1 // SPDX-License-Identifier: GPL-2.0-only
4 * Helper functions for bitmap.h.
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/ctype.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/export.h>
13 #include <linux/slab.h>
16 * DOC: bitmap introduction
18 * bitmaps provide an array of bits, implemented using an
19 * array of unsigned longs. The number of valid bits in a
20 * given bitmap does _not_ need to be an exact multiple of
23 * The possible unused bits in the last, partially used word
24 * of a bitmap are 'don't care'. The implementation makes
25 * no particular effort to keep them zero. It ensures that
26 * their value will not affect the results of any operation.
27 * The bitmap operations that return Boolean (bitmap_empty,
28 * for example) or scalar (bitmap_weight, for example) results
29 * carefully filter out these unused bits from impacting their
32 * The byte ordering of bitmaps is more natural on little
33 * endian architectures. See the big-endian headers
34 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
35 * for the best explanations of this ordering.
38 bool __bitmap_equal(const unsigned long *bitmap1,
39 const unsigned long *bitmap2, unsigned int bits)
41 unsigned int k, lim = bits/BITS_PER_LONG;
42 for (k = 0; k < lim; ++k)
43 if (bitmap1[k] != bitmap2[k])
46 if (bits % BITS_PER_LONG)
47 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
52 EXPORT_SYMBOL(__bitmap_equal);
54 bool __bitmap_or_equal(const unsigned long *bitmap1,
55 const unsigned long *bitmap2,
56 const unsigned long *bitmap3,
59 unsigned int k, lim = bits / BITS_PER_LONG;
62 for (k = 0; k < lim; ++k) {
63 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
67 if (!(bits % BITS_PER_LONG))
70 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
71 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
74 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
76 unsigned int k, lim = BITS_TO_LONGS(bits);
77 for (k = 0; k < lim; ++k)
80 EXPORT_SYMBOL(__bitmap_complement);
83 * __bitmap_shift_right - logical right shift of the bits in a bitmap
84 * @dst : destination bitmap
85 * @src : source bitmap
86 * @shift : shift by this many bits
87 * @nbits : bitmap size, in bits
89 * Shifting right (dividing) means moving bits in the MS -> LS bit
90 * direction. Zeros are fed into the vacated MS positions and the
91 * LS bits shifted off the bottom are lost.
93 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
94 unsigned shift, unsigned nbits)
96 unsigned k, lim = BITS_TO_LONGS(nbits);
97 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
98 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
99 for (k = 0; off + k < lim; ++k) {
100 unsigned long upper, lower;
103 * If shift is not word aligned, take lower rem bits of
104 * word above and make them the top rem bits of result.
106 if (!rem || off + k + 1 >= lim)
109 upper = src[off + k + 1];
110 if (off + k + 1 == lim - 1)
112 upper <<= (BITS_PER_LONG - rem);
114 lower = src[off + k];
115 if (off + k == lim - 1)
118 dst[k] = lower | upper;
121 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
123 EXPORT_SYMBOL(__bitmap_shift_right);
127 * __bitmap_shift_left - logical left shift of the bits in a bitmap
128 * @dst : destination bitmap
129 * @src : source bitmap
130 * @shift : shift by this many bits
131 * @nbits : bitmap size, in bits
133 * Shifting left (multiplying) means moving bits in the LS -> MS
134 * direction. Zeros are fed into the vacated LS bit positions
135 * and those MS bits shifted off the top are lost.
138 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
139 unsigned int shift, unsigned int nbits)
142 unsigned int lim = BITS_TO_LONGS(nbits);
143 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
144 for (k = lim - off - 1; k >= 0; --k) {
145 unsigned long upper, lower;
148 * If shift is not word aligned, take upper rem bits of
149 * word below and make them the bottom rem bits of result.
152 lower = src[k - 1] >> (BITS_PER_LONG - rem);
155 upper = src[k] << rem;
156 dst[k + off] = lower | upper;
159 memset(dst, 0, off*sizeof(unsigned long));
161 EXPORT_SYMBOL(__bitmap_shift_left);
164 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
165 * @dst: destination bitmap, might overlap with src
166 * @src: source bitmap
167 * @first: start bit of region to be removed
168 * @cut: number of bits to remove
169 * @nbits: bitmap size, in bits
171 * Set the n-th bit of @dst iff the n-th bit of @src is set and
172 * n is less than @first, or the m-th bit of @src is set for any
173 * m such that @first <= n < nbits, and m = n + @cut.
175 * In pictures, example for a big-endian 32-bit architecture:
177 * The @src bitmap is::
181 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
185 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
189 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
194 * Note that @dst and @src might overlap partially or entirely.
196 * This is implemented in the obvious way, with a shift and carry
197 * step for each moved bit. Optimisation is left as an exercise
200 void bitmap_cut(unsigned long *dst, const unsigned long *src,
201 unsigned int first, unsigned int cut, unsigned int nbits)
203 unsigned int len = BITS_TO_LONGS(nbits);
204 unsigned long keep = 0, carry;
207 if (first % BITS_PER_LONG) {
208 keep = src[first / BITS_PER_LONG] &
209 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
212 memmove(dst, src, len * sizeof(*dst));
215 for (i = first / BITS_PER_LONG; i < len; i++) {
217 carry = dst[i + 1] & 1UL;
221 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
225 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
226 dst[first / BITS_PER_LONG] |= keep;
228 EXPORT_SYMBOL(bitmap_cut);
230 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
231 const unsigned long *bitmap2, unsigned int bits)
234 unsigned int lim = bits/BITS_PER_LONG;
235 unsigned long result = 0;
237 for (k = 0; k < lim; k++)
238 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
239 if (bits % BITS_PER_LONG)
240 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
241 BITMAP_LAST_WORD_MASK(bits));
244 EXPORT_SYMBOL(__bitmap_and);
246 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
247 const unsigned long *bitmap2, unsigned int bits)
250 unsigned int nr = BITS_TO_LONGS(bits);
252 for (k = 0; k < nr; k++)
253 dst[k] = bitmap1[k] | bitmap2[k];
255 EXPORT_SYMBOL(__bitmap_or);
257 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
258 const unsigned long *bitmap2, unsigned int bits)
261 unsigned int nr = BITS_TO_LONGS(bits);
263 for (k = 0; k < nr; k++)
264 dst[k] = bitmap1[k] ^ bitmap2[k];
266 EXPORT_SYMBOL(__bitmap_xor);
268 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
269 const unsigned long *bitmap2, unsigned int bits)
272 unsigned int lim = bits/BITS_PER_LONG;
273 unsigned long result = 0;
275 for (k = 0; k < lim; k++)
276 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
277 if (bits % BITS_PER_LONG)
278 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
279 BITMAP_LAST_WORD_MASK(bits));
282 EXPORT_SYMBOL(__bitmap_andnot);
284 void __bitmap_replace(unsigned long *dst,
285 const unsigned long *old, const unsigned long *new,
286 const unsigned long *mask, unsigned int nbits)
289 unsigned int nr = BITS_TO_LONGS(nbits);
291 for (k = 0; k < nr; k++)
292 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
294 EXPORT_SYMBOL(__bitmap_replace);
296 bool __bitmap_intersects(const unsigned long *bitmap1,
297 const unsigned long *bitmap2, unsigned int bits)
299 unsigned int k, lim = bits/BITS_PER_LONG;
300 for (k = 0; k < lim; ++k)
301 if (bitmap1[k] & bitmap2[k])
304 if (bits % BITS_PER_LONG)
305 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
309 EXPORT_SYMBOL(__bitmap_intersects);
311 bool __bitmap_subset(const unsigned long *bitmap1,
312 const unsigned long *bitmap2, unsigned int bits)
314 unsigned int k, lim = bits/BITS_PER_LONG;
315 for (k = 0; k < lim; ++k)
316 if (bitmap1[k] & ~bitmap2[k])
319 if (bits % BITS_PER_LONG)
320 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
324 EXPORT_SYMBOL(__bitmap_subset);
326 #define BITMAP_WEIGHT(FETCH, bits) \
328 unsigned int __bits = (bits), idx, w = 0; \
330 for (idx = 0; idx < __bits / BITS_PER_LONG; idx++) \
331 w += hweight_long(FETCH); \
333 if (__bits % BITS_PER_LONG) \
334 w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits)); \
339 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
341 return BITMAP_WEIGHT(bitmap[idx], bits);
343 EXPORT_SYMBOL(__bitmap_weight);
345 unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
346 const unsigned long *bitmap2, unsigned int bits)
348 return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
350 EXPORT_SYMBOL(__bitmap_weight_and);
352 void __bitmap_set(unsigned long *map, unsigned int start, int len)
354 unsigned long *p = map + BIT_WORD(start);
355 const unsigned int size = start + len;
356 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
357 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
359 while (len - bits_to_set >= 0) {
362 bits_to_set = BITS_PER_LONG;
367 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
371 EXPORT_SYMBOL(__bitmap_set);
373 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
375 unsigned long *p = map + BIT_WORD(start);
376 const unsigned int size = start + len;
377 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
378 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
380 while (len - bits_to_clear >= 0) {
381 *p &= ~mask_to_clear;
382 len -= bits_to_clear;
383 bits_to_clear = BITS_PER_LONG;
384 mask_to_clear = ~0UL;
388 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
389 *p &= ~mask_to_clear;
392 EXPORT_SYMBOL(__bitmap_clear);
395 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
396 * @map: The address to base the search on
397 * @size: The bitmap size in bits
398 * @start: The bitnumber to start searching at
399 * @nr: The number of zeroed bits we're looking for
400 * @align_mask: Alignment mask for zero area
401 * @align_offset: Alignment offset for zero area.
403 * The @align_mask should be one less than a power of 2; the effect is that
404 * the bit offset of all zero areas this function finds plus @align_offset
405 * is multiple of that power of 2.
407 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
411 unsigned long align_mask,
412 unsigned long align_offset)
414 unsigned long index, end, i;
416 index = find_next_zero_bit(map, size, start);
418 /* Align allocation */
419 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
424 i = find_next_bit(map, end, index);
431 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
434 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
435 * @buf: pointer to a bitmap
436 * @pos: a bit position in @buf (0 <= @pos < @nbits)
437 * @nbits: number of valid bit positions in @buf
439 * Map the bit at position @pos in @buf (of length @nbits) to the
440 * ordinal of which set bit it is. If it is not set or if @pos
441 * is not a valid bit position, map to -1.
443 * If for example, just bits 4 through 7 are set in @buf, then @pos
444 * values 4 through 7 will get mapped to 0 through 3, respectively,
445 * and other @pos values will get mapped to -1. When @pos value 7
446 * gets mapped to (returns) @ord value 3 in this example, that means
447 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
449 * The bit positions 0 through @bits are valid positions in @buf.
451 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
453 if (pos >= nbits || !test_bit(pos, buf))
456 return bitmap_weight(buf, pos);
460 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
461 * @dst: remapped result
462 * @src: subset to be remapped
463 * @old: defines domain of map
464 * @new: defines range of map
465 * @nbits: number of bits in each of these bitmaps
467 * Let @old and @new define a mapping of bit positions, such that
468 * whatever position is held by the n-th set bit in @old is mapped
469 * to the n-th set bit in @new. In the more general case, allowing
470 * for the possibility that the weight 'w' of @new is less than the
471 * weight of @old, map the position of the n-th set bit in @old to
472 * the position of the m-th set bit in @new, where m == n % w.
474 * If either of the @old and @new bitmaps are empty, or if @src and
475 * @dst point to the same location, then this routine copies @src
478 * The positions of unset bits in @old are mapped to themselves
479 * (the identity map).
481 * Apply the above specified mapping to @src, placing the result in
482 * @dst, clearing any bits previously set in @dst.
484 * For example, lets say that @old has bits 4 through 7 set, and
485 * @new has bits 12 through 15 set. This defines the mapping of bit
486 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
487 * bit positions unchanged. So if say @src comes into this routine
488 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
491 void bitmap_remap(unsigned long *dst, const unsigned long *src,
492 const unsigned long *old, const unsigned long *new,
495 unsigned int oldbit, w;
497 if (dst == src) /* following doesn't handle inplace remaps */
499 bitmap_zero(dst, nbits);
501 w = bitmap_weight(new, nbits);
502 for_each_set_bit(oldbit, src, nbits) {
503 int n = bitmap_pos_to_ord(old, oldbit, nbits);
506 set_bit(oldbit, dst); /* identity map */
508 set_bit(find_nth_bit(new, nbits, n % w), dst);
511 EXPORT_SYMBOL(bitmap_remap);
514 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
515 * @oldbit: bit position to be mapped
516 * @old: defines domain of map
517 * @new: defines range of map
518 * @bits: number of bits in each of these bitmaps
520 * Let @old and @new define a mapping of bit positions, such that
521 * whatever position is held by the n-th set bit in @old is mapped
522 * to the n-th set bit in @new. In the more general case, allowing
523 * for the possibility that the weight 'w' of @new is less than the
524 * weight of @old, map the position of the n-th set bit in @old to
525 * the position of the m-th set bit in @new, where m == n % w.
527 * The positions of unset bits in @old are mapped to themselves
528 * (the identity map).
530 * Apply the above specified mapping to bit position @oldbit, returning
531 * the new bit position.
533 * For example, lets say that @old has bits 4 through 7 set, and
534 * @new has bits 12 through 15 set. This defines the mapping of bit
535 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
536 * bit positions unchanged. So if say @oldbit is 5, then this routine
539 int bitmap_bitremap(int oldbit, const unsigned long *old,
540 const unsigned long *new, int bits)
542 int w = bitmap_weight(new, bits);
543 int n = bitmap_pos_to_ord(old, oldbit, bits);
547 return find_nth_bit(new, bits, n % w);
549 EXPORT_SYMBOL(bitmap_bitremap);
553 * bitmap_onto - translate one bitmap relative to another
554 * @dst: resulting translated bitmap
555 * @orig: original untranslated bitmap
556 * @relmap: bitmap relative to which translated
557 * @bits: number of bits in each of these bitmaps
559 * Set the n-th bit of @dst iff there exists some m such that the
560 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
561 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
562 * (If you understood the previous sentence the first time your
563 * read it, you're overqualified for your current job.)
565 * In other words, @orig is mapped onto (surjectively) @dst,
566 * using the map { <n, m> | the n-th bit of @relmap is the
567 * m-th set bit of @relmap }.
569 * Any set bits in @orig above bit number W, where W is the
570 * weight of (number of set bits in) @relmap are mapped nowhere.
571 * In particular, if for all bits m set in @orig, m >= W, then
572 * @dst will end up empty. In situations where the possibility
573 * of such an empty result is not desired, one way to avoid it is
574 * to use the bitmap_fold() operator, below, to first fold the
575 * @orig bitmap over itself so that all its set bits x are in the
576 * range 0 <= x < W. The bitmap_fold() operator does this by
577 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
579 * Example [1] for bitmap_onto():
580 * Let's say @relmap has bits 30-39 set, and @orig has bits
581 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
582 * @dst will have bits 31, 33, 35, 37 and 39 set.
584 * When bit 0 is set in @orig, it means turn on the bit in
585 * @dst corresponding to whatever is the first bit (if any)
586 * that is turned on in @relmap. Since bit 0 was off in the
587 * above example, we leave off that bit (bit 30) in @dst.
589 * When bit 1 is set in @orig (as in the above example), it
590 * means turn on the bit in @dst corresponding to whatever
591 * is the second bit that is turned on in @relmap. The second
592 * bit in @relmap that was turned on in the above example was
593 * bit 31, so we turned on bit 31 in @dst.
595 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
596 * because they were the 4th, 6th, 8th and 10th set bits
597 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
598 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
600 * When bit 11 is set in @orig, it means turn on the bit in
601 * @dst corresponding to whatever is the twelfth bit that is
602 * turned on in @relmap. In the above example, there were
603 * only ten bits turned on in @relmap (30..39), so that bit
604 * 11 was set in @orig had no affect on @dst.
606 * Example [2] for bitmap_fold() + bitmap_onto():
607 * Let's say @relmap has these ten bits set::
609 * 40 41 42 43 45 48 53 61 74 95
611 * (for the curious, that's 40 plus the first ten terms of the
612 * Fibonacci sequence.)
614 * Further lets say we use the following code, invoking
615 * bitmap_fold() then bitmap_onto, as suggested above to
616 * avoid the possibility of an empty @dst result::
618 * unsigned long *tmp; // a temporary bitmap's bits
620 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
621 * bitmap_onto(dst, tmp, relmap, bits);
623 * Then this table shows what various values of @dst would be, for
624 * various @orig's. I list the zero-based positions of each set bit.
625 * The tmp column shows the intermediate result, as computed by
626 * using bitmap_fold() to fold the @orig bitmap modulo ten
627 * (the weight of @relmap):
629 * =============== ============== =================
635 * 1 3 5 7 1 3 5 7 41 43 48 61
636 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
637 * 0 9 18 27 0 9 8 7 40 61 74 95
639 * 0 11 22 33 0 1 2 3 40 41 42 43
640 * 0 12 24 36 0 2 4 6 40 42 45 53
641 * 78 102 211 1 2 8 41 42 74 [#f1]_
642 * =============== ============== =================
646 * For these marked lines, if we hadn't first done bitmap_fold()
647 * into tmp, then the @dst result would have been empty.
649 * If either of @orig or @relmap is empty (no set bits), then @dst
650 * will be returned empty.
652 * If (as explained above) the only set bits in @orig are in positions
653 * m where m >= W, (where W is the weight of @relmap) then @dst will
654 * once again be returned empty.
656 * All bits in @dst not set by the above rule are cleared.
658 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
659 const unsigned long *relmap, unsigned int bits)
661 unsigned int n, m; /* same meaning as in above comment */
663 if (dst == orig) /* following doesn't handle inplace mappings */
665 bitmap_zero(dst, bits);
668 * The following code is a more efficient, but less
669 * obvious, equivalent to the loop:
670 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
671 * n = find_nth_bit(orig, bits, m);
672 * if (test_bit(m, orig))
678 for_each_set_bit(n, relmap, bits) {
679 /* m == bitmap_pos_to_ord(relmap, n, bits) */
680 if (test_bit(m, orig))
687 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
688 * @dst: resulting smaller bitmap
689 * @orig: original larger bitmap
690 * @sz: specified size
691 * @nbits: number of bits in each of these bitmaps
693 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
694 * Clear all other bits in @dst. See further the comment and
695 * Example [2] for bitmap_onto() for why and how to use this.
697 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
698 unsigned int sz, unsigned int nbits)
702 if (dst == orig) /* following doesn't handle inplace mappings */
704 bitmap_zero(dst, nbits);
706 for_each_set_bit(oldbit, orig, nbits)
707 set_bit(oldbit % sz, dst);
709 #endif /* CONFIG_NUMA */
712 * Common code for bitmap_*_region() routines.
713 * bitmap: array of unsigned longs corresponding to the bitmap
714 * pos: the beginning of the region
715 * order: region size (log base 2 of number of bits)
716 * reg_op: operation(s) to perform on that region of bitmap
718 * Can set, verify and/or release a region of bits in a bitmap,
719 * depending on which combination of REG_OP_* flag bits is set.
721 * A region of a bitmap is a sequence of bits in the bitmap, of
722 * some size '1 << order' (a power of two), aligned to that same
723 * '1 << order' power of two.
725 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
726 * Returns 0 in all other cases and reg_ops.
730 REG_OP_ISFREE, /* true if region is all zero bits */
731 REG_OP_ALLOC, /* set all bits in region */
732 REG_OP_RELEASE, /* clear all bits in region */
735 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
737 int nbits_reg; /* number of bits in region */
738 int index; /* index first long of region in bitmap */
739 int offset; /* bit offset region in bitmap[index] */
740 int nlongs_reg; /* num longs spanned by region in bitmap */
741 int nbitsinlong; /* num bits of region in each spanned long */
742 unsigned long mask; /* bitmask for one long of region */
743 int i; /* scans bitmap by longs */
744 int ret = 0; /* return value */
747 * Either nlongs_reg == 1 (for small orders that fit in one long)
748 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
750 nbits_reg = 1 << order;
751 index = pos / BITS_PER_LONG;
752 offset = pos - (index * BITS_PER_LONG);
753 nlongs_reg = BITS_TO_LONGS(nbits_reg);
754 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
757 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
758 * overflows if nbitsinlong == BITS_PER_LONG.
760 mask = (1UL << (nbitsinlong - 1));
766 for (i = 0; i < nlongs_reg; i++) {
767 if (bitmap[index + i] & mask)
770 ret = 1; /* all bits in region free (zero) */
774 for (i = 0; i < nlongs_reg; i++)
775 bitmap[index + i] |= mask;
779 for (i = 0; i < nlongs_reg; i++)
780 bitmap[index + i] &= ~mask;
788 * bitmap_find_free_region - find a contiguous aligned mem region
789 * @bitmap: array of unsigned longs corresponding to the bitmap
790 * @bits: number of bits in the bitmap
791 * @order: region size (log base 2 of number of bits) to find
793 * Find a region of free (zero) bits in a @bitmap of @bits bits and
794 * allocate them (set them to one). Only consider regions of length
795 * a power (@order) of two, aligned to that power of two, which
796 * makes the search algorithm much faster.
798 * Return the bit offset in bitmap of the allocated region,
799 * or -errno on failure.
801 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
803 unsigned int pos, end; /* scans bitmap by regions of size order */
805 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
806 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
808 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
813 EXPORT_SYMBOL(bitmap_find_free_region);
816 * bitmap_release_region - release allocated bitmap region
817 * @bitmap: array of unsigned longs corresponding to the bitmap
818 * @pos: beginning of bit region to release
819 * @order: region size (log base 2 of number of bits) to release
821 * This is the complement to __bitmap_find_free_region() and releases
822 * the found region (by clearing it in the bitmap).
826 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
828 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
830 EXPORT_SYMBOL(bitmap_release_region);
833 * bitmap_allocate_region - allocate bitmap region
834 * @bitmap: array of unsigned longs corresponding to the bitmap
835 * @pos: beginning of bit region to allocate
836 * @order: region size (log base 2 of number of bits) to allocate
838 * Allocate (set bits in) a specified region of a bitmap.
840 * Return 0 on success, or %-EBUSY if specified region wasn't
841 * free (not all bits were zero).
843 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
845 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
847 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
849 EXPORT_SYMBOL(bitmap_allocate_region);
851 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
853 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
856 EXPORT_SYMBOL(bitmap_alloc);
858 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
860 return bitmap_alloc(nbits, flags | __GFP_ZERO);
862 EXPORT_SYMBOL(bitmap_zalloc);
864 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
866 return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
869 EXPORT_SYMBOL(bitmap_alloc_node);
871 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
873 return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
875 EXPORT_SYMBOL(bitmap_zalloc_node);
877 void bitmap_free(const unsigned long *bitmap)
881 EXPORT_SYMBOL(bitmap_free);
883 static void devm_bitmap_free(void *data)
885 unsigned long *bitmap = data;
890 unsigned long *devm_bitmap_alloc(struct device *dev,
891 unsigned int nbits, gfp_t flags)
893 unsigned long *bitmap;
896 bitmap = bitmap_alloc(nbits, flags);
900 ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
906 EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
908 unsigned long *devm_bitmap_zalloc(struct device *dev,
909 unsigned int nbits, gfp_t flags)
911 return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
913 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
915 #if BITS_PER_LONG == 64
917 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
918 * @bitmap: array of unsigned longs, the destination bitmap
919 * @buf: array of u32 (in host byte order), the source bitmap
920 * @nbits: number of bits in @bitmap
922 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
924 unsigned int i, halfwords;
926 halfwords = DIV_ROUND_UP(nbits, 32);
927 for (i = 0; i < halfwords; i++) {
928 bitmap[i/2] = (unsigned long) buf[i];
930 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
933 /* Clear tail bits in last word beyond nbits. */
934 if (nbits % BITS_PER_LONG)
935 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
937 EXPORT_SYMBOL(bitmap_from_arr32);
940 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
941 * @buf: array of u32 (in host byte order), the dest bitmap
942 * @bitmap: array of unsigned longs, the source bitmap
943 * @nbits: number of bits in @bitmap
945 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
947 unsigned int i, halfwords;
949 halfwords = DIV_ROUND_UP(nbits, 32);
950 for (i = 0; i < halfwords; i++) {
951 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
953 buf[i] = (u32) (bitmap[i/2] >> 32);
956 /* Clear tail bits in last element of array beyond nbits. */
957 if (nbits % BITS_PER_LONG)
958 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
960 EXPORT_SYMBOL(bitmap_to_arr32);
963 #if BITS_PER_LONG == 32
965 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
966 * @bitmap: array of unsigned longs, the destination bitmap
967 * @buf: array of u64 (in host byte order), the source bitmap
968 * @nbits: number of bits in @bitmap
970 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
974 for (n = nbits; n > 0; n -= 64) {
979 *bitmap++ = val >> 32;
983 * Clear tail bits in the last word beyond nbits.
985 * Negative index is OK because here we point to the word next
986 * to the last word of the bitmap, except for nbits == 0, which
987 * is tested implicitly.
989 if (nbits % BITS_PER_LONG)
990 bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
992 EXPORT_SYMBOL(bitmap_from_arr64);
995 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
996 * @buf: array of u64 (in host byte order), the dest bitmap
997 * @bitmap: array of unsigned longs, the source bitmap
998 * @nbits: number of bits in @bitmap
1000 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
1002 const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
1004 while (bitmap < end) {
1007 *buf |= (u64)(*bitmap++) << 32;
1011 /* Clear tail bits in the last element of array beyond nbits. */
1013 buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
1015 EXPORT_SYMBOL(bitmap_to_arr64);