into the GGTT and rebind them. */
1561 list_for_each_entry(vma, &vm->bound_list, vm_link) {
1562 struct drm_i915_gem_object *obj = vma->obj;
1563 unsigned int was_bound =
1564 atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1566 GEM_BUG_ON(!was_bound);
1569 * Clear the bound flags of the vma resource to allow
1570 * ptes to be repopulated.
1572 vma->resource->bound_flags = 0;
1573 vma->ops->bind_vma(vm, NULL, vma->resource,
1574 obj ? obj->pat_index :
1575 i915_gem_get_pat_index(vm->i915,
1579 if (obj) { /* only used during resume => exclusive access */
1580 write_domain_objs |= fetch_and_zero(&obj->write_domain);
1581 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1585 return write_domain_objs;
1588 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1590 struct intel_gt *gt;
1593 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1594 intel_gt_check_and_clear_faults(gt);
1596 flush = i915_ggtt_resume_vm(&ggtt->vm);
1598 if (drm_mm_node_allocated(&ggtt->error_capture))
1599 ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
1600 ggtt->error_capture.size);
1602 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1603 intel_uc_resume_mappings(>->uc);
1605 ggtt->invalidate(ggtt);
1608 wbinvd_on_all_cpus();
1610 intel_ggtt_restore_fences(ggtt);