]> Git Repo - J-linux.git/blob - drivers/gpu/drm/i915/gt/intel_ggtt.c
Merge tag 'nfsd-6.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
[J-linux.git] / drivers / gpu / drm / i915 / gt / intel_ggtt.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10
11 #include <drm/drm_managed.h>
12 #include <drm/i915_drm.h>
13 #include <drm/intel-gtt.h>
14
15 #include "display/intel_display.h"
16 #include "gem/i915_gem_lmem.h"
17
18 #include "intel_context.h"
19 #include "intel_ggtt_gmch.h"
20 #include "intel_gpu_commands.h"
21 #include "intel_gt.h"
22 #include "intel_gt_regs.h"
23 #include "intel_pci_config.h"
24 #include "intel_ring.h"
25 #include "i915_drv.h"
26 #include "i915_pci.h"
27 #include "i915_request.h"
28 #include "i915_scatterlist.h"
29 #include "i915_utils.h"
30 #include "i915_vgpu.h"
31
32 #include "intel_gtt.h"
33 #include "gen8_ppgtt.h"
34 #include "intel_engine_pm.h"
35
36 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
37                                    unsigned long color,
38                                    u64 *start,
39                                    u64 *end)
40 {
41         if (i915_node_color_differs(node, color))
42                 *start += I915_GTT_PAGE_SIZE;
43
44         /*
45          * Also leave a space between the unallocated reserved node after the
46          * GTT and any objects within the GTT, i.e. we use the color adjustment
47          * to insert a guard page to prevent prefetches crossing over the
48          * GTT boundary.
49          */
50         node = list_next_entry(node, node_list);
51         if (node->color != color)
52                 *end -= I915_GTT_PAGE_SIZE;
53 }
54
55 static int ggtt_init_hw(struct i915_ggtt *ggtt)
56 {
57         struct drm_i915_private *i915 = ggtt->vm.i915;
58
59         i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
60
61         ggtt->vm.is_ggtt = true;
62
63         /* Only VLV supports read-only GGTT mappings */
64         ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
65
66         if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
67                 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
68
69         if (ggtt->mappable_end) {
70                 if (!io_mapping_init_wc(&ggtt->iomap,
71                                         ggtt->gmadr.start,
72                                         ggtt->mappable_end)) {
73                         ggtt->vm.cleanup(&ggtt->vm);
74                         return -EIO;
75                 }
76
77                 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
78                                               ggtt->mappable_end);
79         }
80
81         intel_ggtt_init_fences(ggtt);
82
83         return 0;
84 }
85
86 /**
87  * i915_ggtt_init_hw - Initialize GGTT hardware
88  * @i915: i915 device
89  */
90 int i915_ggtt_init_hw(struct drm_i915_private *i915)
91 {
92         int ret;
93
94         /*
95          * Note that we use page colouring to enforce a guard page at the
96          * end of the address space. This is required as the CS may prefetch
97          * beyond the end of the batch buffer, across the page boundary,
98          * and beyond the end of the GTT if we do not provide a guard.
99          */
100         ret = ggtt_init_hw(to_gt(i915)->ggtt);
101         if (ret)
102                 return ret;
103
104         return 0;
105 }
106
107 /**
108  * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
109  * @vm: The VM to suspend the mappings for
110  *
111  * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
112  * DPT page table.
113  */
114 void i915_ggtt_suspend_vm(struct i915_address_space *vm)
115 {
116         struct i915_vma *vma, *vn;
117         int save_skip_rewrite;
118
119         drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
120
121 retry:
122         i915_gem_drain_freed_objects(vm->i915);
123
124         mutex_lock(&vm->mutex);
125
126         /*
127          * Skip rewriting PTE on VMA unbind.
128          * FIXME: Use an argument to i915_vma_unbind() instead?
129          */
130         save_skip_rewrite = vm->skip_pte_rewrite;
131         vm->skip_pte_rewrite = true;
132
133         list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
134                 struct drm_i915_gem_object *obj = vma->obj;
135
136                 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
137
138                 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
139                         continue;
140
141                 /* unlikely to race when GPU is idle, so no worry about slowpath.. */
142                 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
143                         /*
144                          * No dead objects should appear here, GPU should be
145                          * completely idle, and userspace suspended
146                          */
147                         i915_gem_object_get(obj);
148
149                         mutex_unlock(&vm->mutex);
150
151                         i915_gem_object_lock(obj, NULL);
152                         GEM_WARN_ON(i915_vma_unbind(vma));
153                         i915_gem_object_unlock(obj);
154                         i915_gem_object_put(obj);
155
156                         vm->skip_pte_rewrite = save_skip_rewrite;
157                         goto retry;
158                 }
159
160                 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
161                         i915_vma_wait_for_bind(vma);
162
163                         __i915_vma_evict(vma, false);
164                         drm_mm_remove_node(&vma->node);
165                 }
166
167                 i915_gem_object_unlock(obj);
168         }
169
170         vm->clear_range(vm, 0, vm->total);
171
172         vm->skip_pte_rewrite = save_skip_rewrite;
173
174         mutex_unlock(&vm->mutex);
175 }
176
177 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
178 {
179         struct intel_gt *gt;
180
181         i915_ggtt_suspend_vm(&ggtt->vm);
182         ggtt->invalidate(ggtt);
183
184         list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
185                 intel_gt_check_and_clear_faults(gt);
186 }
187
188 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
189 {
190         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
191
192         spin_lock_irq(&uncore->lock);
193         intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
194         intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
195         spin_unlock_irq(&uncore->lock);
196 }
197
198 static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915)
199 {
200         /*
201          * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
202          * will be dropped. For WC mappings in general we have 64 byte burst
203          * writes when the WC buffer is flushed, so we can't use it, but have to
204          * resort to an uncached mapping. The WC issue is easily caught by the
205          * readback check when writing GTT PTE entries.
206          */
207         if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11)
208                 return true;
209
210         return false;
211 }
212
213 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
214 {
215         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
216
217         /*
218          * Note that as an uncached mmio write, this will flush the
219          * WCB of the writes into the GGTT before it triggers the invalidate.
220          *
221          * Only perform this when GGTT is mapped as WC, see ggtt_probe_common().
222          */
223         if (needs_wc_ggtt_mapping(ggtt->vm.i915))
224                 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6,
225                                       GFX_FLSH_CNTL_EN);
226 }
227
228 static void guc_ggtt_ct_invalidate(struct intel_gt *gt)
229 {
230         struct intel_uncore *uncore = gt->uncore;
231         intel_wakeref_t wakeref;
232
233         with_intel_runtime_pm_if_active(uncore->rpm, wakeref) {
234                 struct intel_guc *guc = &gt->uc.guc;
235
236                 intel_guc_invalidate_tlb_guc(guc);
237         }
238 }
239
240 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
241 {
242         struct drm_i915_private *i915 = ggtt->vm.i915;
243         struct intel_gt *gt;
244
245         gen8_ggtt_invalidate(ggtt);
246
247         list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) {
248                 if (intel_guc_tlb_invalidation_is_available(&gt->uc.guc)) {
249                         guc_ggtt_ct_invalidate(gt);
250                 } else if (GRAPHICS_VER(i915) >= 12) {
251                         intel_uncore_write_fw(gt->uncore,
252                                               GEN12_GUC_TLB_INV_CR,
253                                               GEN12_GUC_TLB_INV_CR_INVALIDATE);
254                 } else {
255                         intel_uncore_write_fw(gt->uncore,
256                                               GEN8_GTCR, GEN8_GTCR_INVALIDATE);
257                 }
258         }
259 }
260
261 static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
262                                unsigned int pat_index,
263                                u32 flags)
264 {
265         gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
266
267         WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
268
269         if (flags & PTE_LM)
270                 pte |= GEN12_GGTT_PTE_LM;
271
272         if (pat_index & BIT(0))
273                 pte |= MTL_GGTT_PTE_PAT0;
274
275         if (pat_index & BIT(1))
276                 pte |= MTL_GGTT_PTE_PAT1;
277
278         return pte;
279 }
280
281 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
282                          unsigned int pat_index,
283                          u32 flags)
284 {
285         gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
286
287         if (flags & PTE_LM)
288                 pte |= GEN12_GGTT_PTE_LM;
289
290         return pte;
291 }
292
293 static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt)
294 {
295         struct intel_gt *gt = ggtt->vm.gt;
296
297         return intel_gt_is_bind_context_ready(gt);
298 }
299
300 static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt)
301 {
302         struct intel_context *ce;
303         struct intel_gt *gt = ggtt->vm.gt;
304
305         if (intel_gt_is_wedged(gt))
306                 return NULL;
307
308         ce = gt->engine[BCS0]->bind_context;
309         GEM_BUG_ON(!ce);
310
311         /*
312          * If the GT is not awake already at this stage then fallback
313          * to pci based GGTT update otherwise __intel_wakeref_get_first()
314          * would conflict with fs_reclaim trying to allocate memory while
315          * doing rpm_resume().
316          */
317         if (!intel_gt_pm_get_if_awake(gt))
318                 return NULL;
319
320         intel_engine_pm_get(ce->engine);
321
322         return ce;
323 }
324
325 static void gen8_ggtt_bind_put_ce(struct intel_context *ce)
326 {
327         intel_engine_pm_put(ce->engine);
328         intel_gt_pm_put(ce->engine->gt);
329 }
330
331 static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset,
332                                 struct sg_table *pages, u32 num_entries,
333                                 const gen8_pte_t pte)
334 {
335         struct i915_sched_attr attr = {};
336         struct intel_gt *gt = ggtt->vm.gt;
337         const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode;
338         struct sgt_iter iter;
339         struct i915_request *rq;
340         struct intel_context *ce;
341         u32 *cs;
342
343         if (!num_entries)
344                 return true;
345
346         ce = gen8_ggtt_bind_get_ce(ggtt);
347         if (!ce)
348                 return false;
349
350         if (pages)
351                 iter = __sgt_iter(pages->sgl, true);
352
353         while (num_entries) {
354                 int count = 0;
355                 dma_addr_t addr;
356                 /*
357                  * MI_UPDATE_GTT can update 512 entries in a single command but
358                  * that end up with engine reset, 511 works.
359                  */
360                 u32 n_ptes = min_t(u32, 511, num_entries);
361
362                 if (mutex_lock_interruptible(&ce->timeline->mutex))
363                         goto put_ce;
364
365                 intel_context_enter(ce);
366                 rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC);
367                 intel_context_exit(ce);
368                 if (IS_ERR(rq)) {
369                         GT_TRACE(gt, "Failed to get bind request\n");
370                         mutex_unlock(&ce->timeline->mutex);
371                         goto put_ce;
372                 }
373
374                 cs = intel_ring_begin(rq, 2 * n_ptes + 2);
375                 if (IS_ERR(cs)) {
376                         GT_TRACE(gt, "Failed to ring space for GGTT bind\n");
377                         i915_request_set_error_once(rq, PTR_ERR(cs));
378                         /* once a request is created, it must be queued */
379                         goto queue_err_rq;
380                 }
381
382                 *cs++ = MI_UPDATE_GTT | (2 * n_ptes);
383                 *cs++ = offset << 12;
384
385                 if (pages) {
386                         for_each_sgt_daddr_next(addr, iter) {
387                                 if (count == n_ptes)
388                                         break;
389                                 *cs++ = lower_32_bits(pte | addr);
390                                 *cs++ = upper_32_bits(pte | addr);
391                                 count++;
392                         }
393                         /* fill remaining with scratch pte, if any */
394                         if (count < n_ptes) {
395                                 memset64((u64 *)cs, scratch_pte,
396                                          n_ptes - count);
397                                 cs += (n_ptes - count) * 2;
398                         }
399                 } else {
400                         memset64((u64 *)cs, pte, n_ptes);
401                         cs += n_ptes * 2;
402                 }
403
404                 intel_ring_advance(rq, cs);
405 queue_err_rq:
406                 i915_request_get(rq);
407                 __i915_request_commit(rq);
408                 __i915_request_queue(rq, &attr);
409
410                 mutex_unlock(&ce->timeline->mutex);
411                 /* This will break if the request is complete or after engine reset */
412                 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
413                 if (rq->fence.error)
414                         goto err_rq;
415
416                 i915_request_put(rq);
417
418                 num_entries -= n_ptes;
419                 offset += n_ptes;
420         }
421
422         gen8_ggtt_bind_put_ce(ce);
423         return true;
424
425 err_rq:
426         i915_request_put(rq);
427 put_ce:
428         gen8_ggtt_bind_put_ce(ce);
429         return false;
430 }
431
432 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
433 {
434         writeq(pte, addr);
435 }
436
437 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
438                                   dma_addr_t addr,
439                                   u64 offset,
440                                   unsigned int pat_index,
441                                   u32 flags)
442 {
443         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
444         gen8_pte_t __iomem *pte =
445                 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
446
447         gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
448
449         ggtt->invalidate(ggtt);
450 }
451
452 static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm,
453                                        dma_addr_t addr, u64 offset,
454                                        unsigned int pat_index, u32 flags)
455 {
456         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
457         gen8_pte_t pte;
458
459         pte = ggtt->vm.pte_encode(addr, pat_index, flags);
460         if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
461             gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte))
462                 return ggtt->invalidate(ggtt);
463
464         gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags);
465 }
466
467 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
468                                      struct i915_vma_resource *vma_res,
469                                      unsigned int pat_index,
470                                      u32 flags)
471 {
472         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
473         const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
474         gen8_pte_t __iomem *gte;
475         gen8_pte_t __iomem *end;
476         struct sgt_iter iter;
477         dma_addr_t addr;
478
479         /*
480          * Note that we ignore PTE_READ_ONLY here. The caller must be careful
481          * not to allow the user to override access to a read only page.
482          */
483
484         gte = (gen8_pte_t __iomem *)ggtt->gsm;
485         gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
486         end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
487         while (gte < end)
488                 gen8_set_pte(gte++, vm->scratch[0]->encode);
489         end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
490
491         for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
492                 gen8_set_pte(gte++, pte_encode | addr);
493         GEM_BUG_ON(gte > end);
494
495         /* Fill the allocated but "unused" space beyond the end of the buffer */
496         while (gte < end)
497                 gen8_set_pte(gte++, vm->scratch[0]->encode);
498
499         /*
500          * We want to flush the TLBs only after we're certain all the PTE
501          * updates have finished.
502          */
503         ggtt->invalidate(ggtt);
504 }
505
506 static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
507                                             struct i915_vma_resource *vma_res,
508                                             unsigned int pat_index, u32 flags)
509 {
510         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
511         gen8_pte_t scratch_pte = vm->scratch[0]->encode;
512         gen8_pte_t pte_encode;
513         u64 start, end;
514
515         pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
516         start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
517         end = start + vma_res->guard / I915_GTT_PAGE_SIZE;
518         if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
519                 goto err;
520
521         start = end;
522         end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
523         if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages,
524               vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode))
525                 goto err;
526
527         start += vma_res->node_size / I915_GTT_PAGE_SIZE;
528         if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
529                 goto err;
530
531         return true;
532
533 err:
534         return false;
535 }
536
537 static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
538                                           struct i915_vma_resource *vma_res,
539                                           unsigned int pat_index, u32 flags)
540 {
541         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
542
543         if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
544             __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags))
545                 return ggtt->invalidate(ggtt);
546
547         gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags);
548 }
549
550 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
551                                   u64 start, u64 length)
552 {
553         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
554         unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
555         unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
556         const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
557         gen8_pte_t __iomem *gtt_base =
558                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
559         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
560         int i;
561
562         if (WARN(num_entries > max_entries,
563                  "First entry = %d; Num entries = %d (max=%d)\n",
564                  first_entry, num_entries, max_entries))
565                 num_entries = max_entries;
566
567         for (i = 0; i < num_entries; i++)
568                 gen8_set_pte(&gtt_base[i], scratch_pte);
569 }
570
571 static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm,
572                                          u64 start, u64 length)
573 {
574         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
575         unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
576         unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
577         const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
578         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
579
580         if (WARN(num_entries > max_entries,
581                  "First entry = %d; Num entries = %d (max=%d)\n",
582                  first_entry, num_entries, max_entries))
583                 num_entries = max_entries;
584
585         if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry,
586              NULL, num_entries, scratch_pte))
587                 return ggtt->invalidate(ggtt);
588
589         gen8_ggtt_clear_range(vm, start, length);
590 }
591
592 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
593                                   dma_addr_t addr,
594                                   u64 offset,
595                                   unsigned int pat_index,
596                                   u32 flags)
597 {
598         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
599         gen6_pte_t __iomem *pte =
600                 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
601
602         iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
603
604         ggtt->invalidate(ggtt);
605 }
606
607 /*
608  * Binds an object into the global gtt with the specified cache level.
609  * The object will be accessible to the GPU via commands whose operands
610  * reference offsets within the global GTT as well as accessible by the GPU
611  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
612  */
613 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
614                                      struct i915_vma_resource *vma_res,
615                                      unsigned int pat_index,
616                                      u32 flags)
617 {
618         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
619         gen6_pte_t __iomem *gte;
620         gen6_pte_t __iomem *end;
621         struct sgt_iter iter;
622         dma_addr_t addr;
623
624         gte = (gen6_pte_t __iomem *)ggtt->gsm;
625         gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
626
627         end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
628         while (gte < end)
629                 iowrite32(vm->scratch[0]->encode, gte++);
630         end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
631         for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
632                 iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
633         GEM_BUG_ON(gte > end);
634
635         /* Fill the allocated but "unused" space beyond the end of the buffer */
636         while (gte < end)
637                 iowrite32(vm->scratch[0]->encode, gte++);
638
639         /*
640          * We want to flush the TLBs only after we're certain all the PTE
641          * updates have finished.
642          */
643         ggtt->invalidate(ggtt);
644 }
645
646 static void nop_clear_range(struct i915_address_space *vm,
647                             u64 start, u64 length)
648 {
649 }
650
651 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
652 {
653         /*
654          * Make sure the internal GAM fifo has been cleared of all GTT
655          * writes before exiting stop_machine(). This guarantees that
656          * any aperture accesses waiting to start in another process
657          * cannot back up behind the GTT writes causing a hang.
658          * The register can be any arbitrary GAM register.
659          */
660         intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
661 }
662
663 struct insert_page {
664         struct i915_address_space *vm;
665         dma_addr_t addr;
666         u64 offset;
667         unsigned int pat_index;
668 };
669
670 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
671 {
672         struct insert_page *arg = _arg;
673
674         gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
675                               arg->pat_index, 0);
676         bxt_vtd_ggtt_wa(arg->vm);
677
678         return 0;
679 }
680
681 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
682                                           dma_addr_t addr,
683                                           u64 offset,
684                                           unsigned int pat_index,
685                                           u32 unused)
686 {
687         struct insert_page arg = { vm, addr, offset, pat_index };
688
689         stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
690 }
691
692 struct insert_entries {
693         struct i915_address_space *vm;
694         struct i915_vma_resource *vma_res;
695         unsigned int pat_index;
696         u32 flags;
697 };
698
699 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
700 {
701         struct insert_entries *arg = _arg;
702
703         gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
704                                  arg->pat_index, arg->flags);
705         bxt_vtd_ggtt_wa(arg->vm);
706
707         return 0;
708 }
709
710 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
711                                              struct i915_vma_resource *vma_res,
712                                              unsigned int pat_index,
713                                              u32 flags)
714 {
715         struct insert_entries arg = { vm, vma_res, pat_index, flags };
716
717         stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
718 }
719
720 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
721                                   u64 start, u64 length)
722 {
723         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
724         unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
725         unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
726         gen6_pte_t scratch_pte, __iomem *gtt_base =
727                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
728         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
729         int i;
730
731         if (WARN(num_entries > max_entries,
732                  "First entry = %d; Num entries = %d (max=%d)\n",
733                  first_entry, num_entries, max_entries))
734                 num_entries = max_entries;
735
736         scratch_pte = vm->scratch[0]->encode;
737         for (i = 0; i < num_entries; i++)
738                 iowrite32(scratch_pte, &gtt_base[i]);
739 }
740
741 void intel_ggtt_bind_vma(struct i915_address_space *vm,
742                          struct i915_vm_pt_stash *stash,
743                          struct i915_vma_resource *vma_res,
744                          unsigned int pat_index,
745                          u32 flags)
746 {
747         u32 pte_flags;
748
749         if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
750                 return;
751
752         vma_res->bound_flags |= flags;
753
754         /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
755         pte_flags = 0;
756         if (vma_res->bi.readonly)
757                 pte_flags |= PTE_READ_ONLY;
758         if (vma_res->bi.lmem)
759                 pte_flags |= PTE_LM;
760
761         vm->insert_entries(vm, vma_res, pat_index, pte_flags);
762         vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
763 }
764
765 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
766                            struct i915_vma_resource *vma_res)
767 {
768         vm->clear_range(vm, vma_res->start, vma_res->vma_size);
769 }
770
771 /*
772  * Reserve the top of the GuC address space for firmware images. Addresses
773  * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
774  * which makes for a suitable range to hold GuC/HuC firmware images if the
775  * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
776  * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
777  * of the same size anyway, which is far more than needed, to keep the logic
778  * in uc_fw_ggtt_offset() simple.
779  */
780 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
781
782 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
783 {
784         u64 offset;
785         int ret;
786
787         if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
788                 return 0;
789
790         GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
791         offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
792
793         ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
794                                    GUC_TOP_RESERVE_SIZE, offset,
795                                    I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
796         if (ret)
797                 drm_dbg(&ggtt->vm.i915->drm,
798                         "Failed to reserve top of GGTT for GuC\n");
799
800         return ret;
801 }
802
803 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
804 {
805         if (drm_mm_node_allocated(&ggtt->uc_fw))
806                 drm_mm_remove_node(&ggtt->uc_fw);
807 }
808
809 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
810 {
811         ggtt_release_guc_top(ggtt);
812         if (drm_mm_node_allocated(&ggtt->error_capture))
813                 drm_mm_remove_node(&ggtt->error_capture);
814         mutex_destroy(&ggtt->error_mutex);
815 }
816
817 static int init_ggtt(struct i915_ggtt *ggtt)
818 {
819         /*
820          * Let GEM Manage all of the aperture.
821          *
822          * However, leave one page at the end still bound to the scratch page.
823          * There are a number of places where the hardware apparently prefetches
824          * past the end of the object, and we've seen multiple hangs with the
825          * GPU head pointer stuck in a batchbuffer bound at the last page of the
826          * aperture.  One page should be enough to keep any prefetching inside
827          * of the aperture.
828          */
829         unsigned long hole_start, hole_end;
830         struct drm_mm_node *entry;
831         int ret;
832
833         /*
834          * GuC requires all resources that we're sharing with it to be placed in
835          * non-WOPCM memory. If GuC is not present or not in use we still need a
836          * small bias as ring wraparound at offset 0 sometimes hangs. No idea
837          * why.
838          */
839         ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
840                                intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
841
842         ret = intel_vgt_balloon(ggtt);
843         if (ret)
844                 return ret;
845
846         mutex_init(&ggtt->error_mutex);
847         if (ggtt->mappable_end) {
848                 /*
849                  * Reserve a mappable slot for our lockless error capture.
850                  *
851                  * We strongly prefer taking address 0x0 in order to protect
852                  * other critical buffers against accidental overwrites,
853                  * as writing to address 0 is a very common mistake.
854                  *
855                  * Since 0 may already be in use by the system (e.g. the BIOS
856                  * framebuffer), we let the reservation fail quietly and hope
857                  * 0 remains reserved always.
858                  *
859                  * If we fail to reserve 0, and then fail to find any space
860                  * for an error-capture, remain silent. We can afford not
861                  * to reserve an error_capture node as we have fallback
862                  * paths, and we trust that 0 will remain reserved. However,
863                  * the only likely reason for failure to insert is a driver
864                  * bug, which we expect to cause other failures...
865                  *
866                  * Since CPU can perform speculative reads on error capture
867                  * (write-combining allows it) add scratch page after error
868                  * capture to avoid DMAR errors.
869                  */
870                 ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
871                 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
872                 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
873                         drm_mm_insert_node_in_range(&ggtt->vm.mm,
874                                                     &ggtt->error_capture,
875                                                     ggtt->error_capture.size, 0,
876                                                     ggtt->error_capture.color,
877                                                     0, ggtt->mappable_end,
878                                                     DRM_MM_INSERT_LOW);
879         }
880         if (drm_mm_node_allocated(&ggtt->error_capture)) {
881                 u64 start = ggtt->error_capture.start;
882                 u64 size = ggtt->error_capture.size;
883
884                 ggtt->vm.scratch_range(&ggtt->vm, start, size);
885                 drm_dbg(&ggtt->vm.i915->drm,
886                         "Reserved GGTT:[%llx, %llx] for use by error capture\n",
887                         start, start + size);
888         }
889
890         /*
891          * The upper portion of the GuC address space has a sizeable hole
892          * (several MB) that is inaccessible by GuC. Reserve this range within
893          * GGTT as it can comfortably hold GuC/HuC firmware images.
894          */
895         ret = ggtt_reserve_guc_top(ggtt);
896         if (ret)
897                 goto err;
898
899         /* Clear any non-preallocated blocks */
900         drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
901                 drm_dbg(&ggtt->vm.i915->drm,
902                         "clearing unused GTT space: [%lx, %lx]\n",
903                         hole_start, hole_end);
904                 ggtt->vm.clear_range(&ggtt->vm, hole_start,
905                                      hole_end - hole_start);
906         }
907
908         /* And finally clear the reserved guard page */
909         ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
910
911         return 0;
912
913 err:
914         cleanup_init_ggtt(ggtt);
915         return ret;
916 }
917
918 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
919                                   struct i915_vm_pt_stash *stash,
920                                   struct i915_vma_resource *vma_res,
921                                   unsigned int pat_index,
922                                   u32 flags)
923 {
924         u32 pte_flags;
925
926         /* Currently applicable only to VLV */
927         pte_flags = 0;
928         if (vma_res->bi.readonly)
929                 pte_flags |= PTE_READ_ONLY;
930
931         if (flags & I915_VMA_LOCAL_BIND)
932                 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
933                                stash, vma_res, pat_index, flags);
934
935         if (flags & I915_VMA_GLOBAL_BIND)
936                 vm->insert_entries(vm, vma_res, pat_index, pte_flags);
937
938         vma_res->bound_flags |= flags;
939 }
940
941 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
942                                     struct i915_vma_resource *vma_res)
943 {
944         if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
945                 vm->clear_range(vm, vma_res->start, vma_res->vma_size);
946
947         if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
948                 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
949 }
950
951 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
952 {
953         struct i915_vm_pt_stash stash = {};
954         struct i915_ppgtt *ppgtt;
955         int err;
956
957         ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
958         if (IS_ERR(ppgtt))
959                 return PTR_ERR(ppgtt);
960
961         if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
962                 err = -ENODEV;
963                 goto err_ppgtt;
964         }
965
966         err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
967         if (err)
968                 goto err_ppgtt;
969
970         i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
971         err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
972         i915_gem_object_unlock(ppgtt->vm.scratch[0]);
973         if (err)
974                 goto err_stash;
975
976         /*
977          * Note we only pre-allocate as far as the end of the global
978          * GTT. On 48b / 4-level page-tables, the difference is very,
979          * very significant! We have to preallocate as GVT/vgpu does
980          * not like the page directory disappearing.
981          */
982         ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
983
984         ggtt->alias = ppgtt;
985         ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
986
987         GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
988         ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
989
990         GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
991         ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
992
993         i915_vm_free_pt_stash(&ppgtt->vm, &stash);
994         return 0;
995
996 err_stash:
997         i915_vm_free_pt_stash(&ppgtt->vm, &stash);
998 err_ppgtt:
999         i915_vm_put(&ppgtt->vm);
1000         return err;
1001 }
1002
1003 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
1004 {
1005         struct i915_ppgtt *ppgtt;
1006
1007         ppgtt = fetch_and_zero(&ggtt->alias);
1008         if (!ppgtt)
1009                 return;
1010
1011         i915_vm_put(&ppgtt->vm);
1012
1013         ggtt->vm.vma_ops.bind_vma   = intel_ggtt_bind_vma;
1014         ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1015 }
1016
1017 int i915_init_ggtt(struct drm_i915_private *i915)
1018 {
1019         int ret;
1020
1021         ret = init_ggtt(to_gt(i915)->ggtt);
1022         if (ret)
1023                 return ret;
1024
1025         if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
1026                 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
1027                 if (ret)
1028                         cleanup_init_ggtt(to_gt(i915)->ggtt);
1029         }
1030
1031         return 0;
1032 }
1033
1034 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
1035 {
1036         struct i915_vma *vma, *vn;
1037
1038         flush_workqueue(ggtt->vm.i915->wq);
1039         i915_gem_drain_freed_objects(ggtt->vm.i915);
1040
1041         mutex_lock(&ggtt->vm.mutex);
1042
1043         ggtt->vm.skip_pte_rewrite = true;
1044
1045         list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
1046                 struct drm_i915_gem_object *obj = vma->obj;
1047                 bool trylock;
1048
1049                 trylock = i915_gem_object_trylock(obj, NULL);
1050                 WARN_ON(!trylock);
1051
1052                 WARN_ON(__i915_vma_unbind(vma));
1053                 if (trylock)
1054                         i915_gem_object_unlock(obj);
1055         }
1056
1057         if (drm_mm_node_allocated(&ggtt->error_capture))
1058                 drm_mm_remove_node(&ggtt->error_capture);
1059         mutex_destroy(&ggtt->error_mutex);
1060
1061         ggtt_release_guc_top(ggtt);
1062         intel_vgt_deballoon(ggtt);
1063
1064         ggtt->vm.cleanup(&ggtt->vm);
1065
1066         mutex_unlock(&ggtt->vm.mutex);
1067         i915_address_space_fini(&ggtt->vm);
1068
1069         arch_phys_wc_del(ggtt->mtrr);
1070
1071         if (ggtt->iomap.size)
1072                 io_mapping_fini(&ggtt->iomap);
1073 }
1074
1075 /**
1076  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
1077  * @i915: i915 device
1078  */
1079 void i915_ggtt_driver_release(struct drm_i915_private *i915)
1080 {
1081         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1082
1083         fini_aliasing_ppgtt(ggtt);
1084
1085         intel_ggtt_fini_fences(ggtt);
1086         ggtt_cleanup_hw(ggtt);
1087 }
1088
1089 /**
1090  * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
1091  * all free objects have been drained.
1092  * @i915: i915 device
1093  */
1094 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
1095 {
1096         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1097
1098         GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
1099         dma_resv_fini(&ggtt->vm._resv);
1100 }
1101
1102 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1103 {
1104         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1105         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1106         return snb_gmch_ctl << 20;
1107 }
1108
1109 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1110 {
1111         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1112         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1113         if (bdw_gmch_ctl)
1114                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1115
1116 #ifdef CONFIG_X86_32
1117         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
1118         if (bdw_gmch_ctl > 4)
1119                 bdw_gmch_ctl = 4;
1120 #endif
1121
1122         return bdw_gmch_ctl << 20;
1123 }
1124
1125 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1126 {
1127         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1128         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1129
1130         if (gmch_ctrl)
1131                 return 1 << (20 + gmch_ctrl);
1132
1133         return 0;
1134 }
1135
1136 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
1137 {
1138         /*
1139          * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
1140          * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
1141          */
1142         GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
1143         return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
1144 }
1145
1146 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
1147 {
1148         return gen6_gttmmadr_size(i915) / 2;
1149 }
1150
1151 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
1152 {
1153         struct drm_i915_private *i915 = ggtt->vm.i915;
1154         struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1155         phys_addr_t phys_addr;
1156         u32 pte_flags;
1157         int ret;
1158
1159         GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
1160         phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
1161
1162         if (needs_wc_ggtt_mapping(i915))
1163                 ggtt->gsm = ioremap_wc(phys_addr, size);
1164         else
1165                 ggtt->gsm = ioremap(phys_addr, size);
1166
1167         if (!ggtt->gsm) {
1168                 drm_err(&i915->drm, "Failed to map the ggtt page table\n");
1169                 return -ENOMEM;
1170         }
1171
1172         kref_init(&ggtt->vm.resv_ref);
1173         ret = setup_scratch_page(&ggtt->vm);
1174         if (ret) {
1175                 drm_err(&i915->drm, "Scratch setup failed\n");
1176                 /* iounmap will also get called at remove, but meh */
1177                 iounmap(ggtt->gsm);
1178                 return ret;
1179         }
1180
1181         pte_flags = 0;
1182         if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
1183                 pte_flags |= PTE_LM;
1184
1185         ggtt->vm.scratch[0]->encode =
1186                 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
1187                                     i915_gem_get_pat_index(i915,
1188                                                            I915_CACHE_NONE),
1189                                     pte_flags);
1190
1191         return 0;
1192 }
1193
1194 static void gen6_gmch_remove(struct i915_address_space *vm)
1195 {
1196         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1197
1198         iounmap(ggtt->gsm);
1199         free_scratch(vm);
1200 }
1201
1202 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1203 {
1204         return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1205                               pci_resource_len(pdev, bar));
1206 }
1207
1208 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1209 {
1210         struct drm_i915_private *i915 = ggtt->vm.i915;
1211         struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1212         unsigned int size;
1213         u16 snb_gmch_ctl;
1214
1215         if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
1216                 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1217                         return -ENXIO;
1218
1219                 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1220                 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1221         }
1222
1223         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1224         if (IS_CHERRYVIEW(i915))
1225                 size = chv_get_total_gtt_size(snb_gmch_ctl);
1226         else
1227                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
1228
1229         ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1230         ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1231         ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
1232
1233         ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1234         ggtt->vm.cleanup = gen6_gmch_remove;
1235         ggtt->vm.insert_page = gen8_ggtt_insert_page;
1236         ggtt->vm.clear_range = nop_clear_range;
1237         ggtt->vm.scratch_range = gen8_ggtt_clear_range;
1238
1239         ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1240
1241         /*
1242          * Serialize GTT updates with aperture access on BXT if VT-d is on,
1243          * and always on CHV.
1244          */
1245         if (intel_vm_no_concurrent_access_wa(i915)) {
1246                 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1247                 ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
1248
1249                 /*
1250                  * Calling stop_machine() version of GGTT update function
1251                  * at error capture/reset path will raise lockdep warning.
1252                  * Allow calling gen8_ggtt_insert_* directly at reset path
1253                  * which is safe from parallel GGTT updates.
1254                  */
1255                 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1256                 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
1257
1258                 ggtt->vm.bind_async_flags =
1259                         I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
1260         }
1261
1262         if (i915_ggtt_require_binder(i915)) {
1263                 ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind;
1264                 ggtt->vm.insert_page = gen8_ggtt_insert_page_bind;
1265                 ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind;
1266                 /*
1267                  * On GPU is hung, we might bind VMAs for error capture.
1268                  * Fallback to CPU GGTT updates in that case.
1269                  */
1270                 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1271         }
1272
1273         if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc))
1274                 ggtt->invalidate = guc_ggtt_invalidate;
1275         else
1276                 ggtt->invalidate = gen8_ggtt_invalidate;
1277
1278         ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1279         ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1280
1281         if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1282                 ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
1283         else
1284                 ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
1285
1286         return ggtt_probe_common(ggtt, size);
1287 }
1288
1289 /*
1290  * For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
1291  * so the switch-case statements in these PTE encode functions are still valid.
1292  * See translation table LEGACY_CACHELEVEL.
1293  */
1294 static u64 snb_pte_encode(dma_addr_t addr,
1295                           unsigned int pat_index,
1296                           u32 flags)
1297 {
1298         gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1299
1300         switch (pat_index) {
1301         case I915_CACHE_L3_LLC:
1302         case I915_CACHE_LLC:
1303                 pte |= GEN6_PTE_CACHE_LLC;
1304                 break;
1305         case I915_CACHE_NONE:
1306                 pte |= GEN6_PTE_UNCACHED;
1307                 break;
1308         default:
1309                 MISSING_CASE(pat_index);
1310         }
1311
1312         return pte;
1313 }
1314
1315 static u64 ivb_pte_encode(dma_addr_t addr,
1316                           unsigned int pat_index,
1317                           u32 flags)
1318 {
1319         gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1320
1321         switch (pat_index) {
1322         case I915_CACHE_L3_LLC:
1323                 pte |= GEN7_PTE_CACHE_L3_LLC;
1324                 break;
1325         case I915_CACHE_LLC:
1326                 pte |= GEN6_PTE_CACHE_LLC;
1327                 break;
1328         case I915_CACHE_NONE:
1329                 pte |= GEN6_PTE_UNCACHED;
1330                 break;
1331         default:
1332                 MISSING_CASE(pat_index);
1333         }
1334
1335         return pte;
1336 }
1337
1338 static u64 byt_pte_encode(dma_addr_t addr,
1339                           unsigned int pat_index,
1340                           u32 flags)
1341 {
1342         gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1343
1344         if (!(flags & PTE_READ_ONLY))
1345                 pte |= BYT_PTE_WRITEABLE;
1346
1347         if (pat_index != I915_CACHE_NONE)
1348                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1349
1350         return pte;
1351 }
1352
1353 static u64 hsw_pte_encode(dma_addr_t addr,
1354                           unsigned int pat_index,
1355                           u32 flags)
1356 {
1357         gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1358
1359         if (pat_index != I915_CACHE_NONE)
1360                 pte |= HSW_WB_LLC_AGE3;
1361
1362         return pte;
1363 }
1364
1365 static u64 iris_pte_encode(dma_addr_t addr,
1366                            unsigned int pat_index,
1367                            u32 flags)
1368 {
1369         gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1370
1371         switch (pat_index) {
1372         case I915_CACHE_NONE:
1373                 break;
1374         case I915_CACHE_WT:
1375                 pte |= HSW_WT_ELLC_LLC_AGE3;
1376                 break;
1377         default:
1378                 pte |= HSW_WB_ELLC_LLC_AGE3;
1379                 break;
1380         }
1381
1382         return pte;
1383 }
1384
1385 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1386 {
1387         struct drm_i915_private *i915 = ggtt->vm.i915;
1388         struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1389         unsigned int size;
1390         u16 snb_gmch_ctl;
1391
1392         if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1393                 return -ENXIO;
1394
1395         ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1396         ggtt->mappable_end = resource_size(&ggtt->gmadr);
1397
1398         /*
1399          * 64/512MB is the current min/max we actually know of, but this is
1400          * just a coarse sanity check.
1401          */
1402         if (ggtt->mappable_end < (64 << 20) ||
1403             ggtt->mappable_end > (512 << 20)) {
1404                 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1405                         &ggtt->mappable_end);
1406                 return -ENXIO;
1407         }
1408
1409         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1410
1411         size = gen6_get_total_gtt_size(snb_gmch_ctl);
1412         ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1413
1414         ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1415         ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1416
1417         ggtt->vm.clear_range = nop_clear_range;
1418         if (!HAS_FULL_PPGTT(i915))
1419                 ggtt->vm.clear_range = gen6_ggtt_clear_range;
1420         ggtt->vm.scratch_range = gen6_ggtt_clear_range;
1421         ggtt->vm.insert_page = gen6_ggtt_insert_page;
1422         ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1423         ggtt->vm.cleanup = gen6_gmch_remove;
1424
1425         ggtt->invalidate = gen6_ggtt_invalidate;
1426
1427         if (HAS_EDRAM(i915))
1428                 ggtt->vm.pte_encode = iris_pte_encode;
1429         else if (IS_HASWELL(i915))
1430                 ggtt->vm.pte_encode = hsw_pte_encode;
1431         else if (IS_VALLEYVIEW(i915))
1432                 ggtt->vm.pte_encode = byt_pte_encode;
1433         else if (GRAPHICS_VER(i915) >= 7)
1434                 ggtt->vm.pte_encode = ivb_pte_encode;
1435         else
1436                 ggtt->vm.pte_encode = snb_pte_encode;
1437
1438         ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1439         ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1440
1441         return ggtt_probe_common(ggtt, size);
1442 }
1443
1444 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1445 {
1446         struct drm_i915_private *i915 = gt->i915;
1447         int ret;
1448
1449         ggtt->vm.gt = gt;
1450         ggtt->vm.i915 = i915;
1451         ggtt->vm.dma = i915->drm.dev;
1452         dma_resv_init(&ggtt->vm._resv);
1453
1454         if (GRAPHICS_VER(i915) >= 8)
1455                 ret = gen8_gmch_probe(ggtt);
1456         else if (GRAPHICS_VER(i915) >= 6)
1457                 ret = gen6_gmch_probe(ggtt);
1458         else
1459                 ret = intel_ggtt_gmch_probe(ggtt);
1460
1461         if (ret) {
1462                 dma_resv_fini(&ggtt->vm._resv);
1463                 return ret;
1464         }
1465
1466         if ((ggtt->vm.total - 1) >> 32) {
1467                 drm_err(&i915->drm,
1468                         "We never expected a Global GTT with more than 32bits"
1469                         " of address space! Found %lldM!\n",
1470                         ggtt->vm.total >> 20);
1471                 ggtt->vm.total = 1ULL << 32;
1472                 ggtt->mappable_end =
1473                         min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1474         }
1475
1476         if (ggtt->mappable_end > ggtt->vm.total) {
1477                 drm_err(&i915->drm,
1478                         "mappable aperture extends past end of GGTT,"
1479                         " aperture=%pa, total=%llx\n",
1480                         &ggtt->mappable_end, ggtt->vm.total);
1481                 ggtt->mappable_end = ggtt->vm.total;
1482         }
1483
1484         /* GMADR is the PCI mmio aperture into the global GTT. */
1485         drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1486         drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1487                 (u64)ggtt->mappable_end >> 20);
1488         drm_dbg(&i915->drm, "DSM size = %lluM\n",
1489                 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1490
1491         return 0;
1492 }
1493
1494 /**
1495  * i915_ggtt_probe_hw - Probe GGTT hardware location
1496  * @i915: i915 device
1497  */
1498 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1499 {
1500         struct intel_gt *gt;
1501         int ret, i;
1502
1503         for_each_gt(gt, i915, i) {
1504                 ret = intel_gt_assign_ggtt(gt);
1505                 if (ret)
1506                         return ret;
1507         }
1508
1509         ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1510         if (ret)
1511                 return ret;
1512
1513         if (i915_vtd_active(i915))
1514                 drm_info(&i915->drm, "VT-d active for gfx access\n");
1515
1516         return 0;
1517 }
1518
1519 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
1520 {
1521         struct i915_ggtt *ggtt;
1522
1523         ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
1524         if (!ggtt)
1525                 return ERR_PTR(-ENOMEM);
1526
1527         INIT_LIST_HEAD(&ggtt->gt_list);
1528
1529         return ggtt;
1530 }
1531
1532 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1533 {
1534         if (GRAPHICS_VER(i915) < 6)
1535                 return intel_ggtt_gmch_enable_hw(i915);
1536
1537         return 0;
1538 }
1539
1540 /**
1541  * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1542  * @vm: The VM to restore the mappings for
1543  *
1544  * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1545  * DPT page table.
1546  *
1547  * Returns %true if restoring the mapping for any object that was in a write
1548  * domain before suspend.
1549  */
1550 bool i915_ggtt_resume_vm(struct i915_address_space *vm)
1551 {
1552         struct i915_vma *vma;
1553         bool write_domain_objs = false;
1554
1555         drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1556
1557         /* First fill our portion of the GTT with scratch pages */
1558         vm->clear_range(vm, 0, vm->total);
1559
1560         /* clflush objects bound into the GGTT and rebind them. */
1561         list_for_each_entry(vma, &vm->bound_list, vm_link) {
1562                 struct drm_i915_gem_object *obj = vma->obj;
1563                 unsigned int was_bound =
1564                         atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1565
1566                 GEM_BUG_ON(!was_bound);
1567
1568                 /*
1569                  * Clear the bound flags of the vma resource to allow
1570                  * ptes to be repopulated.
1571                  */
1572                 vma->resource->bound_flags = 0;
1573                 vma->ops->bind_vma(vm, NULL, vma->resource,
1574                                    obj ? obj->pat_index :
1575                                          i915_gem_get_pat_index(vm->i915,
1576                                                                 I915_CACHE_NONE),
1577                                    was_bound);
1578
1579                 if (obj) { /* only used during resume => exclusive access */
1580                         write_domain_objs |= fetch_and_zero(&obj->write_domain);
1581                         obj->read_domains |= I915_GEM_DOMAIN_GTT;
1582                 }
1583         }
1584
1585         return write_domain_objs;
1586 }
1587
1588 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1589 {
1590         struct intel_gt *gt;
1591         bool flush;
1592
1593         list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1594                 intel_gt_check_and_clear_faults(gt);
1595
1596         flush = i915_ggtt_resume_vm(&ggtt->vm);
1597
1598         if (drm_mm_node_allocated(&ggtt->error_capture))
1599                 ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
1600                                        ggtt->error_capture.size);
1601
1602         list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1603                 intel_uc_resume_mappings(&gt->uc);
1604
1605         ggtt->invalidate(ggtt);
1606
1607         if (flush)
1608                 wbinvd_on_all_cpus();
1609
1610         intel_ggtt_restore_fences(ggtt);
1611 }
This page took 0.126479 seconds and 4 git commands to generate.