1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright © 2006-2014 Intel Corporation.
13 #define pr_fmt(fmt) "DMAR: " fmt
14 #define dev_fmt(fmt) pr_fmt(fmt)
16 #include <linux/init.h>
17 #include <linux/bitmap.h>
18 #include <linux/debugfs.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/irq.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock.h>
24 #include <linux/pci.h>
25 #include <linux/dmar.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/mempool.h>
28 #include <linux/memory.h>
29 #include <linux/cpu.h>
30 #include <linux/timer.h>
32 #include <linux/iova.h>
33 #include <linux/iommu.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38 #include <linux/pci-ats.h>
39 #include <linux/memblock.h>
40 #include <linux/dma-contiguous.h>
41 #include <linux/dma-direct.h>
42 #include <linux/crash_dump.h>
43 #include <linux/numa.h>
44 #include <linux/swiotlb.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
48 #include <trace/events/intel_iommu.h>
50 #include "../irq_remapping.h"
53 #define ROOT_SIZE VTD_PAGE_SIZE
54 #define CONTEXT_SIZE VTD_PAGE_SIZE
56 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
61 #define IOAPIC_RANGE_START (0xfee00000)
62 #define IOAPIC_RANGE_END (0xfeefffff)
63 #define IOVA_START_ADDR (0x1000)
65 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
67 #define MAX_AGAW_WIDTH 64
68 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
70 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
73 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
76 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
79 /* IO virtual address start page frame number */
80 #define IOVA_START_PFN (1)
82 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
84 /* page table handling */
85 #define LEVEL_STRIDE (9)
86 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
89 * This bitmap is used to advertise the page sizes our hardware support
90 * to the IOMMU core, which will then use this information to split
91 * physically contiguous memory regions it is mapping into page sizes
94 * Traditionally the IOMMU core just handed us the mappings directly,
95 * after making sure the size is an order of a 4KiB page and that the
96 * mapping has natural alignment.
98 * To retain this behavior, we currently advertise that we support
99 * all page sizes that are an order of 4KiB.
101 * If at some point we'd like to utilize the IOMMU core's new behavior,
102 * we could change this to advertise the real page sizes we support.
104 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
106 static inline int agaw_to_level(int agaw)
111 static inline int agaw_to_width(int agaw)
113 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
116 static inline int width_to_agaw(int width)
118 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
121 static inline unsigned int level_to_offset_bits(int level)
123 return (level - 1) * LEVEL_STRIDE;
126 static inline int pfn_level_offset(unsigned long pfn, int level)
128 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
131 static inline unsigned long level_mask(int level)
133 return -1UL << level_to_offset_bits(level);
136 static inline unsigned long level_size(int level)
138 return 1UL << level_to_offset_bits(level);
141 static inline unsigned long align_to_level(unsigned long pfn, int level)
143 return (pfn + level_size(level) - 1) & level_mask(level);
146 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
148 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
151 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
152 are never going to work. */
153 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
155 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
160 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
162 static inline unsigned long page_to_dma_pfn(struct page *pg)
164 return mm_to_dma_pfn(page_to_pfn(pg));
166 static inline unsigned long virt_to_dma_pfn(void *p)
168 return page_to_dma_pfn(virt_to_page(p));
171 /* global iommu list, set NULL for ignored DMAR units */
172 static struct intel_iommu **g_iommus;
174 static void __init check_tylersburg_isoch(void);
175 static int rwbf_quirk;
178 * set to 1 to panic kernel if can't successfully enable VT-d
179 * (used when kernel is launched w/ TXT)
181 static int force_on = 0;
182 int intel_iommu_tboot_noforce;
183 static int no_platform_optin;
185 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
188 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
191 static phys_addr_t root_entry_lctp(struct root_entry *re)
196 return re->lo & VTD_PAGE_MASK;
200 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
203 static phys_addr_t root_entry_uctp(struct root_entry *re)
208 return re->hi & VTD_PAGE_MASK;
211 static inline void context_clear_pasid_enable(struct context_entry *context)
213 context->lo &= ~(1ULL << 11);
216 static inline bool context_pasid_enabled(struct context_entry *context)
218 return !!(context->lo & (1ULL << 11));
221 static inline void context_set_copied(struct context_entry *context)
223 context->hi |= (1ull << 3);
226 static inline bool context_copied(struct context_entry *context)
228 return !!(context->hi & (1ULL << 3));
231 static inline bool __context_present(struct context_entry *context)
233 return (context->lo & 1);
236 bool context_present(struct context_entry *context)
238 return context_pasid_enabled(context) ?
239 __context_present(context) :
240 __context_present(context) && !context_copied(context);
243 static inline void context_set_present(struct context_entry *context)
248 static inline void context_set_fault_enable(struct context_entry *context)
250 context->lo &= (((u64)-1) << 2) | 1;
253 static inline void context_set_translation_type(struct context_entry *context,
256 context->lo &= (((u64)-1) << 4) | 3;
257 context->lo |= (value & 3) << 2;
260 static inline void context_set_address_root(struct context_entry *context,
263 context->lo &= ~VTD_PAGE_MASK;
264 context->lo |= value & VTD_PAGE_MASK;
267 static inline void context_set_address_width(struct context_entry *context,
270 context->hi |= value & 7;
273 static inline void context_set_domain_id(struct context_entry *context,
276 context->hi |= (value & ((1 << 16) - 1)) << 8;
279 static inline int context_domain_id(struct context_entry *c)
281 return((c->hi >> 8) & 0xffff);
284 static inline void context_clear_entry(struct context_entry *context)
291 * This domain is a statically identity mapping domain.
292 * 1. This domain creats a static 1:1 mapping to all usable memory.
293 * 2. It maps to each iommu if successful.
294 * 3. Each iommu mapps to this domain if successful.
296 static struct dmar_domain *si_domain;
297 static int hw_pass_through = 1;
299 #define for_each_domain_iommu(idx, domain) \
300 for (idx = 0; idx < g_num_of_iommus; idx++) \
301 if (domain->iommu_refcnt[idx])
303 struct dmar_rmrr_unit {
304 struct list_head list; /* list of rmrr units */
305 struct acpi_dmar_header *hdr; /* ACPI header */
306 u64 base_address; /* reserved base address*/
307 u64 end_address; /* reserved end address */
308 struct dmar_dev_scope *devices; /* target devices */
309 int devices_cnt; /* target device count */
312 struct dmar_atsr_unit {
313 struct list_head list; /* list of ATSR units */
314 struct acpi_dmar_header *hdr; /* ACPI header */
315 struct dmar_dev_scope *devices; /* target devices */
316 int devices_cnt; /* target device count */
317 u8 include_all:1; /* include all ports */
320 static LIST_HEAD(dmar_atsr_units);
321 static LIST_HEAD(dmar_rmrr_units);
323 #define for_each_rmrr_units(rmrr) \
324 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
326 /* bitmap for indexing intel_iommus */
327 static int g_num_of_iommus;
329 static void domain_exit(struct dmar_domain *domain);
330 static void domain_remove_dev_info(struct dmar_domain *domain);
331 static void dmar_remove_one_dev_info(struct device *dev);
332 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
333 static int intel_iommu_attach_device(struct iommu_domain *domain,
335 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
338 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
339 int dmar_disabled = 0;
341 int dmar_disabled = 1;
342 #endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */
344 #ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON
345 int intel_iommu_sm = 1;
348 #endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */
350 int intel_iommu_enabled = 0;
351 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
353 static int dmar_map_gfx = 1;
354 static int dmar_forcedac;
355 static int intel_iommu_strict;
356 static int intel_iommu_superpage = 1;
357 static int iommu_identity_mapping;
358 static int intel_no_bounce;
359 static int iommu_skip_te_disable;
361 #define IDENTMAP_GFX 2
362 #define IDENTMAP_AZALIA 4
364 int intel_iommu_gfx_mapped;
365 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
367 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
368 #define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
369 struct device_domain_info *get_domain_info(struct device *dev)
371 struct device_domain_info *info;
376 info = dev->archdata.iommu;
377 if (unlikely(info == DUMMY_DEVICE_DOMAIN_INFO ||
378 info == DEFER_DEVICE_DOMAIN_INFO))
384 DEFINE_SPINLOCK(device_domain_lock);
385 static LIST_HEAD(device_domain_list);
387 #define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) && \
388 to_pci_dev(d)->untrusted)
391 * Iterate over elements in device_domain_list and call the specified
392 * callback @fn against each element.
394 int for_each_device_domain(int (*fn)(struct device_domain_info *info,
395 void *data), void *data)
399 struct device_domain_info *info;
401 spin_lock_irqsave(&device_domain_lock, flags);
402 list_for_each_entry(info, &device_domain_list, global) {
403 ret = fn(info, data);
405 spin_unlock_irqrestore(&device_domain_lock, flags);
409 spin_unlock_irqrestore(&device_domain_lock, flags);
414 const struct iommu_ops intel_iommu_ops;
416 static bool translation_pre_enabled(struct intel_iommu *iommu)
418 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
421 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
423 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
426 static void init_translation_status(struct intel_iommu *iommu)
430 gsts = readl(iommu->reg + DMAR_GSTS_REG);
431 if (gsts & DMA_GSTS_TES)
432 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
435 static int __init intel_iommu_setup(char *str)
440 if (!strncmp(str, "on", 2)) {
442 pr_info("IOMMU enabled\n");
443 } else if (!strncmp(str, "off", 3)) {
445 no_platform_optin = 1;
446 pr_info("IOMMU disabled\n");
447 } else if (!strncmp(str, "igfx_off", 8)) {
449 pr_info("Disable GFX device mapping\n");
450 } else if (!strncmp(str, "forcedac", 8)) {
451 pr_info("Forcing DAC for PCI devices\n");
453 } else if (!strncmp(str, "strict", 6)) {
454 pr_info("Disable batched IOTLB flush\n");
455 intel_iommu_strict = 1;
456 } else if (!strncmp(str, "sp_off", 6)) {
457 pr_info("Disable supported super page\n");
458 intel_iommu_superpage = 0;
459 } else if (!strncmp(str, "sm_on", 5)) {
460 pr_info("Intel-IOMMU: scalable mode supported\n");
462 } else if (!strncmp(str, "tboot_noforce", 13)) {
463 pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
464 intel_iommu_tboot_noforce = 1;
465 } else if (!strncmp(str, "nobounce", 8)) {
466 pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
470 str += strcspn(str, ",");
476 __setup("intel_iommu=", intel_iommu_setup);
478 static struct kmem_cache *iommu_domain_cache;
479 static struct kmem_cache *iommu_devinfo_cache;
481 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
483 struct dmar_domain **domains;
486 domains = iommu->domains[idx];
490 return domains[did & 0xff];
493 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
494 struct dmar_domain *domain)
496 struct dmar_domain **domains;
499 if (!iommu->domains[idx]) {
500 size_t size = 256 * sizeof(struct dmar_domain *);
501 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
504 domains = iommu->domains[idx];
505 if (WARN_ON(!domains))
508 domains[did & 0xff] = domain;
511 void *alloc_pgtable_page(int node)
516 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
518 vaddr = page_address(page);
522 void free_pgtable_page(void *vaddr)
524 free_page((unsigned long)vaddr);
527 static inline void *alloc_domain_mem(void)
529 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
532 static void free_domain_mem(void *vaddr)
534 kmem_cache_free(iommu_domain_cache, vaddr);
537 static inline void * alloc_devinfo_mem(void)
539 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
542 static inline void free_devinfo_mem(void *vaddr)
544 kmem_cache_free(iommu_devinfo_cache, vaddr);
547 static inline int domain_type_is_si(struct dmar_domain *domain)
549 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
552 static inline bool domain_use_first_level(struct dmar_domain *domain)
554 return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL;
557 static inline int domain_pfn_supported(struct dmar_domain *domain,
560 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
562 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
565 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
570 sagaw = cap_sagaw(iommu->cap);
571 for (agaw = width_to_agaw(max_gaw);
573 if (test_bit(agaw, &sagaw))
581 * Calculate max SAGAW for each iommu.
583 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
585 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
589 * calculate agaw for each iommu.
590 * "SAGAW" may be different across iommus, use a default agaw, and
591 * get a supported less agaw for iommus that don't support the default agaw.
593 int iommu_calculate_agaw(struct intel_iommu *iommu)
595 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
598 /* This functionin only returns single iommu in a domain */
599 struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
603 /* si_domain and vm domain should not get here. */
604 if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
607 for_each_domain_iommu(iommu_id, domain)
610 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
613 return g_iommus[iommu_id];
616 static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
618 return sm_supported(iommu) ?
619 ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
622 static void domain_update_iommu_coherency(struct dmar_domain *domain)
624 struct dmar_drhd_unit *drhd;
625 struct intel_iommu *iommu;
629 domain->iommu_coherency = 1;
631 for_each_domain_iommu(i, domain) {
633 if (!iommu_paging_structure_coherency(g_iommus[i])) {
634 domain->iommu_coherency = 0;
641 /* No hardware attached; use lowest common denominator */
643 for_each_active_iommu(iommu, drhd) {
644 if (!iommu_paging_structure_coherency(iommu)) {
645 domain->iommu_coherency = 0;
652 static int domain_update_iommu_snooping(struct intel_iommu *skip)
654 struct dmar_drhd_unit *drhd;
655 struct intel_iommu *iommu;
659 for_each_active_iommu(iommu, drhd) {
661 if (!ecap_sc_support(iommu->ecap)) {
672 static int domain_update_iommu_superpage(struct dmar_domain *domain,
673 struct intel_iommu *skip)
675 struct dmar_drhd_unit *drhd;
676 struct intel_iommu *iommu;
679 if (!intel_iommu_superpage) {
683 /* set iommu_superpage to the smallest common denominator */
685 for_each_active_iommu(iommu, drhd) {
687 if (domain && domain_use_first_level(domain)) {
688 if (!cap_fl1gp_support(iommu->cap))
691 mask &= cap_super_page_val(iommu->cap);
703 /* Some capabilities may be different across iommus */
704 static void domain_update_iommu_cap(struct dmar_domain *domain)
706 domain_update_iommu_coherency(domain);
707 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
708 domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
711 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
714 struct root_entry *root = &iommu->root_entry[bus];
715 struct context_entry *context;
719 if (sm_supported(iommu)) {
727 context = phys_to_virt(*entry & VTD_PAGE_MASK);
729 unsigned long phy_addr;
733 context = alloc_pgtable_page(iommu->node);
737 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
738 phy_addr = virt_to_phys((void *)context);
739 *entry = phy_addr | 1;
740 __iommu_flush_cache(iommu, entry, sizeof(*entry));
742 return &context[devfn];
745 static int iommu_dummy(struct device *dev)
747 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
750 static bool attach_deferred(struct device *dev)
752 return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
756 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
757 * sub-hierarchy of a candidate PCI-PCI bridge
758 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
759 * @bridge: the candidate PCI-PCI bridge
761 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
764 is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
766 struct pci_dev *pdev, *pbridge;
768 if (!dev_is_pci(dev) || !dev_is_pci(bridge))
771 pdev = to_pci_dev(dev);
772 pbridge = to_pci_dev(bridge);
774 if (pbridge->subordinate &&
775 pbridge->subordinate->number <= pdev->bus->number &&
776 pbridge->subordinate->busn_res.end >= pdev->bus->number)
782 struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
784 struct dmar_drhd_unit *drhd = NULL;
785 struct pci_dev *pdev = NULL;
786 struct intel_iommu *iommu;
791 if (!dev || iommu_dummy(dev))
794 if (dev_is_pci(dev)) {
795 struct pci_dev *pf_pdev;
797 pdev = pci_real_dma_dev(to_pci_dev(dev));
799 /* VFs aren't listed in scope tables; we need to look up
800 * the PF instead to find the IOMMU. */
801 pf_pdev = pci_physfn(pdev);
803 segment = pci_domain_nr(pdev->bus);
804 } else if (has_acpi_companion(dev))
805 dev = &ACPI_COMPANION(dev)->dev;
808 for_each_active_iommu(iommu, drhd) {
809 if (pdev && segment != drhd->segment)
812 for_each_active_dev_scope(drhd->devices,
813 drhd->devices_cnt, i, tmp) {
815 /* For a VF use its original BDF# not that of the PF
816 * which we used for the IOMMU lookup. Strictly speaking
817 * we could do this for all PCI devices; we only need to
818 * get the BDF# from the scope table for ACPI matches. */
819 if (pdev && pdev->is_virtfn)
823 *bus = drhd->devices[i].bus;
824 *devfn = drhd->devices[i].devfn;
829 if (is_downstream_to_pci_bridge(dev, tmp))
833 if (pdev && drhd->include_all) {
836 *bus = pdev->bus->number;
837 *devfn = pdev->devfn;
849 static void domain_flush_cache(struct dmar_domain *domain,
850 void *addr, int size)
852 if (!domain->iommu_coherency)
853 clflush_cache_range(addr, size);
856 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
858 struct context_entry *context;
862 spin_lock_irqsave(&iommu->lock, flags);
863 context = iommu_context_addr(iommu, bus, devfn, 0);
865 ret = context_present(context);
866 spin_unlock_irqrestore(&iommu->lock, flags);
870 static void free_context_table(struct intel_iommu *iommu)
874 struct context_entry *context;
876 spin_lock_irqsave(&iommu->lock, flags);
877 if (!iommu->root_entry) {
880 for (i = 0; i < ROOT_ENTRY_NR; i++) {
881 context = iommu_context_addr(iommu, i, 0, 0);
883 free_pgtable_page(context);
885 if (!sm_supported(iommu))
888 context = iommu_context_addr(iommu, i, 0x80, 0);
890 free_pgtable_page(context);
893 free_pgtable_page(iommu->root_entry);
894 iommu->root_entry = NULL;
896 spin_unlock_irqrestore(&iommu->lock, flags);
899 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
900 unsigned long pfn, int *target_level)
902 struct dma_pte *parent, *pte;
903 int level = agaw_to_level(domain->agaw);
906 BUG_ON(!domain->pgd);
908 if (!domain_pfn_supported(domain, pfn))
909 /* Address beyond IOMMU's addressing capabilities. */
912 parent = domain->pgd;
917 offset = pfn_level_offset(pfn, level);
918 pte = &parent[offset];
919 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
921 if (level == *target_level)
924 if (!dma_pte_present(pte)) {
927 tmp_page = alloc_pgtable_page(domain->nid);
932 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
933 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
934 if (domain_use_first_level(domain))
935 pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US;
936 if (cmpxchg64(&pte->val, 0ULL, pteval))
937 /* Someone else set it while we were thinking; use theirs. */
938 free_pgtable_page(tmp_page);
940 domain_flush_cache(domain, pte, sizeof(*pte));
945 parent = phys_to_virt(dma_pte_addr(pte));
950 *target_level = level;
955 /* return address's pte at specific level */
956 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
958 int level, int *large_page)
960 struct dma_pte *parent, *pte;
961 int total = agaw_to_level(domain->agaw);
964 parent = domain->pgd;
965 while (level <= total) {
966 offset = pfn_level_offset(pfn, total);
967 pte = &parent[offset];
971 if (!dma_pte_present(pte)) {
976 if (dma_pte_superpage(pte)) {
981 parent = phys_to_virt(dma_pte_addr(pte));
987 /* clear last level pte, a tlb flush should be followed */
988 static void dma_pte_clear_range(struct dmar_domain *domain,
989 unsigned long start_pfn,
990 unsigned long last_pfn)
992 unsigned int large_page;
993 struct dma_pte *first_pte, *pte;
995 BUG_ON(!domain_pfn_supported(domain, start_pfn));
996 BUG_ON(!domain_pfn_supported(domain, last_pfn));
997 BUG_ON(start_pfn > last_pfn);
999 /* we don't need lock here; nobody else touches the iova range */
1002 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1004 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1009 start_pfn += lvl_to_nr_pages(large_page);
1011 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1013 domain_flush_cache(domain, first_pte,
1014 (void *)pte - (void *)first_pte);
1016 } while (start_pfn && start_pfn <= last_pfn);
1019 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1020 int retain_level, struct dma_pte *pte,
1021 unsigned long pfn, unsigned long start_pfn,
1022 unsigned long last_pfn)
1024 pfn = max(start_pfn, pfn);
1025 pte = &pte[pfn_level_offset(pfn, level)];
1028 unsigned long level_pfn;
1029 struct dma_pte *level_pte;
1031 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1034 level_pfn = pfn & level_mask(level);
1035 level_pte = phys_to_virt(dma_pte_addr(pte));
1038 dma_pte_free_level(domain, level - 1, retain_level,
1039 level_pte, level_pfn, start_pfn,
1044 * Free the page table if we're below the level we want to
1045 * retain and the range covers the entire table.
1047 if (level < retain_level && !(start_pfn > level_pfn ||
1048 last_pfn < level_pfn + level_size(level) - 1)) {
1050 domain_flush_cache(domain, pte, sizeof(*pte));
1051 free_pgtable_page(level_pte);
1054 pfn += level_size(level);
1055 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1059 * clear last level (leaf) ptes and free page table pages below the
1060 * level we wish to keep intact.
1062 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1063 unsigned long start_pfn,
1064 unsigned long last_pfn,
1067 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1068 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1069 BUG_ON(start_pfn > last_pfn);
1071 dma_pte_clear_range(domain, start_pfn, last_pfn);
1073 /* We don't need lock here; nobody else touches the iova range */
1074 dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1075 domain->pgd, 0, start_pfn, last_pfn);
1078 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1079 free_pgtable_page(domain->pgd);
1084 /* When a page at a given level is being unlinked from its parent, we don't
1085 need to *modify* it at all. All we need to do is make a list of all the
1086 pages which can be freed just as soon as we've flushed the IOTLB and we
1087 know the hardware page-walk will no longer touch them.
1088 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1090 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1091 int level, struct dma_pte *pte,
1092 struct page *freelist)
1096 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1097 pg->freelist = freelist;
1103 pte = page_address(pg);
1105 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1106 freelist = dma_pte_list_pagetables(domain, level - 1,
1109 } while (!first_pte_in_page(pte));
1114 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1115 struct dma_pte *pte, unsigned long pfn,
1116 unsigned long start_pfn,
1117 unsigned long last_pfn,
1118 struct page *freelist)
1120 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1122 pfn = max(start_pfn, pfn);
1123 pte = &pte[pfn_level_offset(pfn, level)];
1126 unsigned long level_pfn;
1128 if (!dma_pte_present(pte))
1131 level_pfn = pfn & level_mask(level);
1133 /* If range covers entire pagetable, free it */
1134 if (start_pfn <= level_pfn &&
1135 last_pfn >= level_pfn + level_size(level) - 1) {
1136 /* These suborbinate page tables are going away entirely. Don't
1137 bother to clear them; we're just going to *free* them. */
1138 if (level > 1 && !dma_pte_superpage(pte))
1139 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1145 } else if (level > 1) {
1146 /* Recurse down into a level that isn't *entirely* obsolete */
1147 freelist = dma_pte_clear_level(domain, level - 1,
1148 phys_to_virt(dma_pte_addr(pte)),
1149 level_pfn, start_pfn, last_pfn,
1153 pfn += level_size(level);
1154 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1157 domain_flush_cache(domain, first_pte,
1158 (void *)++last_pte - (void *)first_pte);
1163 /* We can't just free the pages because the IOMMU may still be walking
1164 the page tables, and may have cached the intermediate levels. The
1165 pages can only be freed after the IOTLB flush has been done. */
1166 static struct page *domain_unmap(struct dmar_domain *domain,
1167 unsigned long start_pfn,
1168 unsigned long last_pfn)
1170 struct page *freelist;
1172 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1173 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1174 BUG_ON(start_pfn > last_pfn);
1176 /* we don't need lock here; nobody else touches the iova range */
1177 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1178 domain->pgd, 0, start_pfn, last_pfn, NULL);
1181 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1182 struct page *pgd_page = virt_to_page(domain->pgd);
1183 pgd_page->freelist = freelist;
1184 freelist = pgd_page;
1192 static void dma_free_pagelist(struct page *freelist)
1196 while ((pg = freelist)) {
1197 freelist = pg->freelist;
1198 free_pgtable_page(page_address(pg));
1202 static void iova_entry_free(unsigned long data)
1204 struct page *freelist = (struct page *)data;
1206 dma_free_pagelist(freelist);
1209 /* iommu handling */
1210 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1212 struct root_entry *root;
1213 unsigned long flags;
1215 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1217 pr_err("Allocating root entry for %s failed\n",
1222 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1224 spin_lock_irqsave(&iommu->lock, flags);
1225 iommu->root_entry = root;
1226 spin_unlock_irqrestore(&iommu->lock, flags);
1231 static void iommu_set_root_entry(struct intel_iommu *iommu)
1237 addr = virt_to_phys(iommu->root_entry);
1238 if (sm_supported(iommu))
1239 addr |= DMA_RTADDR_SMT;
1241 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1242 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1244 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1246 /* Make sure hardware complete it */
1247 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1248 readl, (sts & DMA_GSTS_RTPS), sts);
1250 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1253 void iommu_flush_write_buffer(struct intel_iommu *iommu)
1258 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1261 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1262 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1264 /* Make sure hardware complete it */
1265 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1266 readl, (!(val & DMA_GSTS_WBFS)), val);
1268 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1271 /* return value determine if we need a write buffer flush */
1272 static void __iommu_flush_context(struct intel_iommu *iommu,
1273 u16 did, u16 source_id, u8 function_mask,
1280 case DMA_CCMD_GLOBAL_INVL:
1281 val = DMA_CCMD_GLOBAL_INVL;
1283 case DMA_CCMD_DOMAIN_INVL:
1284 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1286 case DMA_CCMD_DEVICE_INVL:
1287 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1288 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1293 val |= DMA_CCMD_ICC;
1295 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1296 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1298 /* Make sure hardware complete it */
1299 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1300 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1302 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1305 /* return value determine if we need a write buffer flush */
1306 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1307 u64 addr, unsigned int size_order, u64 type)
1309 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1310 u64 val = 0, val_iva = 0;
1314 case DMA_TLB_GLOBAL_FLUSH:
1315 /* global flush doesn't need set IVA_REG */
1316 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1318 case DMA_TLB_DSI_FLUSH:
1319 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1321 case DMA_TLB_PSI_FLUSH:
1322 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1323 /* IH bit is passed in as part of address */
1324 val_iva = size_order | addr;
1329 /* Note: set drain read/write */
1332 * This is probably to be super secure.. Looks like we can
1333 * ignore it without any impact.
1335 if (cap_read_drain(iommu->cap))
1336 val |= DMA_TLB_READ_DRAIN;
1338 if (cap_write_drain(iommu->cap))
1339 val |= DMA_TLB_WRITE_DRAIN;
1341 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1342 /* Note: Only uses first TLB reg currently */
1344 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1345 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1347 /* Make sure hardware complete it */
1348 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1349 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1351 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1353 /* check IOTLB invalidation granularity */
1354 if (DMA_TLB_IAIG(val) == 0)
1355 pr_err("Flush IOTLB failed\n");
1356 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1357 pr_debug("TLB flush request %Lx, actual %Lx\n",
1358 (unsigned long long)DMA_TLB_IIRG(type),
1359 (unsigned long long)DMA_TLB_IAIG(val));
1362 static struct device_domain_info *
1363 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1366 struct device_domain_info *info;
1368 assert_spin_locked(&device_domain_lock);
1373 list_for_each_entry(info, &domain->devices, link)
1374 if (info->iommu == iommu && info->bus == bus &&
1375 info->devfn == devfn) {
1376 if (info->ats_supported && info->dev)
1384 static void domain_update_iotlb(struct dmar_domain *domain)
1386 struct device_domain_info *info;
1387 bool has_iotlb_device = false;
1389 assert_spin_locked(&device_domain_lock);
1391 list_for_each_entry(info, &domain->devices, link) {
1392 struct pci_dev *pdev;
1394 if (!info->dev || !dev_is_pci(info->dev))
1397 pdev = to_pci_dev(info->dev);
1398 if (pdev->ats_enabled) {
1399 has_iotlb_device = true;
1404 domain->has_iotlb_device = has_iotlb_device;
1407 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1409 struct pci_dev *pdev;
1411 assert_spin_locked(&device_domain_lock);
1413 if (!info || !dev_is_pci(info->dev))
1416 pdev = to_pci_dev(info->dev);
1417 /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1418 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1419 * queue depth at PF level. If DIT is not set, PFSID will be treated as
1420 * reserved, which should be set to 0.
1422 if (!ecap_dit(info->iommu->ecap))
1425 struct pci_dev *pf_pdev;
1427 /* pdev will be returned if device is not a vf */
1428 pf_pdev = pci_physfn(pdev);
1429 info->pfsid = pci_dev_id(pf_pdev);
1432 #ifdef CONFIG_INTEL_IOMMU_SVM
1433 /* The PCIe spec, in its wisdom, declares that the behaviour of
1434 the device if you enable PASID support after ATS support is
1435 undefined. So always enable PASID support on devices which
1436 have it, even if we can't yet know if we're ever going to
1438 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1439 info->pasid_enabled = 1;
1441 if (info->pri_supported &&
1442 (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1) &&
1443 !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1444 info->pri_enabled = 1;
1446 if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1447 !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1448 info->ats_enabled = 1;
1449 domain_update_iotlb(info->domain);
1450 info->ats_qdep = pci_ats_queue_depth(pdev);
1454 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1456 struct pci_dev *pdev;
1458 assert_spin_locked(&device_domain_lock);
1460 if (!dev_is_pci(info->dev))
1463 pdev = to_pci_dev(info->dev);
1465 if (info->ats_enabled) {
1466 pci_disable_ats(pdev);
1467 info->ats_enabled = 0;
1468 domain_update_iotlb(info->domain);
1470 #ifdef CONFIG_INTEL_IOMMU_SVM
1471 if (info->pri_enabled) {
1472 pci_disable_pri(pdev);
1473 info->pri_enabled = 0;
1475 if (info->pasid_enabled) {
1476 pci_disable_pasid(pdev);
1477 info->pasid_enabled = 0;
1482 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1483 u64 addr, unsigned mask)
1486 unsigned long flags;
1487 struct device_domain_info *info;
1489 if (!domain->has_iotlb_device)
1492 spin_lock_irqsave(&device_domain_lock, flags);
1493 list_for_each_entry(info, &domain->devices, link) {
1494 if (!info->ats_enabled)
1497 sid = info->bus << 8 | info->devfn;
1498 qdep = info->ats_qdep;
1499 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1502 spin_unlock_irqrestore(&device_domain_lock, flags);
1505 static void domain_flush_piotlb(struct intel_iommu *iommu,
1506 struct dmar_domain *domain,
1507 u64 addr, unsigned long npages, bool ih)
1509 u16 did = domain->iommu_did[iommu->seq_id];
1511 if (domain->default_pasid)
1512 qi_flush_piotlb(iommu, did, domain->default_pasid,
1515 if (!list_empty(&domain->devices))
1516 qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih);
1519 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1520 struct dmar_domain *domain,
1521 unsigned long pfn, unsigned int pages,
1524 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1525 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1526 u16 did = domain->iommu_did[iommu->seq_id];
1533 if (domain_use_first_level(domain)) {
1534 domain_flush_piotlb(iommu, domain, addr, pages, ih);
1537 * Fallback to domain selective flush if no PSI support or
1538 * the size is too big. PSI requires page size to be 2 ^ x,
1539 * and the base address is naturally aligned to the size.
1541 if (!cap_pgsel_inv(iommu->cap) ||
1542 mask > cap_max_amask_val(iommu->cap))
1543 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1546 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1551 * In caching mode, changes of pages from non-present to present require
1552 * flush. However, device IOTLB doesn't need to be flushed in this case.
1554 if (!cap_caching_mode(iommu->cap) || !map)
1555 iommu_flush_dev_iotlb(domain, addr, mask);
1558 /* Notification for newly created mappings */
1559 static inline void __mapping_notify_one(struct intel_iommu *iommu,
1560 struct dmar_domain *domain,
1561 unsigned long pfn, unsigned int pages)
1564 * It's a non-present to present mapping. Only flush if caching mode
1567 if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain))
1568 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1570 iommu_flush_write_buffer(iommu);
1573 static void iommu_flush_iova(struct iova_domain *iovad)
1575 struct dmar_domain *domain;
1578 domain = container_of(iovad, struct dmar_domain, iovad);
1580 for_each_domain_iommu(idx, domain) {
1581 struct intel_iommu *iommu = g_iommus[idx];
1582 u16 did = domain->iommu_did[iommu->seq_id];
1584 if (domain_use_first_level(domain))
1585 domain_flush_piotlb(iommu, domain, 0, -1, 0);
1587 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1590 if (!cap_caching_mode(iommu->cap))
1591 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1592 0, MAX_AGAW_PFN_WIDTH);
1596 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1599 unsigned long flags;
1601 if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1604 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1605 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1606 pmen &= ~DMA_PMEN_EPM;
1607 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1609 /* wait for the protected region status bit to clear */
1610 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1611 readl, !(pmen & DMA_PMEN_PRS), pmen);
1613 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1616 static void iommu_enable_translation(struct intel_iommu *iommu)
1619 unsigned long flags;
1621 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1622 iommu->gcmd |= DMA_GCMD_TE;
1623 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1625 /* Make sure hardware complete it */
1626 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1627 readl, (sts & DMA_GSTS_TES), sts);
1629 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1632 static void iommu_disable_translation(struct intel_iommu *iommu)
1637 if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated &&
1638 (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap)))
1641 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1642 iommu->gcmd &= ~DMA_GCMD_TE;
1643 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1645 /* Make sure hardware complete it */
1646 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1647 readl, (!(sts & DMA_GSTS_TES)), sts);
1649 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1652 static int iommu_init_domains(struct intel_iommu *iommu)
1654 u32 ndomains, nlongs;
1657 ndomains = cap_ndoms(iommu->cap);
1658 pr_debug("%s: Number of Domains supported <%d>\n",
1659 iommu->name, ndomains);
1660 nlongs = BITS_TO_LONGS(ndomains);
1662 spin_lock_init(&iommu->lock);
1664 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1665 if (!iommu->domain_ids) {
1666 pr_err("%s: Allocating domain id array failed\n",
1671 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1672 iommu->domains = kzalloc(size, GFP_KERNEL);
1674 if (iommu->domains) {
1675 size = 256 * sizeof(struct dmar_domain *);
1676 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1679 if (!iommu->domains || !iommu->domains[0]) {
1680 pr_err("%s: Allocating domain array failed\n",
1682 kfree(iommu->domain_ids);
1683 kfree(iommu->domains);
1684 iommu->domain_ids = NULL;
1685 iommu->domains = NULL;
1690 * If Caching mode is set, then invalid translations are tagged
1691 * with domain-id 0, hence we need to pre-allocate it. We also
1692 * use domain-id 0 as a marker for non-allocated domain-id, so
1693 * make sure it is not used for a real domain.
1695 set_bit(0, iommu->domain_ids);
1698 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1699 * entry for first-level or pass-through translation modes should
1700 * be programmed with a domain id different from those used for
1701 * second-level or nested translation. We reserve a domain id for
1704 if (sm_supported(iommu))
1705 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
1710 static void disable_dmar_iommu(struct intel_iommu *iommu)
1712 struct device_domain_info *info, *tmp;
1713 unsigned long flags;
1715 if (!iommu->domains || !iommu->domain_ids)
1718 spin_lock_irqsave(&device_domain_lock, flags);
1719 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1720 if (info->iommu != iommu)
1723 if (!info->dev || !info->domain)
1726 __dmar_remove_one_dev_info(info);
1728 spin_unlock_irqrestore(&device_domain_lock, flags);
1730 if (iommu->gcmd & DMA_GCMD_TE)
1731 iommu_disable_translation(iommu);
1734 static void free_dmar_iommu(struct intel_iommu *iommu)
1736 if ((iommu->domains) && (iommu->domain_ids)) {
1737 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1740 for (i = 0; i < elems; i++)
1741 kfree(iommu->domains[i]);
1742 kfree(iommu->domains);
1743 kfree(iommu->domain_ids);
1744 iommu->domains = NULL;
1745 iommu->domain_ids = NULL;
1748 g_iommus[iommu->seq_id] = NULL;
1750 /* free context mapping */
1751 free_context_table(iommu);
1753 #ifdef CONFIG_INTEL_IOMMU_SVM
1754 if (pasid_supported(iommu)) {
1755 if (ecap_prs(iommu->ecap))
1756 intel_svm_finish_prq(iommu);
1758 if (ecap_vcs(iommu->ecap) && vccap_pasid(iommu->vccap))
1759 ioasid_unregister_allocator(&iommu->pasid_allocator);
1765 * Check and return whether first level is used by default for
1768 static bool first_level_by_default(void)
1770 struct dmar_drhd_unit *drhd;
1771 struct intel_iommu *iommu;
1772 static int first_level_support = -1;
1774 if (likely(first_level_support != -1))
1775 return first_level_support;
1777 first_level_support = 1;
1780 for_each_active_iommu(iommu, drhd) {
1781 if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) {
1782 first_level_support = 0;
1788 return first_level_support;
1791 static struct dmar_domain *alloc_domain(int flags)
1793 struct dmar_domain *domain;
1795 domain = alloc_domain_mem();
1799 memset(domain, 0, sizeof(*domain));
1800 domain->nid = NUMA_NO_NODE;
1801 domain->flags = flags;
1802 if (first_level_by_default())
1803 domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL;
1804 domain->has_iotlb_device = false;
1805 INIT_LIST_HEAD(&domain->devices);
1810 /* Must be called with iommu->lock */
1811 static int domain_attach_iommu(struct dmar_domain *domain,
1812 struct intel_iommu *iommu)
1814 unsigned long ndomains;
1817 assert_spin_locked(&device_domain_lock);
1818 assert_spin_locked(&iommu->lock);
1820 domain->iommu_refcnt[iommu->seq_id] += 1;
1821 domain->iommu_count += 1;
1822 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1823 ndomains = cap_ndoms(iommu->cap);
1824 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1826 if (num >= ndomains) {
1827 pr_err("%s: No free domain ids\n", iommu->name);
1828 domain->iommu_refcnt[iommu->seq_id] -= 1;
1829 domain->iommu_count -= 1;
1833 set_bit(num, iommu->domain_ids);
1834 set_iommu_domain(iommu, num, domain);
1836 domain->iommu_did[iommu->seq_id] = num;
1837 domain->nid = iommu->node;
1839 domain_update_iommu_cap(domain);
1845 static int domain_detach_iommu(struct dmar_domain *domain,
1846 struct intel_iommu *iommu)
1850 assert_spin_locked(&device_domain_lock);
1851 assert_spin_locked(&iommu->lock);
1853 domain->iommu_refcnt[iommu->seq_id] -= 1;
1854 count = --domain->iommu_count;
1855 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1856 num = domain->iommu_did[iommu->seq_id];
1857 clear_bit(num, iommu->domain_ids);
1858 set_iommu_domain(iommu, num, NULL);
1860 domain_update_iommu_cap(domain);
1861 domain->iommu_did[iommu->seq_id] = 0;
1867 static struct iova_domain reserved_iova_list;
1868 static struct lock_class_key reserved_rbtree_key;
1870 static int dmar_init_reserved_ranges(void)
1872 struct pci_dev *pdev = NULL;
1876 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1878 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1879 &reserved_rbtree_key);
1881 /* IOAPIC ranges shouldn't be accessed by DMA */
1882 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1883 IOVA_PFN(IOAPIC_RANGE_END));
1885 pr_err("Reserve IOAPIC range failed\n");
1889 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1890 for_each_pci_dev(pdev) {
1893 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1894 r = &pdev->resource[i];
1895 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1897 iova = reserve_iova(&reserved_iova_list,
1901 pci_err(pdev, "Reserve iova for %pR failed\n", r);
1909 static inline int guestwidth_to_adjustwidth(int gaw)
1912 int r = (gaw - 12) % 9;
1923 static void domain_exit(struct dmar_domain *domain)
1926 /* Remove associated devices and clear attached or cached domains */
1927 domain_remove_dev_info(domain);
1930 if (domain->domain.type == IOMMU_DOMAIN_DMA)
1931 put_iova_domain(&domain->iovad);
1934 struct page *freelist;
1936 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1937 dma_free_pagelist(freelist);
1940 free_domain_mem(domain);
1944 * Get the PASID directory size for scalable mode context entry.
1945 * Value of X in the PDTS field of a scalable mode context entry
1946 * indicates PASID directory with 2^(X + 7) entries.
1948 static inline unsigned long context_get_sm_pds(struct pasid_table *table)
1952 max_pde = table->max_pasid >> PASID_PDE_SHIFT;
1953 pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
1961 * Set the RID_PASID field of a scalable mode context entry. The
1962 * IOMMU hardware will use the PASID value set in this field for
1963 * DMA translations of DMA requests without PASID.
1966 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1968 context->hi |= pasid & ((1 << 20) - 1);
1972 * Set the DTE(Device-TLB Enable) field of a scalable mode context
1975 static inline void context_set_sm_dte(struct context_entry *context)
1977 context->lo |= (1 << 2);
1981 * Set the PRE(Page Request Enable) field of a scalable mode context
1984 static inline void context_set_sm_pre(struct context_entry *context)
1986 context->lo |= (1 << 4);
1989 /* Convert value to context PASID directory size field coding. */
1990 #define context_pdts(pds) (((pds) & 0x7) << 9)
1992 static int domain_context_mapping_one(struct dmar_domain *domain,
1993 struct intel_iommu *iommu,
1994 struct pasid_table *table,
1997 u16 did = domain->iommu_did[iommu->seq_id];
1998 int translation = CONTEXT_TT_MULTI_LEVEL;
1999 struct device_domain_info *info = NULL;
2000 struct context_entry *context;
2001 unsigned long flags;
2006 if (hw_pass_through && domain_type_is_si(domain))
2007 translation = CONTEXT_TT_PASS_THROUGH;
2009 pr_debug("Set context mapping for %02x:%02x.%d\n",
2010 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2012 BUG_ON(!domain->pgd);
2014 spin_lock_irqsave(&device_domain_lock, flags);
2015 spin_lock(&iommu->lock);
2018 context = iommu_context_addr(iommu, bus, devfn, 1);
2023 if (context_present(context))
2027 * For kdump cases, old valid entries may be cached due to the
2028 * in-flight DMA and copied pgtable, but there is no unmapping
2029 * behaviour for them, thus we need an explicit cache flush for
2030 * the newly-mapped device. For kdump, at this point, the device
2031 * is supposed to finish reset at its driver probe stage, so no
2032 * in-flight DMA will exist, and we don't need to worry anymore
2035 if (context_copied(context)) {
2036 u16 did_old = context_domain_id(context);
2038 if (did_old < cap_ndoms(iommu->cap)) {
2039 iommu->flush.flush_context(iommu, did_old,
2040 (((u16)bus) << 8) | devfn,
2041 DMA_CCMD_MASK_NOBIT,
2042 DMA_CCMD_DEVICE_INVL);
2043 iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2048 context_clear_entry(context);
2050 if (sm_supported(iommu)) {
2055 /* Setup the PASID DIR pointer: */
2056 pds = context_get_sm_pds(table);
2057 context->lo = (u64)virt_to_phys(table->table) |
2060 /* Setup the RID_PASID field: */
2061 context_set_sm_rid2pasid(context, PASID_RID2PASID);
2064 * Setup the Device-TLB enable bit and Page request
2067 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2068 if (info && info->ats_supported)
2069 context_set_sm_dte(context);
2070 if (info && info->pri_supported)
2071 context_set_sm_pre(context);
2073 struct dma_pte *pgd = domain->pgd;
2076 context_set_domain_id(context, did);
2078 if (translation != CONTEXT_TT_PASS_THROUGH) {
2080 * Skip top levels of page tables for iommu which has
2081 * less agaw than default. Unnecessary for PT mode.
2083 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2085 pgd = phys_to_virt(dma_pte_addr(pgd));
2086 if (!dma_pte_present(pgd))
2090 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2091 if (info && info->ats_supported)
2092 translation = CONTEXT_TT_DEV_IOTLB;
2094 translation = CONTEXT_TT_MULTI_LEVEL;
2096 context_set_address_root(context, virt_to_phys(pgd));
2097 context_set_address_width(context, agaw);
2100 * In pass through mode, AW must be programmed to
2101 * indicate the largest AGAW value supported by
2102 * hardware. And ASR is ignored by hardware.
2104 context_set_address_width(context, iommu->msagaw);
2107 context_set_translation_type(context, translation);
2110 context_set_fault_enable(context);
2111 context_set_present(context);
2112 if (!ecap_coherent(iommu->ecap))
2113 clflush_cache_range(context, sizeof(*context));
2116 * It's a non-present to present mapping. If hardware doesn't cache
2117 * non-present entry we only need to flush the write-buffer. If the
2118 * _does_ cache non-present entries, then it does so in the special
2119 * domain #0, which we have to flush:
2121 if (cap_caching_mode(iommu->cap)) {
2122 iommu->flush.flush_context(iommu, 0,
2123 (((u16)bus) << 8) | devfn,
2124 DMA_CCMD_MASK_NOBIT,
2125 DMA_CCMD_DEVICE_INVL);
2126 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2128 iommu_flush_write_buffer(iommu);
2130 iommu_enable_dev_iotlb(info);
2135 spin_unlock(&iommu->lock);
2136 spin_unlock_irqrestore(&device_domain_lock, flags);
2141 struct domain_context_mapping_data {
2142 struct dmar_domain *domain;
2143 struct intel_iommu *iommu;
2144 struct pasid_table *table;
2147 static int domain_context_mapping_cb(struct pci_dev *pdev,
2148 u16 alias, void *opaque)
2150 struct domain_context_mapping_data *data = opaque;
2152 return domain_context_mapping_one(data->domain, data->iommu,
2153 data->table, PCI_BUS_NUM(alias),
2158 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2160 struct domain_context_mapping_data data;
2161 struct pasid_table *table;
2162 struct intel_iommu *iommu;
2165 iommu = device_to_iommu(dev, &bus, &devfn);
2169 table = intel_pasid_get_table(dev);
2171 if (!dev_is_pci(dev))
2172 return domain_context_mapping_one(domain, iommu, table,
2175 data.domain = domain;
2179 return pci_for_each_dma_alias(to_pci_dev(dev),
2180 &domain_context_mapping_cb, &data);
2183 static int domain_context_mapped_cb(struct pci_dev *pdev,
2184 u16 alias, void *opaque)
2186 struct intel_iommu *iommu = opaque;
2188 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2191 static int domain_context_mapped(struct device *dev)
2193 struct intel_iommu *iommu;
2196 iommu = device_to_iommu(dev, &bus, &devfn);
2200 if (!dev_is_pci(dev))
2201 return device_context_mapped(iommu, bus, devfn);
2203 return !pci_for_each_dma_alias(to_pci_dev(dev),
2204 domain_context_mapped_cb, iommu);
2207 /* Returns a number of VTD pages, but aligned to MM page size */
2208 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2211 host_addr &= ~PAGE_MASK;
2212 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2215 /* Return largest possible superpage level for a given mapping */
2216 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2217 unsigned long iov_pfn,
2218 unsigned long phy_pfn,
2219 unsigned long pages)
2221 int support, level = 1;
2222 unsigned long pfnmerge;
2224 support = domain->iommu_superpage;
2226 /* To use a large page, the virtual *and* physical addresses
2227 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2228 of them will mean we have to use smaller pages. So just
2229 merge them and check both at once. */
2230 pfnmerge = iov_pfn | phy_pfn;
2232 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2233 pages >>= VTD_STRIDE_SHIFT;
2236 pfnmerge >>= VTD_STRIDE_SHIFT;
2243 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2244 struct scatterlist *sg, unsigned long phys_pfn,
2245 unsigned long nr_pages, int prot)
2247 struct dma_pte *first_pte = NULL, *pte = NULL;
2248 phys_addr_t uninitialized_var(pteval);
2249 unsigned long sg_res = 0;
2250 unsigned int largepage_lvl = 0;
2251 unsigned long lvl_pages = 0;
2254 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2256 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2259 attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
2260 if (domain_use_first_level(domain))
2261 attr |= DMA_FL_PTE_PRESENT | DMA_FL_PTE_XD | DMA_FL_PTE_US;
2265 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2268 while (nr_pages > 0) {
2272 unsigned int pgoff = sg->offset & ~PAGE_MASK;
2274 sg_res = aligned_nrpages(sg->offset, sg->length);
2275 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2276 sg->dma_length = sg->length;
2277 pteval = (sg_phys(sg) - pgoff) | attr;
2278 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2282 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2284 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2287 /* It is large page*/
2288 if (largepage_lvl > 1) {
2289 unsigned long nr_superpages, end_pfn;
2291 pteval |= DMA_PTE_LARGE_PAGE;
2292 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2294 nr_superpages = sg_res / lvl_pages;
2295 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2298 * Ensure that old small page tables are
2299 * removed to make room for superpage(s).
2300 * We're adding new large pages, so make sure
2301 * we don't remove their parent tables.
2303 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2306 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2310 /* We don't need lock here, nobody else
2311 * touches the iova range
2313 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2315 static int dumps = 5;
2316 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2317 iov_pfn, tmp, (unsigned long long)pteval);
2320 debug_dma_dump_mappings(NULL);
2325 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2327 BUG_ON(nr_pages < lvl_pages);
2328 BUG_ON(sg_res < lvl_pages);
2330 nr_pages -= lvl_pages;
2331 iov_pfn += lvl_pages;
2332 phys_pfn += lvl_pages;
2333 pteval += lvl_pages * VTD_PAGE_SIZE;
2334 sg_res -= lvl_pages;
2336 /* If the next PTE would be the first in a new page, then we
2337 need to flush the cache on the entries we've just written.
2338 And then we'll need to recalculate 'pte', so clear it and
2339 let it get set again in the if (!pte) block above.
2341 If we're done (!nr_pages) we need to flush the cache too.
2343 Also if we've been setting superpages, we may need to
2344 recalculate 'pte' and switch back to smaller pages for the
2345 end of the mapping, if the trailing size is not enough to
2346 use another superpage (i.e. sg_res < lvl_pages). */
2348 if (!nr_pages || first_pte_in_page(pte) ||
2349 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2350 domain_flush_cache(domain, first_pte,
2351 (void *)pte - (void *)first_pte);
2355 if (!sg_res && nr_pages)
2361 static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2362 struct scatterlist *sg, unsigned long phys_pfn,
2363 unsigned long nr_pages, int prot)
2366 struct intel_iommu *iommu;
2368 /* Do the real mapping first */
2369 ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
2373 for_each_domain_iommu(iommu_id, domain) {
2374 iommu = g_iommus[iommu_id];
2375 __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2381 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2382 struct scatterlist *sg, unsigned long nr_pages,
2385 return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2388 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2389 unsigned long phys_pfn, unsigned long nr_pages,
2392 return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2395 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2397 unsigned long flags;
2398 struct context_entry *context;
2404 spin_lock_irqsave(&iommu->lock, flags);
2405 context = iommu_context_addr(iommu, bus, devfn, 0);
2407 spin_unlock_irqrestore(&iommu->lock, flags);
2410 did_old = context_domain_id(context);
2411 context_clear_entry(context);
2412 __iommu_flush_cache(iommu, context, sizeof(*context));
2413 spin_unlock_irqrestore(&iommu->lock, flags);
2414 iommu->flush.flush_context(iommu,
2416 (((u16)bus) << 8) | devfn,
2417 DMA_CCMD_MASK_NOBIT,
2418 DMA_CCMD_DEVICE_INVL);
2419 iommu->flush.flush_iotlb(iommu,
2426 static inline void unlink_domain_info(struct device_domain_info *info)
2428 assert_spin_locked(&device_domain_lock);
2429 list_del(&info->link);
2430 list_del(&info->global);
2432 info->dev->archdata.iommu = NULL;
2435 static void domain_remove_dev_info(struct dmar_domain *domain)
2437 struct device_domain_info *info, *tmp;
2438 unsigned long flags;
2440 spin_lock_irqsave(&device_domain_lock, flags);
2441 list_for_each_entry_safe(info, tmp, &domain->devices, link)
2442 __dmar_remove_one_dev_info(info);
2443 spin_unlock_irqrestore(&device_domain_lock, flags);
2446 struct dmar_domain *find_domain(struct device *dev)
2448 struct device_domain_info *info;
2450 if (unlikely(attach_deferred(dev) || iommu_dummy(dev)))
2453 /* No lock here, assumes no domain exit in normal case */
2454 info = get_domain_info(dev);
2456 return info->domain;
2461 static void do_deferred_attach(struct device *dev)
2463 struct iommu_domain *domain;
2465 dev->archdata.iommu = NULL;
2466 domain = iommu_get_domain_for_dev(dev);
2468 intel_iommu_attach_device(domain, dev);
2471 static inline struct device_domain_info *
2472 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2474 struct device_domain_info *info;
2476 list_for_each_entry(info, &device_domain_list, global)
2477 if (info->segment == segment && info->bus == bus &&
2478 info->devfn == devfn)
2484 static int domain_setup_first_level(struct intel_iommu *iommu,
2485 struct dmar_domain *domain,
2489 int flags = PASID_FLAG_SUPERVISOR_MODE;
2490 struct dma_pte *pgd = domain->pgd;
2494 * Skip top levels of page tables for iommu which has
2495 * less agaw than default. Unnecessary for PT mode.
2497 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2498 pgd = phys_to_virt(dma_pte_addr(pgd));
2499 if (!dma_pte_present(pgd))
2503 level = agaw_to_level(agaw);
2504 if (level != 4 && level != 5)
2507 flags |= (level == 5) ? PASID_FLAG_FL5LP : 0;
2509 return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
2510 domain->iommu_did[iommu->seq_id],
2514 static bool dev_is_real_dma_subdevice(struct device *dev)
2516 return dev && dev_is_pci(dev) &&
2517 pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
2520 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2523 struct dmar_domain *domain)
2525 struct dmar_domain *found = NULL;
2526 struct device_domain_info *info;
2527 unsigned long flags;
2530 info = alloc_devinfo_mem();
2534 if (!dev_is_real_dma_subdevice(dev)) {
2536 info->devfn = devfn;
2537 info->segment = iommu->segment;
2539 struct pci_dev *pdev = to_pci_dev(dev);
2541 info->bus = pdev->bus->number;
2542 info->devfn = pdev->devfn;
2543 info->segment = pci_domain_nr(pdev->bus);
2546 info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2547 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2550 info->domain = domain;
2551 info->iommu = iommu;
2552 info->pasid_table = NULL;
2553 info->auxd_enabled = 0;
2554 INIT_LIST_HEAD(&info->auxiliary_domains);
2556 if (dev && dev_is_pci(dev)) {
2557 struct pci_dev *pdev = to_pci_dev(info->dev);
2559 if (ecap_dev_iotlb_support(iommu->ecap) &&
2560 pci_ats_supported(pdev) &&
2561 dmar_find_matched_atsr_unit(pdev))
2562 info->ats_supported = 1;
2564 if (sm_supported(iommu)) {
2565 if (pasid_supported(iommu)) {
2566 int features = pci_pasid_features(pdev);
2568 info->pasid_supported = features | 1;
2571 if (info->ats_supported && ecap_prs(iommu->ecap) &&
2572 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2573 info->pri_supported = 1;
2577 spin_lock_irqsave(&device_domain_lock, flags);
2579 found = find_domain(dev);
2582 struct device_domain_info *info2;
2583 info2 = dmar_search_domain_by_dev_info(info->segment, info->bus,
2586 found = info2->domain;
2592 spin_unlock_irqrestore(&device_domain_lock, flags);
2593 free_devinfo_mem(info);
2594 /* Caller must free the original domain */
2598 spin_lock(&iommu->lock);
2599 ret = domain_attach_iommu(domain, iommu);
2600 spin_unlock(&iommu->lock);
2603 spin_unlock_irqrestore(&device_domain_lock, flags);
2604 free_devinfo_mem(info);
2608 list_add(&info->link, &domain->devices);
2609 list_add(&info->global, &device_domain_list);
2611 dev->archdata.iommu = info;
2612 spin_unlock_irqrestore(&device_domain_lock, flags);
2614 /* PASID table is mandatory for a PCI device in scalable mode. */
2615 if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2616 ret = intel_pasid_alloc_table(dev);
2618 dev_err(dev, "PASID table allocation failed\n");
2619 dmar_remove_one_dev_info(dev);
2623 /* Setup the PASID entry for requests without PASID: */
2624 spin_lock(&iommu->lock);
2625 if (hw_pass_through && domain_type_is_si(domain))
2626 ret = intel_pasid_setup_pass_through(iommu, domain,
2627 dev, PASID_RID2PASID);
2628 else if (domain_use_first_level(domain))
2629 ret = domain_setup_first_level(iommu, domain, dev,
2632 ret = intel_pasid_setup_second_level(iommu, domain,
2633 dev, PASID_RID2PASID);
2634 spin_unlock(&iommu->lock);
2636 dev_err(dev, "Setup RID2PASID failed\n");
2637 dmar_remove_one_dev_info(dev);
2642 if (dev && domain_context_mapping(domain, dev)) {
2643 dev_err(dev, "Domain context map failed\n");
2644 dmar_remove_one_dev_info(dev);
2651 static int iommu_domain_identity_map(struct dmar_domain *domain,
2652 unsigned long first_vpfn,
2653 unsigned long last_vpfn)
2656 * RMRR range might have overlap with physical memory range,
2659 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2661 return __domain_mapping(domain, first_vpfn, NULL,
2662 first_vpfn, last_vpfn - first_vpfn + 1,
2663 DMA_PTE_READ|DMA_PTE_WRITE);
2666 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2668 static int __init si_domain_init(int hw)
2670 struct dmar_rmrr_unit *rmrr;
2674 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2678 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2679 domain_exit(si_domain);
2686 for_each_online_node(nid) {
2687 unsigned long start_pfn, end_pfn;
2690 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2691 ret = iommu_domain_identity_map(si_domain,
2692 mm_to_dma_pfn(start_pfn),
2693 mm_to_dma_pfn(end_pfn));
2700 * Identity map the RMRRs so that devices with RMRRs could also use
2703 for_each_rmrr_units(rmrr) {
2704 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2706 unsigned long long start = rmrr->base_address;
2707 unsigned long long end = rmrr->end_address;
2709 if (WARN_ON(end < start ||
2710 end >> agaw_to_width(si_domain->agaw)))
2713 ret = iommu_domain_identity_map(si_domain,
2714 mm_to_dma_pfn(start >> PAGE_SHIFT),
2715 mm_to_dma_pfn(end >> PAGE_SHIFT));
2724 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2726 struct dmar_domain *ndomain;
2727 struct intel_iommu *iommu;
2730 iommu = device_to_iommu(dev, &bus, &devfn);
2734 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2735 if (ndomain != domain)
2741 static bool device_has_rmrr(struct device *dev)
2743 struct dmar_rmrr_unit *rmrr;
2748 for_each_rmrr_units(rmrr) {
2750 * Return TRUE if this RMRR contains the device that
2753 for_each_active_dev_scope(rmrr->devices,
2754 rmrr->devices_cnt, i, tmp)
2756 is_downstream_to_pci_bridge(dev, tmp)) {
2766 * device_rmrr_is_relaxable - Test whether the RMRR of this device
2767 * is relaxable (ie. is allowed to be not enforced under some conditions)
2768 * @dev: device handle
2770 * We assume that PCI USB devices with RMRRs have them largely
2771 * for historical reasons and that the RMRR space is not actively used post
2772 * boot. This exclusion may change if vendors begin to abuse it.
2774 * The same exception is made for graphics devices, with the requirement that
2775 * any use of the RMRR regions will be torn down before assigning the device
2778 * Return: true if the RMRR is relaxable, false otherwise
2780 static bool device_rmrr_is_relaxable(struct device *dev)
2782 struct pci_dev *pdev;
2784 if (!dev_is_pci(dev))
2787 pdev = to_pci_dev(dev);
2788 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2795 * There are a couple cases where we need to restrict the functionality of
2796 * devices associated with RMRRs. The first is when evaluating a device for
2797 * identity mapping because problems exist when devices are moved in and out
2798 * of domains and their respective RMRR information is lost. This means that
2799 * a device with associated RMRRs will never be in a "passthrough" domain.
2800 * The second is use of the device through the IOMMU API. This interface
2801 * expects to have full control of the IOVA space for the device. We cannot
2802 * satisfy both the requirement that RMRR access is maintained and have an
2803 * unencumbered IOVA space. We also have no ability to quiesce the device's
2804 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2805 * We therefore prevent devices associated with an RMRR from participating in
2806 * the IOMMU API, which eliminates them from device assignment.
2808 * In both cases, devices which have relaxable RMRRs are not concerned by this
2809 * restriction. See device_rmrr_is_relaxable comment.
2811 static bool device_is_rmrr_locked(struct device *dev)
2813 if (!device_has_rmrr(dev))
2816 if (device_rmrr_is_relaxable(dev))
2823 * Return the required default domain type for a specific device.
2825 * @dev: the device in query
2826 * @startup: true if this is during early boot
2829 * - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
2830 * - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
2831 * - 0: both identity and dynamic domains work for this device
2833 static int device_def_domain_type(struct device *dev)
2835 if (dev_is_pci(dev)) {
2836 struct pci_dev *pdev = to_pci_dev(dev);
2839 * Prevent any device marked as untrusted from getting
2840 * placed into the statically identity mapping domain.
2842 if (pdev->untrusted)
2843 return IOMMU_DOMAIN_DMA;
2845 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2846 return IOMMU_DOMAIN_IDENTITY;
2848 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2849 return IOMMU_DOMAIN_IDENTITY;
2855 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2858 * Start from the sane iommu hardware state.
2859 * If the queued invalidation is already initialized by us
2860 * (for example, while enabling interrupt-remapping) then
2861 * we got the things already rolling from a sane state.
2865 * Clear any previous faults.
2867 dmar_fault(-1, iommu);
2869 * Disable queued invalidation if supported and already enabled
2870 * before OS handover.
2872 dmar_disable_qi(iommu);
2875 if (dmar_enable_qi(iommu)) {
2877 * Queued Invalidate not enabled, use Register Based Invalidate
2879 iommu->flush.flush_context = __iommu_flush_context;
2880 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2881 pr_info("%s: Using Register based invalidation\n",
2884 iommu->flush.flush_context = qi_flush_context;
2885 iommu->flush.flush_iotlb = qi_flush_iotlb;
2886 pr_info("%s: Using Queued invalidation\n", iommu->name);
2890 static int copy_context_table(struct intel_iommu *iommu,
2891 struct root_entry *old_re,
2892 struct context_entry **tbl,
2895 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2896 struct context_entry *new_ce = NULL, ce;
2897 struct context_entry *old_ce = NULL;
2898 struct root_entry re;
2899 phys_addr_t old_ce_phys;
2901 tbl_idx = ext ? bus * 2 : bus;
2902 memcpy(&re, old_re, sizeof(re));
2904 for (devfn = 0; devfn < 256; devfn++) {
2905 /* First calculate the correct index */
2906 idx = (ext ? devfn * 2 : devfn) % 256;
2909 /* First save what we may have and clean up */
2911 tbl[tbl_idx] = new_ce;
2912 __iommu_flush_cache(iommu, new_ce,
2922 old_ce_phys = root_entry_lctp(&re);
2924 old_ce_phys = root_entry_uctp(&re);
2927 if (ext && devfn == 0) {
2928 /* No LCTP, try UCTP */
2937 old_ce = memremap(old_ce_phys, PAGE_SIZE,
2942 new_ce = alloc_pgtable_page(iommu->node);
2949 /* Now copy the context entry */
2950 memcpy(&ce, old_ce + idx, sizeof(ce));
2952 if (!__context_present(&ce))
2955 did = context_domain_id(&ce);
2956 if (did >= 0 && did < cap_ndoms(iommu->cap))
2957 set_bit(did, iommu->domain_ids);
2960 * We need a marker for copied context entries. This
2961 * marker needs to work for the old format as well as
2962 * for extended context entries.
2964 * Bit 67 of the context entry is used. In the old
2965 * format this bit is available to software, in the
2966 * extended format it is the PGE bit, but PGE is ignored
2967 * by HW if PASIDs are disabled (and thus still
2970 * So disable PASIDs first and then mark the entry
2971 * copied. This means that we don't copy PASID
2972 * translations from the old kernel, but this is fine as
2973 * faults there are not fatal.
2975 context_clear_pasid_enable(&ce);
2976 context_set_copied(&ce);
2981 tbl[tbl_idx + pos] = new_ce;
2983 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2992 static int copy_translation_tables(struct intel_iommu *iommu)
2994 struct context_entry **ctxt_tbls;
2995 struct root_entry *old_rt;
2996 phys_addr_t old_rt_phys;
2997 int ctxt_table_entries;
2998 unsigned long flags;
3003 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3004 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
3005 new_ext = !!ecap_ecs(iommu->ecap);
3008 * The RTT bit can only be changed when translation is disabled,
3009 * but disabling translation means to open a window for data
3010 * corruption. So bail out and don't copy anything if we would
3011 * have to change the bit.
3016 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3020 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3024 /* This is too big for the stack - allocate it from slab */
3025 ctxt_table_entries = ext ? 512 : 256;
3027 ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3031 for (bus = 0; bus < 256; bus++) {
3032 ret = copy_context_table(iommu, &old_rt[bus],
3033 ctxt_tbls, bus, ext);
3035 pr_err("%s: Failed to copy context table for bus %d\n",
3041 spin_lock_irqsave(&iommu->lock, flags);
3043 /* Context tables are copied, now write them to the root_entry table */
3044 for (bus = 0; bus < 256; bus++) {
3045 int idx = ext ? bus * 2 : bus;
3048 if (ctxt_tbls[idx]) {
3049 val = virt_to_phys(ctxt_tbls[idx]) | 1;
3050 iommu->root_entry[bus].lo = val;
3053 if (!ext || !ctxt_tbls[idx + 1])
3056 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3057 iommu->root_entry[bus].hi = val;
3060 spin_unlock_irqrestore(&iommu->lock, flags);
3064 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3074 #ifdef CONFIG_INTEL_IOMMU_SVM
3075 static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data)
3077 struct intel_iommu *iommu = data;
3081 return INVALID_IOASID;
3083 * VT-d virtual command interface always uses the full 20 bit
3084 * PASID range. Host can partition guest PASID range based on
3085 * policies but it is out of guest's control.
3087 if (min < PASID_MIN || max > intel_pasid_max_id)
3088 return INVALID_IOASID;
3090 if (vcmd_alloc_pasid(iommu, &ioasid))
3091 return INVALID_IOASID;
3096 static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data)
3098 struct intel_iommu *iommu = data;
3103 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO
3104 * We can only free the PASID when all the devices are unbound.
3106 if (ioasid_find(NULL, ioasid, NULL)) {
3107 pr_alert("Cannot free active IOASID %d\n", ioasid);
3110 vcmd_free_pasid(iommu, ioasid);
3113 static void register_pasid_allocator(struct intel_iommu *iommu)
3116 * If we are running in the host, no need for custom allocator
3117 * in that PASIDs are allocated from the host system-wide.
3119 if (!cap_caching_mode(iommu->cap))
3122 if (!sm_supported(iommu)) {
3123 pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n");
3128 * Register a custom PASID allocator if we are running in a guest,
3129 * guest PASID must be obtained via virtual command interface.
3130 * There can be multiple vIOMMUs in each guest but only one allocator
3131 * is active. All vIOMMU allocators will eventually be calling the same
3134 if (!ecap_vcs(iommu->ecap) || !vccap_pasid(iommu->vccap))
3137 pr_info("Register custom PASID allocator\n");
3138 iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc;
3139 iommu->pasid_allocator.free = intel_vcmd_ioasid_free;
3140 iommu->pasid_allocator.pdata = (void *)iommu;
3141 if (ioasid_register_allocator(&iommu->pasid_allocator)) {
3142 pr_warn("Custom PASID allocator failed, scalable mode disabled\n");
3144 * Disable scalable mode on this IOMMU if there
3145 * is no custom allocator. Mixing SM capable vIOMMU
3146 * and non-SM vIOMMU are not supported.
3153 static int __init init_dmars(void)
3155 struct dmar_drhd_unit *drhd;
3156 struct intel_iommu *iommu;
3162 * initialize and program root entry to not present
3165 for_each_drhd_unit(drhd) {
3167 * lock not needed as this is only incremented in the single
3168 * threaded kernel __init code path all other access are read
3171 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3175 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3178 /* Preallocate enough resources for IOMMU hot-addition */
3179 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3180 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3182 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3185 pr_err("Allocating global iommu array failed\n");
3190 for_each_iommu(iommu, drhd) {
3191 if (drhd->ignored) {
3192 iommu_disable_translation(iommu);
3197 * Find the max pasid size of all IOMMU's in the system.
3198 * We need to ensure the system pasid table is no bigger
3199 * than the smallest supported.
3201 if (pasid_supported(iommu)) {
3202 u32 temp = 2 << ecap_pss(iommu->ecap);
3204 intel_pasid_max_id = min_t(u32, temp,
3205 intel_pasid_max_id);
3208 g_iommus[iommu->seq_id] = iommu;
3210 intel_iommu_init_qi(iommu);
3212 ret = iommu_init_domains(iommu);
3216 init_translation_status(iommu);
3218 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3219 iommu_disable_translation(iommu);
3220 clear_translation_pre_enabled(iommu);
3221 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3227 * we could share the same root & context tables
3228 * among all IOMMU's. Need to Split it later.
3230 ret = iommu_alloc_root_entry(iommu);
3234 if (translation_pre_enabled(iommu)) {
3235 pr_info("Translation already enabled - trying to copy translation structures\n");
3237 ret = copy_translation_tables(iommu);
3240 * We found the IOMMU with translation
3241 * enabled - but failed to copy over the
3242 * old root-entry table. Try to proceed
3243 * by disabling translation now and
3244 * allocating a clean root-entry table.
3245 * This might cause DMAR faults, but
3246 * probably the dump will still succeed.
3248 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3250 iommu_disable_translation(iommu);
3251 clear_translation_pre_enabled(iommu);
3253 pr_info("Copied translation tables from previous kernel for %s\n",
3258 if (!ecap_pass_through(iommu->ecap))
3259 hw_pass_through = 0;
3260 intel_svm_check(iommu);
3264 * Now that qi is enabled on all iommus, set the root entry and flush
3265 * caches. This is required on some Intel X58 chipsets, otherwise the
3266 * flush_context function will loop forever and the boot hangs.
3268 for_each_active_iommu(iommu, drhd) {
3269 iommu_flush_write_buffer(iommu);
3270 #ifdef CONFIG_INTEL_IOMMU_SVM
3271 register_pasid_allocator(iommu);
3273 iommu_set_root_entry(iommu);
3274 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3275 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3278 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3283 iommu_identity_mapping |= IDENTMAP_GFX;
3285 check_tylersburg_isoch();
3287 ret = si_domain_init(hw_pass_through);
3294 * global invalidate context cache
3295 * global invalidate iotlb
3296 * enable translation
3298 for_each_iommu(iommu, drhd) {
3299 if (drhd->ignored) {
3301 * we always have to disable PMRs or DMA may fail on
3305 iommu_disable_protect_mem_regions(iommu);
3309 iommu_flush_write_buffer(iommu);
3311 #ifdef CONFIG_INTEL_IOMMU_SVM
3312 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3314 * Call dmar_alloc_hwirq() with dmar_global_lock held,
3315 * could cause possible lock race condition.
3317 up_write(&dmar_global_lock);
3318 ret = intel_svm_enable_prq(iommu);
3319 down_write(&dmar_global_lock);
3324 ret = dmar_set_interrupt(iommu);
3332 for_each_active_iommu(iommu, drhd) {
3333 disable_dmar_iommu(iommu);
3334 free_dmar_iommu(iommu);
3343 /* This takes a number of _MM_ pages, not VTD pages */
3344 static unsigned long intel_alloc_iova(struct device *dev,
3345 struct dmar_domain *domain,
3346 unsigned long nrpages, uint64_t dma_mask)
3348 unsigned long iova_pfn;
3351 * Restrict dma_mask to the width that the iommu can handle.
3352 * First-level translation restricts the input-address to a
3353 * canonical address (i.e., address bits 63:N have the same
3354 * value as address bit [N-1], where N is 48-bits with 4-level
3355 * paging and 57-bits with 5-level paging). Hence, skip bit
3358 if (domain_use_first_level(domain))
3359 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw - 1),
3362 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw),
3365 /* Ensure we reserve the whole size-aligned region */
3366 nrpages = __roundup_pow_of_two(nrpages);
3368 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3370 * First try to allocate an io virtual address in
3371 * DMA_BIT_MASK(32) and if that fails then try allocating
3374 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3375 IOVA_PFN(DMA_BIT_MASK(32)), false);
3379 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3380 IOVA_PFN(dma_mask), true);
3381 if (unlikely(!iova_pfn)) {
3382 dev_err_once(dev, "Allocating %ld-page iova failed\n",
3390 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3391 size_t size, int dir, u64 dma_mask)
3393 struct dmar_domain *domain;
3394 phys_addr_t start_paddr;
3395 unsigned long iova_pfn;
3398 struct intel_iommu *iommu;
3399 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3401 BUG_ON(dir == DMA_NONE);
3403 if (unlikely(attach_deferred(dev)))
3404 do_deferred_attach(dev);
3406 domain = find_domain(dev);
3408 return DMA_MAPPING_ERROR;
3410 iommu = domain_get_iommu(domain);
3411 size = aligned_nrpages(paddr, size);
3413 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3418 * Check if DMAR supports zero-length reads on write only
3421 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3422 !cap_zlr(iommu->cap))
3423 prot |= DMA_PTE_READ;
3424 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3425 prot |= DMA_PTE_WRITE;
3427 * paddr - (paddr + size) might be partial page, we should map the whole
3428 * page. Note: if two part of one page are separately mapped, we
3429 * might have two guest_addr mapping to the same host paddr, but this
3430 * is not a big problem
3432 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3433 mm_to_dma_pfn(paddr_pfn), size, prot);
3437 start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3438 start_paddr += paddr & ~PAGE_MASK;
3440 trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);
3446 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3447 dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
3448 size, (unsigned long long)paddr, dir);
3449 return DMA_MAPPING_ERROR;
3452 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3453 unsigned long offset, size_t size,
3454 enum dma_data_direction dir,
3455 unsigned long attrs)
3457 return __intel_map_single(dev, page_to_phys(page) + offset,
3458 size, dir, *dev->dma_mask);
3461 static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
3462 size_t size, enum dma_data_direction dir,
3463 unsigned long attrs)
3465 return __intel_map_single(dev, phys_addr, size, dir, *dev->dma_mask);
3468 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3470 struct dmar_domain *domain;
3471 unsigned long start_pfn, last_pfn;
3472 unsigned long nrpages;
3473 unsigned long iova_pfn;
3474 struct intel_iommu *iommu;
3475 struct page *freelist;
3476 struct pci_dev *pdev = NULL;
3478 domain = find_domain(dev);
3481 iommu = domain_get_iommu(domain);
3483 iova_pfn = IOVA_PFN(dev_addr);
3485 nrpages = aligned_nrpages(dev_addr, size);
3486 start_pfn = mm_to_dma_pfn(iova_pfn);
3487 last_pfn = start_pfn + nrpages - 1;
3489 if (dev_is_pci(dev))
3490 pdev = to_pci_dev(dev);
3492 freelist = domain_unmap(domain, start_pfn, last_pfn);
3493 if (intel_iommu_strict || (pdev && pdev->untrusted) ||
3494 !has_iova_flush_queue(&domain->iovad)) {
3495 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3496 nrpages, !freelist, 0);
3498 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3499 dma_free_pagelist(freelist);
3501 queue_iova(&domain->iovad, iova_pfn, nrpages,
3502 (unsigned long)freelist);
3504 * queue up the release of the unmap to save the 1/6th of the
3505 * cpu used up by the iotlb flush operation...
3509 trace_unmap_single(dev, dev_addr, size);
3512 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3513 size_t size, enum dma_data_direction dir,
3514 unsigned long attrs)
3516 intel_unmap(dev, dev_addr, size);
3519 static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
3520 size_t size, enum dma_data_direction dir, unsigned long attrs)
3522 intel_unmap(dev, dev_addr, size);
3525 static void *intel_alloc_coherent(struct device *dev, size_t size,
3526 dma_addr_t *dma_handle, gfp_t flags,
3527 unsigned long attrs)
3529 struct page *page = NULL;
3532 if (unlikely(attach_deferred(dev)))
3533 do_deferred_attach(dev);
3535 size = PAGE_ALIGN(size);
3536 order = get_order(size);
3538 if (gfpflags_allow_blocking(flags)) {
3539 unsigned int count = size >> PAGE_SHIFT;
3541 page = dma_alloc_from_contiguous(dev, count, order,
3542 flags & __GFP_NOWARN);
3546 page = alloc_pages(flags, order);
3549 memset(page_address(page), 0, size);
3551 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3553 dev->coherent_dma_mask);
3554 if (*dma_handle != DMA_MAPPING_ERROR)
3555 return page_address(page);
3556 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3557 __free_pages(page, order);
3562 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3563 dma_addr_t dma_handle, unsigned long attrs)
3566 struct page *page = virt_to_page(vaddr);
3568 size = PAGE_ALIGN(size);
3569 order = get_order(size);
3571 intel_unmap(dev, dma_handle, size);
3572 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3573 __free_pages(page, order);
3576 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3577 int nelems, enum dma_data_direction dir,
3578 unsigned long attrs)
3580 dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3581 unsigned long nrpages = 0;
3582 struct scatterlist *sg;
3585 for_each_sg(sglist, sg, nelems, i) {
3586 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3589 intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3591 trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3594 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3595 enum dma_data_direction dir, unsigned long attrs)
3598 struct dmar_domain *domain;
3601 unsigned long iova_pfn;
3603 struct scatterlist *sg;
3604 unsigned long start_vpfn;
3605 struct intel_iommu *iommu;
3607 BUG_ON(dir == DMA_NONE);
3609 if (unlikely(attach_deferred(dev)))
3610 do_deferred_attach(dev);
3612 domain = find_domain(dev);
3616 iommu = domain_get_iommu(domain);
3618 for_each_sg(sglist, sg, nelems, i)
3619 size += aligned_nrpages(sg->offset, sg->length);
3621 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3624 sglist->dma_length = 0;
3629 * Check if DMAR supports zero-length reads on write only
3632 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3633 !cap_zlr(iommu->cap))
3634 prot |= DMA_PTE_READ;
3635 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3636 prot |= DMA_PTE_WRITE;
3638 start_vpfn = mm_to_dma_pfn(iova_pfn);
3640 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3641 if (unlikely(ret)) {
3642 dma_pte_free_pagetable(domain, start_vpfn,
3643 start_vpfn + size - 1,
3644 agaw_to_level(domain->agaw) + 1);
3645 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3649 for_each_sg(sglist, sg, nelems, i)
3650 trace_map_sg(dev, i + 1, nelems, sg);
3655 static u64 intel_get_required_mask(struct device *dev)
3657 return DMA_BIT_MASK(32);
3660 static const struct dma_map_ops intel_dma_ops = {
3661 .alloc = intel_alloc_coherent,
3662 .free = intel_free_coherent,
3663 .map_sg = intel_map_sg,
3664 .unmap_sg = intel_unmap_sg,
3665 .map_page = intel_map_page,
3666 .unmap_page = intel_unmap_page,
3667 .map_resource = intel_map_resource,
3668 .unmap_resource = intel_unmap_resource,
3669 .dma_supported = dma_direct_supported,
3670 .mmap = dma_common_mmap,
3671 .get_sgtable = dma_common_get_sgtable,
3672 .get_required_mask = intel_get_required_mask,
3676 bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
3677 enum dma_data_direction dir, enum dma_sync_target target)
3679 struct dmar_domain *domain;
3680 phys_addr_t tlb_addr;
3682 domain = find_domain(dev);
3683 if (WARN_ON(!domain))
3686 tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
3687 if (is_swiotlb_buffer(tlb_addr))
3688 swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
3692 bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
3693 enum dma_data_direction dir, unsigned long attrs,
3696 size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
3697 struct dmar_domain *domain;
3698 struct intel_iommu *iommu;
3699 unsigned long iova_pfn;
3700 unsigned long nrpages;
3701 phys_addr_t tlb_addr;
3705 if (unlikely(attach_deferred(dev)))
3706 do_deferred_attach(dev);
3708 domain = find_domain(dev);
3710 if (WARN_ON(dir == DMA_NONE || !domain))
3711 return DMA_MAPPING_ERROR;
3713 iommu = domain_get_iommu(domain);
3714 if (WARN_ON(!iommu))
3715 return DMA_MAPPING_ERROR;
3717 nrpages = aligned_nrpages(0, size);
3718 iova_pfn = intel_alloc_iova(dev, domain,
3719 dma_to_mm_pfn(nrpages), dma_mask);
3721 return DMA_MAPPING_ERROR;
3724 * Check if DMAR supports zero-length reads on write only
3727 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
3728 !cap_zlr(iommu->cap))
3729 prot |= DMA_PTE_READ;
3730 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3731 prot |= DMA_PTE_WRITE;
3734 * If both the physical buffer start address and size are
3735 * page aligned, we don't need to use a bounce page.
3737 if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
3738 tlb_addr = swiotlb_tbl_map_single(dev,
3739 __phys_to_dma(dev, io_tlb_start),
3740 paddr, size, aligned_size, dir, attrs);
3741 if (tlb_addr == DMA_MAPPING_ERROR) {
3744 /* Cleanup the padding area. */
3745 void *padding_start = phys_to_virt(tlb_addr);
3746 size_t padding_size = aligned_size;
3748 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
3749 (dir == DMA_TO_DEVICE ||
3750 dir == DMA_BIDIRECTIONAL)) {
3751 padding_start += size;
3752 padding_size -= size;
3755 memset(padding_start, 0, padding_size);
3761 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3762 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
3766 trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);
3768 return (phys_addr_t)iova_pfn << PAGE_SHIFT;
3771 if (is_swiotlb_buffer(tlb_addr))
3772 swiotlb_tbl_unmap_single(dev, tlb_addr, size,
3773 aligned_size, dir, attrs);
3775 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3776 dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
3777 size, (unsigned long long)paddr, dir);
3779 return DMA_MAPPING_ERROR;
3783 bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
3784 enum dma_data_direction dir, unsigned long attrs)
3786 size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
3787 struct dmar_domain *domain;
3788 phys_addr_t tlb_addr;
3790 domain = find_domain(dev);
3791 if (WARN_ON(!domain))
3794 tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
3795 if (WARN_ON(!tlb_addr))
3798 intel_unmap(dev, dev_addr, size);
3799 if (is_swiotlb_buffer(tlb_addr))
3800 swiotlb_tbl_unmap_single(dev, tlb_addr, size,
3801 aligned_size, dir, attrs);
3803 trace_bounce_unmap_single(dev, dev_addr, size);
3807 bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
3808 size_t size, enum dma_data_direction dir, unsigned long attrs)
3810 return bounce_map_single(dev, page_to_phys(page) + offset,
3811 size, dir, attrs, *dev->dma_mask);
3815 bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
3816 enum dma_data_direction dir, unsigned long attrs)
3818 return bounce_map_single(dev, phys_addr, size,
3819 dir, attrs, *dev->dma_mask);
3823 bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
3824 enum dma_data_direction dir, unsigned long attrs)
3826 bounce_unmap_single(dev, dev_addr, size, dir, attrs);
3830 bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
3831 enum dma_data_direction dir, unsigned long attrs)
3833 bounce_unmap_single(dev, dev_addr, size, dir, attrs);
3837 bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3838 enum dma_data_direction dir, unsigned long attrs)
3840 struct scatterlist *sg;
3843 for_each_sg(sglist, sg, nelems, i)
3844 bounce_unmap_page(dev, sg->dma_address,
3845 sg_dma_len(sg), dir, attrs);
3849 bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3850 enum dma_data_direction dir, unsigned long attrs)
3853 struct scatterlist *sg;
3855 for_each_sg(sglist, sg, nelems, i) {
3856 sg->dma_address = bounce_map_page(dev, sg_page(sg),
3857 sg->offset, sg->length,
3859 if (sg->dma_address == DMA_MAPPING_ERROR)
3861 sg_dma_len(sg) = sg->length;
3864 for_each_sg(sglist, sg, nelems, i)
3865 trace_bounce_map_sg(dev, i + 1, nelems, sg);
3870 bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
3875 bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
3876 size_t size, enum dma_data_direction dir)
3878 bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
3882 bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
3883 size_t size, enum dma_data_direction dir)
3885 bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
3889 bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
3890 int nelems, enum dma_data_direction dir)
3892 struct scatterlist *sg;
3895 for_each_sg(sglist, sg, nelems, i)
3896 bounce_sync_single(dev, sg_dma_address(sg),
3897 sg_dma_len(sg), dir, SYNC_FOR_CPU);
3901 bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
3902 int nelems, enum dma_data_direction dir)
3904 struct scatterlist *sg;
3907 for_each_sg(sglist, sg, nelems, i)
3908 bounce_sync_single(dev, sg_dma_address(sg),
3909 sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
3912 static const struct dma_map_ops bounce_dma_ops = {
3913 .alloc = intel_alloc_coherent,
3914 .free = intel_free_coherent,
3915 .map_sg = bounce_map_sg,
3916 .unmap_sg = bounce_unmap_sg,
3917 .map_page = bounce_map_page,
3918 .unmap_page = bounce_unmap_page,
3919 .sync_single_for_cpu = bounce_sync_single_for_cpu,
3920 .sync_single_for_device = bounce_sync_single_for_device,
3921 .sync_sg_for_cpu = bounce_sync_sg_for_cpu,
3922 .sync_sg_for_device = bounce_sync_sg_for_device,
3923 .map_resource = bounce_map_resource,
3924 .unmap_resource = bounce_unmap_resource,
3925 .dma_supported = dma_direct_supported,
3928 static inline int iommu_domain_cache_init(void)
3932 iommu_domain_cache = kmem_cache_create("iommu_domain",
3933 sizeof(struct dmar_domain),
3938 if (!iommu_domain_cache) {
3939 pr_err("Couldn't create iommu_domain cache\n");
3946 static inline int iommu_devinfo_cache_init(void)
3950 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3951 sizeof(struct device_domain_info),
3955 if (!iommu_devinfo_cache) {
3956 pr_err("Couldn't create devinfo cache\n");
3963 static int __init iommu_init_mempool(void)
3966 ret = iova_cache_get();
3970 ret = iommu_domain_cache_init();
3974 ret = iommu_devinfo_cache_init();
3978 kmem_cache_destroy(iommu_domain_cache);
3985 static void __init iommu_exit_mempool(void)
3987 kmem_cache_destroy(iommu_devinfo_cache);
3988 kmem_cache_destroy(iommu_domain_cache);
3992 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3994 struct dmar_drhd_unit *drhd;
3998 /* We know that this device on this chipset has its own IOMMU.
3999 * If we find it under a different IOMMU, then the BIOS is lying
4000 * to us. Hope that the IOMMU for this device is actually
4001 * disabled, and it needs no translation...
4003 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4005 /* "can't" happen */
4006 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4009 vtbar &= 0xffff0000;
4011 /* we know that the this iommu should be at offset 0xa000 from vtbar */
4012 drhd = dmar_find_matched_drhd_unit(pdev);
4013 if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
4014 pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
4015 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
4016 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4019 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4021 static void __init init_no_remapping_devices(void)
4023 struct dmar_drhd_unit *drhd;
4027 for_each_drhd_unit(drhd) {
4028 if (!drhd->include_all) {
4029 for_each_active_dev_scope(drhd->devices,
4030 drhd->devices_cnt, i, dev)
4032 /* ignore DMAR unit if no devices exist */
4033 if (i == drhd->devices_cnt)
4038 for_each_active_drhd_unit(drhd) {
4039 if (drhd->include_all)
4042 for_each_active_dev_scope(drhd->devices,
4043 drhd->devices_cnt, i, dev)
4044 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4046 if (i < drhd->devices_cnt)
4049 /* This IOMMU has *only* gfx devices. Either bypass it or
4050 set the gfx_mapped flag, as appropriate */
4051 drhd->gfx_dedicated = 1;
4052 if (!dmar_map_gfx) {
4054 for_each_active_dev_scope(drhd->devices,
4055 drhd->devices_cnt, i, dev)
4056 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4061 #ifdef CONFIG_SUSPEND
4062 static int init_iommu_hw(void)
4064 struct dmar_drhd_unit *drhd;
4065 struct intel_iommu *iommu = NULL;
4067 for_each_active_iommu(iommu, drhd)
4069 dmar_reenable_qi(iommu);
4071 for_each_iommu(iommu, drhd) {
4072 if (drhd->ignored) {
4074 * we always have to disable PMRs or DMA may fail on
4078 iommu_disable_protect_mem_regions(iommu);
4082 iommu_flush_write_buffer(iommu);
4084 iommu_set_root_entry(iommu);
4086 iommu->flush.flush_context(iommu, 0, 0, 0,
4087 DMA_CCMD_GLOBAL_INVL);
4088 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4089 iommu_enable_translation(iommu);
4090 iommu_disable_protect_mem_regions(iommu);
4096 static void iommu_flush_all(void)
4098 struct dmar_drhd_unit *drhd;
4099 struct intel_iommu *iommu;
4101 for_each_active_iommu(iommu, drhd) {
4102 iommu->flush.flush_context(iommu, 0, 0, 0,
4103 DMA_CCMD_GLOBAL_INVL);
4104 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4105 DMA_TLB_GLOBAL_FLUSH);
4109 static int iommu_suspend(void)
4111 struct dmar_drhd_unit *drhd;
4112 struct intel_iommu *iommu = NULL;
4115 for_each_active_iommu(iommu, drhd) {
4116 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4118 if (!iommu->iommu_state)
4124 for_each_active_iommu(iommu, drhd) {
4125 iommu_disable_translation(iommu);
4127 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4129 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4130 readl(iommu->reg + DMAR_FECTL_REG);
4131 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4132 readl(iommu->reg + DMAR_FEDATA_REG);
4133 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4134 readl(iommu->reg + DMAR_FEADDR_REG);
4135 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4136 readl(iommu->reg + DMAR_FEUADDR_REG);
4138 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4143 for_each_active_iommu(iommu, drhd)
4144 kfree(iommu->iommu_state);
4149 static void iommu_resume(void)
4151 struct dmar_drhd_unit *drhd;
4152 struct intel_iommu *iommu = NULL;
4155 if (init_iommu_hw()) {
4157 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4159 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4163 for_each_active_iommu(iommu, drhd) {
4165 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4167 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4168 iommu->reg + DMAR_FECTL_REG);
4169 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4170 iommu->reg + DMAR_FEDATA_REG);
4171 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4172 iommu->reg + DMAR_FEADDR_REG);
4173 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4174 iommu->reg + DMAR_FEUADDR_REG);
4176 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4179 for_each_active_iommu(iommu, drhd)
4180 kfree(iommu->iommu_state);
4183 static struct syscore_ops iommu_syscore_ops = {
4184 .resume = iommu_resume,
4185 .suspend = iommu_suspend,
4188 static void __init init_iommu_pm_ops(void)
4190 register_syscore_ops(&iommu_syscore_ops);
4194 static inline void init_iommu_pm_ops(void) {}
4195 #endif /* CONFIG_PM */
4197 static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
4199 if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
4200 !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
4201 rmrr->end_address <= rmrr->base_address ||
4202 arch_rmrr_sanity_check(rmrr))
4208 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4210 struct acpi_dmar_reserved_memory *rmrr;
4211 struct dmar_rmrr_unit *rmrru;
4213 rmrr = (struct acpi_dmar_reserved_memory *)header;
4214 if (rmrr_sanity_check(rmrr)) {
4216 "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
4217 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4218 rmrr->base_address, rmrr->end_address,
4219 dmi_get_system_info(DMI_BIOS_VENDOR),
4220 dmi_get_system_info(DMI_BIOS_VERSION),
4221 dmi_get_system_info(DMI_PRODUCT_VERSION));
4222 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
4225 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4229 rmrru->hdr = header;
4231 rmrru->base_address = rmrr->base_address;
4232 rmrru->end_address = rmrr->end_address;
4234 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4235 ((void *)rmrr) + rmrr->header.length,
4236 &rmrru->devices_cnt);
4237 if (rmrru->devices_cnt && rmrru->devices == NULL)
4240 list_add(&rmrru->list, &dmar_rmrr_units);
4249 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4251 struct dmar_atsr_unit *atsru;
4252 struct acpi_dmar_atsr *tmp;
4254 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
4256 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4257 if (atsr->segment != tmp->segment)
4259 if (atsr->header.length != tmp->header.length)
4261 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4268 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4270 struct acpi_dmar_atsr *atsr;
4271 struct dmar_atsr_unit *atsru;
4273 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4276 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4277 atsru = dmar_find_atsr(atsr);
4281 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4286 * If memory is allocated from slab by ACPI _DSM method, we need to
4287 * copy the memory content because the memory buffer will be freed
4290 atsru->hdr = (void *)(atsru + 1);
4291 memcpy(atsru->hdr, hdr, hdr->length);
4292 atsru->include_all = atsr->flags & 0x1;
4293 if (!atsru->include_all) {
4294 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4295 (void *)atsr + atsr->header.length,
4296 &atsru->devices_cnt);
4297 if (atsru->devices_cnt && atsru->devices == NULL) {
4303 list_add_rcu(&atsru->list, &dmar_atsr_units);
4308 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4310 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4314 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4316 struct acpi_dmar_atsr *atsr;
4317 struct dmar_atsr_unit *atsru;
4319 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4320 atsru = dmar_find_atsr(atsr);
4322 list_del_rcu(&atsru->list);
4324 intel_iommu_free_atsr(atsru);
4330 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4334 struct acpi_dmar_atsr *atsr;
4335 struct dmar_atsr_unit *atsru;
4337 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4338 atsru = dmar_find_atsr(atsr);
4342 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4343 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4351 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4354 struct intel_iommu *iommu = dmaru->iommu;
4356 if (g_iommus[iommu->seq_id])
4359 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4360 pr_warn("%s: Doesn't support hardware pass through.\n",
4364 if (!ecap_sc_support(iommu->ecap) &&
4365 domain_update_iommu_snooping(iommu)) {
4366 pr_warn("%s: Doesn't support snooping.\n",
4370 sp = domain_update_iommu_superpage(NULL, iommu) - 1;
4371 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4372 pr_warn("%s: Doesn't support large page.\n",
4378 * Disable translation if already enabled prior to OS handover.
4380 if (iommu->gcmd & DMA_GCMD_TE)
4381 iommu_disable_translation(iommu);
4383 g_iommus[iommu->seq_id] = iommu;
4384 ret = iommu_init_domains(iommu);
4386 ret = iommu_alloc_root_entry(iommu);
4390 intel_svm_check(iommu);
4392 if (dmaru->ignored) {
4394 * we always have to disable PMRs or DMA may fail on this device
4397 iommu_disable_protect_mem_regions(iommu);
4401 intel_iommu_init_qi(iommu);
4402 iommu_flush_write_buffer(iommu);
4404 #ifdef CONFIG_INTEL_IOMMU_SVM
4405 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4406 ret = intel_svm_enable_prq(iommu);
4411 ret = dmar_set_interrupt(iommu);
4415 iommu_set_root_entry(iommu);
4416 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4417 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4418 iommu_enable_translation(iommu);
4420 iommu_disable_protect_mem_regions(iommu);
4424 disable_dmar_iommu(iommu);
4426 free_dmar_iommu(iommu);
4430 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4433 struct intel_iommu *iommu = dmaru->iommu;
4435 if (!intel_iommu_enabled)
4441 ret = intel_iommu_add(dmaru);
4443 disable_dmar_iommu(iommu);
4444 free_dmar_iommu(iommu);
4450 static void intel_iommu_free_dmars(void)
4452 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4453 struct dmar_atsr_unit *atsru, *atsr_n;
4455 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4456 list_del(&rmrru->list);
4457 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4461 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4462 list_del(&atsru->list);
4463 intel_iommu_free_atsr(atsru);
4467 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4470 struct pci_bus *bus;
4471 struct pci_dev *bridge = NULL;
4473 struct acpi_dmar_atsr *atsr;
4474 struct dmar_atsr_unit *atsru;
4476 dev = pci_physfn(dev);
4477 for (bus = dev->bus; bus; bus = bus->parent) {
4479 /* If it's an integrated device, allow ATS */
4482 /* Connected via non-PCIe: no ATS */
4483 if (!pci_is_pcie(bridge) ||
4484 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4486 /* If we found the root port, look it up in the ATSR */
4487 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4492 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4493 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4494 if (atsr->segment != pci_domain_nr(dev->bus))
4497 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4498 if (tmp == &bridge->dev)
4501 if (atsru->include_all)
4511 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4514 struct dmar_rmrr_unit *rmrru;
4515 struct dmar_atsr_unit *atsru;
4516 struct acpi_dmar_atsr *atsr;
4517 struct acpi_dmar_reserved_memory *rmrr;
4519 if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4522 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4523 rmrr = container_of(rmrru->hdr,
4524 struct acpi_dmar_reserved_memory, header);
4525 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4526 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4527 ((void *)rmrr) + rmrr->header.length,
4528 rmrr->segment, rmrru->devices,
4529 rmrru->devices_cnt);
4532 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4533 dmar_remove_dev_scope(info, rmrr->segment,
4534 rmrru->devices, rmrru->devices_cnt);
4538 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4539 if (atsru->include_all)
4542 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4543 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4544 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4545 (void *)atsr + atsr->header.length,
4546 atsr->segment, atsru->devices,
4547 atsru->devices_cnt);
4552 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4553 if (dmar_remove_dev_scope(info, atsr->segment,
4554 atsru->devices, atsru->devices_cnt))
4562 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4563 unsigned long val, void *v)
4565 struct memory_notify *mhp = v;
4566 unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4567 unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn +
4571 case MEM_GOING_ONLINE:
4572 if (iommu_domain_identity_map(si_domain,
4573 start_vpfn, last_vpfn)) {
4574 pr_warn("Failed to build identity map for [%lx-%lx]\n",
4575 start_vpfn, last_vpfn);
4581 case MEM_CANCEL_ONLINE:
4583 struct dmar_drhd_unit *drhd;
4584 struct intel_iommu *iommu;
4585 struct page *freelist;
4587 freelist = domain_unmap(si_domain,
4588 start_vpfn, last_vpfn);
4591 for_each_active_iommu(iommu, drhd)
4592 iommu_flush_iotlb_psi(iommu, si_domain,
4593 start_vpfn, mhp->nr_pages,
4596 dma_free_pagelist(freelist);
4604 static struct notifier_block intel_iommu_memory_nb = {
4605 .notifier_call = intel_iommu_memory_notifier,
4609 static void free_all_cpu_cached_iovas(unsigned int cpu)
4613 for (i = 0; i < g_num_of_iommus; i++) {
4614 struct intel_iommu *iommu = g_iommus[i];
4615 struct dmar_domain *domain;
4621 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4622 domain = get_iommu_domain(iommu, (u16)did);
4624 if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA)
4627 free_cpu_cached_iovas(cpu, &domain->iovad);
4632 static int intel_iommu_cpu_dead(unsigned int cpu)
4634 free_all_cpu_cached_iovas(cpu);
4638 static void intel_disable_iommus(void)
4640 struct intel_iommu *iommu = NULL;
4641 struct dmar_drhd_unit *drhd;
4643 for_each_iommu(iommu, drhd)
4644 iommu_disable_translation(iommu);
4647 void intel_iommu_shutdown(void)
4649 struct dmar_drhd_unit *drhd;
4650 struct intel_iommu *iommu = NULL;
4652 if (no_iommu || dmar_disabled)
4655 down_write(&dmar_global_lock);
4657 /* Disable PMRs explicitly here. */
4658 for_each_iommu(iommu, drhd)
4659 iommu_disable_protect_mem_regions(iommu);
4661 /* Make sure the IOMMUs are switched off */
4662 intel_disable_iommus();
4664 up_write(&dmar_global_lock);
4667 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4669 struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4671 return container_of(iommu_dev, struct intel_iommu, iommu);
4674 static ssize_t intel_iommu_show_version(struct device *dev,
4675 struct device_attribute *attr,
4678 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4679 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4680 return sprintf(buf, "%d:%d\n",
4681 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4683 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4685 static ssize_t intel_iommu_show_address(struct device *dev,
4686 struct device_attribute *attr,
4689 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4690 return sprintf(buf, "%llx\n", iommu->reg_phys);
4692 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4694 static ssize_t intel_iommu_show_cap(struct device *dev,
4695 struct device_attribute *attr,
4698 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4699 return sprintf(buf, "%llx\n", iommu->cap);
4701 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4703 static ssize_t intel_iommu_show_ecap(struct device *dev,
4704 struct device_attribute *attr,
4707 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4708 return sprintf(buf, "%llx\n", iommu->ecap);
4710 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4712 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4713 struct device_attribute *attr,
4716 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4717 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4719 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4721 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4722 struct device_attribute *attr,
4725 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4726 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4727 cap_ndoms(iommu->cap)));
4729 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4731 static struct attribute *intel_iommu_attrs[] = {
4732 &dev_attr_version.attr,
4733 &dev_attr_address.attr,
4735 &dev_attr_ecap.attr,
4736 &dev_attr_domains_supported.attr,
4737 &dev_attr_domains_used.attr,
4741 static struct attribute_group intel_iommu_group = {
4742 .name = "intel-iommu",
4743 .attrs = intel_iommu_attrs,
4746 const struct attribute_group *intel_iommu_groups[] = {
4751 static inline bool has_untrusted_dev(void)
4753 struct pci_dev *pdev = NULL;
4755 for_each_pci_dev(pdev)
4756 if (pdev->untrusted)
4762 static int __init platform_optin_force_iommu(void)
4764 if (!dmar_platform_optin() || no_platform_optin || !has_untrusted_dev())
4767 if (no_iommu || dmar_disabled)
4768 pr_info("Intel-IOMMU force enabled due to platform opt in\n");
4771 * If Intel-IOMMU is disabled by default, we will apply identity
4772 * map for all devices except those marked as being untrusted.
4775 iommu_set_default_passthrough(false);
4783 static int __init probe_acpi_namespace_devices(void)
4785 struct dmar_drhd_unit *drhd;
4786 /* To avoid a -Wunused-but-set-variable warning. */
4787 struct intel_iommu *iommu __maybe_unused;
4791 for_each_active_iommu(iommu, drhd) {
4792 for_each_active_dev_scope(drhd->devices,
4793 drhd->devices_cnt, i, dev) {
4794 struct acpi_device_physical_node *pn;
4795 struct iommu_group *group;
4796 struct acpi_device *adev;
4798 if (dev->bus != &acpi_bus_type)
4801 adev = to_acpi_device(dev);
4802 mutex_lock(&adev->physical_node_lock);
4803 list_for_each_entry(pn,
4804 &adev->physical_node_list, node) {
4805 group = iommu_group_get(pn->dev);
4807 iommu_group_put(group);
4811 pn->dev->bus->iommu_ops = &intel_iommu_ops;
4812 ret = iommu_probe_device(pn->dev);
4816 mutex_unlock(&adev->physical_node_lock);
4826 int __init intel_iommu_init(void)
4829 struct dmar_drhd_unit *drhd;
4830 struct intel_iommu *iommu;
4833 * Intel IOMMU is required for a TXT/tboot launch or platform
4834 * opt in, so enforce that.
4836 force_on = tboot_force_iommu() || platform_optin_force_iommu();
4838 if (iommu_init_mempool()) {
4840 panic("tboot: Failed to initialize iommu memory\n");
4844 down_write(&dmar_global_lock);
4845 if (dmar_table_init()) {
4847 panic("tboot: Failed to initialize DMAR table\n");
4851 if (dmar_dev_scope_init() < 0) {
4853 panic("tboot: Failed to initialize DMAR device scope\n");
4857 up_write(&dmar_global_lock);
4860 * The bus notifier takes the dmar_global_lock, so lockdep will
4861 * complain later when we register it under the lock.
4863 dmar_register_bus_notifier();
4865 down_write(&dmar_global_lock);
4868 intel_iommu_debugfs_init();
4870 if (no_iommu || dmar_disabled) {
4872 * We exit the function here to ensure IOMMU's remapping and
4873 * mempool aren't setup, which means that the IOMMU's PMRs
4874 * won't be disabled via the call to init_dmars(). So disable
4875 * it explicitly here. The PMRs were setup by tboot prior to
4876 * calling SENTER, but the kernel is expected to reset/tear
4879 if (intel_iommu_tboot_noforce) {
4880 for_each_iommu(iommu, drhd)
4881 iommu_disable_protect_mem_regions(iommu);
4885 * Make sure the IOMMUs are switched off, even when we
4886 * boot into a kexec kernel and the previous kernel left
4889 intel_disable_iommus();
4893 if (list_empty(&dmar_rmrr_units))
4894 pr_info("No RMRR found\n");
4896 if (list_empty(&dmar_atsr_units))
4897 pr_info("No ATSR found\n");
4899 if (dmar_init_reserved_ranges()) {
4901 panic("tboot: Failed to reserve iommu ranges\n");
4902 goto out_free_reserved_range;
4906 intel_iommu_gfx_mapped = 1;
4908 init_no_remapping_devices();
4913 panic("tboot: Failed to initialize DMARs\n");
4914 pr_err("Initialization failed\n");
4915 goto out_free_reserved_range;
4917 up_write(&dmar_global_lock);
4919 init_iommu_pm_ops();
4921 down_read(&dmar_global_lock);
4922 for_each_active_iommu(iommu, drhd) {
4923 iommu_device_sysfs_add(&iommu->iommu, NULL,
4926 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4927 iommu_device_register(&iommu->iommu);
4929 up_read(&dmar_global_lock);
4931 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4932 if (si_domain && !hw_pass_through)
4933 register_memory_notifier(&intel_iommu_memory_nb);
4934 cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4935 intel_iommu_cpu_dead);
4937 down_read(&dmar_global_lock);
4938 if (probe_acpi_namespace_devices())
4939 pr_warn("ACPI name space devices didn't probe correctly\n");
4941 /* Finally, we enable the DMA remapping hardware. */
4942 for_each_iommu(iommu, drhd) {
4943 if (!drhd->ignored && !translation_pre_enabled(iommu))
4944 iommu_enable_translation(iommu);
4946 iommu_disable_protect_mem_regions(iommu);
4948 up_read(&dmar_global_lock);
4950 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4952 intel_iommu_enabled = 1;
4956 out_free_reserved_range:
4957 put_iova_domain(&reserved_iova_list);
4959 intel_iommu_free_dmars();
4960 up_write(&dmar_global_lock);
4961 iommu_exit_mempool();
4965 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4967 struct intel_iommu *iommu = opaque;
4969 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4974 * NB - intel-iommu lacks any sort of reference counting for the users of
4975 * dependent devices. If multiple endpoints have intersecting dependent
4976 * devices, unbinding the driver from any one of them will possibly leave
4977 * the others unable to operate.
4979 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4981 if (!iommu || !dev || !dev_is_pci(dev))
4984 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4987 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4989 struct dmar_domain *domain;
4990 struct intel_iommu *iommu;
4991 unsigned long flags;
4993 assert_spin_locked(&device_domain_lock);
4998 iommu = info->iommu;
4999 domain = info->domain;
5002 if (dev_is_pci(info->dev) && sm_supported(iommu))
5003 intel_pasid_tear_down_entry(iommu, info->dev,
5004 PASID_RID2PASID, false);
5006 iommu_disable_dev_iotlb(info);
5007 if (!dev_is_real_dma_subdevice(info->dev))
5008 domain_context_clear(iommu, info->dev);
5009 intel_pasid_free_table(info->dev);
5012 unlink_domain_info(info);
5014 spin_lock_irqsave(&iommu->lock, flags);
5015 domain_detach_iommu(domain, iommu);
5016 spin_unlock_irqrestore(&iommu->lock, flags);
5018 free_devinfo_mem(info);
5021 static void dmar_remove_one_dev_info(struct device *dev)
5023 struct device_domain_info *info;
5024 unsigned long flags;
5026 spin_lock_irqsave(&device_domain_lock, flags);
5027 info = get_domain_info(dev);
5029 __dmar_remove_one_dev_info(info);
5030 spin_unlock_irqrestore(&device_domain_lock, flags);
5033 static int md_domain_init(struct dmar_domain *domain, int guest_width)
5037 /* calculate AGAW */
5038 domain->gaw = guest_width;
5039 adjust_width = guestwidth_to_adjustwidth(guest_width);
5040 domain->agaw = width_to_agaw(adjust_width);
5042 domain->iommu_coherency = 0;
5043 domain->iommu_snooping = 0;
5044 domain->iommu_superpage = 0;
5045 domain->max_addr = 0;
5047 /* always allocate the top pgd */
5048 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
5051 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
5055 static void intel_init_iova_domain(struct dmar_domain *dmar_domain)
5057 init_iova_domain(&dmar_domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
5058 copy_reserved_iova(&reserved_iova_list, &dmar_domain->iovad);
5060 if (!intel_iommu_strict &&
5061 init_iova_flush_queue(&dmar_domain->iovad,
5062 iommu_flush_iova, iova_entry_free))
5063 pr_info("iova flush queue initialization failed\n");
5066 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
5068 struct dmar_domain *dmar_domain;
5069 struct iommu_domain *domain;
5072 case IOMMU_DOMAIN_DMA:
5074 case IOMMU_DOMAIN_UNMANAGED:
5075 dmar_domain = alloc_domain(0);
5077 pr_err("Can't allocate dmar_domain\n");
5080 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5081 pr_err("Domain initialization failed\n");
5082 domain_exit(dmar_domain);
5086 if (type == IOMMU_DOMAIN_DMA)
5087 intel_init_iova_domain(dmar_domain);
5089 domain_update_iommu_cap(dmar_domain);
5091 domain = &dmar_domain->domain;
5092 domain->geometry.aperture_start = 0;
5093 domain->geometry.aperture_end =
5094 __DOMAIN_MAX_ADDR(dmar_domain->gaw);
5095 domain->geometry.force_aperture = true;
5098 case IOMMU_DOMAIN_IDENTITY:
5099 return &si_domain->domain;
5107 static void intel_iommu_domain_free(struct iommu_domain *domain)
5109 if (domain != &si_domain->domain)
5110 domain_exit(to_dmar_domain(domain));
5114 * Check whether a @domain could be attached to the @dev through the
5115 * aux-domain attach/detach APIs.
5118 is_aux_domain(struct device *dev, struct iommu_domain *domain)
5120 struct device_domain_info *info = get_domain_info(dev);
5122 return info && info->auxd_enabled &&
5123 domain->type == IOMMU_DOMAIN_UNMANAGED;
5126 static void auxiliary_link_device(struct dmar_domain *domain,
5129 struct device_domain_info *info = get_domain_info(dev);
5131 assert_spin_locked(&device_domain_lock);
5135 domain->auxd_refcnt++;
5136 list_add(&domain->auxd, &info->auxiliary_domains);
5139 static void auxiliary_unlink_device(struct dmar_domain *domain,
5142 struct device_domain_info *info = get_domain_info(dev);
5144 assert_spin_locked(&device_domain_lock);
5148 list_del(&domain->auxd);
5149 domain->auxd_refcnt--;
5151 if (!domain->auxd_refcnt && domain->default_pasid > 0)
5152 ioasid_free(domain->default_pasid);
5155 static int aux_domain_add_dev(struct dmar_domain *domain,
5159 unsigned long flags;
5160 struct intel_iommu *iommu;
5162 iommu = device_to_iommu(dev, NULL, NULL);
5166 if (domain->default_pasid <= 0) {
5169 /* No private data needed for the default pasid */
5170 pasid = ioasid_alloc(NULL, PASID_MIN,
5171 pci_max_pasids(to_pci_dev(dev)) - 1,
5173 if (pasid == INVALID_IOASID) {
5174 pr_err("Can't allocate default pasid\n");
5177 domain->default_pasid = pasid;
5180 spin_lock_irqsave(&device_domain_lock, flags);
5182 * iommu->lock must be held to attach domain to iommu and setup the
5183 * pasid entry for second level translation.
5185 spin_lock(&iommu->lock);
5186 ret = domain_attach_iommu(domain, iommu);
5190 /* Setup the PASID entry for mediated devices: */
5191 if (domain_use_first_level(domain))
5192 ret = domain_setup_first_level(iommu, domain, dev,
5193 domain->default_pasid);
5195 ret = intel_pasid_setup_second_level(iommu, domain, dev,
5196 domain->default_pasid);
5199 spin_unlock(&iommu->lock);
5201 auxiliary_link_device(domain, dev);
5203 spin_unlock_irqrestore(&device_domain_lock, flags);
5208 domain_detach_iommu(domain, iommu);
5210 spin_unlock(&iommu->lock);
5211 spin_unlock_irqrestore(&device_domain_lock, flags);
5212 if (!domain->auxd_refcnt && domain->default_pasid > 0)
5213 ioasid_free(domain->default_pasid);
5218 static void aux_domain_remove_dev(struct dmar_domain *domain,
5221 struct device_domain_info *info;
5222 struct intel_iommu *iommu;
5223 unsigned long flags;
5225 if (!is_aux_domain(dev, &domain->domain))
5228 spin_lock_irqsave(&device_domain_lock, flags);
5229 info = get_domain_info(dev);
5230 iommu = info->iommu;
5232 auxiliary_unlink_device(domain, dev);
5234 spin_lock(&iommu->lock);
5235 intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid, false);
5236 domain_detach_iommu(domain, iommu);
5237 spin_unlock(&iommu->lock);
5239 spin_unlock_irqrestore(&device_domain_lock, flags);
5242 static int prepare_domain_attach_device(struct iommu_domain *domain,
5245 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5246 struct intel_iommu *iommu;
5249 iommu = device_to_iommu(dev, NULL, NULL);
5253 /* check if this iommu agaw is sufficient for max mapped address */
5254 addr_width = agaw_to_width(iommu->agaw);
5255 if (addr_width > cap_mgaw(iommu->cap))
5256 addr_width = cap_mgaw(iommu->cap);
5258 if (dmar_domain->max_addr > (1LL << addr_width)) {
5259 dev_err(dev, "%s: iommu width (%d) is not "
5260 "sufficient for the mapped address (%llx)\n",
5261 __func__, addr_width, dmar_domain->max_addr);
5264 dmar_domain->gaw = addr_width;
5267 * Knock out extra levels of page tables if necessary
5269 while (iommu->agaw < dmar_domain->agaw) {
5270 struct dma_pte *pte;
5272 pte = dmar_domain->pgd;
5273 if (dma_pte_present(pte)) {
5274 dmar_domain->pgd = (struct dma_pte *)
5275 phys_to_virt(dma_pte_addr(pte));
5276 free_pgtable_page(pte);
5278 dmar_domain->agaw--;
5284 static int intel_iommu_attach_device(struct iommu_domain *domain,
5289 if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
5290 device_is_rmrr_locked(dev)) {
5291 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
5295 if (is_aux_domain(dev, domain))
5298 /* normally dev is not mapped */
5299 if (unlikely(domain_context_mapped(dev))) {
5300 struct dmar_domain *old_domain;
5302 old_domain = find_domain(dev);
5304 dmar_remove_one_dev_info(dev);
5307 ret = prepare_domain_attach_device(domain, dev);
5311 return domain_add_dev_info(to_dmar_domain(domain), dev);
5314 static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
5319 if (!is_aux_domain(dev, domain))
5322 ret = prepare_domain_attach_device(domain, dev);
5326 return aux_domain_add_dev(to_dmar_domain(domain), dev);
5329 static void intel_iommu_detach_device(struct iommu_domain *domain,
5332 dmar_remove_one_dev_info(dev);
5335 static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
5338 aux_domain_remove_dev(to_dmar_domain(domain), dev);
5342 * 2D array for converting and sanitizing IOMMU generic TLB granularity to
5343 * VT-d granularity. Invalidation is typically included in the unmap operation
5344 * as a result of DMA or VFIO unmap. However, for assigned devices guest
5345 * owns the first level page tables. Invalidations of translation caches in the
5346 * guest are trapped and passed down to the host.
5348 * vIOMMU in the guest will only expose first level page tables, therefore
5349 * we do not support IOTLB granularity for request without PASID (second level).
5351 * For example, to find the VT-d granularity encoding for IOTLB
5352 * type and page selective granularity within PASID:
5353 * X: indexed by iommu cache type
5354 * Y: indexed by enum iommu_inv_granularity
5355 * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR]
5359 inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = {
5361 * PASID based IOTLB invalidation: PASID selective (per PASID),
5362 * page selective (address granularity)
5364 {-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID},
5365 /* PASID based dev TLBs */
5366 {-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL},
5368 {-EINVAL, -EINVAL, -EINVAL}
5371 static inline int to_vtd_granularity(int type, int granu)
5373 return inv_type_granu_table[type][granu];
5376 static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules)
5378 u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT;
5380 /* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc.
5381 * IOMMU cache invalidate API passes granu_size in bytes, and number of
5382 * granu size in contiguous memory.
5384 return order_base_2(nr_pages);
5387 #ifdef CONFIG_INTEL_IOMMU_SVM
5389 intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev,
5390 struct iommu_cache_invalidate_info *inv_info)
5392 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5393 struct device_domain_info *info;
5394 struct intel_iommu *iommu;
5395 unsigned long flags;
5402 if (!inv_info || !dmar_domain ||
5403 inv_info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
5406 if (!dev || !dev_is_pci(dev))
5409 iommu = device_to_iommu(dev, &bus, &devfn);
5413 if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE))
5416 spin_lock_irqsave(&device_domain_lock, flags);
5417 spin_lock(&iommu->lock);
5418 info = get_domain_info(dev);
5423 did = dmar_domain->iommu_did[iommu->seq_id];
5424 sid = PCI_DEVID(bus, devfn);
5426 /* Size is only valid in address selective invalidation */
5427 if (inv_info->granularity == IOMMU_INV_GRANU_ADDR)
5428 size = to_vtd_size(inv_info->addr_info.granule_size,
5429 inv_info->addr_info.nb_granules);
5431 for_each_set_bit(cache_type,
5432 (unsigned long *)&inv_info->cache,
5433 IOMMU_CACHE_INV_TYPE_NR) {
5438 granu = to_vtd_granularity(cache_type, inv_info->granularity);
5439 if (granu == -EINVAL) {
5440 pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n",
5441 cache_type, inv_info->granularity);
5446 * PASID is stored in different locations based on the
5449 if (inv_info->granularity == IOMMU_INV_GRANU_PASID &&
5450 (inv_info->pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID))
5451 pasid = inv_info->pasid_info.pasid;
5452 else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
5453 (inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID))
5454 pasid = inv_info->addr_info.pasid;
5456 switch (BIT(cache_type)) {
5457 case IOMMU_CACHE_INV_TYPE_IOTLB:
5458 /* HW will ignore LSB bits based on address mask */
5459 if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
5461 (inv_info->addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) {
5462 pr_err_ratelimited("User address not aligned, 0x%llx, size order %llu\n",
5463 inv_info->addr_info.addr, size);
5467 * If granu is PASID-selective, address is ignored.
5468 * We use npages = -1 to indicate that.
5470 qi_flush_piotlb(iommu, did, pasid,
5471 mm_to_dma_pfn(inv_info->addr_info.addr),
5472 (granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size,
5473 inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF);
5475 if (!info->ats_enabled)
5478 * Always flush device IOTLB if ATS is enabled. vIOMMU
5479 * in the guest may assume IOTLB flush is inclusive,
5480 * which is more efficient.
5483 case IOMMU_CACHE_INV_TYPE_DEV_IOTLB:
5485 * PASID based device TLB invalidation does not support
5486 * IOMMU_INV_GRANU_PASID granularity but only supports
5487 * IOMMU_INV_GRANU_ADDR.
5488 * The equivalent of that is we set the size to be the
5489 * entire range of 64 bit. User only provides PASID info
5490 * without address info. So we set addr to 0.
5492 if (inv_info->granularity == IOMMU_INV_GRANU_PASID) {
5493 size = 64 - VTD_PAGE_SHIFT;
5495 } else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) {
5496 addr = inv_info->addr_info.addr;
5499 if (info->ats_enabled)
5500 qi_flush_dev_iotlb_pasid(iommu, sid,
5502 info->ats_qdep, addr,
5505 pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n");
5508 dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n",
5514 spin_unlock(&iommu->lock);
5515 spin_unlock_irqrestore(&device_domain_lock, flags);
5521 static int intel_iommu_map(struct iommu_domain *domain,
5522 unsigned long iova, phys_addr_t hpa,
5523 size_t size, int iommu_prot, gfp_t gfp)
5525 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5530 if (iommu_prot & IOMMU_READ)
5531 prot |= DMA_PTE_READ;
5532 if (iommu_prot & IOMMU_WRITE)
5533 prot |= DMA_PTE_WRITE;
5534 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5535 prot |= DMA_PTE_SNP;
5537 max_addr = iova + size;
5538 if (dmar_domain->max_addr < max_addr) {
5541 /* check if minimum agaw is sufficient for mapped address */
5542 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5543 if (end < max_addr) {
5544 pr_err("%s: iommu width (%d) is not "
5545 "sufficient for the mapped address (%llx)\n",
5546 __func__, dmar_domain->gaw, max_addr);
5549 dmar_domain->max_addr = max_addr;
5551 /* Round up size to next multiple of PAGE_SIZE, if it and
5552 the low bits of hpa would take us onto the next page */
5553 size = aligned_nrpages(hpa, size);
5554 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5555 hpa >> VTD_PAGE_SHIFT, size, prot);
5559 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5560 unsigned long iova, size_t size,
5561 struct iommu_iotlb_gather *gather)
5563 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5564 struct page *freelist = NULL;
5565 unsigned long start_pfn, last_pfn;
5566 unsigned int npages;
5567 int iommu_id, level = 0;
5569 /* Cope with horrid API which requires us to unmap more than the
5570 size argument if it happens to be a large-page mapping. */
5571 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5573 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5574 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5576 start_pfn = iova >> VTD_PAGE_SHIFT;
5577 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5579 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5581 npages = last_pfn - start_pfn + 1;
5583 for_each_domain_iommu(iommu_id, dmar_domain)
5584 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5585 start_pfn, npages, !freelist, 0);
5587 dma_free_pagelist(freelist);
5589 if (dmar_domain->max_addr == iova + size)
5590 dmar_domain->max_addr = iova;
5595 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5598 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5599 struct dma_pte *pte;
5603 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5604 if (pte && dma_pte_present(pte))
5605 phys = dma_pte_addr(pte) +
5606 (iova & (BIT_MASK(level_to_offset_bits(level) +
5607 VTD_PAGE_SHIFT) - 1));
5612 static inline bool scalable_mode_support(void)
5614 struct dmar_drhd_unit *drhd;
5615 struct intel_iommu *iommu;
5619 for_each_active_iommu(iommu, drhd) {
5620 if (!sm_supported(iommu)) {
5630 static inline bool iommu_pasid_support(void)
5632 struct dmar_drhd_unit *drhd;
5633 struct intel_iommu *iommu;
5637 for_each_active_iommu(iommu, drhd) {
5638 if (!pasid_supported(iommu)) {
5648 static inline bool nested_mode_support(void)
5650 struct dmar_drhd_unit *drhd;
5651 struct intel_iommu *iommu;
5655 for_each_active_iommu(iommu, drhd) {
5656 if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) {
5666 static bool intel_iommu_capable(enum iommu_cap cap)
5668 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5669 return domain_update_iommu_snooping(NULL) == 1;
5670 if (cap == IOMMU_CAP_INTR_REMAP)
5671 return irq_remapping_enabled == 1;
5676 static struct iommu_device *intel_iommu_probe_device(struct device *dev)
5678 struct intel_iommu *iommu;
5680 iommu = device_to_iommu(dev, NULL, NULL);
5682 return ERR_PTR(-ENODEV);
5684 if (translation_pre_enabled(iommu))
5685 dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;
5687 return &iommu->iommu;
5690 static void intel_iommu_release_device(struct device *dev)
5692 struct intel_iommu *iommu;
5694 iommu = device_to_iommu(dev, NULL, NULL);
5698 dmar_remove_one_dev_info(dev);
5700 set_dma_ops(dev, NULL);
5703 static void intel_iommu_probe_finalize(struct device *dev)
5705 struct iommu_domain *domain;
5707 domain = iommu_get_domain_for_dev(dev);
5708 if (device_needs_bounce(dev))
5709 set_dma_ops(dev, &bounce_dma_ops);
5710 else if (domain && domain->type == IOMMU_DOMAIN_DMA)
5711 set_dma_ops(dev, &intel_dma_ops);
5713 set_dma_ops(dev, NULL);
5716 static void intel_iommu_get_resv_regions(struct device *device,
5717 struct list_head *head)
5719 int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5720 struct iommu_resv_region *reg;
5721 struct dmar_rmrr_unit *rmrr;
5722 struct device *i_dev;
5725 down_read(&dmar_global_lock);
5726 for_each_rmrr_units(rmrr) {
5727 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5729 struct iommu_resv_region *resv;
5730 enum iommu_resv_type type;
5733 if (i_dev != device &&
5734 !is_downstream_to_pci_bridge(device, i_dev))
5737 length = rmrr->end_address - rmrr->base_address + 1;
5739 type = device_rmrr_is_relaxable(device) ?
5740 IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
5742 resv = iommu_alloc_resv_region(rmrr->base_address,
5743 length, prot, type);
5747 list_add_tail(&resv->list, head);
5750 up_read(&dmar_global_lock);
5752 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
5753 if (dev_is_pci(device)) {
5754 struct pci_dev *pdev = to_pci_dev(device);
5756 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5757 reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
5758 IOMMU_RESV_DIRECT_RELAXABLE);
5760 list_add_tail(®->list, head);
5763 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
5765 reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5766 IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5770 list_add_tail(®->list, head);
5773 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5775 struct device_domain_info *info;
5776 struct context_entry *context;
5777 struct dmar_domain *domain;
5778 unsigned long flags;
5782 domain = find_domain(dev);
5786 spin_lock_irqsave(&device_domain_lock, flags);
5787 spin_lock(&iommu->lock);
5790 info = get_domain_info(dev);
5791 if (!info || !info->pasid_supported)
5794 context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5795 if (WARN_ON(!context))
5798 ctx_lo = context[0].lo;
5800 if (!(ctx_lo & CONTEXT_PASIDE)) {
5801 ctx_lo |= CONTEXT_PASIDE;
5802 context[0].lo = ctx_lo;
5804 iommu->flush.flush_context(iommu,
5805 domain->iommu_did[iommu->seq_id],
5806 PCI_DEVID(info->bus, info->devfn),
5807 DMA_CCMD_MASK_NOBIT,
5808 DMA_CCMD_DEVICE_INVL);
5811 /* Enable PASID support in the device, if it wasn't already */
5812 if (!info->pasid_enabled)
5813 iommu_enable_dev_iotlb(info);
5818 spin_unlock(&iommu->lock);
5819 spin_unlock_irqrestore(&device_domain_lock, flags);
5824 static void intel_iommu_apply_resv_region(struct device *dev,
5825 struct iommu_domain *domain,
5826 struct iommu_resv_region *region)
5828 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5829 unsigned long start, end;
5831 start = IOVA_PFN(region->start);
5832 end = IOVA_PFN(region->start + region->length - 1);
5834 WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
5837 static struct iommu_group *intel_iommu_device_group(struct device *dev)
5839 if (dev_is_pci(dev))
5840 return pci_device_group(dev);
5841 return generic_device_group(dev);
5844 static int intel_iommu_enable_auxd(struct device *dev)
5846 struct device_domain_info *info;
5847 struct intel_iommu *iommu;
5848 unsigned long flags;
5851 iommu = device_to_iommu(dev, NULL, NULL);
5852 if (!iommu || dmar_disabled)
5855 if (!sm_supported(iommu) || !pasid_supported(iommu))
5858 ret = intel_iommu_enable_pasid(iommu, dev);
5862 spin_lock_irqsave(&device_domain_lock, flags);
5863 info = get_domain_info(dev);
5864 info->auxd_enabled = 1;
5865 spin_unlock_irqrestore(&device_domain_lock, flags);
5870 static int intel_iommu_disable_auxd(struct device *dev)
5872 struct device_domain_info *info;
5873 unsigned long flags;
5875 spin_lock_irqsave(&device_domain_lock, flags);
5876 info = get_domain_info(dev);
5877 if (!WARN_ON(!info))
5878 info->auxd_enabled = 0;
5879 spin_unlock_irqrestore(&device_domain_lock, flags);
5885 * A PCI express designated vendor specific extended capability is defined
5886 * in the section 3.7 of Intel scalable I/O virtualization technical spec
5887 * for system software and tools to detect endpoint devices supporting the
5888 * Intel scalable IO virtualization without host driver dependency.
5890 * Returns the address of the matching extended capability structure within
5891 * the device's PCI configuration space or 0 if the device does not support
5894 static int siov_find_pci_dvsec(struct pci_dev *pdev)
5899 pos = pci_find_next_ext_capability(pdev, 0, 0x23);
5901 pci_read_config_word(pdev, pos + 4, &vendor);
5902 pci_read_config_word(pdev, pos + 8, &id);
5903 if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
5906 pos = pci_find_next_ext_capability(pdev, pos, 0x23);
5913 intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
5915 if (feat == IOMMU_DEV_FEAT_AUX) {
5918 if (!dev_is_pci(dev) || dmar_disabled ||
5919 !scalable_mode_support() || !iommu_pasid_support())
5922 ret = pci_pasid_features(to_pci_dev(dev));
5926 return !!siov_find_pci_dvsec(to_pci_dev(dev));
5929 if (feat == IOMMU_DEV_FEAT_SVA) {
5930 struct device_domain_info *info = get_domain_info(dev);
5932 return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) &&
5933 info->pasid_supported && info->pri_supported &&
5934 info->ats_supported;
5941 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
5943 if (feat == IOMMU_DEV_FEAT_AUX)
5944 return intel_iommu_enable_auxd(dev);
5946 if (feat == IOMMU_DEV_FEAT_SVA) {
5947 struct device_domain_info *info = get_domain_info(dev);
5952 if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE)
5960 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
5962 if (feat == IOMMU_DEV_FEAT_AUX)
5963 return intel_iommu_disable_auxd(dev);
5969 intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
5971 struct device_domain_info *info = get_domain_info(dev);
5973 if (feat == IOMMU_DEV_FEAT_AUX)
5974 return scalable_mode_support() && info && info->auxd_enabled;
5980 intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
5982 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5984 return dmar_domain->default_pasid > 0 ?
5985 dmar_domain->default_pasid : -EINVAL;
5988 static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
5991 return attach_deferred(dev);
5995 intel_iommu_domain_set_attr(struct iommu_domain *domain,
5996 enum iommu_attr attr, void *data)
5998 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5999 unsigned long flags;
6002 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
6006 case DOMAIN_ATTR_NESTING:
6007 spin_lock_irqsave(&device_domain_lock, flags);
6008 if (nested_mode_support() &&
6009 list_empty(&dmar_domain->devices)) {
6010 dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE;
6011 dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL;
6015 spin_unlock_irqrestore(&device_domain_lock, flags);
6026 * Check that the device does not live on an external facing PCI port that is
6027 * marked as untrusted. Such devices should not be able to apply quirks and
6028 * thus not be able to bypass the IOMMU restrictions.
6030 static bool risky_device(struct pci_dev *pdev)
6032 if (pdev->untrusted) {
6034 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
6035 pdev->vendor, pdev->device);
6036 pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
6042 const struct iommu_ops intel_iommu_ops = {
6043 .capable = intel_iommu_capable,
6044 .domain_alloc = intel_iommu_domain_alloc,
6045 .domain_free = intel_iommu_domain_free,
6046 .domain_set_attr = intel_iommu_domain_set_attr,
6047 .attach_dev = intel_iommu_attach_device,
6048 .detach_dev = intel_iommu_detach_device,
6049 .aux_attach_dev = intel_iommu_aux_attach_device,
6050 .aux_detach_dev = intel_iommu_aux_detach_device,
6051 .aux_get_pasid = intel_iommu_aux_get_pasid,
6052 .map = intel_iommu_map,
6053 .unmap = intel_iommu_unmap,
6054 .iova_to_phys = intel_iommu_iova_to_phys,
6055 .probe_device = intel_iommu_probe_device,
6056 .probe_finalize = intel_iommu_probe_finalize,
6057 .release_device = intel_iommu_release_device,
6058 .get_resv_regions = intel_iommu_get_resv_regions,
6059 .put_resv_regions = generic_iommu_put_resv_regions,
6060 .apply_resv_region = intel_iommu_apply_resv_region,
6061 .device_group = intel_iommu_device_group,
6062 .dev_has_feat = intel_iommu_dev_has_feat,
6063 .dev_feat_enabled = intel_iommu_dev_feat_enabled,
6064 .dev_enable_feat = intel_iommu_dev_enable_feat,
6065 .dev_disable_feat = intel_iommu_dev_disable_feat,
6066 .is_attach_deferred = intel_iommu_is_attach_deferred,
6067 .def_domain_type = device_def_domain_type,
6068 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
6069 #ifdef CONFIG_INTEL_IOMMU_SVM
6070 .cache_invalidate = intel_iommu_sva_invalidate,
6071 .sva_bind_gpasid = intel_svm_bind_gpasid,
6072 .sva_unbind_gpasid = intel_svm_unbind_gpasid,
6073 .sva_bind = intel_svm_bind,
6074 .sva_unbind = intel_svm_unbind,
6075 .sva_get_pasid = intel_svm_get_pasid,
6076 .page_response = intel_svm_page_response,
6080 static void quirk_iommu_igfx(struct pci_dev *dev)
6082 if (risky_device(dev))
6085 pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
6089 /* G4x/GM45 integrated gfx dmar support is totally busted. */
6090 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
6091 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
6092 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
6093 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
6094 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
6095 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
6096 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);
6098 /* Broadwell igfx malfunctions with dmar */
6099 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
6100 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
6101 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
6102 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
6103 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
6104 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
6105 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
6106 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
6107 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
6108 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
6109 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
6110 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
6111 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
6112 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
6113 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
6114 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
6115 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
6116 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
6117 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
6118 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
6119 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
6120 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
6121 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
6122 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
6124 static void quirk_iommu_rwbf(struct pci_dev *dev)
6126 if (risky_device(dev))
6130 * Mobile 4 Series Chipset neglects to set RWBF capability,
6131 * but needs it. Same seems to hold for the desktop versions.
6133 pci_info(dev, "Forcing write-buffer flush capability\n");
6137 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
6138 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
6139 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
6140 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
6141 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
6142 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
6143 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
6146 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
6147 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
6148 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
6149 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
6150 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
6151 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
6152 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
6153 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
6155 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
6159 if (risky_device(dev))
6162 if (pci_read_config_word(dev, GGC, &ggc))
6165 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
6166 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
6168 } else if (dmar_map_gfx) {
6169 /* we have to ensure the gfx device is idle before we flush */
6170 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6171 intel_iommu_strict = 1;
6174 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
6175 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
6176 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
6177 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
6179 static void quirk_igfx_skip_te_disable(struct pci_dev *dev)
6183 if (!IS_GFX_DEVICE(dev))
6186 ver = (dev->device >> 8) & 0xff;
6187 if (ver != 0x45 && ver != 0x46 && ver != 0x4c &&
6188 ver != 0x4e && ver != 0x8a && ver != 0x98 &&
6192 if (risky_device(dev))
6195 pci_info(dev, "Skip IOMMU disabling for graphics\n");
6196 iommu_skip_te_disable = 1;
6198 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable);
6200 /* On Tylersburg chipsets, some BIOSes have been known to enable the
6201 ISOCH DMAR unit for the Azalia sound device, but not give it any
6202 TLB entries, which causes it to deadlock. Check for that. We do
6203 this in a function called from init_dmars(), instead of in a PCI
6204 quirk, because we don't want to print the obnoxious "BIOS broken"
6205 message if VT-d is actually disabled.
6207 static void __init check_tylersburg_isoch(void)
6209 struct pci_dev *pdev;
6210 uint32_t vtisochctrl;
6212 /* If there's no Azalia in the system anyway, forget it. */
6213 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
6217 if (risky_device(pdev)) {
6224 /* System Management Registers. Might be hidden, in which case
6225 we can't do the sanity check. But that's OK, because the
6226 known-broken BIOSes _don't_ actually hide it, so far. */
6227 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
6231 if (risky_device(pdev)) {
6236 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
6243 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
6244 if (vtisochctrl & 1)
6247 /* Drop all bits other than the number of TLB entries */
6248 vtisochctrl &= 0x1c;
6250 /* If we have the recommended number of TLB entries (16), fine. */
6251 if (vtisochctrl == 0x10)
6254 /* Zero TLB entries? You get to ride the short bus to school. */
6256 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
6257 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
6258 dmi_get_system_info(DMI_BIOS_VENDOR),
6259 dmi_get_system_info(DMI_BIOS_VERSION),
6260 dmi_get_system_info(DMI_PRODUCT_VERSION));
6261 iommu_identity_mapping |= IDENTMAP_AZALIA;
6265 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",