]> Git Repo - J-linux.git/blob - arch/arm/kernel/perf_event_v6.c
Merge tag 'x86-cleanups-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel...
[J-linux.git] / arch / arm / kernel / perf_event_v6.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ARMv6 Performance counter handling code.
4  *
5  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
6  *
7  * ARMv6 has 2 configurable performance counters and a single cycle counter.
8  * They all share a single reset bit but can be written to zero so we can use
9  * that for a reset.
10  *
11  * The counters can't be individually enabled or disabled so when we remove
12  * one event and replace it with another we could get spurious counts from the
13  * wrong event. However, we can take advantage of the fact that the
14  * performance counters can export events to the event bus, and the event bus
15  * itself can be monitored. This requires that we *don't* export the events to
16  * the event bus. The procedure for disabling a configurable counter is:
17  *      - change the counter to count the ETMEXTOUT[0] signal (0x20). This
18  *        effectively stops the counter from counting.
19  *      - disable the counter's interrupt generation (each counter has it's
20  *        own interrupt enable bit).
21  * Once stopped, the counter value can be written as 0 to reset.
22  *
23  * To enable a counter:
24  *      - enable the counter's interrupt generation.
25  *      - set the new event type.
26  *
27  * Note: the dedicated cycle counter only counts cycles and can't be
28  * enabled/disabled independently of the others. When we want to disable the
29  * cycle counter, we have to just disable the interrupt reporting and start
30  * ignoring that counter. When re-enabling, we have to reset the value and
31  * enable the interrupt.
32  */
33
34 #if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K)
35
36 #include <asm/cputype.h>
37 #include <asm/irq_regs.h>
38
39 #include <linux/of.h>
40 #include <linux/perf/arm_pmu.h>
41 #include <linux/platform_device.h>
42
43 enum armv6_perf_types {
44         ARMV6_PERFCTR_ICACHE_MISS           = 0x0,
45         ARMV6_PERFCTR_IBUF_STALL            = 0x1,
46         ARMV6_PERFCTR_DDEP_STALL            = 0x2,
47         ARMV6_PERFCTR_ITLB_MISS             = 0x3,
48         ARMV6_PERFCTR_DTLB_MISS             = 0x4,
49         ARMV6_PERFCTR_BR_EXEC               = 0x5,
50         ARMV6_PERFCTR_BR_MISPREDICT         = 0x6,
51         ARMV6_PERFCTR_INSTR_EXEC            = 0x7,
52         ARMV6_PERFCTR_DCACHE_HIT            = 0x9,
53         ARMV6_PERFCTR_DCACHE_ACCESS         = 0xA,
54         ARMV6_PERFCTR_DCACHE_MISS           = 0xB,
55         ARMV6_PERFCTR_DCACHE_WBACK          = 0xC,
56         ARMV6_PERFCTR_SW_PC_CHANGE          = 0xD,
57         ARMV6_PERFCTR_MAIN_TLB_MISS         = 0xF,
58         ARMV6_PERFCTR_EXPL_D_ACCESS         = 0x10,
59         ARMV6_PERFCTR_LSU_FULL_STALL        = 0x11,
60         ARMV6_PERFCTR_WBUF_DRAINED          = 0x12,
61         ARMV6_PERFCTR_CPU_CYCLES            = 0xFF,
62         ARMV6_PERFCTR_NOP                   = 0x20,
63 };
64
65 enum armv6_counters {
66         ARMV6_CYCLE_COUNTER = 0,
67         ARMV6_COUNTER0,
68         ARMV6_COUNTER1,
69 };
70
71 /*
72  * The hardware events that we support. We do support cache operations but
73  * we have harvard caches and no way to combine instruction and data
74  * accesses/misses in hardware.
75  */
76 static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
77         PERF_MAP_ALL_UNSUPPORTED,
78         [PERF_COUNT_HW_CPU_CYCLES]              = ARMV6_PERFCTR_CPU_CYCLES,
79         [PERF_COUNT_HW_INSTRUCTIONS]            = ARMV6_PERFCTR_INSTR_EXEC,
80         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = ARMV6_PERFCTR_BR_EXEC,
81         [PERF_COUNT_HW_BRANCH_MISSES]           = ARMV6_PERFCTR_BR_MISPREDICT,
82         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV6_PERFCTR_IBUF_STALL,
83         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = ARMV6_PERFCTR_LSU_FULL_STALL,
84 };
85
86 static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
87                                           [PERF_COUNT_HW_CACHE_OP_MAX]
88                                           [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
89         PERF_CACHE_MAP_ALL_UNSUPPORTED,
90
91         /*
92          * The performance counters don't differentiate between read and write
93          * accesses/misses so this isn't strictly correct, but it's the best we
94          * can do. Writes and reads get combined.
95          */
96         [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV6_PERFCTR_DCACHE_ACCESS,
97         [C(L1D)][C(OP_READ)][C(RESULT_MISS)]    = ARMV6_PERFCTR_DCACHE_MISS,
98         [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
99         [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]   = ARMV6_PERFCTR_DCACHE_MISS,
100
101         [C(L1I)][C(OP_READ)][C(RESULT_MISS)]    = ARMV6_PERFCTR_ICACHE_MISS,
102
103         /*
104          * The ARM performance counters can count micro DTLB misses, micro ITLB
105          * misses and main TLB misses. There isn't an event for TLB misses, so
106          * use the micro misses here and if users want the main TLB misses they
107          * can use a raw counter.
108          */
109         [C(DTLB)][C(OP_READ)][C(RESULT_MISS)]   = ARMV6_PERFCTR_DTLB_MISS,
110         [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]  = ARMV6_PERFCTR_DTLB_MISS,
111
112         [C(ITLB)][C(OP_READ)][C(RESULT_MISS)]   = ARMV6_PERFCTR_ITLB_MISS,
113         [C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)]  = ARMV6_PERFCTR_ITLB_MISS,
114 };
115
116 enum armv6mpcore_perf_types {
117         ARMV6MPCORE_PERFCTR_ICACHE_MISS     = 0x0,
118         ARMV6MPCORE_PERFCTR_IBUF_STALL      = 0x1,
119         ARMV6MPCORE_PERFCTR_DDEP_STALL      = 0x2,
120         ARMV6MPCORE_PERFCTR_ITLB_MISS       = 0x3,
121         ARMV6MPCORE_PERFCTR_DTLB_MISS       = 0x4,
122         ARMV6MPCORE_PERFCTR_BR_EXEC         = 0x5,
123         ARMV6MPCORE_PERFCTR_BR_NOTPREDICT   = 0x6,
124         ARMV6MPCORE_PERFCTR_BR_MISPREDICT   = 0x7,
125         ARMV6MPCORE_PERFCTR_INSTR_EXEC      = 0x8,
126         ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA,
127         ARMV6MPCORE_PERFCTR_DCACHE_RDMISS   = 0xB,
128         ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC,
129         ARMV6MPCORE_PERFCTR_DCACHE_WRMISS   = 0xD,
130         ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE,
131         ARMV6MPCORE_PERFCTR_SW_PC_CHANGE    = 0xF,
132         ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS   = 0x10,
133         ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11,
134         ARMV6MPCORE_PERFCTR_LSU_FULL_STALL  = 0x12,
135         ARMV6MPCORE_PERFCTR_WBUF_DRAINED    = 0x13,
136         ARMV6MPCORE_PERFCTR_CPU_CYCLES      = 0xFF,
137 };
138
139 /*
140  * The hardware events that we support. We do support cache operations but
141  * we have harvard caches and no way to combine instruction and data
142  * accesses/misses in hardware.
143  */
144 static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = {
145         PERF_MAP_ALL_UNSUPPORTED,
146         [PERF_COUNT_HW_CPU_CYCLES]              = ARMV6MPCORE_PERFCTR_CPU_CYCLES,
147         [PERF_COUNT_HW_INSTRUCTIONS]            = ARMV6MPCORE_PERFCTR_INSTR_EXEC,
148         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = ARMV6MPCORE_PERFCTR_BR_EXEC,
149         [PERF_COUNT_HW_BRANCH_MISSES]           = ARMV6MPCORE_PERFCTR_BR_MISPREDICT,
150         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV6MPCORE_PERFCTR_IBUF_STALL,
151         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = ARMV6MPCORE_PERFCTR_LSU_FULL_STALL,
152 };
153
154 static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
155                                         [PERF_COUNT_HW_CACHE_OP_MAX]
156                                         [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
157         PERF_CACHE_MAP_ALL_UNSUPPORTED,
158
159         [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS,
160         [C(L1D)][C(OP_READ)][C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_DCACHE_RDMISS,
161         [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS,
162         [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]   = ARMV6MPCORE_PERFCTR_DCACHE_WRMISS,
163
164         [C(L1I)][C(OP_READ)][C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
165
166         /*
167          * The ARM performance counters can count micro DTLB misses, micro ITLB
168          * misses and main TLB misses. There isn't an event for TLB misses, so
169          * use the micro misses here and if users want the main TLB misses they
170          * can use a raw counter.
171          */
172         [C(DTLB)][C(OP_READ)][C(RESULT_MISS)]   = ARMV6MPCORE_PERFCTR_DTLB_MISS,
173         [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]  = ARMV6MPCORE_PERFCTR_DTLB_MISS,
174
175         [C(ITLB)][C(OP_READ)][C(RESULT_MISS)]   = ARMV6MPCORE_PERFCTR_ITLB_MISS,
176         [C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)]  = ARMV6MPCORE_PERFCTR_ITLB_MISS,
177 };
178
179 static inline unsigned long
180 armv6_pmcr_read(void)
181 {
182         u32 val;
183         asm volatile("mrc   p15, 0, %0, c15, c12, 0" : "=r"(val));
184         return val;
185 }
186
187 static inline void
188 armv6_pmcr_write(unsigned long val)
189 {
190         asm volatile("mcr   p15, 0, %0, c15, c12, 0" : : "r"(val));
191 }
192
193 #define ARMV6_PMCR_ENABLE               (1 << 0)
194 #define ARMV6_PMCR_CTR01_RESET          (1 << 1)
195 #define ARMV6_PMCR_CCOUNT_RESET         (1 << 2)
196 #define ARMV6_PMCR_CCOUNT_DIV           (1 << 3)
197 #define ARMV6_PMCR_COUNT0_IEN           (1 << 4)
198 #define ARMV6_PMCR_COUNT1_IEN           (1 << 5)
199 #define ARMV6_PMCR_CCOUNT_IEN           (1 << 6)
200 #define ARMV6_PMCR_COUNT0_OVERFLOW      (1 << 8)
201 #define ARMV6_PMCR_COUNT1_OVERFLOW      (1 << 9)
202 #define ARMV6_PMCR_CCOUNT_OVERFLOW      (1 << 10)
203 #define ARMV6_PMCR_EVT_COUNT0_SHIFT     20
204 #define ARMV6_PMCR_EVT_COUNT0_MASK      (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
205 #define ARMV6_PMCR_EVT_COUNT1_SHIFT     12
206 #define ARMV6_PMCR_EVT_COUNT1_MASK      (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
207
208 #define ARMV6_PMCR_OVERFLOWED_MASK \
209         (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
210          ARMV6_PMCR_CCOUNT_OVERFLOW)
211
212 static inline int
213 armv6_pmcr_has_overflowed(unsigned long pmcr)
214 {
215         return pmcr & ARMV6_PMCR_OVERFLOWED_MASK;
216 }
217
218 static inline int
219 armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
220                                   enum armv6_counters counter)
221 {
222         int ret = 0;
223
224         if (ARMV6_CYCLE_COUNTER == counter)
225                 ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
226         else if (ARMV6_COUNTER0 == counter)
227                 ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
228         else if (ARMV6_COUNTER1 == counter)
229                 ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
230         else
231                 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
232
233         return ret;
234 }
235
236 static inline u64 armv6pmu_read_counter(struct perf_event *event)
237 {
238         struct hw_perf_event *hwc = &event->hw;
239         int counter = hwc->idx;
240         unsigned long value = 0;
241
242         if (ARMV6_CYCLE_COUNTER == counter)
243                 asm volatile("mrc   p15, 0, %0, c15, c12, 1" : "=r"(value));
244         else if (ARMV6_COUNTER0 == counter)
245                 asm volatile("mrc   p15, 0, %0, c15, c12, 2" : "=r"(value));
246         else if (ARMV6_COUNTER1 == counter)
247                 asm volatile("mrc   p15, 0, %0, c15, c12, 3" : "=r"(value));
248         else
249                 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
250
251         return value;
252 }
253
254 static inline void armv6pmu_write_counter(struct perf_event *event, u64 value)
255 {
256         struct hw_perf_event *hwc = &event->hw;
257         int counter = hwc->idx;
258
259         if (ARMV6_CYCLE_COUNTER == counter)
260                 asm volatile("mcr   p15, 0, %0, c15, c12, 1" : : "r"(value));
261         else if (ARMV6_COUNTER0 == counter)
262                 asm volatile("mcr   p15, 0, %0, c15, c12, 2" : : "r"(value));
263         else if (ARMV6_COUNTER1 == counter)
264                 asm volatile("mcr   p15, 0, %0, c15, c12, 3" : : "r"(value));
265         else
266                 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
267 }
268
269 static void armv6pmu_enable_event(struct perf_event *event)
270 {
271         unsigned long val, mask, evt;
272         struct hw_perf_event *hwc = &event->hw;
273         int idx = hwc->idx;
274
275         if (ARMV6_CYCLE_COUNTER == idx) {
276                 mask    = 0;
277                 evt     = ARMV6_PMCR_CCOUNT_IEN;
278         } else if (ARMV6_COUNTER0 == idx) {
279                 mask    = ARMV6_PMCR_EVT_COUNT0_MASK;
280                 evt     = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
281                           ARMV6_PMCR_COUNT0_IEN;
282         } else if (ARMV6_COUNTER1 == idx) {
283                 mask    = ARMV6_PMCR_EVT_COUNT1_MASK;
284                 evt     = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
285                           ARMV6_PMCR_COUNT1_IEN;
286         } else {
287                 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
288                 return;
289         }
290
291         /*
292          * Mask out the current event and set the counter to count the event
293          * that we're interested in.
294          */
295         val = armv6_pmcr_read();
296         val &= ~mask;
297         val |= evt;
298         armv6_pmcr_write(val);
299 }
300
301 static irqreturn_t
302 armv6pmu_handle_irq(struct arm_pmu *cpu_pmu)
303 {
304         unsigned long pmcr = armv6_pmcr_read();
305         struct perf_sample_data data;
306         struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
307         struct pt_regs *regs;
308         int idx;
309
310         if (!armv6_pmcr_has_overflowed(pmcr))
311                 return IRQ_NONE;
312
313         regs = get_irq_regs();
314
315         /*
316          * The interrupts are cleared by writing the overflow flags back to
317          * the control register. All of the other bits don't have any effect
318          * if they are rewritten, so write the whole value back.
319          */
320         armv6_pmcr_write(pmcr);
321
322         for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
323                 struct perf_event *event = cpuc->events[idx];
324                 struct hw_perf_event *hwc;
325
326                 /* Ignore if we don't have an event. */
327                 if (!event)
328                         continue;
329
330                 /*
331                  * We have a single interrupt for all counters. Check that
332                  * each counter has overflowed before we process it.
333                  */
334                 if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
335                         continue;
336
337                 hwc = &event->hw;
338                 armpmu_event_update(event);
339                 perf_sample_data_init(&data, 0, hwc->last_period);
340                 if (!armpmu_event_set_period(event))
341                         continue;
342
343                 if (perf_event_overflow(event, &data, regs))
344                         cpu_pmu->disable(event);
345         }
346
347         /*
348          * Handle the pending perf events.
349          *
350          * Note: this call *must* be run with interrupts disabled. For
351          * platforms that can have the PMU interrupts raised as an NMI, this
352          * will not work.
353          */
354         irq_work_run();
355
356         return IRQ_HANDLED;
357 }
358
359 static void armv6pmu_start(struct arm_pmu *cpu_pmu)
360 {
361         unsigned long val;
362
363         val = armv6_pmcr_read();
364         val |= ARMV6_PMCR_ENABLE;
365         armv6_pmcr_write(val);
366 }
367
368 static void armv6pmu_stop(struct arm_pmu *cpu_pmu)
369 {
370         unsigned long val;
371
372         val = armv6_pmcr_read();
373         val &= ~ARMV6_PMCR_ENABLE;
374         armv6_pmcr_write(val);
375 }
376
377 static int
378 armv6pmu_get_event_idx(struct pmu_hw_events *cpuc,
379                                 struct perf_event *event)
380 {
381         struct hw_perf_event *hwc = &event->hw;
382         /* Always place a cycle counter into the cycle counter. */
383         if (ARMV6_PERFCTR_CPU_CYCLES == hwc->config_base) {
384                 if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
385                         return -EAGAIN;
386
387                 return ARMV6_CYCLE_COUNTER;
388         } else {
389                 /*
390                  * For anything other than a cycle counter, try and use
391                  * counter0 and counter1.
392                  */
393                 if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask))
394                         return ARMV6_COUNTER1;
395
396                 if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask))
397                         return ARMV6_COUNTER0;
398
399                 /* The counters are all in use. */
400                 return -EAGAIN;
401         }
402 }
403
404 static void armv6pmu_clear_event_idx(struct pmu_hw_events *cpuc,
405                                      struct perf_event *event)
406 {
407         clear_bit(event->hw.idx, cpuc->used_mask);
408 }
409
410 static void armv6pmu_disable_event(struct perf_event *event)
411 {
412         unsigned long val, mask, evt;
413         struct hw_perf_event *hwc = &event->hw;
414         int idx = hwc->idx;
415
416         if (ARMV6_CYCLE_COUNTER == idx) {
417                 mask    = ARMV6_PMCR_CCOUNT_IEN;
418                 evt     = 0;
419         } else if (ARMV6_COUNTER0 == idx) {
420                 mask    = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
421                 evt     = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
422         } else if (ARMV6_COUNTER1 == idx) {
423                 mask    = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
424                 evt     = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
425         } else {
426                 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
427                 return;
428         }
429
430         /*
431          * Mask out the current event and set the counter to count the number
432          * of ETM bus signal assertion cycles. The external reporting should
433          * be disabled and so this should never increment.
434          */
435         val = armv6_pmcr_read();
436         val &= ~mask;
437         val |= evt;
438         armv6_pmcr_write(val);
439 }
440
441 static void armv6mpcore_pmu_disable_event(struct perf_event *event)
442 {
443         unsigned long val, mask, evt = 0;
444         struct hw_perf_event *hwc = &event->hw;
445         int idx = hwc->idx;
446
447         if (ARMV6_CYCLE_COUNTER == idx) {
448                 mask    = ARMV6_PMCR_CCOUNT_IEN;
449         } else if (ARMV6_COUNTER0 == idx) {
450                 mask    = ARMV6_PMCR_COUNT0_IEN;
451         } else if (ARMV6_COUNTER1 == idx) {
452                 mask    = ARMV6_PMCR_COUNT1_IEN;
453         } else {
454                 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
455                 return;
456         }
457
458         /*
459          * Unlike UP ARMv6, we don't have a way of stopping the counters. We
460          * simply disable the interrupt reporting.
461          */
462         val = armv6_pmcr_read();
463         val &= ~mask;
464         val |= evt;
465         armv6_pmcr_write(val);
466 }
467
468 static int armv6_map_event(struct perf_event *event)
469 {
470         return armpmu_map_event(event, &armv6_perf_map,
471                                 &armv6_perf_cache_map, 0xFF);
472 }
473
474 static void armv6pmu_init(struct arm_pmu *cpu_pmu)
475 {
476         cpu_pmu->handle_irq     = armv6pmu_handle_irq;
477         cpu_pmu->enable         = armv6pmu_enable_event;
478         cpu_pmu->disable        = armv6pmu_disable_event;
479         cpu_pmu->read_counter   = armv6pmu_read_counter;
480         cpu_pmu->write_counter  = armv6pmu_write_counter;
481         cpu_pmu->get_event_idx  = armv6pmu_get_event_idx;
482         cpu_pmu->clear_event_idx = armv6pmu_clear_event_idx;
483         cpu_pmu->start          = armv6pmu_start;
484         cpu_pmu->stop           = armv6pmu_stop;
485         cpu_pmu->map_event      = armv6_map_event;
486         cpu_pmu->num_events     = 3;
487 }
488
489 static int armv6_1136_pmu_init(struct arm_pmu *cpu_pmu)
490 {
491         armv6pmu_init(cpu_pmu);
492         cpu_pmu->name           = "armv6_1136";
493         return 0;
494 }
495
496 static int armv6_1156_pmu_init(struct arm_pmu *cpu_pmu)
497 {
498         armv6pmu_init(cpu_pmu);
499         cpu_pmu->name           = "armv6_1156";
500         return 0;
501 }
502
503 static int armv6_1176_pmu_init(struct arm_pmu *cpu_pmu)
504 {
505         armv6pmu_init(cpu_pmu);
506         cpu_pmu->name           = "armv6_1176";
507         return 0;
508 }
509
510 /*
511  * ARMv6mpcore is almost identical to single core ARMv6 with the exception
512  * that some of the events have different enumerations and that there is no
513  * *hack* to stop the programmable counters. To stop the counters we simply
514  * disable the interrupt reporting and update the event. When unthrottling we
515  * reset the period and enable the interrupt reporting.
516  */
517
518 static int armv6mpcore_map_event(struct perf_event *event)
519 {
520         return armpmu_map_event(event, &armv6mpcore_perf_map,
521                                 &armv6mpcore_perf_cache_map, 0xFF);
522 }
523
524 static int armv6mpcore_pmu_init(struct arm_pmu *cpu_pmu)
525 {
526         cpu_pmu->name           = "armv6_11mpcore";
527         cpu_pmu->handle_irq     = armv6pmu_handle_irq;
528         cpu_pmu->enable         = armv6pmu_enable_event;
529         cpu_pmu->disable        = armv6mpcore_pmu_disable_event;
530         cpu_pmu->read_counter   = armv6pmu_read_counter;
531         cpu_pmu->write_counter  = armv6pmu_write_counter;
532         cpu_pmu->get_event_idx  = armv6pmu_get_event_idx;
533         cpu_pmu->clear_event_idx = armv6pmu_clear_event_idx;
534         cpu_pmu->start          = armv6pmu_start;
535         cpu_pmu->stop           = armv6pmu_stop;
536         cpu_pmu->map_event      = armv6mpcore_map_event;
537         cpu_pmu->num_events     = 3;
538
539         return 0;
540 }
541
542 static const struct of_device_id armv6_pmu_of_device_ids[] = {
543         {.compatible = "arm,arm11mpcore-pmu",   .data = armv6mpcore_pmu_init},
544         {.compatible = "arm,arm1176-pmu",       .data = armv6_1176_pmu_init},
545         {.compatible = "arm,arm1136-pmu",       .data = armv6_1136_pmu_init},
546         { /* sentinel value */ }
547 };
548
549 static const struct pmu_probe_info armv6_pmu_probe_table[] = {
550         ARM_PMU_PROBE(ARM_CPU_PART_ARM1136, armv6_1136_pmu_init),
551         ARM_PMU_PROBE(ARM_CPU_PART_ARM1156, armv6_1156_pmu_init),
552         ARM_PMU_PROBE(ARM_CPU_PART_ARM1176, armv6_1176_pmu_init),
553         ARM_PMU_PROBE(ARM_CPU_PART_ARM11MPCORE, armv6mpcore_pmu_init),
554         { /* sentinel value */ }
555 };
556
557 static int armv6_pmu_device_probe(struct platform_device *pdev)
558 {
559         return arm_pmu_device_probe(pdev, armv6_pmu_of_device_ids,
560                                     armv6_pmu_probe_table);
561 }
562
563 static struct platform_driver armv6_pmu_driver = {
564         .driver         = {
565                 .name   = "armv6-pmu",
566                 .of_match_table = armv6_pmu_of_device_ids,
567         },
568         .probe          = armv6_pmu_device_probe,
569 };
570
571 builtin_platform_driver(armv6_pmu_driver);
572 #endif  /* CONFIG_CPU_V6 || CONFIG_CPU_V6K */
This page took 0.06381 seconds and 4 git commands to generate.