1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/highmem.h>
12 #include <linux/vmalloc.h>
13 #include <linux/memory.h>
14 #include <linux/stop_machine.h>
15 #include <linux/slab.h>
16 #include <linux/kdebug.h>
17 #include <linux/kprobes.h>
18 #include <linux/mmu_context.h>
19 #include <linux/bsearch.h>
20 #include <linux/sync_core.h>
21 #include <asm/text-patching.h>
22 #include <asm/alternative.h>
23 #include <asm/sections.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
30 #include <asm/fixmap.h>
31 #include <asm/paravirt.h>
32 #include <asm/asm-prototypes.h>
34 int __read_mostly alternatives_patched;
36 EXPORT_SYMBOL_GPL(alternatives_patched);
38 #define MAX_PATCH_LEN (255-1)
43 #define DA_RETPOLINE 0x04
47 static unsigned int __initdata_or_module debug_alternative;
49 static int __init debug_alt(char *str)
51 if (str && *str == '=')
54 if (!str || kstrtouint(str, 0, &debug_alternative))
55 debug_alternative = DA_ALL;
59 __setup("debug-alternative", debug_alt);
61 static int noreplace_smp;
63 static int __init setup_noreplace_smp(char *str)
68 __setup("noreplace-smp", setup_noreplace_smp);
70 #define DPRINTK(type, fmt, args...) \
72 if (debug_alternative & DA_##type) \
73 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
76 #define DUMP_BYTES(type, buf, len, fmt, args...) \
78 if (unlikely(debug_alternative & DA_##type)) { \
84 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
85 for (j = 0; j < (len) - 1; j++) \
86 printk(KERN_CONT "%02hhx ", buf[j]); \
87 printk(KERN_CONT "%02hhx\n", buf[j]); \
91 static const unsigned char x86nops[] =
108 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
115 x86nops + 1 + 2 + 3 + 4,
116 x86nops + 1 + 2 + 3 + 4 + 5,
117 x86nops + 1 + 2 + 3 + 4 + 5 + 6,
118 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
120 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
121 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
122 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
127 * Fill the buffer with a single effective instruction of size @len.
129 * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
130 * for every single-byte NOP, try to generate the maximally available NOP of
131 * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
132 * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
133 * *jump* over instead of executing long and daft NOPs.
135 static void __init_or_module add_nop(u8 *instr, unsigned int len)
137 u8 *target = instr + len;
142 if (len <= ASM_NOP_MAX) {
143 memcpy(instr, x86_nops[len], len);
148 __text_gen_insn(instr, JMP8_INSN_OPCODE, instr, target, JMP8_INSN_SIZE);
149 instr += JMP8_INSN_SIZE;
151 __text_gen_insn(instr, JMP32_INSN_OPCODE, instr, target, JMP32_INSN_SIZE);
152 instr += JMP32_INSN_SIZE;
155 for (;instr < target; instr++)
156 *instr = INT3_INSN_OPCODE;
159 extern s32 __retpoline_sites[], __retpoline_sites_end[];
160 extern s32 __return_sites[], __return_sites_end[];
161 extern s32 __cfi_sites[], __cfi_sites_end[];
162 extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
163 extern s32 __smp_locks[], __smp_locks_end[];
164 void text_poke_early(void *addr, const void *opcode, size_t len);
167 * Matches NOP and NOPL, not any of the other possible NOPs.
169 static bool insn_is_nop(struct insn *insn)
171 /* Anything NOP, but no REP NOP */
172 if (insn->opcode.bytes[0] == 0x90 &&
173 (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
177 if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
180 /* TODO: more nops */
186 * Find the offset of the first non-NOP instruction starting at @offset
187 * but no further than @len.
189 static int skip_nops(u8 *instr, int offset, int len)
193 for (; offset < len; offset += insn.length) {
194 if (insn_decode_kernel(&insn, &instr[offset]))
197 if (!insn_is_nop(&insn))
205 * Optimize a sequence of NOPs, possibly preceded by an unconditional jump
206 * to the end of the NOP sequence into a single NOP.
208 static bool __init_or_module
209 __optimize_nops(u8 *instr, size_t len, struct insn *insn, int *next, int *prev, int *target)
211 int i = *next - insn->length;
213 switch (insn->opcode.bytes[0]) {
214 case JMP8_INSN_OPCODE:
215 case JMP32_INSN_OPCODE:
217 *target = *next + insn->immediate.value;
221 if (insn_is_nop(insn)) {
224 *next = skip_nops(instr, *next, len);
225 if (*target && *next == *target)
228 add_nop(instr + nop, *next - nop);
229 DUMP_BYTES(ALT, instr, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, *next);
238 * "noinline" to cause control flow change and thus invalidate I$ and
239 * cause refetch after modification.
241 static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
243 int prev, target = 0;
245 for (int next, i = 0; i < len; i = next) {
248 if (insn_decode_kernel(&insn, &instr[i]))
251 next = i + insn.length;
253 __optimize_nops(instr, len, &insn, &next, &prev, &target);
257 static void __init_or_module noinline optimize_nops_inplace(u8 *instr, size_t len)
261 local_irq_save(flags);
262 optimize_nops(instr, len);
264 local_irq_restore(flags);
268 * In this context, "source" is where the instructions are placed in the
269 * section .altinstr_replacement, for example during kernel build by the
271 * "Destination" is where the instructions are being patched in by this
274 * The source offset is:
276 * src_imm = target - src_next_ip (1)
278 * and the target offset is:
280 * dst_imm = target - dst_next_ip (2)
282 * so rework (1) as an expression for target like:
284 * target = src_imm + src_next_ip (1a)
286 * and substitute in (2) to get:
288 * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
290 * Now, since the instruction stream is 'identical' at src and dst (it
291 * is being copied after all) it can be stated that:
293 * src_next_ip = src + ip_offset
294 * dst_next_ip = dst + ip_offset (4)
296 * Substitute (4) in (3) and observe ip_offset being cancelled out to
299 * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
300 * = src_imm + src - dst + ip_offset - ip_offset
301 * = src_imm + src - dst (5)
303 * IOW, only the relative displacement of the code block matters.
306 #define apply_reloc_n(n_, p_, d_) \
308 s32 v = *(s##n_ *)(p_); \
310 BUG_ON((v >> 31) != (v >> (n_-1))); \
311 *(s##n_ *)(p_) = (s##n_)v; \
315 static __always_inline
316 void apply_reloc(int n, void *ptr, uintptr_t diff)
319 case 1: apply_reloc_n(8, ptr, diff); break;
320 case 2: apply_reloc_n(16, ptr, diff); break;
321 case 4: apply_reloc_n(32, ptr, diff); break;
326 static __always_inline
327 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
329 u8 *target = src + offset;
331 * If the target is inside the patched block, it's relative to the
332 * block itself and does not need relocation.
334 return (target < src || target > src + src_len);
337 static void __init_or_module noinline
338 apply_relocation(u8 *buf, size_t len, u8 *dest, u8 *src, size_t src_len)
340 int prev, target = 0;
342 for (int next, i = 0; i < len; i = next) {
345 if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
348 next = i + insn.length;
350 if (__optimize_nops(buf, len, &insn, &next, &prev, &target))
353 switch (insn.opcode.bytes[0]) {
355 if (insn.opcode.bytes[1] < 0x80 ||
356 insn.opcode.bytes[1] > 0x8f)
359 fallthrough; /* Jcc.d32 */
360 case 0x70 ... 0x7f: /* Jcc.d8 */
361 case JMP8_INSN_OPCODE:
362 case JMP32_INSN_OPCODE:
363 case CALL_INSN_OPCODE:
364 if (need_reloc(next + insn.immediate.value, src, src_len)) {
365 apply_reloc(insn.immediate.nbytes,
366 buf + i + insn_offset_immediate(&insn),
371 * Where possible, convert JMP.d32 into JMP.d8.
373 if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
374 s32 imm = insn.immediate.value;
376 imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
377 if ((imm >> 31) == (imm >> 7)) {
378 buf[i+0] = JMP8_INSN_OPCODE;
381 memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
387 if (insn_rip_relative(&insn)) {
388 if (need_reloc(next + insn.displacement.value, src, src_len)) {
389 apply_reloc(insn.displacement.nbytes,
390 buf + i + insn_offset_displacement(&insn),
397 /* Low-level backend functions usable from alternative code replacements. */
398 DEFINE_ASM_FUNC(nop_func, "", .entry.text);
399 EXPORT_SYMBOL_GPL(nop_func);
401 noinstr void BUG_func(void)
405 EXPORT_SYMBOL_GPL(BUG_func);
407 #define CALL_RIP_REL_OPCODE 0xff
408 #define CALL_RIP_REL_MODRM 0x15
411 * Rewrite the "call BUG_func" replacement to point to the target of the
412 * indirect pv_ops call "call *disp(%ip)".
414 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
416 void *target, *bug = &BUG_func;
419 if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
420 pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
424 if (a->instrlen != 6 ||
425 instr[0] != CALL_RIP_REL_OPCODE ||
426 instr[1] != CALL_RIP_REL_MODRM) {
427 pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
431 /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
432 disp = *(s32 *)(instr + 2);
434 /* ff 15 00 00 00 00 call *0x0(%rip) */
435 /* target address is stored at "next instruction + disp". */
436 target = *(void **)(instr + a->instrlen + disp);
438 /* ff 15 00 00 00 00 call *0x0 */
439 /* target address is stored at disp. */
440 target = *(void **)disp;
445 /* (BUG_func - .) + (target - BUG_func) := target - . */
446 *(s32 *)(insn_buff + 1) += target - bug;
448 if (target == &nop_func)
455 * Replace instructions with better alternatives for this CPU type. This runs
456 * before SMP is initialized to avoid SMP problems with self modifying code.
457 * This implies that asymmetric systems where APs have less capabilities than
458 * the boot processor are not handled. Tough. Make sure you disable such
461 * Marked "noinline" to cause control flow change and thus insn cache
462 * to refetch changed I$ lines.
464 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
465 struct alt_instr *end)
468 u8 *instr, *replacement;
469 u8 insn_buff[MAX_PATCH_LEN];
471 DPRINTK(ALT, "alt table %px, -> %px", start, end);
474 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
475 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
476 * During the process, KASAN becomes confused seeing partial LA57
477 * conversion and triggers a false-positive out-of-bound report.
479 * Disable KASAN until the patching is complete.
481 kasan_disable_current();
484 * The scan order should be from start to end. A later scanned
485 * alternative code can overwrite previously scanned alternative code.
486 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
489 * So be careful if you want to change the scan order to any other
492 for (a = start; a < end; a++) {
493 int insn_buff_sz = 0;
495 instr = (u8 *)&a->instr_offset + a->instr_offset;
496 replacement = (u8 *)&a->repl_offset + a->repl_offset;
497 BUG_ON(a->instrlen > sizeof(insn_buff));
498 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
502 * - feature is present
503 * - feature not present but ALT_FLAG_NOT is set to mean,
504 * patch if feature is *NOT* present.
506 if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
507 optimize_nops_inplace(instr, a->instrlen);
511 DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
514 instr, instr, a->instrlen,
515 replacement, a->replacementlen, a->flags);
517 memcpy(insn_buff, replacement, a->replacementlen);
518 insn_buff_sz = a->replacementlen;
520 if (a->flags & ALT_FLAG_DIRECT_CALL) {
521 insn_buff_sz = alt_replace_call(instr, insn_buff, a);
522 if (insn_buff_sz < 0)
526 for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
527 insn_buff[insn_buff_sz] = 0x90;
529 apply_relocation(insn_buff, a->instrlen, instr, replacement, a->replacementlen);
531 DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr);
532 DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
533 DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
535 text_poke_early(instr, insn_buff, insn_buff_sz);
538 kasan_enable_current();
541 static inline bool is_jcc32(struct insn *insn)
543 /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
544 return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
547 #if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL)
552 static int emit_indirect(int op, int reg, u8 *bytes)
558 case CALL_INSN_OPCODE:
559 modrm = 0x10; /* Reg = 2; CALL r/m */
562 case JMP32_INSN_OPCODE:
563 modrm = 0x20; /* Reg = 4; JMP r/m */
572 bytes[i++] = 0x41; /* REX.B prefix */
576 modrm |= 0xc0; /* Mod = 3 */
579 bytes[i++] = 0xff; /* opcode */
585 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
587 u8 op = insn->opcode.bytes[0];
591 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
592 * tail-calls. Deal with them.
594 if (is_jcc32(insn)) {
596 op = insn->opcode.bytes[1];
600 if (insn->length == 6)
601 bytes[i++] = 0x2e; /* CS-prefix */
604 case CALL_INSN_OPCODE:
605 __text_gen_insn(bytes+i, op, addr+i,
606 __x86_indirect_call_thunk_array[reg],
611 case JMP32_INSN_OPCODE:
613 __text_gen_insn(bytes+i, op, addr+i,
614 __x86_indirect_jump_thunk_array[reg],
616 i += JMP32_INSN_SIZE;
620 WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
624 WARN_ON_ONCE(i != insn->length);
630 * Rewrite the compiler generated retpoline thunk calls.
632 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
633 * indirect instructions, avoiding the extra indirection.
635 * For example, convert:
637 * CALL __x86_indirect_thunk_\reg
643 * It also tries to inline spectre_v2=retpoline,lfence when size permits.
645 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
647 retpoline_thunk_t *target;
651 target = addr + insn->length + insn->immediate.value;
652 reg = target - __x86_indirect_thunk_array;
654 if (WARN_ON_ONCE(reg & ~0xf))
657 /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
660 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
661 !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
662 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
663 return emit_call_track_retpoline(addr, insn, reg, bytes);
668 op = insn->opcode.bytes[0];
673 * Jcc.d32 __x86_indirect_thunk_\reg
683 if (is_jcc32(insn)) {
684 cc = insn->opcode.bytes[1] & 0xf;
685 cc ^= 1; /* invert condition */
687 bytes[i++] = 0x70 + cc; /* Jcc.d8 */
688 bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
690 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
691 op = JMP32_INSN_OPCODE;
695 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
697 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
700 bytes[i++] = 0xe8; /* LFENCE */
703 ret = emit_indirect(op, reg, bytes + i);
709 * The compiler is supposed to EMIT an INT3 after every unconditional
710 * JMP instruction due to AMD BTC. However, if the compiler is too old
711 * or SLS isn't enabled, we still need an INT3 after indirect JMPs
714 if (op == JMP32_INSN_OPCODE && i < insn->length)
715 bytes[i++] = INT3_INSN_OPCODE;
717 for (; i < insn->length;)
718 bytes[i++] = BYTES_NOP1;
724 * Generated by 'objtool --retpoline'.
726 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
730 for (s = start; s < end; s++) {
731 void *addr = (void *)s + *s;
737 ret = insn_decode_kernel(&insn, addr);
738 if (WARN_ON_ONCE(ret < 0))
741 op1 = insn.opcode.bytes[0];
742 op2 = insn.opcode.bytes[1];
745 case CALL_INSN_OPCODE:
746 case JMP32_INSN_OPCODE:
749 case 0x0f: /* escape */
750 if (op2 >= 0x80 && op2 <= 0x8f)
758 DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
759 addr, addr, insn.length,
760 addr + insn.length + insn.immediate.value);
762 len = patch_retpoline(addr, &insn, bytes);
763 if (len == insn.length) {
764 optimize_nops(bytes, len);
765 DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr);
766 DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
767 text_poke_early(addr, bytes, len);
772 #ifdef CONFIG_RETHUNK
775 * Rewrite the compiler generated return thunk tail-calls.
777 * For example, convert:
779 * JMP __x86_return_thunk
785 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
789 /* Patch the custom return thunks... */
790 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
792 __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
794 /* ... or patch them out if not needed. */
795 bytes[i++] = RET_INSN_OPCODE;
798 for (; i < insn->length;)
799 bytes[i++] = INT3_INSN_OPCODE;
803 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
807 if (cpu_feature_enabled(X86_FEATURE_RETHUNK))
808 static_call_force_reinit();
810 for (s = start; s < end; s++) {
811 void *dest = NULL, *addr = (void *)s + *s;
817 ret = insn_decode_kernel(&insn, addr);
818 if (WARN_ON_ONCE(ret < 0))
821 op = insn.opcode.bytes[0];
822 if (op == JMP32_INSN_OPCODE)
823 dest = addr + insn.length + insn.immediate.value;
825 if (__static_call_fixup(addr, op, dest) ||
826 WARN_ONCE(dest != &__x86_return_thunk,
827 "missing return thunk: %pS-%pS: %*ph",
828 addr, dest, 5, addr))
831 DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
832 addr, addr, insn.length,
833 addr + insn.length + insn.immediate.value);
835 len = patch_return(addr, &insn, bytes);
836 if (len == insn.length) {
837 DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr);
838 DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
839 text_poke_early(addr, bytes, len);
844 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
845 #endif /* CONFIG_RETHUNK */
847 #else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */
849 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
850 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
852 #endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */
854 #ifdef CONFIG_X86_KERNEL_IBT
856 static void poison_cfi(void *addr);
858 static void __init_or_module poison_endbr(void *addr, bool warn)
860 u32 endbr, poison = gen_endbr_poison();
862 if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
865 if (!is_endbr(endbr)) {
870 DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
873 * When we have IBT, the lack of ENDBR will trigger #CP
875 DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
876 DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
877 text_poke_early(addr, &poison, 4);
881 * Generated by: objtool --ibt
883 * Seal the functions for indirect calls by clobbering the ENDBR instructions
884 * and the kCFI hash value.
886 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
890 for (s = start; s < end; s++) {
891 void *addr = (void *)s + *s;
893 poison_endbr(addr, true);
894 if (IS_ENABLED(CONFIG_FINEIBT))
895 poison_cfi(addr - 16);
901 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
903 #endif /* CONFIG_X86_KERNEL_IBT */
905 #ifdef CONFIG_FINEIBT
914 static enum cfi_mode cfi_mode __ro_after_init = CFI_DEFAULT;
915 static bool cfi_rand __ro_after_init = true;
916 static u32 cfi_seed __ro_after_init;
919 * Re-hash the CFI hash with a boot-time seed while making sure the result is
920 * not a valid ENDBR instruction.
922 static u32 cfi_rehash(u32 hash)
925 while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
934 static __init int cfi_parse_cmdline(char *str)
940 char *next = strchr(str, ',');
946 if (!strcmp(str, "auto")) {
947 cfi_mode = CFI_DEFAULT;
948 } else if (!strcmp(str, "off")) {
951 } else if (!strcmp(str, "kcfi")) {
953 } else if (!strcmp(str, "fineibt")) {
954 cfi_mode = CFI_FINEIBT;
955 } else if (!strcmp(str, "norand")) {
958 pr_err("Ignoring unknown cfi option (%s).", str);
966 early_param("cfi", cfi_parse_cmdline);
971 * __cfi_\func: __cfi_\func:
972 * movl $0x12345678,%eax // 5 endbr64 // 4
973 * nop subl $0x12345678,%r10d // 7
987 * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6
988 * addl $-15(%r11),%r10d // 4 sub $16,%r11 // 4
989 * je 1f // 2 nop4 // 4
991 * 1: call __x86_indirect_thunk_r11 // 5 call *%r11; nop2; // 5
995 asm( ".pushsection .rodata \n"
996 "fineibt_preamble_start: \n"
998 " subl $0x12345678, %r10d \n"
999 " je fineibt_preamble_end \n"
1002 "fineibt_preamble_end: \n"
1006 extern u8 fineibt_preamble_start[];
1007 extern u8 fineibt_preamble_end[];
1009 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1010 #define fineibt_preamble_hash 7
1012 asm( ".pushsection .rodata \n"
1013 "fineibt_caller_start: \n"
1014 " movl $0x12345678, %r10d \n"
1017 "fineibt_caller_end: \n"
1021 extern u8 fineibt_caller_start[];
1022 extern u8 fineibt_caller_end[];
1024 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1025 #define fineibt_caller_hash 2
1027 #define fineibt_caller_jmp (fineibt_caller_size - 2)
1029 static u32 decode_preamble_hash(void *addr)
1033 /* b8 78 56 34 12 mov $0x12345678,%eax */
1035 return *(u32 *)(addr + 1);
1037 return 0; /* invalid hash value */
1040 static u32 decode_caller_hash(void *addr)
1044 /* 41 ba 78 56 34 12 mov $0x12345678,%r10d */
1045 if (p[0] == 0x41 && p[1] == 0xba)
1046 return -*(u32 *)(addr + 2);
1048 /* e8 0c 78 56 34 12 jmp.d8 +12 */
1049 if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1050 return -*(u32 *)(addr + 2);
1052 return 0; /* invalid hash value */
1055 /* .retpoline_sites */
1056 static int cfi_disable_callers(s32 *start, s32 *end)
1059 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1060 * in tact for later usage. Also see decode_caller_hash() and
1061 * cfi_rewrite_callers().
1063 const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1066 for (s = start; s < end; s++) {
1067 void *addr = (void *)s + *s;
1070 addr -= fineibt_caller_size;
1071 hash = decode_caller_hash(addr);
1072 if (!hash) /* nocfi callers */
1075 text_poke_early(addr, jmp, 2);
1081 static int cfi_enable_callers(s32 *start, s32 *end)
1084 * Re-enable kCFI, undo what cfi_disable_callers() did.
1086 const u8 mov[] = { 0x41, 0xba };
1089 for (s = start; s < end; s++) {
1090 void *addr = (void *)s + *s;
1093 addr -= fineibt_caller_size;
1094 hash = decode_caller_hash(addr);
1095 if (!hash) /* nocfi callers */
1098 text_poke_early(addr, mov, 2);
1105 static int cfi_rand_preamble(s32 *start, s32 *end)
1109 for (s = start; s < end; s++) {
1110 void *addr = (void *)s + *s;
1113 hash = decode_preamble_hash(addr);
1114 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1115 addr, addr, 5, addr))
1118 hash = cfi_rehash(hash);
1119 text_poke_early(addr + 1, &hash, 4);
1125 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1129 for (s = start; s < end; s++) {
1130 void *addr = (void *)s + *s;
1133 hash = decode_preamble_hash(addr);
1134 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1135 addr, addr, 5, addr))
1138 text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1139 WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1140 text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1146 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1150 for (s = start; s < end; s++) {
1151 void *addr = (void *)s + *s;
1153 poison_endbr(addr+16, false);
1157 /* .retpoline_sites */
1158 static int cfi_rand_callers(s32 *start, s32 *end)
1162 for (s = start; s < end; s++) {
1163 void *addr = (void *)s + *s;
1166 addr -= fineibt_caller_size;
1167 hash = decode_caller_hash(addr);
1169 hash = -cfi_rehash(hash);
1170 text_poke_early(addr + 2, &hash, 4);
1177 static int cfi_rewrite_callers(s32 *start, s32 *end)
1181 for (s = start; s < end; s++) {
1182 void *addr = (void *)s + *s;
1185 addr -= fineibt_caller_size;
1186 hash = decode_caller_hash(addr);
1188 text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1189 WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1190 text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1192 /* rely on apply_retpolines() */
1198 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1199 s32 *start_cfi, s32 *end_cfi, bool builtin)
1203 if (WARN_ONCE(fineibt_preamble_size != 16,
1204 "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1207 if (cfi_mode == CFI_DEFAULT) {
1208 cfi_mode = CFI_KCFI;
1209 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1210 cfi_mode = CFI_FINEIBT;
1214 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1215 * rewrite them. This disables all CFI. If this succeeds but any of the
1216 * later stages fails, we're without CFI.
1218 ret = cfi_disable_callers(start_retpoline, end_retpoline);
1224 cfi_seed = get_random_u32();
1226 ret = cfi_rand_preamble(start_cfi, end_cfi);
1230 ret = cfi_rand_callers(start_retpoline, end_retpoline);
1238 pr_info("Disabling CFI\n");
1242 ret = cfi_enable_callers(start_retpoline, end_retpoline);
1247 pr_info("Using kCFI\n");
1251 /* place the FineIBT preamble at func()-16 */
1252 ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1256 /* rewrite the callers to target func()-16 */
1257 ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1261 /* now that nobody targets func()+0, remove ENDBR there */
1262 cfi_rewrite_endbr(start_cfi, end_cfi);
1265 pr_info("Using FineIBT CFI\n");
1273 pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1276 static inline void poison_hash(void *addr)
1281 static void poison_cfi(void *addr)
1293 poison_endbr(addr, false);
1294 poison_hash(addr + fineibt_preamble_hash);
1303 poison_hash(addr + 1);
1313 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1314 s32 *start_cfi, s32 *end_cfi, bool builtin)
1318 #ifdef CONFIG_X86_KERNEL_IBT
1319 static void poison_cfi(void *addr) { }
1324 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1325 s32 *start_cfi, s32 *end_cfi)
1327 return __apply_fineibt(start_retpoline, end_retpoline,
1329 /* .builtin = */ false);
1333 static void alternatives_smp_lock(const s32 *start, const s32 *end,
1334 u8 *text, u8 *text_end)
1338 for (poff = start; poff < end; poff++) {
1339 u8 *ptr = (u8 *)poff + *poff;
1341 if (!*poff || ptr < text || ptr >= text_end)
1343 /* turn DS segment override prefix into lock prefix */
1345 text_poke(ptr, ((unsigned char []){0xf0}), 1);
1349 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
1350 u8 *text, u8 *text_end)
1354 for (poff = start; poff < end; poff++) {
1355 u8 *ptr = (u8 *)poff + *poff;
1357 if (!*poff || ptr < text || ptr >= text_end)
1359 /* turn lock prefix into DS segment override prefix */
1361 text_poke(ptr, ((unsigned char []){0x3E}), 1);
1365 struct smp_alt_module {
1366 /* what is this ??? */
1370 /* ptrs to lock prefixes */
1372 const s32 *locks_end;
1374 /* .text segment, needed to avoid patching init code ;) */
1378 struct list_head next;
1380 static LIST_HEAD(smp_alt_modules);
1381 static bool uniproc_patched = false; /* protected by text_mutex */
1383 void __init_or_module alternatives_smp_module_add(struct module *mod,
1385 void *locks, void *locks_end,
1386 void *text, void *text_end)
1388 struct smp_alt_module *smp;
1390 mutex_lock(&text_mutex);
1391 if (!uniproc_patched)
1394 if (num_possible_cpus() == 1)
1395 /* Don't bother remembering, we'll never have to undo it. */
1398 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
1400 /* we'll run the (safe but slow) SMP code then ... */
1406 smp->locks_end = locks_end;
1408 smp->text_end = text_end;
1409 DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
1410 smp->locks, smp->locks_end,
1411 smp->text, smp->text_end, smp->name);
1413 list_add_tail(&smp->next, &smp_alt_modules);
1415 alternatives_smp_unlock(locks, locks_end, text, text_end);
1417 mutex_unlock(&text_mutex);
1420 void __init_or_module alternatives_smp_module_del(struct module *mod)
1422 struct smp_alt_module *item;
1424 mutex_lock(&text_mutex);
1425 list_for_each_entry(item, &smp_alt_modules, next) {
1426 if (mod != item->mod)
1428 list_del(&item->next);
1432 mutex_unlock(&text_mutex);
1435 void alternatives_enable_smp(void)
1437 struct smp_alt_module *mod;
1439 /* Why bother if there are no other CPUs? */
1440 BUG_ON(num_possible_cpus() == 1);
1442 mutex_lock(&text_mutex);
1444 if (uniproc_patched) {
1445 pr_info("switching to SMP code\n");
1446 BUG_ON(num_online_cpus() != 1);
1447 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
1448 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
1449 list_for_each_entry(mod, &smp_alt_modules, next)
1450 alternatives_smp_lock(mod->locks, mod->locks_end,
1451 mod->text, mod->text_end);
1452 uniproc_patched = false;
1454 mutex_unlock(&text_mutex);
1458 * Return 1 if the address range is reserved for SMP-alternatives.
1459 * Must hold text_mutex.
1461 int alternatives_text_reserved(void *start, void *end)
1463 struct smp_alt_module *mod;
1465 u8 *text_start = start;
1468 lockdep_assert_held(&text_mutex);
1470 list_for_each_entry(mod, &smp_alt_modules, next) {
1471 if (mod->text > text_end || mod->text_end < text_start)
1473 for (poff = mod->locks; poff < mod->locks_end; poff++) {
1474 const u8 *ptr = (const u8 *)poff + *poff;
1476 if (text_start <= ptr && text_end > ptr)
1483 #endif /* CONFIG_SMP */
1486 * Self-test for the INT3 based CALL emulation code.
1488 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1489 * properly and that there is a stack gap between the INT3 frame and the
1490 * previous context. Without this gap doing a virtual PUSH on the interrupted
1491 * stack would corrupt the INT3 IRET frame.
1493 * See entry_{32,64}.S for more details.
1497 * We define the int3_magic() function in assembly to control the calling
1498 * convention such that we can 'call' it from assembly.
1501 extern void int3_magic(unsigned int *ptr); /* defined in asm */
1504 " .pushsection .init.text, \"ax\", @progbits\n"
1505 " .type int3_magic, @function\n"
1508 " movl $1, (%" _ASM_ARG1 ")\n"
1510 " .size int3_magic, .-int3_magic\n"
1514 extern void int3_selftest_ip(void); /* defined in asm below */
1517 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1519 unsigned long selftest = (unsigned long)&int3_selftest_ip;
1520 struct die_args *args = data;
1521 struct pt_regs *regs = args->regs;
1523 OPTIMIZER_HIDE_VAR(selftest);
1525 if (!regs || user_mode(regs))
1528 if (val != DIE_INT3)
1531 if (regs->ip - INT3_INSN_SIZE != selftest)
1534 int3_emulate_call(regs, (unsigned long)&int3_magic);
1538 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
1539 static noinline void __init int3_selftest(void)
1541 static __initdata struct notifier_block int3_exception_nb = {
1542 .notifier_call = int3_exception_notify,
1543 .priority = INT_MAX-1, /* last */
1545 unsigned int val = 0;
1547 BUG_ON(register_die_notifier(&int3_exception_nb));
1550 * Basically: int3_magic(&val); but really complicated :-)
1552 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1553 * notifier above will emulate CALL for us.
1555 asm volatile ("int3_selftest_ip:\n\t"
1557 " int3; nop; nop; nop; nop\n\t"
1558 : ASM_CALL_CONSTRAINT
1559 : __ASM_SEL_RAW(a, D) (&val)
1564 unregister_die_notifier(&int3_exception_nb);
1567 static __initdata int __alt_reloc_selftest_addr;
1569 extern void __init __alt_reloc_selftest(void *arg);
1570 __visible noinline void __init __alt_reloc_selftest(void *arg)
1572 WARN_ON(arg != &__alt_reloc_selftest_addr);
1575 static noinline void __init alt_reloc_selftest(void)
1578 * Tests apply_relocation().
1580 * This has a relative immediate (CALL) in a place other than the first
1581 * instruction and additionally on x86_64 we get a RIP-relative LEA:
1583 * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c
1584 * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4
1586 * Getting this wrong will either crash and burn or tickle the WARN
1589 asm_inline volatile (
1590 ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
1592 : [mem] "m" (__alt_reloc_selftest_addr)
1597 void __init alternative_instructions(void)
1602 * The patching is not fully atomic, so try to avoid local
1603 * interruptions that might execute the to be patched code.
1604 * Other CPUs are not running.
1609 * Don't stop machine check exceptions while patching.
1610 * MCEs only happen when something got corrupted and in this
1611 * case we must do something about the corruption.
1612 * Ignoring it is worse than an unlikely patching race.
1613 * Also machine checks tend to be broadcast and if one CPU
1614 * goes into machine check the others follow quickly, so we don't
1615 * expect a machine check to cause undue problems during to code
1620 * Make sure to set (artificial) features depending on used paravirt
1621 * functions which can later influence alternative patching.
1625 __apply_fineibt(__retpoline_sites, __retpoline_sites_end,
1626 __cfi_sites, __cfi_sites_end, true);
1629 * Rewrite the retpolines, must be done before alternatives since
1630 * those can rewrite the retpoline thunks.
1632 apply_retpolines(__retpoline_sites, __retpoline_sites_end);
1633 apply_returns(__return_sites, __return_sites_end);
1635 apply_alternatives(__alt_instructions, __alt_instructions_end);
1638 * Now all calls are established. Apply the call thunks if
1641 callthunks_patch_builtin_calls();
1644 * Seal all functions that do not have their address taken.
1646 apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
1649 /* Patch to UP if other cpus not imminent. */
1650 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
1651 uniproc_patched = true;
1652 alternatives_smp_module_add(NULL, "core kernel",
1653 __smp_locks, __smp_locks_end,
1657 if (!uniproc_patched || num_possible_cpus() == 1) {
1658 free_init_pages("SMP alternatives",
1659 (unsigned long)__smp_locks,
1660 (unsigned long)__smp_locks_end);
1665 alternatives_patched = 1;
1667 alt_reloc_selftest();
1671 * text_poke_early - Update instructions on a live kernel at boot time
1672 * @addr: address to modify
1673 * @opcode: source of the copy
1674 * @len: length to copy
1676 * When you use this code to patch more than one byte of an instruction
1677 * you need to make sure that other CPUs cannot execute this code in parallel.
1678 * Also no thread must be currently preempted in the middle of these
1679 * instructions. And on the local CPU you need to be protected against NMI or
1680 * MCE handlers seeing an inconsistent instruction while you patch.
1682 void __init_or_module text_poke_early(void *addr, const void *opcode,
1685 unsigned long flags;
1687 if (boot_cpu_has(X86_FEATURE_NX) &&
1688 is_module_text_address((unsigned long)addr)) {
1690 * Modules text is marked initially as non-executable, so the
1691 * code cannot be running and speculative code-fetches are
1692 * prevented. Just change the code.
1694 memcpy(addr, opcode, len);
1696 local_irq_save(flags);
1697 memcpy(addr, opcode, len);
1699 local_irq_restore(flags);
1702 * Could also do a CLFLUSH here to speed up CPU recovery; but
1703 * that causes hangs on some VIA CPUs.
1709 struct mm_struct *mm;
1713 * Using a temporary mm allows to set temporary mappings that are not accessible
1714 * by other CPUs. Such mappings are needed to perform sensitive memory writes
1715 * that override the kernel memory protections (e.g., W^X), without exposing the
1716 * temporary page-table mappings that are required for these write operations to
1717 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1718 * mapping is torn down.
1720 * Context: The temporary mm needs to be used exclusively by a single core. To
1721 * harden security IRQs must be disabled while the temporary mm is
1722 * loaded, thereby preventing interrupt handler bugs from overriding
1723 * the kernel memory protection.
1725 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1727 temp_mm_state_t temp_state;
1729 lockdep_assert_irqs_disabled();
1732 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1733 * with a stale address space WITHOUT being in lazy mode after
1734 * restoring the previous mm.
1736 if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1737 leave_mm(smp_processor_id());
1739 temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1740 switch_mm_irqs_off(NULL, mm, current);
1743 * If breakpoints are enabled, disable them while the temporary mm is
1744 * used. Userspace might set up watchpoints on addresses that are used
1745 * in the temporary mm, which would lead to wrong signals being sent or
1748 * Note that breakpoints are not disabled selectively, which also causes
1749 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1750 * undesirable, but still seems reasonable as the code that runs in the
1751 * temporary mm should be short.
1753 if (hw_breakpoint_active())
1754 hw_breakpoint_disable();
1759 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
1761 lockdep_assert_irqs_disabled();
1762 switch_mm_irqs_off(NULL, prev_state.mm, current);
1765 * Restore the breakpoints if they were disabled before the temporary mm
1768 if (hw_breakpoint_active())
1769 hw_breakpoint_restore();
1772 __ro_after_init struct mm_struct *poking_mm;
1773 __ro_after_init unsigned long poking_addr;
1775 static void text_poke_memcpy(void *dst, const void *src, size_t len)
1777 memcpy(dst, src, len);
1780 static void text_poke_memset(void *dst, const void *src, size_t len)
1782 int c = *(const int *)src;
1784 memset(dst, c, len);
1787 typedef void text_poke_f(void *dst, const void *src, size_t len);
1789 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
1791 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1792 struct page *pages[2] = {NULL};
1793 temp_mm_state_t prev;
1794 unsigned long flags;
1800 * While boot memory allocator is running we cannot use struct pages as
1801 * they are not yet initialized. There is no way to recover.
1803 BUG_ON(!after_bootmem);
1805 if (!core_kernel_text((unsigned long)addr)) {
1806 pages[0] = vmalloc_to_page(addr);
1807 if (cross_page_boundary)
1808 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
1810 pages[0] = virt_to_page(addr);
1811 WARN_ON(!PageReserved(pages[0]));
1812 if (cross_page_boundary)
1813 pages[1] = virt_to_page(addr + PAGE_SIZE);
1816 * If something went wrong, crash and burn since recovery paths are not
1819 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
1822 * Map the page without the global bit, as TLB flushing is done with
1823 * flush_tlb_mm_range(), which is intended for non-global PTEs.
1825 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
1828 * The lock is not really needed, but this allows to avoid open-coding.
1830 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
1833 * This must not fail; preallocated in poking_init().
1837 local_irq_save(flags);
1839 pte = mk_pte(pages[0], pgprot);
1840 set_pte_at(poking_mm, poking_addr, ptep, pte);
1842 if (cross_page_boundary) {
1843 pte = mk_pte(pages[1], pgprot);
1844 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
1848 * Loading the temporary mm behaves as a compiler barrier, which
1849 * guarantees that the PTE will be set at the time memcpy() is done.
1851 prev = use_temporary_mm(poking_mm);
1853 kasan_disable_current();
1854 func((u8 *)poking_addr + offset_in_page(addr), src, len);
1855 kasan_enable_current();
1858 * Ensure that the PTE is only cleared after the instructions of memcpy
1859 * were issued by using a compiler barrier.
1863 pte_clear(poking_mm, poking_addr, ptep);
1864 if (cross_page_boundary)
1865 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
1868 * Loading the previous page-table hierarchy requires a serializing
1869 * instruction that already allows the core to see the updated version.
1870 * Xen-PV is assumed to serialize execution in a similar manner.
1872 unuse_temporary_mm(prev);
1875 * Flushing the TLB might involve IPIs, which would require enabled
1876 * IRQs, but not if the mm is not used, as it is in this point.
1878 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
1879 (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
1882 if (func == text_poke_memcpy) {
1884 * If the text does not match what we just wrote then something is
1885 * fundamentally screwy; there's nothing we can really do about that.
1887 BUG_ON(memcmp(addr, src, len));
1890 local_irq_restore(flags);
1891 pte_unmap_unlock(ptep, ptl);
1896 * text_poke - Update instructions on a live kernel
1897 * @addr: address to modify
1898 * @opcode: source of the copy
1899 * @len: length to copy
1901 * Only atomic text poke/set should be allowed when not doing early patching.
1902 * It means the size must be writable atomically and the address must be aligned
1903 * in a way that permits an atomic write. It also makes sure we fit on a single
1906 * Note that the caller must ensure that if the modified code is part of a
1907 * module, the module would not be removed during poking. This can be achieved
1908 * by registering a module notifier, and ordering module removal and patching
1911 void *text_poke(void *addr, const void *opcode, size_t len)
1913 lockdep_assert_held(&text_mutex);
1915 return __text_poke(text_poke_memcpy, addr, opcode, len);
1919 * text_poke_kgdb - Update instructions on a live kernel by kgdb
1920 * @addr: address to modify
1921 * @opcode: source of the copy
1922 * @len: length to copy
1924 * Only atomic text poke/set should be allowed when not doing early patching.
1925 * It means the size must be writable atomically and the address must be aligned
1926 * in a way that permits an atomic write. It also makes sure we fit on a single
1929 * Context: should only be used by kgdb, which ensures no other core is running,
1930 * despite the fact it does not hold the text_mutex.
1932 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
1934 return __text_poke(text_poke_memcpy, addr, opcode, len);
1937 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
1940 unsigned long start = (unsigned long)addr;
1943 if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
1946 while (patched < len) {
1947 unsigned long ptr = start + patched;
1950 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
1952 __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
1959 * text_poke_copy - Copy instructions into (an unused part of) RX memory
1960 * @addr: address to modify
1961 * @opcode: source of the copy
1962 * @len: length to copy, could be more than 2x PAGE_SIZE
1964 * Not safe against concurrent execution; useful for JITs to dump
1965 * new code blocks into unused regions of RX memory. Can be used in
1966 * conjunction with synchronize_rcu_tasks() to wait for existing
1967 * execution to quiesce after having made sure no existing functions
1968 * pointers are live.
1970 void *text_poke_copy(void *addr, const void *opcode, size_t len)
1972 mutex_lock(&text_mutex);
1973 addr = text_poke_copy_locked(addr, opcode, len, false);
1974 mutex_unlock(&text_mutex);
1979 * text_poke_set - memset into (an unused part of) RX memory
1980 * @addr: address to modify
1981 * @c: the byte to fill the area with
1982 * @len: length to copy, could be more than 2x PAGE_SIZE
1984 * This is useful to overwrite unused regions of RX memory with illegal
1987 void *text_poke_set(void *addr, int c, size_t len)
1989 unsigned long start = (unsigned long)addr;
1992 if (WARN_ON_ONCE(core_kernel_text(start)))
1995 mutex_lock(&text_mutex);
1996 while (patched < len) {
1997 unsigned long ptr = start + patched;
2000 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2002 __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2005 mutex_unlock(&text_mutex);
2009 static void do_sync_core(void *info)
2014 void text_poke_sync(void)
2016 on_each_cpu(do_sync_core, NULL, 1);
2020 * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2021 * this thing. When len == 6 everything is prefixed with 0x0f and we map
2022 * opcode to Jcc.d8, using len to distinguish.
2024 struct text_poke_loc {
2025 /* addr := _stext + rel_addr */
2030 const u8 text[POKE_MAX_OPCODE_SIZE];
2031 /* see text_poke_bp_batch() */
2035 struct bp_patching_desc {
2036 struct text_poke_loc *vec;
2041 static struct bp_patching_desc bp_desc;
2043 static __always_inline
2044 struct bp_patching_desc *try_get_desc(void)
2046 struct bp_patching_desc *desc = &bp_desc;
2048 if (!raw_atomic_inc_not_zero(&desc->refs))
2054 static __always_inline void put_desc(void)
2056 struct bp_patching_desc *desc = &bp_desc;
2058 smp_mb__before_atomic();
2059 raw_atomic_dec(&desc->refs);
2062 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
2064 return _stext + tp->rel_addr;
2067 static __always_inline int patch_cmp(const void *key, const void *elt)
2069 struct text_poke_loc *tp = (struct text_poke_loc *) elt;
2071 if (key < text_poke_addr(tp))
2073 if (key > text_poke_addr(tp))
2078 noinstr int poke_int3_handler(struct pt_regs *regs)
2080 struct bp_patching_desc *desc;
2081 struct text_poke_loc *tp;
2085 if (user_mode(regs))
2089 * Having observed our INT3 instruction, we now must observe
2090 * bp_desc with non-zero refcount:
2092 * bp_desc.refs = 1 INT3
2094 * write INT3 if (bp_desc.refs != 0)
2098 desc = try_get_desc();
2103 * Discount the INT3. See text_poke_bp_batch().
2105 ip = (void *) regs->ip - INT3_INSN_SIZE;
2108 * Skip the binary search if there is a single member in the vector.
2110 if (unlikely(desc->nr_entries > 1)) {
2111 tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
2112 sizeof(struct text_poke_loc),
2118 if (text_poke_addr(tp) != ip)
2124 switch (tp->opcode) {
2125 case INT3_INSN_OPCODE:
2127 * Someone poked an explicit INT3, they'll want to handle it,
2132 case RET_INSN_OPCODE:
2133 int3_emulate_ret(regs);
2136 case CALL_INSN_OPCODE:
2137 int3_emulate_call(regs, (long)ip + tp->disp);
2140 case JMP32_INSN_OPCODE:
2141 case JMP8_INSN_OPCODE:
2142 int3_emulate_jmp(regs, (long)ip + tp->disp);
2145 case 0x70 ... 0x7f: /* Jcc */
2146 int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp);
2160 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
2161 static struct text_poke_loc tp_vec[TP_VEC_MAX];
2162 static int tp_vec_nr;
2165 * text_poke_bp_batch() -- update instructions on live kernel on SMP
2166 * @tp: vector of instructions to patch
2167 * @nr_entries: number of entries in the vector
2169 * Modify multi-byte instruction by using int3 breakpoint on SMP.
2170 * We completely avoid stop_machine() here, and achieve the
2171 * synchronization using int3 breakpoint.
2173 * The way it is done:
2174 * - For each entry in the vector:
2175 * - add a int3 trap to the address that will be patched
2177 * - For each entry in the vector:
2178 * - update all but the first byte of the patched range
2180 * - For each entry in the vector:
2181 * - replace the first byte (int3) by the first byte of
2185 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
2187 unsigned char int3 = INT3_INSN_OPCODE;
2191 lockdep_assert_held(&text_mutex);
2194 bp_desc.nr_entries = nr_entries;
2197 * Corresponds to the implicit memory barrier in try_get_desc() to
2198 * ensure reading a non-zero refcount provides up to date bp_desc data.
2200 atomic_set_release(&bp_desc.refs, 1);
2203 * Function tracing can enable thousands of places that need to be
2204 * updated. This can take quite some time, and with full kernel debugging
2205 * enabled, this could cause the softlockup watchdog to trigger.
2206 * This function gets called every 256 entries added to be patched.
2207 * Call cond_resched() here to make sure that other tasks can get scheduled
2208 * while processing all the functions being patched.
2213 * Corresponding read barrier in int3 notifier for making sure the
2214 * nr_entries and handler are correctly ordered wrt. patching.
2219 * First step: add a int3 trap to the address that will be patched.
2221 for (i = 0; i < nr_entries; i++) {
2222 tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
2223 text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
2229 * Second step: update all but the first byte of the patched range.
2231 for (do_sync = 0, i = 0; i < nr_entries; i++) {
2232 u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, };
2233 u8 _new[POKE_MAX_OPCODE_SIZE+1];
2234 const u8 *new = tp[i].text;
2235 int len = tp[i].len;
2237 if (len - INT3_INSN_SIZE > 0) {
2238 memcpy(old + INT3_INSN_SIZE,
2239 text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2240 len - INT3_INSN_SIZE);
2244 memcpy(_new + 1, new, 5);
2248 text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2249 new + INT3_INSN_SIZE,
2250 len - INT3_INSN_SIZE);
2256 * Emit a perf event to record the text poke, primarily to
2257 * support Intel PT decoding which must walk the executable code
2258 * to reconstruct the trace. The flow up to here is:
2261 * - write instruction tail
2262 * At this point the actual control flow will be through the
2263 * INT3 and handler and not hit the old or new instruction.
2264 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2265 * can still be decoded. Subsequently:
2266 * - emit RECORD_TEXT_POKE with the new instruction
2268 * - write first byte
2270 * So before the text poke event timestamp, the decoder will see
2271 * either the old instruction flow or FUP/TIP of INT3. After the
2272 * text poke event timestamp, the decoder will see either the
2273 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2274 * use the timestamp as the point at which to modify the
2276 * The old instruction is recorded so that the event can be
2277 * processed forwards or backwards.
2279 perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len);
2284 * According to Intel, this core syncing is very likely
2285 * not necessary and we'd be safe even without it. But
2286 * better safe than sorry (plus there's not only Intel).
2292 * Third step: replace the first byte (int3) by the first byte of
2295 for (do_sync = 0, i = 0; i < nr_entries; i++) {
2296 u8 byte = tp[i].text[0];
2301 if (byte == INT3_INSN_OPCODE)
2304 text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE);
2312 * Remove and wait for refs to be zero.
2314 if (!atomic_dec_and_test(&bp_desc.refs))
2315 atomic_cond_read_acquire(&bp_desc.refs, !VAL);
2318 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
2319 const void *opcode, size_t len, const void *emulate)
2326 memcpy((void *)tp->text, opcode+i, len-i);
2330 ret = insn_decode_kernel(&insn, emulate);
2333 tp->rel_addr = addr - (void *)_stext;
2335 tp->opcode = insn.opcode.bytes[0];
2337 if (is_jcc32(&insn)) {
2339 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2341 tp->opcode = insn.opcode.bytes[1] - 0x10;
2344 switch (tp->opcode) {
2345 case RET_INSN_OPCODE:
2346 case JMP32_INSN_OPCODE:
2347 case JMP8_INSN_OPCODE:
2349 * Control flow instructions without implied execution of the
2350 * next instruction can be padded with INT3.
2352 for (i = insn.length; i < len; i++)
2353 BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
2357 BUG_ON(len != insn.length);
2360 switch (tp->opcode) {
2361 case INT3_INSN_OPCODE:
2362 case RET_INSN_OPCODE:
2365 case CALL_INSN_OPCODE:
2366 case JMP32_INSN_OPCODE:
2367 case JMP8_INSN_OPCODE:
2368 case 0x70 ... 0x7f: /* Jcc */
2369 tp->disp = insn.immediate.value;
2372 default: /* assume NOP */
2374 case 2: /* NOP2 -- emulate as JMP8+0 */
2375 BUG_ON(memcmp(emulate, x86_nops[len], len));
2376 tp->opcode = JMP8_INSN_OPCODE;
2380 case 5: /* NOP5 -- emulate as JMP32+0 */
2381 BUG_ON(memcmp(emulate, x86_nops[len], len));
2382 tp->opcode = JMP32_INSN_OPCODE;
2386 default: /* unknown instruction */
2394 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2397 static bool tp_order_fail(void *addr)
2399 struct text_poke_loc *tp;
2404 if (!addr) /* force */
2407 tp = &tp_vec[tp_vec_nr - 1];
2408 if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
2414 static void text_poke_flush(void *addr)
2416 if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
2417 text_poke_bp_batch(tp_vec, tp_vec_nr);
2422 void text_poke_finish(void)
2424 text_poke_flush(NULL);
2427 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
2429 struct text_poke_loc *tp;
2431 text_poke_flush(addr);
2433 tp = &tp_vec[tp_vec_nr++];
2434 text_poke_loc_init(tp, addr, opcode, len, emulate);
2438 * text_poke_bp() -- update instructions on live kernel on SMP
2439 * @addr: address to patch
2440 * @opcode: opcode of new instruction
2441 * @len: length to copy
2442 * @emulate: instruction to be emulated
2444 * Update a single instruction with the vector in the stack, avoiding
2445 * dynamically allocated memory. This function should be used when it is
2446 * not possible to allocate memory.
2448 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
2450 struct text_poke_loc tp;
2452 text_poke_loc_init(&tp, addr, opcode, len, emulate);
2453 text_poke_bp_batch(&tp, 1);