]> Git Repo - J-linux.git/blob - arch/x86/kernel/cpu/common.c
Merge tag 'x86-cleanups-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel...
[J-linux.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/uv/uv.h>
65 #include <asm/ia32.h>
66 #include <asm/set_memory.h>
67 #include <asm/traps.h>
68 #include <asm/sev.h>
69
70 #include "cpu.h"
71
72 u32 elf_hwcap2 __read_mostly;
73
74 /* Number of siblings per CPU package */
75 int smp_num_siblings = 1;
76 EXPORT_SYMBOL(smp_num_siblings);
77
78 static struct ppin_info {
79         int     feature;
80         int     msr_ppin_ctl;
81         int     msr_ppin;
82 } ppin_info[] = {
83         [X86_VENDOR_INTEL] = {
84                 .feature = X86_FEATURE_INTEL_PPIN,
85                 .msr_ppin_ctl = MSR_PPIN_CTL,
86                 .msr_ppin = MSR_PPIN
87         },
88         [X86_VENDOR_AMD] = {
89                 .feature = X86_FEATURE_AMD_PPIN,
90                 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
91                 .msr_ppin = MSR_AMD_PPIN
92         },
93 };
94
95 static const struct x86_cpu_id ppin_cpuids[] = {
96         X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
97         X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
98
99         /* Legacy models without CPUID enumeration */
100         X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
101         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
102         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
103         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
104         X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
105         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
106         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
107         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
108         X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
109         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
110         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
111
112         {}
113 };
114
115 static void ppin_init(struct cpuinfo_x86 *c)
116 {
117         const struct x86_cpu_id *id;
118         unsigned long long val;
119         struct ppin_info *info;
120
121         id = x86_match_cpu(ppin_cpuids);
122         if (!id)
123                 return;
124
125         /*
126          * Testing the presence of the MSR is not enough. Need to check
127          * that the PPIN_CTL allows reading of the PPIN.
128          */
129         info = (struct ppin_info *)id->driver_data;
130
131         if (rdmsrl_safe(info->msr_ppin_ctl, &val))
132                 goto clear_ppin;
133
134         if ((val & 3UL) == 1UL) {
135                 /* PPIN locked in disabled mode */
136                 goto clear_ppin;
137         }
138
139         /* If PPIN is disabled, try to enable */
140         if (!(val & 2UL)) {
141                 wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
142                 rdmsrl_safe(info->msr_ppin_ctl, &val);
143         }
144
145         /* Is the enable bit set? */
146         if (val & 2UL) {
147                 c->ppin = __rdmsr(info->msr_ppin);
148                 set_cpu_cap(c, info->feature);
149                 return;
150         }
151
152 clear_ppin:
153         clear_cpu_cap(c, info->feature);
154 }
155
156 static void default_init(struct cpuinfo_x86 *c)
157 {
158 #ifdef CONFIG_X86_64
159         cpu_detect_cache_sizes(c);
160 #else
161         /* Not much we can do here... */
162         /* Check if at least it has cpuid */
163         if (c->cpuid_level == -1) {
164                 /* No cpuid. It must be an ancient CPU */
165                 if (c->x86 == 4)
166                         strcpy(c->x86_model_id, "486");
167                 else if (c->x86 == 3)
168                         strcpy(c->x86_model_id, "386");
169         }
170 #endif
171 }
172
173 static const struct cpu_dev default_cpu = {
174         .c_init         = default_init,
175         .c_vendor       = "Unknown",
176         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
177 };
178
179 static const struct cpu_dev *this_cpu = &default_cpu;
180
181 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
182 #ifdef CONFIG_X86_64
183         /*
184          * We need valid kernel segments for data and code in long mode too
185          * IRET will check the segment types  kkeil 2000/10/28
186          * Also sysret mandates a special GDT layout
187          *
188          * TLS descriptors are currently at a different place compared to i386.
189          * Hopefully nobody expects them at a fixed place (Wine?)
190          */
191         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
192         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
193         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
194         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
195         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
196         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
197 #else
198         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
199         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
200         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
201         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
202         /*
203          * Segments used for calling PnP BIOS have byte granularity.
204          * They code segments and data segments have fixed 64k limits,
205          * the transfer segment sizes are set at run time.
206          */
207         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
208         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
209         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
210         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
211         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
212         /*
213          * The APM segments have byte granularity and their bases
214          * are set at run time.  All have 64k limits.
215          */
216         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
217         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
218         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
219
220         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
221         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
222 #endif
223 } };
224 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
225
226 #ifdef CONFIG_X86_64
227 static int __init x86_nopcid_setup(char *s)
228 {
229         /* nopcid doesn't accept parameters */
230         if (s)
231                 return -EINVAL;
232
233         /* do not emit a message if the feature is not present */
234         if (!boot_cpu_has(X86_FEATURE_PCID))
235                 return 0;
236
237         setup_clear_cpu_cap(X86_FEATURE_PCID);
238         pr_info("nopcid: PCID feature disabled\n");
239         return 0;
240 }
241 early_param("nopcid", x86_nopcid_setup);
242 #endif
243
244 static int __init x86_noinvpcid_setup(char *s)
245 {
246         /* noinvpcid doesn't accept parameters */
247         if (s)
248                 return -EINVAL;
249
250         /* do not emit a message if the feature is not present */
251         if (!boot_cpu_has(X86_FEATURE_INVPCID))
252                 return 0;
253
254         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
255         pr_info("noinvpcid: INVPCID feature disabled\n");
256         return 0;
257 }
258 early_param("noinvpcid", x86_noinvpcid_setup);
259
260 #ifdef CONFIG_X86_32
261 static int cachesize_override = -1;
262 static int disable_x86_serial_nr = 1;
263
264 static int __init cachesize_setup(char *str)
265 {
266         get_option(&str, &cachesize_override);
267         return 1;
268 }
269 __setup("cachesize=", cachesize_setup);
270
271 /* Standard macro to see if a specific flag is changeable */
272 static inline int flag_is_changeable_p(u32 flag)
273 {
274         u32 f1, f2;
275
276         /*
277          * Cyrix and IDT cpus allow disabling of CPUID
278          * so the code below may return different results
279          * when it is executed before and after enabling
280          * the CPUID. Add "volatile" to not allow gcc to
281          * optimize the subsequent calls to this function.
282          */
283         asm volatile ("pushfl           \n\t"
284                       "pushfl           \n\t"
285                       "popl %0          \n\t"
286                       "movl %0, %1      \n\t"
287                       "xorl %2, %0      \n\t"
288                       "pushl %0         \n\t"
289                       "popfl            \n\t"
290                       "pushfl           \n\t"
291                       "popl %0          \n\t"
292                       "popfl            \n\t"
293
294                       : "=&r" (f1), "=&r" (f2)
295                       : "ir" (flag));
296
297         return ((f1^f2) & flag) != 0;
298 }
299
300 /* Probe for the CPUID instruction */
301 int have_cpuid_p(void)
302 {
303         return flag_is_changeable_p(X86_EFLAGS_ID);
304 }
305
306 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
307 {
308         unsigned long lo, hi;
309
310         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
311                 return;
312
313         /* Disable processor serial number: */
314
315         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
316         lo |= 0x200000;
317         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
318
319         pr_notice("CPU serial number disabled.\n");
320         clear_cpu_cap(c, X86_FEATURE_PN);
321
322         /* Disabling the serial number may affect the cpuid level */
323         c->cpuid_level = cpuid_eax(0);
324 }
325
326 static int __init x86_serial_nr_setup(char *s)
327 {
328         disable_x86_serial_nr = 0;
329         return 1;
330 }
331 __setup("serialnumber", x86_serial_nr_setup);
332 #else
333 static inline int flag_is_changeable_p(u32 flag)
334 {
335         return 1;
336 }
337 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
338 {
339 }
340 #endif
341
342 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
343 {
344         if (cpu_has(c, X86_FEATURE_SMEP))
345                 cr4_set_bits(X86_CR4_SMEP);
346 }
347
348 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
349 {
350         unsigned long eflags = native_save_fl();
351
352         /* This should have been cleared long ago */
353         BUG_ON(eflags & X86_EFLAGS_AC);
354
355         if (cpu_has(c, X86_FEATURE_SMAP))
356                 cr4_set_bits(X86_CR4_SMAP);
357 }
358
359 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
360 {
361         /* Check the boot processor, plus build option for UMIP. */
362         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
363                 goto out;
364
365         /* Check the current processor's cpuid bits. */
366         if (!cpu_has(c, X86_FEATURE_UMIP))
367                 goto out;
368
369         cr4_set_bits(X86_CR4_UMIP);
370
371         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
372
373         return;
374
375 out:
376         /*
377          * Make sure UMIP is disabled in case it was enabled in a
378          * previous boot (e.g., via kexec).
379          */
380         cr4_clear_bits(X86_CR4_UMIP);
381 }
382
383 /* These bits should not change their value after CPU init is finished. */
384 static const unsigned long cr4_pinned_mask =
385         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
386         X86_CR4_FSGSBASE | X86_CR4_CET;
387 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
388 static unsigned long cr4_pinned_bits __ro_after_init;
389
390 void native_write_cr0(unsigned long val)
391 {
392         unsigned long bits_missing = 0;
393
394 set_register:
395         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
396
397         if (static_branch_likely(&cr_pinning)) {
398                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
399                         bits_missing = X86_CR0_WP;
400                         val |= bits_missing;
401                         goto set_register;
402                 }
403                 /* Warn after we've set the missing bits. */
404                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
405         }
406 }
407 EXPORT_SYMBOL(native_write_cr0);
408
409 void __no_profile native_write_cr4(unsigned long val)
410 {
411         unsigned long bits_changed = 0;
412
413 set_register:
414         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
415
416         if (static_branch_likely(&cr_pinning)) {
417                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
418                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
419                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
420                         goto set_register;
421                 }
422                 /* Warn after we've corrected the changed bits. */
423                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
424                           bits_changed);
425         }
426 }
427 #if IS_MODULE(CONFIG_LKDTM)
428 EXPORT_SYMBOL_GPL(native_write_cr4);
429 #endif
430
431 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
432 {
433         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
434
435         lockdep_assert_irqs_disabled();
436
437         newval = (cr4 & ~clear) | set;
438         if (newval != cr4) {
439                 this_cpu_write(cpu_tlbstate.cr4, newval);
440                 __write_cr4(newval);
441         }
442 }
443 EXPORT_SYMBOL(cr4_update_irqsoff);
444
445 /* Read the CR4 shadow. */
446 unsigned long cr4_read_shadow(void)
447 {
448         return this_cpu_read(cpu_tlbstate.cr4);
449 }
450 EXPORT_SYMBOL_GPL(cr4_read_shadow);
451
452 void cr4_init(void)
453 {
454         unsigned long cr4 = __read_cr4();
455
456         if (boot_cpu_has(X86_FEATURE_PCID))
457                 cr4 |= X86_CR4_PCIDE;
458         if (static_branch_likely(&cr_pinning))
459                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
460
461         __write_cr4(cr4);
462
463         /* Initialize cr4 shadow for this CPU. */
464         this_cpu_write(cpu_tlbstate.cr4, cr4);
465 }
466
467 /*
468  * Once CPU feature detection is finished (and boot params have been
469  * parsed), record any of the sensitive CR bits that are set, and
470  * enable CR pinning.
471  */
472 static void __init setup_cr_pinning(void)
473 {
474         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
475         static_key_enable(&cr_pinning.key);
476 }
477
478 static __init int x86_nofsgsbase_setup(char *arg)
479 {
480         /* Require an exact match without trailing characters. */
481         if (strlen(arg))
482                 return 0;
483
484         /* Do not emit a message if the feature is not present. */
485         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
486                 return 1;
487
488         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
489         pr_info("FSGSBASE disabled via kernel command line\n");
490         return 1;
491 }
492 __setup("nofsgsbase", x86_nofsgsbase_setup);
493
494 /*
495  * Protection Keys are not available in 32-bit mode.
496  */
497 static bool pku_disabled;
498
499 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
500 {
501         if (c == &boot_cpu_data) {
502                 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
503                         return;
504                 /*
505                  * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
506                  * bit to be set.  Enforce it.
507                  */
508                 setup_force_cpu_cap(X86_FEATURE_OSPKE);
509
510         } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
511                 return;
512         }
513
514         cr4_set_bits(X86_CR4_PKE);
515         /* Load the default PKRU value */
516         pkru_write_default();
517 }
518
519 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
520 static __init int setup_disable_pku(char *arg)
521 {
522         /*
523          * Do not clear the X86_FEATURE_PKU bit.  All of the
524          * runtime checks are against OSPKE so clearing the
525          * bit does nothing.
526          *
527          * This way, we will see "pku" in cpuinfo, but not
528          * "ospke", which is exactly what we want.  It shows
529          * that the CPU has PKU, but the OS has not enabled it.
530          * This happens to be exactly how a system would look
531          * if we disabled the config option.
532          */
533         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
534         pku_disabled = true;
535         return 1;
536 }
537 __setup("nopku", setup_disable_pku);
538 #endif
539
540 #ifdef CONFIG_X86_KERNEL_IBT
541
542 __noendbr u64 ibt_save(bool disable)
543 {
544         u64 msr = 0;
545
546         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
547                 rdmsrl(MSR_IA32_S_CET, msr);
548                 if (disable)
549                         wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
550         }
551
552         return msr;
553 }
554
555 __noendbr void ibt_restore(u64 save)
556 {
557         u64 msr;
558
559         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
560                 rdmsrl(MSR_IA32_S_CET, msr);
561                 msr &= ~CET_ENDBR_EN;
562                 msr |= (save & CET_ENDBR_EN);
563                 wrmsrl(MSR_IA32_S_CET, msr);
564         }
565 }
566
567 #endif
568
569 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
570 {
571         bool user_shstk, kernel_ibt;
572
573         if (!IS_ENABLED(CONFIG_X86_CET))
574                 return;
575
576         kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
577         user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
578                      IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
579
580         if (!kernel_ibt && !user_shstk)
581                 return;
582
583         if (user_shstk)
584                 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
585
586         if (kernel_ibt)
587                 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
588         else
589                 wrmsrl(MSR_IA32_S_CET, 0);
590
591         cr4_set_bits(X86_CR4_CET);
592
593         if (kernel_ibt && ibt_selftest()) {
594                 pr_err("IBT selftest: Failed!\n");
595                 wrmsrl(MSR_IA32_S_CET, 0);
596                 setup_clear_cpu_cap(X86_FEATURE_IBT);
597         }
598 }
599
600 __noendbr void cet_disable(void)
601 {
602         if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
603               cpu_feature_enabled(X86_FEATURE_SHSTK)))
604                 return;
605
606         wrmsrl(MSR_IA32_S_CET, 0);
607         wrmsrl(MSR_IA32_U_CET, 0);
608 }
609
610 /*
611  * Some CPU features depend on higher CPUID levels, which may not always
612  * be available due to CPUID level capping or broken virtualization
613  * software.  Add those features to this table to auto-disable them.
614  */
615 struct cpuid_dependent_feature {
616         u32 feature;
617         u32 level;
618 };
619
620 static const struct cpuid_dependent_feature
621 cpuid_dependent_features[] = {
622         { X86_FEATURE_MWAIT,            0x00000005 },
623         { X86_FEATURE_DCA,              0x00000009 },
624         { X86_FEATURE_XSAVE,            0x0000000d },
625         { 0, 0 }
626 };
627
628 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
629 {
630         const struct cpuid_dependent_feature *df;
631
632         for (df = cpuid_dependent_features; df->feature; df++) {
633
634                 if (!cpu_has(c, df->feature))
635                         continue;
636                 /*
637                  * Note: cpuid_level is set to -1 if unavailable, but
638                  * extended_extended_level is set to 0 if unavailable
639                  * and the legitimate extended levels are all negative
640                  * when signed; hence the weird messing around with
641                  * signs here...
642                  */
643                 if (!((s32)df->level < 0 ?
644                      (u32)df->level > (u32)c->extended_cpuid_level :
645                      (s32)df->level > (s32)c->cpuid_level))
646                         continue;
647
648                 clear_cpu_cap(c, df->feature);
649                 if (!warn)
650                         continue;
651
652                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
653                         x86_cap_flag(df->feature), df->level);
654         }
655 }
656
657 /*
658  * Naming convention should be: <Name> [(<Codename>)]
659  * This table only is used unless init_<vendor>() below doesn't set it;
660  * in particular, if CPUID levels 0x80000002..4 are supported, this
661  * isn't used
662  */
663
664 /* Look up CPU names by table lookup. */
665 static const char *table_lookup_model(struct cpuinfo_x86 *c)
666 {
667 #ifdef CONFIG_X86_32
668         const struct legacy_cpu_model_info *info;
669
670         if (c->x86_model >= 16)
671                 return NULL;    /* Range check */
672
673         if (!this_cpu)
674                 return NULL;
675
676         info = this_cpu->legacy_models;
677
678         while (info->family) {
679                 if (info->family == c->x86)
680                         return info->model_names[c->x86_model];
681                 info++;
682         }
683 #endif
684         return NULL;            /* Not found */
685 }
686
687 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
688 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
689 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
690
691 #ifdef CONFIG_X86_32
692 /* The 32-bit entry code needs to find cpu_entry_area. */
693 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
694 #endif
695
696 /* Load the original GDT from the per-cpu structure */
697 void load_direct_gdt(int cpu)
698 {
699         struct desc_ptr gdt_descr;
700
701         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
702         gdt_descr.size = GDT_SIZE - 1;
703         load_gdt(&gdt_descr);
704 }
705 EXPORT_SYMBOL_GPL(load_direct_gdt);
706
707 /* Load a fixmap remapping of the per-cpu GDT */
708 void load_fixmap_gdt(int cpu)
709 {
710         struct desc_ptr gdt_descr;
711
712         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
713         gdt_descr.size = GDT_SIZE - 1;
714         load_gdt(&gdt_descr);
715 }
716 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
717
718 /**
719  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
720  * @cpu:        The CPU number for which this is invoked
721  *
722  * Invoked during early boot to switch from early GDT and early per CPU to
723  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
724  * switch is implicit by loading the direct GDT. On 64bit this requires
725  * to update GSBASE.
726  */
727 void __init switch_gdt_and_percpu_base(int cpu)
728 {
729         load_direct_gdt(cpu);
730
731 #ifdef CONFIG_X86_64
732         /*
733          * No need to load %gs. It is already correct.
734          *
735          * Writing %gs on 64bit would zero GSBASE which would make any per
736          * CPU operation up to the point of the wrmsrl() fault.
737          *
738          * Set GSBASE to the new offset. Until the wrmsrl() happens the
739          * early mapping is still valid. That means the GSBASE update will
740          * lose any prior per CPU data which was not copied over in
741          * setup_per_cpu_areas().
742          *
743          * This works even with stackprotector enabled because the
744          * per CPU stack canary is 0 in both per CPU areas.
745          */
746         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
747 #else
748         /*
749          * %fs is already set to __KERNEL_PERCPU, but after switching GDT
750          * it is required to load FS again so that the 'hidden' part is
751          * updated from the new GDT. Up to this point the early per CPU
752          * translation is active. Any content of the early per CPU data
753          * which was not copied over in setup_per_cpu_areas() is lost.
754          */
755         loadsegment(fs, __KERNEL_PERCPU);
756 #endif
757 }
758
759 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
760
761 static void get_model_name(struct cpuinfo_x86 *c)
762 {
763         unsigned int *v;
764         char *p, *q, *s;
765
766         if (c->extended_cpuid_level < 0x80000004)
767                 return;
768
769         v = (unsigned int *)c->x86_model_id;
770         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
771         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
772         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
773         c->x86_model_id[48] = 0;
774
775         /* Trim whitespace */
776         p = q = s = &c->x86_model_id[0];
777
778         while (*p == ' ')
779                 p++;
780
781         while (*p) {
782                 /* Note the last non-whitespace index */
783                 if (!isspace(*p))
784                         s = q;
785
786                 *q++ = *p++;
787         }
788
789         *(s + 1) = '\0';
790 }
791
792 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
793 {
794         unsigned int eax, ebx, ecx, edx;
795
796         c->x86_max_cores = 1;
797         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
798                 return;
799
800         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
801         if (eax & 0x1f)
802                 c->x86_max_cores = (eax >> 26) + 1;
803 }
804
805 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
806 {
807         unsigned int n, dummy, ebx, ecx, edx, l2size;
808
809         n = c->extended_cpuid_level;
810
811         if (n >= 0x80000005) {
812                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
813                 c->x86_cache_size = (ecx>>24) + (edx>>24);
814 #ifdef CONFIG_X86_64
815                 /* On K8 L1 TLB is inclusive, so don't count it */
816                 c->x86_tlbsize = 0;
817 #endif
818         }
819
820         if (n < 0x80000006)     /* Some chips just has a large L1. */
821                 return;
822
823         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
824         l2size = ecx >> 16;
825
826 #ifdef CONFIG_X86_64
827         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
828 #else
829         /* do processor-specific cache resizing */
830         if (this_cpu->legacy_cache_size)
831                 l2size = this_cpu->legacy_cache_size(c, l2size);
832
833         /* Allow user to override all this if necessary. */
834         if (cachesize_override != -1)
835                 l2size = cachesize_override;
836
837         if (l2size == 0)
838                 return;         /* Again, no L2 cache is possible */
839 #endif
840
841         c->x86_cache_size = l2size;
842 }
843
844 u16 __read_mostly tlb_lli_4k[NR_INFO];
845 u16 __read_mostly tlb_lli_2m[NR_INFO];
846 u16 __read_mostly tlb_lli_4m[NR_INFO];
847 u16 __read_mostly tlb_lld_4k[NR_INFO];
848 u16 __read_mostly tlb_lld_2m[NR_INFO];
849 u16 __read_mostly tlb_lld_4m[NR_INFO];
850 u16 __read_mostly tlb_lld_1g[NR_INFO];
851
852 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
853 {
854         if (this_cpu->c_detect_tlb)
855                 this_cpu->c_detect_tlb(c);
856
857         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
858                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
859                 tlb_lli_4m[ENTRIES]);
860
861         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
862                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
863                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
864 }
865
866 int detect_ht_early(struct cpuinfo_x86 *c)
867 {
868 #ifdef CONFIG_SMP
869         u32 eax, ebx, ecx, edx;
870
871         if (!cpu_has(c, X86_FEATURE_HT))
872                 return -1;
873
874         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
875                 return -1;
876
877         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
878                 return -1;
879
880         cpuid(1, &eax, &ebx, &ecx, &edx);
881
882         smp_num_siblings = (ebx & 0xff0000) >> 16;
883         if (smp_num_siblings == 1)
884                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
885 #endif
886         return 0;
887 }
888
889 void detect_ht(struct cpuinfo_x86 *c)
890 {
891 #ifdef CONFIG_SMP
892         int index_msb, core_bits;
893
894         if (detect_ht_early(c) < 0)
895                 return;
896
897         index_msb = get_count_order(smp_num_siblings);
898         c->topo.pkg_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb);
899
900         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
901
902         index_msb = get_count_order(smp_num_siblings);
903
904         core_bits = get_count_order(c->x86_max_cores);
905
906         c->topo.core_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb) &
907                 ((1 << core_bits) - 1);
908 #endif
909 }
910
911 static void get_cpu_vendor(struct cpuinfo_x86 *c)
912 {
913         char *v = c->x86_vendor_id;
914         int i;
915
916         for (i = 0; i < X86_VENDOR_NUM; i++) {
917                 if (!cpu_devs[i])
918                         break;
919
920                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
921                     (cpu_devs[i]->c_ident[1] &&
922                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
923
924                         this_cpu = cpu_devs[i];
925                         c->x86_vendor = this_cpu->c_x86_vendor;
926                         return;
927                 }
928         }
929
930         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
931                     "CPU: Your system may be unstable.\n", v);
932
933         c->x86_vendor = X86_VENDOR_UNKNOWN;
934         this_cpu = &default_cpu;
935 }
936
937 void cpu_detect(struct cpuinfo_x86 *c)
938 {
939         /* Get vendor name */
940         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
941               (unsigned int *)&c->x86_vendor_id[0],
942               (unsigned int *)&c->x86_vendor_id[8],
943               (unsigned int *)&c->x86_vendor_id[4]);
944
945         c->x86 = 4;
946         /* Intel-defined flags: level 0x00000001 */
947         if (c->cpuid_level >= 0x00000001) {
948                 u32 junk, tfms, cap0, misc;
949
950                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
951                 c->x86          = x86_family(tfms);
952                 c->x86_model    = x86_model(tfms);
953                 c->x86_stepping = x86_stepping(tfms);
954
955                 if (cap0 & (1<<19)) {
956                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
957                         c->x86_cache_alignment = c->x86_clflush_size;
958                 }
959         }
960 }
961
962 static void apply_forced_caps(struct cpuinfo_x86 *c)
963 {
964         int i;
965
966         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
967                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
968                 c->x86_capability[i] |= cpu_caps_set[i];
969         }
970 }
971
972 static void init_speculation_control(struct cpuinfo_x86 *c)
973 {
974         /*
975          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
976          * and they also have a different bit for STIBP support. Also,
977          * a hypervisor might have set the individual AMD bits even on
978          * Intel CPUs, for finer-grained selection of what's available.
979          */
980         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
981                 set_cpu_cap(c, X86_FEATURE_IBRS);
982                 set_cpu_cap(c, X86_FEATURE_IBPB);
983                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
984         }
985
986         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
987                 set_cpu_cap(c, X86_FEATURE_STIBP);
988
989         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
990             cpu_has(c, X86_FEATURE_VIRT_SSBD))
991                 set_cpu_cap(c, X86_FEATURE_SSBD);
992
993         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
994                 set_cpu_cap(c, X86_FEATURE_IBRS);
995                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
996         }
997
998         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
999                 set_cpu_cap(c, X86_FEATURE_IBPB);
1000
1001         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1002                 set_cpu_cap(c, X86_FEATURE_STIBP);
1003                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1004         }
1005
1006         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1007                 set_cpu_cap(c, X86_FEATURE_SSBD);
1008                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1009                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1010         }
1011 }
1012
1013 void get_cpu_cap(struct cpuinfo_x86 *c)
1014 {
1015         u32 eax, ebx, ecx, edx;
1016
1017         /* Intel-defined flags: level 0x00000001 */
1018         if (c->cpuid_level >= 0x00000001) {
1019                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1020
1021                 c->x86_capability[CPUID_1_ECX] = ecx;
1022                 c->x86_capability[CPUID_1_EDX] = edx;
1023         }
1024
1025         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1026         if (c->cpuid_level >= 0x00000006)
1027                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1028
1029         /* Additional Intel-defined flags: level 0x00000007 */
1030         if (c->cpuid_level >= 0x00000007) {
1031                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1032                 c->x86_capability[CPUID_7_0_EBX] = ebx;
1033                 c->x86_capability[CPUID_7_ECX] = ecx;
1034                 c->x86_capability[CPUID_7_EDX] = edx;
1035
1036                 /* Check valid sub-leaf index before accessing it */
1037                 if (eax >= 1) {
1038                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1039                         c->x86_capability[CPUID_7_1_EAX] = eax;
1040                 }
1041         }
1042
1043         /* Extended state features: level 0x0000000d */
1044         if (c->cpuid_level >= 0x0000000d) {
1045                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1046
1047                 c->x86_capability[CPUID_D_1_EAX] = eax;
1048         }
1049
1050         /* AMD-defined flags: level 0x80000001 */
1051         eax = cpuid_eax(0x80000000);
1052         c->extended_cpuid_level = eax;
1053
1054         if ((eax & 0xffff0000) == 0x80000000) {
1055                 if (eax >= 0x80000001) {
1056                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1057
1058                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1059                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
1060                 }
1061         }
1062
1063         if (c->extended_cpuid_level >= 0x80000007) {
1064                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1065
1066                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1067                 c->x86_power = edx;
1068         }
1069
1070         if (c->extended_cpuid_level >= 0x80000008) {
1071                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1072                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1073         }
1074
1075         if (c->extended_cpuid_level >= 0x8000000a)
1076                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1077
1078         if (c->extended_cpuid_level >= 0x8000001f)
1079                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1080
1081         if (c->extended_cpuid_level >= 0x80000021)
1082                 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1083
1084         init_scattered_cpuid_features(c);
1085         init_speculation_control(c);
1086
1087         /*
1088          * Clear/Set all flags overridden by options, after probe.
1089          * This needs to happen each time we re-probe, which may happen
1090          * several times during CPU initialization.
1091          */
1092         apply_forced_caps(c);
1093 }
1094
1095 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1096 {
1097         u32 eax, ebx, ecx, edx;
1098         bool vp_bits_from_cpuid = true;
1099
1100         if (!cpu_has(c, X86_FEATURE_CPUID) ||
1101             (c->extended_cpuid_level < 0x80000008))
1102                 vp_bits_from_cpuid = false;
1103
1104         if (vp_bits_from_cpuid) {
1105                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1106
1107                 c->x86_virt_bits = (eax >> 8) & 0xff;
1108                 c->x86_phys_bits = eax & 0xff;
1109         } else {
1110                 if (IS_ENABLED(CONFIG_X86_64)) {
1111                         c->x86_clflush_size = 64;
1112                         c->x86_phys_bits = 36;
1113                         c->x86_virt_bits = 48;
1114                 } else {
1115                         c->x86_clflush_size = 32;
1116                         c->x86_virt_bits = 32;
1117                         c->x86_phys_bits = 32;
1118
1119                         if (cpu_has(c, X86_FEATURE_PAE) ||
1120                             cpu_has(c, X86_FEATURE_PSE36))
1121                                 c->x86_phys_bits = 36;
1122                 }
1123         }
1124         c->x86_cache_bits = c->x86_phys_bits;
1125         c->x86_cache_alignment = c->x86_clflush_size;
1126 }
1127
1128 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1129 {
1130 #ifdef CONFIG_X86_32
1131         int i;
1132
1133         /*
1134          * First of all, decide if this is a 486 or higher
1135          * It's a 486 if we can modify the AC flag
1136          */
1137         if (flag_is_changeable_p(X86_EFLAGS_AC))
1138                 c->x86 = 4;
1139         else
1140                 c->x86 = 3;
1141
1142         for (i = 0; i < X86_VENDOR_NUM; i++)
1143                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1144                         c->x86_vendor_id[0] = 0;
1145                         cpu_devs[i]->c_identify(c);
1146                         if (c->x86_vendor_id[0]) {
1147                                 get_cpu_vendor(c);
1148                                 break;
1149                         }
1150                 }
1151 #endif
1152 }
1153
1154 #define NO_SPECULATION          BIT(0)
1155 #define NO_MELTDOWN             BIT(1)
1156 #define NO_SSB                  BIT(2)
1157 #define NO_L1TF                 BIT(3)
1158 #define NO_MDS                  BIT(4)
1159 #define MSBDS_ONLY              BIT(5)
1160 #define NO_SWAPGS               BIT(6)
1161 #define NO_ITLB_MULTIHIT        BIT(7)
1162 #define NO_SPECTRE_V2           BIT(8)
1163 #define NO_MMIO                 BIT(9)
1164 #define NO_EIBRS_PBRSB          BIT(10)
1165
1166 #define VULNWL(vendor, family, model, whitelist)        \
1167         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1168
1169 #define VULNWL_INTEL(model, whitelist)          \
1170         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1171
1172 #define VULNWL_AMD(family, whitelist)           \
1173         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1174
1175 #define VULNWL_HYGON(family, whitelist)         \
1176         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1177
1178 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1179         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1180         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1181         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1182         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1183         VULNWL(VORTEX,  5, X86_MODEL_ANY,       NO_SPECULATION),
1184         VULNWL(VORTEX,  6, X86_MODEL_ANY,       NO_SPECULATION),
1185
1186         /* Intel Family 6 */
1187         VULNWL_INTEL(TIGERLAKE,                 NO_MMIO),
1188         VULNWL_INTEL(TIGERLAKE_L,               NO_MMIO),
1189         VULNWL_INTEL(ALDERLAKE,                 NO_MMIO),
1190         VULNWL_INTEL(ALDERLAKE_L,               NO_MMIO),
1191
1192         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1193         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1194         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1195         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1196         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1197
1198         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1199         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1200         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1201         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1202         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1203         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1204
1205         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1206
1207         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1208         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1209
1210         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1211         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1212         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1213
1214         /*
1215          * Technically, swapgs isn't serializing on AMD (despite it previously
1216          * being documented as such in the APM).  But according to AMD, %gs is
1217          * updated non-speculatively, and the issuing of %gs-relative memory
1218          * operands will be blocked until the %gs update completes, which is
1219          * good enough for our purposes.
1220          */
1221
1222         VULNWL_INTEL(ATOM_TREMONT,              NO_EIBRS_PBRSB),
1223         VULNWL_INTEL(ATOM_TREMONT_L,            NO_EIBRS_PBRSB),
1224         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1225
1226         /* AMD Family 0xf - 0x12 */
1227         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1228         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1229         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1230         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1231
1232         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1233         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1234         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1235
1236         /* Zhaoxin Family 7 */
1237         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1238         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1239         {}
1240 };
1241
1242 #define VULNBL(vendor, family, model, blacklist)        \
1243         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1244
1245 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1246         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1247                                             INTEL_FAM6_##model, steppings, \
1248                                             X86_FEATURE_ANY, issues)
1249
1250 #define VULNBL_AMD(family, blacklist)           \
1251         VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1252
1253 #define VULNBL_HYGON(family, blacklist)         \
1254         VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1255
1256 #define SRBDS           BIT(0)
1257 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1258 #define MMIO            BIT(1)
1259 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1260 #define MMIO_SBDS       BIT(2)
1261 /* CPU is affected by RETbleed, speculating where you would not expect it */
1262 #define RETBLEED        BIT(3)
1263 /* CPU is affected by SMT (cross-thread) return predictions */
1264 #define SMT_RSB         BIT(4)
1265 /* CPU is affected by SRSO */
1266 #define SRSO            BIT(5)
1267 /* CPU is affected by GDS */
1268 #define GDS             BIT(6)
1269
1270 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1271         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1272         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1273         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1274         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1275         VULNBL_INTEL_STEPPINGS(HASWELL_X,       X86_STEPPING_ANY,               MMIO),
1276         VULNBL_INTEL_STEPPINGS(BROADWELL_D,     X86_STEPPING_ANY,               MMIO),
1277         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1278         VULNBL_INTEL_STEPPINGS(BROADWELL_X,     X86_STEPPING_ANY,               MMIO),
1279         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1280         VULNBL_INTEL_STEPPINGS(SKYLAKE_X,       X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1281         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1282         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1283         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1284         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1285         VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,    X86_STEPPING_ANY,               RETBLEED),
1286         VULNBL_INTEL_STEPPINGS(ICELAKE_L,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1287         VULNBL_INTEL_STEPPINGS(ICELAKE_D,       X86_STEPPING_ANY,               MMIO | GDS),
1288         VULNBL_INTEL_STEPPINGS(ICELAKE_X,       X86_STEPPING_ANY,               MMIO | GDS),
1289         VULNBL_INTEL_STEPPINGS(COMETLAKE,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1290         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPINGS(0x0, 0x0),        MMIO | RETBLEED),
1291         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1292         VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,     X86_STEPPING_ANY,               GDS),
1293         VULNBL_INTEL_STEPPINGS(TIGERLAKE,       X86_STEPPING_ANY,               GDS),
1294         VULNBL_INTEL_STEPPINGS(LAKEFIELD,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1295         VULNBL_INTEL_STEPPINGS(ROCKETLAKE,      X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1296         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,    X86_STEPPING_ANY,               MMIO | MMIO_SBDS),
1297         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,  X86_STEPPING_ANY,               MMIO),
1298         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,  X86_STEPPING_ANY,               MMIO | MMIO_SBDS),
1299
1300         VULNBL_AMD(0x15, RETBLEED),
1301         VULNBL_AMD(0x16, RETBLEED),
1302         VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1303         VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1304         VULNBL_AMD(0x19, SRSO),
1305         {}
1306 };
1307
1308 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1309 {
1310         const struct x86_cpu_id *m = x86_match_cpu(table);
1311
1312         return m && !!(m->driver_data & which);
1313 }
1314
1315 u64 x86_read_arch_cap_msr(void)
1316 {
1317         u64 ia32_cap = 0;
1318
1319         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1320                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1321
1322         return ia32_cap;
1323 }
1324
1325 static bool arch_cap_mmio_immune(u64 ia32_cap)
1326 {
1327         return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1328                 ia32_cap & ARCH_CAP_PSDP_NO &&
1329                 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1330 }
1331
1332 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1333 {
1334         u64 ia32_cap = x86_read_arch_cap_msr();
1335
1336         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1337         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1338             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1339                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1340
1341         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1342                 return;
1343
1344         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1345
1346         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1347                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1348
1349         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1350             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1351            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1352                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1353
1354         /*
1355          * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1356          * flag and protect from vendor-specific bugs via the whitelist.
1357          */
1358         if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1359                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1360                 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1361                     !(ia32_cap & ARCH_CAP_PBRSB_NO))
1362                         setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1363         }
1364
1365         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1366             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1367                 setup_force_cpu_bug(X86_BUG_MDS);
1368                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1369                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1370         }
1371
1372         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1373                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1374
1375         /*
1376          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1377          *      - TSX is supported or
1378          *      - TSX_CTRL is present
1379          *
1380          * TSX_CTRL check is needed for cases when TSX could be disabled before
1381          * the kernel boot e.g. kexec.
1382          * TSX_CTRL check alone is not sufficient for cases when the microcode
1383          * update is not present or running as guest that don't get TSX_CTRL.
1384          */
1385         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1386             (cpu_has(c, X86_FEATURE_RTM) ||
1387              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1388                 setup_force_cpu_bug(X86_BUG_TAA);
1389
1390         /*
1391          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1392          * in the vulnerability blacklist.
1393          *
1394          * Some of the implications and mitigation of Shared Buffers Data
1395          * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1396          * SRBDS.
1397          */
1398         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1399              cpu_has(c, X86_FEATURE_RDSEED)) &&
1400             cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1401                     setup_force_cpu_bug(X86_BUG_SRBDS);
1402
1403         /*
1404          * Processor MMIO Stale Data bug enumeration
1405          *
1406          * Affected CPU list is generally enough to enumerate the vulnerability,
1407          * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1408          * not want the guest to enumerate the bug.
1409          *
1410          * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1411          * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1412          */
1413         if (!arch_cap_mmio_immune(ia32_cap)) {
1414                 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1415                         setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1416                 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1417                         setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1418         }
1419
1420         if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1421                 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1422                         setup_force_cpu_bug(X86_BUG_RETBLEED);
1423         }
1424
1425         if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1426                 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1427
1428         if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1429                 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1430                         setup_force_cpu_bug(X86_BUG_SRSO);
1431         }
1432
1433         /*
1434          * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1435          * an affected processor, the VMM may have disabled the use of GATHER by
1436          * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1437          * which means that AVX will be disabled.
1438          */
1439         if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1440             boot_cpu_has(X86_FEATURE_AVX))
1441                 setup_force_cpu_bug(X86_BUG_GDS);
1442
1443         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1444                 return;
1445
1446         /* Rogue Data Cache Load? No! */
1447         if (ia32_cap & ARCH_CAP_RDCL_NO)
1448                 return;
1449
1450         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1451
1452         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1453                 return;
1454
1455         setup_force_cpu_bug(X86_BUG_L1TF);
1456 }
1457
1458 /*
1459  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1460  * unfortunately, that's not true in practice because of early VIA
1461  * chips and (more importantly) broken virtualizers that are not easy
1462  * to detect. In the latter case it doesn't even *fail* reliably, so
1463  * probing for it doesn't even work. Disable it completely on 32-bit
1464  * unless we can find a reliable way to detect all the broken cases.
1465  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1466  */
1467 static void detect_nopl(void)
1468 {
1469 #ifdef CONFIG_X86_32
1470         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1471 #else
1472         setup_force_cpu_cap(X86_FEATURE_NOPL);
1473 #endif
1474 }
1475
1476 /*
1477  * We parse cpu parameters early because fpu__init_system() is executed
1478  * before parse_early_param().
1479  */
1480 static void __init cpu_parse_early_param(void)
1481 {
1482         char arg[128];
1483         char *argptr = arg, *opt;
1484         int arglen, taint = 0;
1485
1486 #ifdef CONFIG_X86_32
1487         if (cmdline_find_option_bool(boot_command_line, "no387"))
1488 #ifdef CONFIG_MATH_EMULATION
1489                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1490 #else
1491                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1492 #endif
1493
1494         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1495                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1496 #endif
1497
1498         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1499                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1500
1501         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1502                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1503
1504         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1505                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1506
1507         if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1508                 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1509
1510         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1511         if (arglen <= 0)
1512                 return;
1513
1514         pr_info("Clearing CPUID bits:");
1515
1516         while (argptr) {
1517                 bool found __maybe_unused = false;
1518                 unsigned int bit;
1519
1520                 opt = strsep(&argptr, ",");
1521
1522                 /*
1523                  * Handle naked numbers first for feature flags which don't
1524                  * have names.
1525                  */
1526                 if (!kstrtouint(opt, 10, &bit)) {
1527                         if (bit < NCAPINTS * 32) {
1528
1529                                 /* empty-string, i.e., ""-defined feature flags */
1530                                 if (!x86_cap_flags[bit])
1531                                         pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1532                                 else
1533                                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1534
1535                                 setup_clear_cpu_cap(bit);
1536                                 taint++;
1537                         }
1538                         /*
1539                          * The assumption is that there are no feature names with only
1540                          * numbers in the name thus go to the next argument.
1541                          */
1542                         continue;
1543                 }
1544
1545                 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1546                         if (!x86_cap_flag(bit))
1547                                 continue;
1548
1549                         if (strcmp(x86_cap_flag(bit), opt))
1550                                 continue;
1551
1552                         pr_cont(" %s", opt);
1553                         setup_clear_cpu_cap(bit);
1554                         taint++;
1555                         found = true;
1556                         break;
1557                 }
1558
1559                 if (!found)
1560                         pr_cont(" (unknown: %s)", opt);
1561         }
1562         pr_cont("\n");
1563
1564         if (taint)
1565                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1566 }
1567
1568 /*
1569  * Do minimum CPU detection early.
1570  * Fields really needed: vendor, cpuid_level, family, model, mask,
1571  * cache alignment.
1572  * The others are not touched to avoid unwanted side effects.
1573  *
1574  * WARNING: this function is only called on the boot CPU.  Don't add code
1575  * here that is supposed to run on all CPUs.
1576  */
1577 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1578 {
1579         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1580         c->extended_cpuid_level = 0;
1581
1582         if (!have_cpuid_p())
1583                 identify_cpu_without_cpuid(c);
1584
1585         /* cyrix could have cpuid enabled via c_identify()*/
1586         if (have_cpuid_p()) {
1587                 cpu_detect(c);
1588                 get_cpu_vendor(c);
1589                 get_cpu_cap(c);
1590                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1591                 cpu_parse_early_param();
1592
1593                 if (this_cpu->c_early_init)
1594                         this_cpu->c_early_init(c);
1595
1596                 c->cpu_index = 0;
1597                 filter_cpuid_features(c, false);
1598
1599                 if (this_cpu->c_bsp_init)
1600                         this_cpu->c_bsp_init(c);
1601         } else {
1602                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1603         }
1604
1605         get_cpu_address_sizes(c);
1606
1607         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1608
1609         cpu_set_bug_bits(c);
1610
1611         sld_setup(c);
1612
1613 #ifdef CONFIG_X86_32
1614         /*
1615          * Regardless of whether PCID is enumerated, the SDM says
1616          * that it can't be enabled in 32-bit mode.
1617          */
1618         setup_clear_cpu_cap(X86_FEATURE_PCID);
1619 #endif
1620
1621         /*
1622          * Later in the boot process pgtable_l5_enabled() relies on
1623          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1624          * enabled by this point we need to clear the feature bit to avoid
1625          * false-positives at the later stage.
1626          *
1627          * pgtable_l5_enabled() can be false here for several reasons:
1628          *  - 5-level paging is disabled compile-time;
1629          *  - it's 32-bit kernel;
1630          *  - machine doesn't support 5-level paging;
1631          *  - user specified 'no5lvl' in kernel command line.
1632          */
1633         if (!pgtable_l5_enabled())
1634                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1635
1636         detect_nopl();
1637 }
1638
1639 void __init early_cpu_init(void)
1640 {
1641         const struct cpu_dev *const *cdev;
1642         int count = 0;
1643
1644 #ifdef CONFIG_PROCESSOR_SELECT
1645         pr_info("KERNEL supported cpus:\n");
1646 #endif
1647
1648         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1649                 const struct cpu_dev *cpudev = *cdev;
1650
1651                 if (count >= X86_VENDOR_NUM)
1652                         break;
1653                 cpu_devs[count] = cpudev;
1654                 count++;
1655
1656 #ifdef CONFIG_PROCESSOR_SELECT
1657                 {
1658                         unsigned int j;
1659
1660                         for (j = 0; j < 2; j++) {
1661                                 if (!cpudev->c_ident[j])
1662                                         continue;
1663                                 pr_info("  %s %s\n", cpudev->c_vendor,
1664                                         cpudev->c_ident[j]);
1665                         }
1666                 }
1667 #endif
1668         }
1669         early_identify_cpu(&boot_cpu_data);
1670 }
1671
1672 static bool detect_null_seg_behavior(void)
1673 {
1674         /*
1675          * Empirically, writing zero to a segment selector on AMD does
1676          * not clear the base, whereas writing zero to a segment
1677          * selector on Intel does clear the base.  Intel's behavior
1678          * allows slightly faster context switches in the common case
1679          * where GS is unused by the prev and next threads.
1680          *
1681          * Since neither vendor documents this anywhere that I can see,
1682          * detect it directly instead of hard-coding the choice by
1683          * vendor.
1684          *
1685          * I've designated AMD's behavior as the "bug" because it's
1686          * counterintuitive and less friendly.
1687          */
1688
1689         unsigned long old_base, tmp;
1690         rdmsrl(MSR_FS_BASE, old_base);
1691         wrmsrl(MSR_FS_BASE, 1);
1692         loadsegment(fs, 0);
1693         rdmsrl(MSR_FS_BASE, tmp);
1694         wrmsrl(MSR_FS_BASE, old_base);
1695         return tmp == 0;
1696 }
1697
1698 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1699 {
1700         /* BUG_NULL_SEG is only relevant with 64bit userspace */
1701         if (!IS_ENABLED(CONFIG_X86_64))
1702                 return;
1703
1704         if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1705                 return;
1706
1707         /*
1708          * CPUID bit above wasn't set. If this kernel is still running
1709          * as a HV guest, then the HV has decided not to advertize
1710          * that CPUID bit for whatever reason.  For example, one
1711          * member of the migration pool might be vulnerable.  Which
1712          * means, the bug is present: set the BUG flag and return.
1713          */
1714         if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1715                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1716                 return;
1717         }
1718
1719         /*
1720          * Zen2 CPUs also have this behaviour, but no CPUID bit.
1721          * 0x18 is the respective family for Hygon.
1722          */
1723         if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1724             detect_null_seg_behavior())
1725                 return;
1726
1727         /* All the remaining ones are affected */
1728         set_cpu_bug(c, X86_BUG_NULL_SEG);
1729 }
1730
1731 static void generic_identify(struct cpuinfo_x86 *c)
1732 {
1733         c->extended_cpuid_level = 0;
1734
1735         if (!have_cpuid_p())
1736                 identify_cpu_without_cpuid(c);
1737
1738         /* cyrix could have cpuid enabled via c_identify()*/
1739         if (!have_cpuid_p())
1740                 return;
1741
1742         cpu_detect(c);
1743
1744         get_cpu_vendor(c);
1745
1746         get_cpu_cap(c);
1747
1748         get_cpu_address_sizes(c);
1749
1750         if (c->cpuid_level >= 0x00000001) {
1751                 c->topo.initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1752 #ifdef CONFIG_X86_32
1753 # ifdef CONFIG_SMP
1754                 c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1755 # else
1756                 c->topo.apicid = c->topo.initial_apicid;
1757 # endif
1758 #endif
1759                 c->topo.pkg_id = c->topo.initial_apicid;
1760         }
1761
1762         get_model_name(c); /* Default name */
1763
1764         /*
1765          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1766          * systems that run Linux at CPL > 0 may or may not have the
1767          * issue, but, even if they have the issue, there's absolutely
1768          * nothing we can do about it because we can't use the real IRET
1769          * instruction.
1770          *
1771          * NB: For the time being, only 32-bit kernels support
1772          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1773          * whether to apply espfix using paravirt hooks.  If any
1774          * non-paravirt system ever shows up that does *not* have the
1775          * ESPFIX issue, we can change this.
1776          */
1777 #ifdef CONFIG_X86_32
1778         set_cpu_bug(c, X86_BUG_ESPFIX);
1779 #endif
1780 }
1781
1782 /*
1783  * Validate that ACPI/mptables have the same information about the
1784  * effective APIC id and update the package map.
1785  */
1786 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1787 {
1788 #ifdef CONFIG_SMP
1789         unsigned int cpu = smp_processor_id();
1790         u32 apicid;
1791
1792         apicid = apic->cpu_present_to_apicid(cpu);
1793
1794         if (apicid != c->topo.apicid) {
1795                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1796                        cpu, apicid, c->topo.initial_apicid);
1797         }
1798         BUG_ON(topology_update_package_map(c->topo.pkg_id, cpu));
1799         BUG_ON(topology_update_die_map(c->topo.die_id, cpu));
1800 #else
1801         c->topo.logical_pkg_id = 0;
1802 #endif
1803 }
1804
1805 /*
1806  * This does the hard work of actually picking apart the CPU stuff...
1807  */
1808 static void identify_cpu(struct cpuinfo_x86 *c)
1809 {
1810         int i;
1811
1812         c->loops_per_jiffy = loops_per_jiffy;
1813         c->x86_cache_size = 0;
1814         c->x86_vendor = X86_VENDOR_UNKNOWN;
1815         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1816         c->x86_vendor_id[0] = '\0'; /* Unset */
1817         c->x86_model_id[0] = '\0';  /* Unset */
1818         c->x86_max_cores = 1;
1819         c->x86_coreid_bits = 0;
1820         c->topo.cu_id = 0xff;
1821         c->topo.llc_id = BAD_APICID;
1822         c->topo.l2c_id = BAD_APICID;
1823 #ifdef CONFIG_X86_64
1824         c->x86_clflush_size = 64;
1825         c->x86_phys_bits = 36;
1826         c->x86_virt_bits = 48;
1827 #else
1828         c->cpuid_level = -1;    /* CPUID not detected */
1829         c->x86_clflush_size = 32;
1830         c->x86_phys_bits = 32;
1831         c->x86_virt_bits = 32;
1832 #endif
1833         c->x86_cache_alignment = c->x86_clflush_size;
1834         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1835 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1836         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1837 #endif
1838
1839         generic_identify(c);
1840
1841         if (this_cpu->c_identify)
1842                 this_cpu->c_identify(c);
1843
1844         /* Clear/Set all flags overridden by options, after probe */
1845         apply_forced_caps(c);
1846
1847 #ifdef CONFIG_X86_64
1848         c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1849 #endif
1850
1851
1852         /*
1853          * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1854          * Hygon will clear it in ->c_init() below.
1855          */
1856         set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1857
1858         /*
1859          * Vendor-specific initialization.  In this section we
1860          * canonicalize the feature flags, meaning if there are
1861          * features a certain CPU supports which CPUID doesn't
1862          * tell us, CPUID claiming incorrect flags, or other bugs,
1863          * we handle them here.
1864          *
1865          * At the end of this section, c->x86_capability better
1866          * indicate the features this CPU genuinely supports!
1867          */
1868         if (this_cpu->c_init)
1869                 this_cpu->c_init(c);
1870
1871         /* Disable the PN if appropriate */
1872         squash_the_stupid_serial_number(c);
1873
1874         /* Set up SMEP/SMAP/UMIP */
1875         setup_smep(c);
1876         setup_smap(c);
1877         setup_umip(c);
1878
1879         /* Enable FSGSBASE instructions if available. */
1880         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1881                 cr4_set_bits(X86_CR4_FSGSBASE);
1882                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1883         }
1884
1885         /*
1886          * The vendor-specific functions might have changed features.
1887          * Now we do "generic changes."
1888          */
1889
1890         /* Filter out anything that depends on CPUID levels we don't have */
1891         filter_cpuid_features(c, true);
1892
1893         /* If the model name is still unset, do table lookup. */
1894         if (!c->x86_model_id[0]) {
1895                 const char *p;
1896                 p = table_lookup_model(c);
1897                 if (p)
1898                         strcpy(c->x86_model_id, p);
1899                 else
1900                         /* Last resort... */
1901                         sprintf(c->x86_model_id, "%02x/%02x",
1902                                 c->x86, c->x86_model);
1903         }
1904
1905 #ifdef CONFIG_X86_64
1906         detect_ht(c);
1907 #endif
1908
1909         x86_init_rdrand(c);
1910         setup_pku(c);
1911         setup_cet(c);
1912
1913         /*
1914          * Clear/Set all flags overridden by options, need do it
1915          * before following smp all cpus cap AND.
1916          */
1917         apply_forced_caps(c);
1918
1919         /*
1920          * On SMP, boot_cpu_data holds the common feature set between
1921          * all CPUs; so make sure that we indicate which features are
1922          * common between the CPUs.  The first time this routine gets
1923          * executed, c == &boot_cpu_data.
1924          */
1925         if (c != &boot_cpu_data) {
1926                 /* AND the already accumulated flags with these */
1927                 for (i = 0; i < NCAPINTS; i++)
1928                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1929
1930                 /* OR, i.e. replicate the bug flags */
1931                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1932                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1933         }
1934
1935         ppin_init(c);
1936
1937         /* Init Machine Check Exception if available. */
1938         mcheck_cpu_init(c);
1939
1940         select_idle_routine(c);
1941
1942 #ifdef CONFIG_NUMA
1943         numa_add_cpu(smp_processor_id());
1944 #endif
1945 }
1946
1947 /*
1948  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1949  * on 32-bit kernels:
1950  */
1951 #ifdef CONFIG_X86_32
1952 void enable_sep_cpu(void)
1953 {
1954         struct tss_struct *tss;
1955         int cpu;
1956
1957         if (!boot_cpu_has(X86_FEATURE_SEP))
1958                 return;
1959
1960         cpu = get_cpu();
1961         tss = &per_cpu(cpu_tss_rw, cpu);
1962
1963         /*
1964          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1965          * see the big comment in struct x86_hw_tss's definition.
1966          */
1967
1968         tss->x86_tss.ss1 = __KERNEL_CS;
1969         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1970         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1971         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1972
1973         put_cpu();
1974 }
1975 #endif
1976
1977 static __init void identify_boot_cpu(void)
1978 {
1979         identify_cpu(&boot_cpu_data);
1980         if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1981                 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1982 #ifdef CONFIG_X86_32
1983         enable_sep_cpu();
1984 #endif
1985         cpu_detect_tlb(&boot_cpu_data);
1986         setup_cr_pinning();
1987
1988         tsx_init();
1989         lkgs_init();
1990 }
1991
1992 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1993 {
1994         BUG_ON(c == &boot_cpu_data);
1995         identify_cpu(c);
1996 #ifdef CONFIG_X86_32
1997         enable_sep_cpu();
1998 #endif
1999         validate_apic_and_package_id(c);
2000         x86_spec_ctrl_setup_ap();
2001         update_srbds_msr();
2002         if (boot_cpu_has_bug(X86_BUG_GDS))
2003                 update_gds_msr();
2004
2005         tsx_ap_init();
2006 }
2007
2008 void print_cpu_info(struct cpuinfo_x86 *c)
2009 {
2010         const char *vendor = NULL;
2011
2012         if (c->x86_vendor < X86_VENDOR_NUM) {
2013                 vendor = this_cpu->c_vendor;
2014         } else {
2015                 if (c->cpuid_level >= 0)
2016                         vendor = c->x86_vendor_id;
2017         }
2018
2019         if (vendor && !strstr(c->x86_model_id, vendor))
2020                 pr_cont("%s ", vendor);
2021
2022         if (c->x86_model_id[0])
2023                 pr_cont("%s", c->x86_model_id);
2024         else
2025                 pr_cont("%d86", c->x86);
2026
2027         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2028
2029         if (c->x86_stepping || c->cpuid_level >= 0)
2030                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2031         else
2032                 pr_cont(")\n");
2033 }
2034
2035 /*
2036  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
2037  * function prevents it from becoming an environment variable for init.
2038  */
2039 static __init int setup_clearcpuid(char *arg)
2040 {
2041         return 1;
2042 }
2043 __setup("clearcpuid=", setup_clearcpuid);
2044
2045 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2046         .current_task   = &init_task,
2047         .preempt_count  = INIT_PREEMPT_COUNT,
2048         .top_of_stack   = TOP_OF_INIT_STACK,
2049 };
2050 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2051
2052 #ifdef CONFIG_X86_64
2053 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2054                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2055 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2056
2057 static void wrmsrl_cstar(unsigned long val)
2058 {
2059         /*
2060          * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2061          * is so far ignored by the CPU, but raises a #VE trap in a TDX
2062          * guest. Avoid the pointless write on all Intel CPUs.
2063          */
2064         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2065                 wrmsrl(MSR_CSTAR, val);
2066 }
2067
2068 /* May not be marked __init: used by software suspend */
2069 void syscall_init(void)
2070 {
2071         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2072         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2073
2074         if (ia32_enabled()) {
2075                 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2076                 /*
2077                  * This only works on Intel CPUs.
2078                  * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2079                  * This does not cause SYSENTER to jump to the wrong location, because
2080                  * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2081                  */
2082                 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2083                 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2084                             (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2085                 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2086         } else {
2087                 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2088                 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2089                 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2090                 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2091         }
2092
2093         /*
2094          * Flags to clear on syscall; clear as much as possible
2095          * to minimize user space-kernel interference.
2096          */
2097         wrmsrl(MSR_SYSCALL_MASK,
2098                X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2099                X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2100                X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2101                X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2102                X86_EFLAGS_AC|X86_EFLAGS_ID);
2103 }
2104
2105 #else   /* CONFIG_X86_64 */
2106
2107 #ifdef CONFIG_STACKPROTECTOR
2108 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2109 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2110 #endif
2111
2112 #endif  /* CONFIG_X86_64 */
2113
2114 /*
2115  * Clear all 6 debug registers:
2116  */
2117 static void clear_all_debug_regs(void)
2118 {
2119         int i;
2120
2121         for (i = 0; i < 8; i++) {
2122                 /* Ignore db4, db5 */
2123                 if ((i == 4) || (i == 5))
2124                         continue;
2125
2126                 set_debugreg(0, i);
2127         }
2128 }
2129
2130 #ifdef CONFIG_KGDB
2131 /*
2132  * Restore debug regs if using kgdbwait and you have a kernel debugger
2133  * connection established.
2134  */
2135 static void dbg_restore_debug_regs(void)
2136 {
2137         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2138                 arch_kgdb_ops.correct_hw_break();
2139 }
2140 #else /* ! CONFIG_KGDB */
2141 #define dbg_restore_debug_regs()
2142 #endif /* ! CONFIG_KGDB */
2143
2144 static inline void setup_getcpu(int cpu)
2145 {
2146         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2147         struct desc_struct d = { };
2148
2149         if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2150                 wrmsr(MSR_TSC_AUX, cpudata, 0);
2151
2152         /* Store CPU and node number in limit. */
2153         d.limit0 = cpudata;
2154         d.limit1 = cpudata >> 16;
2155
2156         d.type = 5;             /* RO data, expand down, accessed */
2157         d.dpl = 3;              /* Visible to user code */
2158         d.s = 1;                /* Not a system segment */
2159         d.p = 1;                /* Present */
2160         d.d = 1;                /* 32-bit */
2161
2162         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2163 }
2164
2165 #ifdef CONFIG_X86_64
2166 static inline void tss_setup_ist(struct tss_struct *tss)
2167 {
2168         /* Set up the per-CPU TSS IST stacks */
2169         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2170         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2171         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2172         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2173         /* Only mapped when SEV-ES is active */
2174         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2175 }
2176 #else /* CONFIG_X86_64 */
2177 static inline void tss_setup_ist(struct tss_struct *tss) { }
2178 #endif /* !CONFIG_X86_64 */
2179
2180 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2181 {
2182         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2183
2184 #ifdef CONFIG_X86_IOPL_IOPERM
2185         tss->io_bitmap.prev_max = 0;
2186         tss->io_bitmap.prev_sequence = 0;
2187         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2188         /*
2189          * Invalidate the extra array entry past the end of the all
2190          * permission bitmap as required by the hardware.
2191          */
2192         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2193 #endif
2194 }
2195
2196 /*
2197  * Setup everything needed to handle exceptions from the IDT, including the IST
2198  * exceptions which use paranoid_entry().
2199  */
2200 void cpu_init_exception_handling(void)
2201 {
2202         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2203         int cpu = raw_smp_processor_id();
2204
2205         /* paranoid_entry() gets the CPU number from the GDT */
2206         setup_getcpu(cpu);
2207
2208         /* IST vectors need TSS to be set up. */
2209         tss_setup_ist(tss);
2210         tss_setup_io_bitmap(tss);
2211         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2212
2213         load_TR_desc();
2214
2215         /* GHCB needs to be setup to handle #VC. */
2216         setup_ghcb();
2217
2218         /* Finally load the IDT */
2219         load_current_idt();
2220 }
2221
2222 /*
2223  * cpu_init() initializes state that is per-CPU. Some data is already
2224  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2225  * reload it nevertheless, this function acts as a 'CPU state barrier',
2226  * nothing should get across.
2227  */
2228 void cpu_init(void)
2229 {
2230         struct task_struct *cur = current;
2231         int cpu = raw_smp_processor_id();
2232
2233 #ifdef CONFIG_NUMA
2234         if (this_cpu_read(numa_node) == 0 &&
2235             early_cpu_to_node(cpu) != NUMA_NO_NODE)
2236                 set_numa_node(early_cpu_to_node(cpu));
2237 #endif
2238         pr_debug("Initializing CPU#%d\n", cpu);
2239
2240         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2241             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2242                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2243
2244         if (IS_ENABLED(CONFIG_X86_64)) {
2245                 loadsegment(fs, 0);
2246                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2247                 syscall_init();
2248
2249                 wrmsrl(MSR_FS_BASE, 0);
2250                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2251                 barrier();
2252
2253                 x2apic_setup();
2254         }
2255
2256         mmgrab(&init_mm);
2257         cur->active_mm = &init_mm;
2258         BUG_ON(cur->mm);
2259         initialize_tlbstate_and_flush();
2260         enter_lazy_tlb(&init_mm, cur);
2261
2262         /*
2263          * sp0 points to the entry trampoline stack regardless of what task
2264          * is running.
2265          */
2266         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2267
2268         load_mm_ldt(&init_mm);
2269
2270         clear_all_debug_regs();
2271         dbg_restore_debug_regs();
2272
2273         doublefault_init_cpu_tss();
2274
2275         if (is_uv_system())
2276                 uv_cpu_init();
2277
2278         load_fixmap_gdt(cpu);
2279 }
2280
2281 #ifdef CONFIG_MICROCODE_LATE_LOADING
2282 /**
2283  * store_cpu_caps() - Store a snapshot of CPU capabilities
2284  * @curr_info: Pointer where to store it
2285  *
2286  * Returns: None
2287  */
2288 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2289 {
2290         /* Reload CPUID max function as it might've changed. */
2291         curr_info->cpuid_level = cpuid_eax(0);
2292
2293         /* Copy all capability leafs and pick up the synthetic ones. */
2294         memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2295                sizeof(curr_info->x86_capability));
2296
2297         /* Get the hardware CPUID leafs */
2298         get_cpu_cap(curr_info);
2299 }
2300
2301 /**
2302  * microcode_check() - Check if any CPU capabilities changed after an update.
2303  * @prev_info:  CPU capabilities stored before an update.
2304  *
2305  * The microcode loader calls this upon late microcode load to recheck features,
2306  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2307  *
2308  * Return: None
2309  */
2310 void microcode_check(struct cpuinfo_x86 *prev_info)
2311 {
2312         struct cpuinfo_x86 curr_info;
2313
2314         perf_check_microcode();
2315
2316         amd_check_microcode();
2317
2318         store_cpu_caps(&curr_info);
2319
2320         if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2321                     sizeof(prev_info->x86_capability)))
2322                 return;
2323
2324         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2325         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2326 }
2327 #endif
2328
2329 /*
2330  * Invoked from core CPU hotplug code after hotplug operations
2331  */
2332 void arch_smt_update(void)
2333 {
2334         /* Handle the speculative execution misfeatures */
2335         cpu_bugs_smt_update();
2336         /* Check whether IPI broadcasting can be enabled */
2337         apic_smt_update();
2338 }
2339
2340 void __init arch_cpu_finalize_init(void)
2341 {
2342         identify_boot_cpu();
2343
2344         /*
2345          * identify_boot_cpu() initialized SMT support information, let the
2346          * core code know.
2347          */
2348         cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings);
2349
2350         if (!IS_ENABLED(CONFIG_SMP)) {
2351                 pr_info("CPU: ");
2352                 print_cpu_info(&boot_cpu_data);
2353         }
2354
2355         cpu_select_mitigations();
2356
2357         arch_smt_update();
2358
2359         if (IS_ENABLED(CONFIG_X86_32)) {
2360                 /*
2361                  * Check whether this is a real i386 which is not longer
2362                  * supported and fixup the utsname.
2363                  */
2364                 if (boot_cpu_data.x86 < 4)
2365                         panic("Kernel requires i486+ for 'invlpg' and other features");
2366
2367                 init_utsname()->machine[1] =
2368                         '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2369         }
2370
2371         /*
2372          * Must be before alternatives because it might set or clear
2373          * feature bits.
2374          */
2375         fpu__init_system();
2376         fpu__init_cpu();
2377
2378         alternative_instructions();
2379
2380         if (IS_ENABLED(CONFIG_X86_64)) {
2381                 /*
2382                  * Make sure the first 2MB area is not mapped by huge pages
2383                  * There are typically fixed size MTRRs in there and overlapping
2384                  * MTRRs into large pages causes slow downs.
2385                  *
2386                  * Right now we don't do that with gbpages because there seems
2387                  * very little benefit for that case.
2388                  */
2389                 if (!direct_gbpages)
2390                         set_memory_4k((unsigned long)__va(0), 1);
2391         } else {
2392                 fpu__init_check_bugs();
2393         }
2394
2395         /*
2396          * This needs to be called before any devices perform DMA
2397          * operations that might use the SWIOTLB bounce buffers. It will
2398          * mark the bounce buffers as decrypted so that their usage will
2399          * not cause "plain-text" data to be decrypted when accessed. It
2400          * must be called after late_time_init() so that Hyper-V x86/x64
2401          * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2402          */
2403         mem_encrypt_init();
2404 }
This page took 0.172064 seconds and 4 git commands to generate.