1 // SPDX-License-Identifier: GPL-2.0
3 * Thunderbolt driver - switch/port utility functions
6 * Copyright (C) 2018, Intel Corporation
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
21 /* Switch NVM support */
23 struct nvm_auth_status {
24 struct list_head list;
30 * Hold NVM authentication failure status per switch This information
31 * needs to stay around even when the switch gets power cycled so we
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
39 struct nvm_auth_status *st;
41 list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 if (uuid_equal(&st->uuid, sw->uuid))
49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
51 struct nvm_auth_status *st;
53 mutex_lock(&nvm_auth_status_lock);
54 st = __nvm_get_auth_status(sw);
55 mutex_unlock(&nvm_auth_status_lock);
57 *status = st ? st->status : 0;
60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
62 struct nvm_auth_status *st;
64 if (WARN_ON(!sw->uuid))
67 mutex_lock(&nvm_auth_status_lock);
68 st = __nvm_get_auth_status(sw);
71 st = kzalloc(sizeof(*st), GFP_KERNEL);
75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 INIT_LIST_HEAD(&st->list);
77 list_add_tail(&st->list, &nvm_auth_status_cache);
82 mutex_unlock(&nvm_auth_status_lock);
85 static void nvm_clear_auth_status(const struct tb_switch *sw)
87 struct nvm_auth_status *st;
89 mutex_lock(&nvm_auth_status_lock);
90 st = __nvm_get_auth_status(sw);
95 mutex_unlock(&nvm_auth_status_lock);
98 static int nvm_validate_and_write(struct tb_switch *sw)
100 unsigned int image_size;
104 ret = tb_nvm_validate(sw->nvm);
108 ret = tb_nvm_write_headers(sw->nvm);
112 buf = sw->nvm->buf_data_start;
113 image_size = sw->nvm->buf_data_size;
115 if (tb_switch_is_usb4(sw))
116 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
118 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
122 sw->nvm->flushed = true;
126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
131 * Root switch NVM upgrade requires that we disconnect the
132 * existing paths first (in case it is not in safe mode
135 if (!sw->safe_mode) {
138 ret = tb_domain_disconnect_all_paths(sw->tb);
142 * The host controller goes away pretty soon after this if
143 * everything goes well so getting timeout is expected.
145 ret = dma_port_flash_update_auth(sw->dma_port);
146 if (!ret || ret == -ETIMEDOUT)
150 * Any error from update auth operation requires power
151 * cycling of the host router.
153 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 nvm_set_auth_status(sw, status);
159 * From safe mode we can get out by just power cycling the
162 dma_port_power_cycle(sw->dma_port);
166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
168 int ret, retries = 10;
170 ret = dma_port_flash_update_auth(sw->dma_port);
176 /* Power cycle is required */
183 * Poll here for the authentication status. It takes some time
184 * for the device to respond (we get timeout for a while). Once
185 * we get response the device needs to be power cycled in order
186 * to the new NVM to be taken into use.
191 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 if (ret < 0 && ret != -ETIMEDOUT)
196 tb_sw_warn(sw, "failed to authenticate NVM\n");
197 nvm_set_auth_status(sw, status);
200 tb_sw_info(sw, "power cycling the switch now\n");
201 dma_port_power_cycle(sw->dma_port);
211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
213 struct pci_dev *root_port;
216 * During host router NVM upgrade we should not allow root port to
217 * go into D3cold because some root ports cannot trigger PME
218 * itself. To be on the safe side keep the root port in D0 during
219 * the whole upgrade process.
221 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
223 pm_runtime_get_noresume(&root_port->dev);
226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
228 struct pci_dev *root_port;
230 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
232 pm_runtime_put(&root_port->dev);
235 static inline bool nvm_readable(struct tb_switch *sw)
237 if (tb_switch_is_usb4(sw)) {
239 * USB4 devices must support NVM operations but it is
240 * optional for hosts. Therefore we query the NVM sector
241 * size here and if it is supported assume NVM
242 * operations are implemented.
244 return usb4_switch_nvm_sector_size(sw) > 0;
247 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 return !!sw->dma_port;
251 static inline bool nvm_upgradeable(struct tb_switch *sw)
253 if (sw->no_nvm_upgrade)
255 return nvm_readable(sw);
258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
262 if (tb_switch_is_usb4(sw)) {
264 ret = usb4_switch_nvm_set_offset(sw, 0);
268 sw->nvm->authenticating = true;
269 return usb4_switch_nvm_authenticate(sw);
274 sw->nvm->authenticating = true;
276 nvm_authenticate_start_dma_port(sw);
277 ret = nvm_authenticate_host_dma_port(sw);
279 ret = nvm_authenticate_device_dma_port(sw);
286 * tb_switch_nvm_read() - Read router NVM
287 * @sw: Router whose NVM to read
288 * @address: Start address on the NVM
289 * @buf: Buffer where the read data is copied
290 * @size: Size of the buffer in bytes
292 * Reads from router NVM and returns the requested data in @buf. Locking
293 * is up to the caller. Returns %0 in success and negative errno in case
296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
299 if (tb_switch_is_usb4(sw))
300 return usb4_switch_nvm_read(sw, address, buf, size);
301 return dma_port_flash_read(sw->dma_port, address, buf, size);
304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
306 struct tb_nvm *nvm = priv;
307 struct tb_switch *sw = tb_to_switch(nvm->dev);
310 pm_runtime_get_sync(&sw->dev);
312 if (!mutex_trylock(&sw->tb->lock)) {
313 ret = restart_syscall();
317 ret = tb_switch_nvm_read(sw, offset, val, bytes);
318 mutex_unlock(&sw->tb->lock);
321 pm_runtime_mark_last_busy(&sw->dev);
322 pm_runtime_put_autosuspend(&sw->dev);
327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
329 struct tb_nvm *nvm = priv;
330 struct tb_switch *sw = tb_to_switch(nvm->dev);
333 if (!mutex_trylock(&sw->tb->lock))
334 return restart_syscall();
337 * Since writing the NVM image might require some special steps,
338 * for example when CSS headers are written, we cache the image
339 * locally here and handle the special cases when the user asks
340 * us to authenticate the image.
342 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343 mutex_unlock(&sw->tb->lock);
348 static int tb_switch_nvm_add(struct tb_switch *sw)
353 if (!nvm_readable(sw))
356 nvm = tb_nvm_alloc(&sw->dev);
358 ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
362 ret = tb_nvm_read_version(nvm);
367 * If the switch is in safe-mode the only accessible portion of
368 * the NVM is the non-active one where userspace is expected to
369 * write new functional NVM.
371 if (!sw->safe_mode) {
372 ret = tb_nvm_add_active(nvm, nvm_read);
375 tb_sw_dbg(sw, "NVM version %x.%x\n", nvm->major, nvm->minor);
378 if (!sw->no_nvm_upgrade) {
379 ret = tb_nvm_add_non_active(nvm, nvm_write);
388 tb_sw_dbg(sw, "NVM upgrade disabled\n");
389 sw->no_nvm_upgrade = true;
396 static void tb_switch_nvm_remove(struct tb_switch *sw)
406 /* Remove authentication status in case the switch is unplugged */
407 if (!nvm->authenticating)
408 nvm_clear_auth_status(sw);
413 /* port utility functions */
415 static const char *tb_port_type(const struct tb_regs_port_header *port)
417 switch (port->type >> 16) {
419 switch ((u8) port->type) {
444 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
446 const struct tb_regs_port_header *regs = &port->config;
449 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
450 regs->port_number, regs->vendor_id, regs->device_id,
451 regs->revision, regs->thunderbolt_version, tb_port_type(regs),
453 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
454 regs->max_in_hop_id, regs->max_out_hop_id);
455 tb_dbg(tb, " Max counters: %d\n", regs->max_counters);
456 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits);
457 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits,
462 * tb_port_state() - get connectedness state of a port
463 * @port: the port to check
465 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
467 * Return: Returns an enum tb_port_state on success or an error code on failure.
469 int tb_port_state(struct tb_port *port)
471 struct tb_cap_phy phy;
473 if (port->cap_phy == 0) {
474 tb_port_WARN(port, "does not have a PHY\n");
477 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
484 * tb_wait_for_port() - wait for a port to become ready
485 * @port: Port to wait
486 * @wait_if_unplugged: Wait also when port is unplugged
488 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
489 * wait_if_unplugged is set then we also wait if the port is in state
490 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
491 * switch resume). Otherwise we only wait if a device is registered but the link
492 * has not yet been established.
494 * Return: Returns an error code on failure. Returns 0 if the port is not
495 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
496 * if the port is connected and in state TB_PORT_UP.
498 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
502 if (!port->cap_phy) {
503 tb_port_WARN(port, "does not have PHY\n");
506 if (tb_is_upstream_port(port)) {
507 tb_port_WARN(port, "is the upstream port\n");
512 state = tb_port_state(port);
514 case TB_PORT_DISABLED:
515 tb_port_dbg(port, "is disabled (state: 0)\n");
518 case TB_PORT_UNPLUGGED:
519 if (wait_if_unplugged) {
520 /* used during resume */
522 "is unplugged (state: 7), retrying...\n");
526 tb_port_dbg(port, "is unplugged (state: 7)\n");
530 case TB_PORT_TX_CL0S:
531 case TB_PORT_RX_CL0S:
534 tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
542 * After plug-in the state is TB_PORT_CONNECTING. Give it some
546 "is connected, link is not up (state: %d), retrying...\n",
553 "failed to reach state TB_PORT_UP. Ignoring port...\n");
558 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
559 * @port: Port to add/remove NFC credits
560 * @credits: Credits to add/remove
562 * Change the number of NFC credits allocated to @port by @credits. To remove
563 * NFC credits pass a negative amount of credits.
565 * Return: Returns 0 on success or an error code on failure.
567 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
571 if (credits == 0 || port->sw->is_unplugged)
575 * USB4 restricts programming NFC buffers to lane adapters only
576 * so skip other ports.
578 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
581 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
583 credits = max_t(int, -nfc_credits, credits);
585 nfc_credits += credits;
587 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
588 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
590 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
591 port->config.nfc_credits |= nfc_credits;
593 return tb_port_write(port, &port->config.nfc_credits,
594 TB_CFG_PORT, ADP_CS_4, 1);
598 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
599 * @port: Port whose counters to clear
600 * @counter: Counter index to clear
602 * Return: Returns 0 on success or an error code on failure.
604 int tb_port_clear_counter(struct tb_port *port, int counter)
606 u32 zero[3] = { 0, 0, 0 };
607 tb_port_dbg(port, "clearing counter %d\n", counter);
608 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
612 * tb_port_unlock() - Unlock downstream port
613 * @port: Port to unlock
615 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
616 * downstream router accessible for CM.
618 int tb_port_unlock(struct tb_port *port)
620 if (tb_switch_is_icm(port->sw))
622 if (!tb_port_is_null(port))
624 if (tb_switch_is_usb4(port->sw))
625 return usb4_port_unlock(port);
629 static int __tb_port_enable(struct tb_port *port, bool enable)
634 if (!tb_port_is_null(port))
637 ret = tb_port_read(port, &phy, TB_CFG_PORT,
638 port->cap_phy + LANE_ADP_CS_1, 1);
643 phy &= ~LANE_ADP_CS_1_LD;
645 phy |= LANE_ADP_CS_1_LD;
648 ret = tb_port_write(port, &phy, TB_CFG_PORT,
649 port->cap_phy + LANE_ADP_CS_1, 1);
653 tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
658 * tb_port_enable() - Enable lane adapter
659 * @port: Port to enable (can be %NULL)
661 * This is used for lane 0 and 1 adapters to enable it.
663 int tb_port_enable(struct tb_port *port)
665 return __tb_port_enable(port, true);
669 * tb_port_disable() - Disable lane adapter
670 * @port: Port to disable (can be %NULL)
672 * This is used for lane 0 and 1 adapters to disable it.
674 int tb_port_disable(struct tb_port *port)
676 return __tb_port_enable(port, false);
680 * tb_init_port() - initialize a port
682 * This is a helper method for tb_switch_alloc. Does not check or initialize
683 * any downstream switches.
685 * Return: Returns 0 on success or an error code on failure.
687 static int tb_init_port(struct tb_port *port)
692 INIT_LIST_HEAD(&port->list);
694 /* Control adapter does not have configuration space */
698 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
700 if (res == -ENODEV) {
701 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
703 port->disabled = true;
709 /* Port 0 is the switch itself and has no PHY. */
710 if (port->config.type == TB_TYPE_PORT) {
711 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
716 tb_port_WARN(port, "non switch port without a PHY\n");
718 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
720 port->cap_usb4 = cap;
723 * USB4 ports the buffers allocated for the control path
724 * can be read from the path config space. Legacy
725 * devices we use hard-coded value.
727 if (port->cap_usb4) {
728 struct tb_regs_hop hop;
730 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
731 port->ctl_credits = hop.initial_credits;
733 if (!port->ctl_credits)
734 port->ctl_credits = 2;
737 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
739 port->cap_adap = cap;
742 port->total_credits =
743 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
744 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
746 tb_dump_port(port->sw->tb, port);
750 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
757 port_max_hopid = port->config.max_in_hop_id;
758 ida = &port->in_hopids;
760 port_max_hopid = port->config.max_out_hop_id;
761 ida = &port->out_hopids;
765 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
768 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
769 min_hopid = TB_PATH_MIN_HOPID;
771 if (max_hopid < 0 || max_hopid > port_max_hopid)
772 max_hopid = port_max_hopid;
774 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
778 * tb_port_alloc_in_hopid() - Allocate input HopID from port
779 * @port: Port to allocate HopID for
780 * @min_hopid: Minimum acceptable input HopID
781 * @max_hopid: Maximum acceptable input HopID
783 * Return: HopID between @min_hopid and @max_hopid or negative errno in
786 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
788 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
792 * tb_port_alloc_out_hopid() - Allocate output HopID from port
793 * @port: Port to allocate HopID for
794 * @min_hopid: Minimum acceptable output HopID
795 * @max_hopid: Maximum acceptable output HopID
797 * Return: HopID between @min_hopid and @max_hopid or negative errno in
800 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
802 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
806 * tb_port_release_in_hopid() - Release allocated input HopID from port
807 * @port: Port whose HopID to release
808 * @hopid: HopID to release
810 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
812 ida_simple_remove(&port->in_hopids, hopid);
816 * tb_port_release_out_hopid() - Release allocated output HopID from port
817 * @port: Port whose HopID to release
818 * @hopid: HopID to release
820 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
822 ida_simple_remove(&port->out_hopids, hopid);
825 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
826 const struct tb_switch *sw)
828 u64 mask = (1ULL << parent->config.depth * 8) - 1;
829 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
833 * tb_next_port_on_path() - Return next port for given port on a path
834 * @start: Start port of the walk
835 * @end: End port of the walk
836 * @prev: Previous port (%NULL if this is the first)
838 * This function can be used to walk from one port to another if they
839 * are connected through zero or more switches. If the @prev is dual
840 * link port, the function follows that link and returns another end on
843 * If the @end port has been reached, return %NULL.
845 * Domain tb->lock must be held when this function is called.
847 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
848 struct tb_port *prev)
850 struct tb_port *next;
855 if (prev->sw == end->sw) {
861 if (tb_switch_is_reachable(prev->sw, end->sw)) {
862 next = tb_port_at(tb_route(end->sw), prev->sw);
863 /* Walk down the topology if next == prev */
865 (next == prev || next->dual_link_port == prev))
868 if (tb_is_upstream_port(prev)) {
871 next = tb_upstream_port(prev->sw);
873 * Keep the same link if prev and next are both
876 if (next->dual_link_port &&
877 next->link_nr != prev->link_nr) {
878 next = next->dual_link_port;
883 return next != prev ? next : NULL;
887 * tb_port_get_link_speed() - Get current link speed
888 * @port: Port to check (USB4 or CIO)
890 * Returns link speed in Gb/s or negative errno in case of failure.
892 int tb_port_get_link_speed(struct tb_port *port)
900 ret = tb_port_read(port, &val, TB_CFG_PORT,
901 port->cap_phy + LANE_ADP_CS_1, 1);
905 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
906 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
909 case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
911 case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
919 * tb_port_get_link_generation() - Returns link generation
920 * @port: Lane adapter
922 * Returns link generation as number or negative errno in case of
923 * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2
924 * links so for those always returns 2.
926 int tb_port_get_link_generation(struct tb_port *port)
930 ret = tb_port_get_link_speed(port);
944 static const char *width_name(enum tb_link_width width)
947 case TB_LINK_WIDTH_SINGLE:
948 return "symmetric, single lane";
949 case TB_LINK_WIDTH_DUAL:
950 return "symmetric, dual lanes";
951 case TB_LINK_WIDTH_ASYM_TX:
952 return "asymmetric, 3 transmitters, 1 receiver";
953 case TB_LINK_WIDTH_ASYM_RX:
954 return "asymmetric, 3 receivers, 1 transmitter";
961 * tb_port_get_link_width() - Get current link width
962 * @port: Port to check (USB4 or CIO)
964 * Returns link width. Return the link width as encoded in &enum
965 * tb_link_width or negative errno in case of failure.
967 int tb_port_get_link_width(struct tb_port *port)
975 ret = tb_port_read(port, &val, TB_CFG_PORT,
976 port->cap_phy + LANE_ADP_CS_1, 1);
980 /* Matches the values in enum tb_link_width */
981 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
982 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
986 * tb_port_width_supported() - Is the given link width supported
987 * @port: Port to check
988 * @width: Widths to check (bitmask)
990 * Can be called to any lane adapter. Checks if given @width is
991 * supported by the hardware and returns %true if it is.
993 bool tb_port_width_supported(struct tb_port *port, unsigned int width)
1001 if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) {
1002 if (tb_port_get_link_generation(port) < 4 ||
1003 !usb4_port_asym_supported(port))
1007 ret = tb_port_read(port, &phy, TB_CFG_PORT,
1008 port->cap_phy + LANE_ADP_CS_0, 1);
1013 * The field encoding is the same as &enum tb_link_width (which is
1014 * passed to @width).
1016 widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy);
1017 return widths & width;
1021 * tb_port_set_link_width() - Set target link width of the lane adapter
1022 * @port: Lane adapter
1023 * @width: Target link width
1025 * Sets the target link width of the lane adapter to @width. Does not
1026 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1028 * Return: %0 in case of success and negative errno in case of error
1030 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
1038 ret = tb_port_read(port, &val, TB_CFG_PORT,
1039 port->cap_phy + LANE_ADP_CS_1, 1);
1043 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1045 case TB_LINK_WIDTH_SINGLE:
1046 /* Gen 4 link cannot be single */
1047 if (tb_port_get_link_generation(port) >= 4)
1049 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1050 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1053 case TB_LINK_WIDTH_DUAL:
1054 if (tb_port_get_link_generation(port) >= 4)
1055 return usb4_port_asym_set_link_width(port, width);
1056 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1057 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1060 case TB_LINK_WIDTH_ASYM_TX:
1061 case TB_LINK_WIDTH_ASYM_RX:
1062 return usb4_port_asym_set_link_width(port, width);
1068 return tb_port_write(port, &val, TB_CFG_PORT,
1069 port->cap_phy + LANE_ADP_CS_1, 1);
1073 * tb_port_set_lane_bonding() - Enable/disable lane bonding
1074 * @port: Lane adapter
1075 * @bonding: enable/disable bonding
1077 * Enables or disables lane bonding. This should be called after target
1078 * link width has been set (tb_port_set_link_width()). Note in most
1079 * cases one should use tb_port_lane_bonding_enable() instead to enable
1082 * Return: %0 in case of success and negative errno in case of error
1084 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1092 ret = tb_port_read(port, &val, TB_CFG_PORT,
1093 port->cap_phy + LANE_ADP_CS_1, 1);
1098 val |= LANE_ADP_CS_1_LB;
1100 val &= ~LANE_ADP_CS_1_LB;
1102 return tb_port_write(port, &val, TB_CFG_PORT,
1103 port->cap_phy + LANE_ADP_CS_1, 1);
1107 * tb_port_lane_bonding_enable() - Enable bonding on port
1108 * @port: port to enable
1110 * Enable bonding by setting the link width of the port and the other
1111 * port in case of dual link port. Does not wait for the link to
1112 * actually reach the bonded state so caller needs to call
1113 * tb_port_wait_for_link_width() before enabling any paths through the
1114 * link to make sure the link is in expected state.
1116 * Return: %0 in case of success and negative errno in case of error
1118 int tb_port_lane_bonding_enable(struct tb_port *port)
1120 enum tb_link_width width;
1124 * Enable lane bonding for both links if not already enabled by
1125 * for example the boot firmware.
1127 width = tb_port_get_link_width(port);
1128 if (width == TB_LINK_WIDTH_SINGLE) {
1129 ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1134 width = tb_port_get_link_width(port->dual_link_port);
1135 if (width == TB_LINK_WIDTH_SINGLE) {
1136 ret = tb_port_set_link_width(port->dual_link_port,
1137 TB_LINK_WIDTH_DUAL);
1143 * Only set bonding if the link was not already bonded. This
1144 * avoids the lane adapter to re-enter bonding state.
1146 if (width == TB_LINK_WIDTH_SINGLE) {
1147 ret = tb_port_set_lane_bonding(port, true);
1153 * When lane 0 bonding is set it will affect lane 1 too so
1156 port->bonded = true;
1157 port->dual_link_port->bonded = true;
1162 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1164 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1170 * tb_port_lane_bonding_disable() - Disable bonding on port
1171 * @port: port to disable
1173 * Disable bonding by setting the link width of the port and the
1174 * other port in case of dual link port.
1176 void tb_port_lane_bonding_disable(struct tb_port *port)
1178 tb_port_set_lane_bonding(port, false);
1179 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1180 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1181 port->dual_link_port->bonded = false;
1182 port->bonded = false;
1186 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1187 * @port: Port to wait for
1188 * @width: Expected link width (bitmask)
1189 * @timeout_msec: Timeout in ms how long to wait
1191 * Should be used after both ends of the link have been bonded (or
1192 * bonding has been disabled) to wait until the link actually reaches
1193 * the expected state. Returns %-ETIMEDOUT if the width was not reached
1194 * within the given timeout, %0 if it did. Can be passed a mask of
1195 * expected widths and succeeds if any of the widths is reached.
1197 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width,
1200 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1203 /* Gen 4 link does not support single lane */
1204 if ((width & TB_LINK_WIDTH_SINGLE) &&
1205 tb_port_get_link_generation(port) >= 4)
1209 ret = tb_port_get_link_width(port);
1212 * Sometimes we get port locked error when
1213 * polling the lanes so we can ignore it and
1218 } else if (ret & width) {
1222 usleep_range(1000, 2000);
1223 } while (ktime_before(ktime_get(), timeout));
1228 static int tb_port_do_update_credits(struct tb_port *port)
1233 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1237 if (nfc_credits != port->config.nfc_credits) {
1240 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1241 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1243 tb_port_dbg(port, "total credits changed %u -> %u\n",
1244 port->total_credits, total);
1246 port->config.nfc_credits = nfc_credits;
1247 port->total_credits = total;
1254 * tb_port_update_credits() - Re-read port total credits
1255 * @port: Port to update
1257 * After the link is bonded (or bonding was disabled) the port total
1258 * credits may change, so this function needs to be called to re-read
1259 * the credits. Updates also the second lane adapter.
1261 int tb_port_update_credits(struct tb_port *port)
1265 ret = tb_port_do_update_credits(port);
1268 return tb_port_do_update_credits(port->dual_link_port);
1271 static int tb_port_start_lane_initialization(struct tb_port *port)
1275 if (tb_switch_is_usb4(port->sw))
1278 ret = tb_lc_start_lane_initialization(port);
1279 return ret == -EINVAL ? 0 : ret;
1283 * Returns true if the port had something (router, XDomain) connected
1286 static bool tb_port_resume(struct tb_port *port)
1288 bool has_remote = tb_port_has_remote(port);
1291 usb4_port_device_resume(port->usb4);
1292 } else if (!has_remote) {
1294 * For disconnected downstream lane adapters start lane
1295 * initialization now so we detect future connects.
1297 * For XDomain start the lane initialzation now so the
1298 * link gets re-established.
1300 * This is only needed for non-USB4 ports.
1302 if (!tb_is_upstream_port(port) || port->xdomain)
1303 tb_port_start_lane_initialization(port);
1306 return has_remote || port->xdomain;
1310 * tb_port_is_enabled() - Is the adapter port enabled
1311 * @port: Port to check
1313 bool tb_port_is_enabled(struct tb_port *port)
1315 switch (port->config.type) {
1316 case TB_TYPE_PCIE_UP:
1317 case TB_TYPE_PCIE_DOWN:
1318 return tb_pci_port_is_enabled(port);
1320 case TB_TYPE_DP_HDMI_IN:
1321 case TB_TYPE_DP_HDMI_OUT:
1322 return tb_dp_port_is_enabled(port);
1324 case TB_TYPE_USB3_UP:
1325 case TB_TYPE_USB3_DOWN:
1326 return tb_usb3_port_is_enabled(port);
1334 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1335 * @port: USB3 adapter port to check
1337 bool tb_usb3_port_is_enabled(struct tb_port *port)
1341 if (tb_port_read(port, &data, TB_CFG_PORT,
1342 port->cap_adap + ADP_USB3_CS_0, 1))
1345 return !!(data & ADP_USB3_CS_0_PE);
1349 * tb_usb3_port_enable() - Enable USB3 adapter port
1350 * @port: USB3 adapter port to enable
1351 * @enable: Enable/disable the USB3 adapter
1353 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1355 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1358 if (!port->cap_adap)
1360 return tb_port_write(port, &word, TB_CFG_PORT,
1361 port->cap_adap + ADP_USB3_CS_0, 1);
1365 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1366 * @port: PCIe port to check
1368 bool tb_pci_port_is_enabled(struct tb_port *port)
1372 if (tb_port_read(port, &data, TB_CFG_PORT,
1373 port->cap_adap + ADP_PCIE_CS_0, 1))
1376 return !!(data & ADP_PCIE_CS_0_PE);
1380 * tb_pci_port_enable() - Enable PCIe adapter port
1381 * @port: PCIe port to enable
1382 * @enable: Enable/disable the PCIe adapter
1384 int tb_pci_port_enable(struct tb_port *port, bool enable)
1386 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1387 if (!port->cap_adap)
1389 return tb_port_write(port, &word, TB_CFG_PORT,
1390 port->cap_adap + ADP_PCIE_CS_0, 1);
1394 * tb_dp_port_hpd_is_active() - Is HPD already active
1395 * @port: DP out port to check
1397 * Checks if the DP OUT adapter port has HPD bit already set.
1399 int tb_dp_port_hpd_is_active(struct tb_port *port)
1404 ret = tb_port_read(port, &data, TB_CFG_PORT,
1405 port->cap_adap + ADP_DP_CS_2, 1);
1409 return !!(data & ADP_DP_CS_2_HPD);
1413 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1414 * @port: Port to clear HPD
1416 * If the DP IN port has HPD set, this function can be used to clear it.
1418 int tb_dp_port_hpd_clear(struct tb_port *port)
1423 ret = tb_port_read(port, &data, TB_CFG_PORT,
1424 port->cap_adap + ADP_DP_CS_3, 1);
1428 data |= ADP_DP_CS_3_HPDC;
1429 return tb_port_write(port, &data, TB_CFG_PORT,
1430 port->cap_adap + ADP_DP_CS_3, 1);
1434 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1435 * @port: DP IN/OUT port to set hops
1436 * @video: Video Hop ID
1437 * @aux_tx: AUX TX Hop ID
1438 * @aux_rx: AUX RX Hop ID
1440 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1441 * router DP adapters too but does not program the values as the fields
1444 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1445 unsigned int aux_tx, unsigned int aux_rx)
1450 if (tb_switch_is_usb4(port->sw))
1453 ret = tb_port_read(port, data, TB_CFG_PORT,
1454 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1458 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1459 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1460 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1462 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1463 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1464 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1465 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1466 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1468 return tb_port_write(port, data, TB_CFG_PORT,
1469 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1473 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1474 * @port: DP adapter port to check
1476 bool tb_dp_port_is_enabled(struct tb_port *port)
1480 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1484 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1488 * tb_dp_port_enable() - Enables/disables DP paths of a port
1489 * @port: DP IN/OUT port
1490 * @enable: Enable/disable DP path
1492 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1493 * calling this function.
1495 int tb_dp_port_enable(struct tb_port *port, bool enable)
1500 ret = tb_port_read(port, data, TB_CFG_PORT,
1501 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1506 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1508 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1510 return tb_port_write(port, data, TB_CFG_PORT,
1511 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1514 /* switch utility functions */
1516 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1518 switch (sw->generation) {
1520 return "Thunderbolt 1";
1522 return "Thunderbolt 2";
1524 return "Thunderbolt 3";
1532 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1534 const struct tb_regs_switch_header *regs = &sw->config;
1536 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1537 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1538 regs->revision, regs->thunderbolt_version);
1539 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1540 tb_dbg(tb, " Config:\n");
1542 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1543 regs->upstream_port_number, regs->depth,
1544 (((u64) regs->route_hi) << 32) | regs->route_lo,
1545 regs->enabled, regs->plug_events_delay);
1546 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1547 regs->__unknown1, regs->__unknown4);
1551 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1552 * @sw: Switch to reset
1554 * Return: Returns 0 on success or an error code on failure.
1556 int tb_switch_reset(struct tb_switch *sw)
1558 struct tb_cfg_result res;
1560 if (sw->generation > 1)
1563 tb_sw_dbg(sw, "resetting switch\n");
1565 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1566 TB_CFG_SWITCH, 2, 2);
1569 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1576 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1577 * @sw: Router to read the offset value from
1578 * @offset: Offset in the router config space to read from
1579 * @bit: Bit mask in the offset to wait for
1580 * @value: Value of the bits to wait for
1581 * @timeout_msec: Timeout in ms how long to wait
1583 * Wait till the specified bits in specified offset reach specified value.
1584 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1585 * within the given timeout or a negative errno in case of failure.
1587 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1588 u32 value, int timeout_msec)
1590 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1596 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1600 if ((val & bit) == value)
1603 usleep_range(50, 100);
1604 } while (ktime_before(ktime_get(), timeout));
1610 * tb_plug_events_active() - enable/disable plug events on a switch
1612 * Also configures a sane plug_events_delay of 255ms.
1614 * Return: Returns 0 on success or an error code on failure.
1616 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1621 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1624 sw->config.plug_events_delay = 0xff;
1625 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1629 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1634 data = data & 0xFFFFFF83;
1635 switch (sw->config.device_id) {
1636 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1637 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1638 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1642 * Skip Alpine Ridge, it needs to have vendor
1643 * specific USB hotplug event enabled for the
1644 * internal xHCI to work.
1646 if (!tb_switch_is_alpine_ridge(sw))
1647 data |= TB_PLUG_EVENTS_USB_DISABLE;
1652 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1653 sw->cap_plug_events + 1, 1);
1656 static ssize_t authorized_show(struct device *dev,
1657 struct device_attribute *attr,
1660 struct tb_switch *sw = tb_to_switch(dev);
1662 return sysfs_emit(buf, "%u\n", sw->authorized);
1665 static int disapprove_switch(struct device *dev, void *not_used)
1667 char *envp[] = { "AUTHORIZED=0", NULL };
1668 struct tb_switch *sw;
1670 sw = tb_to_switch(dev);
1671 if (sw && sw->authorized) {
1674 /* First children */
1675 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1679 ret = tb_domain_disapprove_switch(sw->tb, sw);
1684 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1690 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1692 char envp_string[13];
1694 char *envp[] = { envp_string, NULL };
1696 if (!mutex_trylock(&sw->tb->lock))
1697 return restart_syscall();
1699 if (!!sw->authorized == !!val)
1703 /* Disapprove switch */
1706 ret = disapprove_switch(&sw->dev, NULL);
1711 /* Approve switch */
1714 ret = tb_domain_approve_switch_key(sw->tb, sw);
1716 ret = tb_domain_approve_switch(sw->tb, sw);
1719 /* Challenge switch */
1722 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1730 sw->authorized = val;
1732 * Notify status change to the userspace, informing the new
1733 * value of /sys/bus/thunderbolt/devices/.../authorized.
1735 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1736 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1740 mutex_unlock(&sw->tb->lock);
1744 static ssize_t authorized_store(struct device *dev,
1745 struct device_attribute *attr,
1746 const char *buf, size_t count)
1748 struct tb_switch *sw = tb_to_switch(dev);
1752 ret = kstrtouint(buf, 0, &val);
1758 pm_runtime_get_sync(&sw->dev);
1759 ret = tb_switch_set_authorized(sw, val);
1760 pm_runtime_mark_last_busy(&sw->dev);
1761 pm_runtime_put_autosuspend(&sw->dev);
1763 return ret ? ret : count;
1765 static DEVICE_ATTR_RW(authorized);
1767 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1770 struct tb_switch *sw = tb_to_switch(dev);
1772 return sysfs_emit(buf, "%u\n", sw->boot);
1774 static DEVICE_ATTR_RO(boot);
1776 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1779 struct tb_switch *sw = tb_to_switch(dev);
1781 return sysfs_emit(buf, "%#x\n", sw->device);
1783 static DEVICE_ATTR_RO(device);
1786 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1788 struct tb_switch *sw = tb_to_switch(dev);
1790 return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1792 static DEVICE_ATTR_RO(device_name);
1795 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1797 struct tb_switch *sw = tb_to_switch(dev);
1799 return sysfs_emit(buf, "%u\n", sw->generation);
1801 static DEVICE_ATTR_RO(generation);
1803 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1806 struct tb_switch *sw = tb_to_switch(dev);
1809 if (!mutex_trylock(&sw->tb->lock))
1810 return restart_syscall();
1813 ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1815 ret = sysfs_emit(buf, "\n");
1817 mutex_unlock(&sw->tb->lock);
1821 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1822 const char *buf, size_t count)
1824 struct tb_switch *sw = tb_to_switch(dev);
1825 u8 key[TB_SWITCH_KEY_SIZE];
1826 ssize_t ret = count;
1829 if (!strcmp(buf, "\n"))
1831 else if (hex2bin(key, buf, sizeof(key)))
1834 if (!mutex_trylock(&sw->tb->lock))
1835 return restart_syscall();
1837 if (sw->authorized) {
1844 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1850 mutex_unlock(&sw->tb->lock);
1853 static DEVICE_ATTR(key, 0600, key_show, key_store);
1855 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1858 struct tb_switch *sw = tb_to_switch(dev);
1860 return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1864 * Currently all lanes must run at the same speed but we expose here
1865 * both directions to allow possible asymmetric links in the future.
1867 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1868 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1870 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1873 struct tb_switch *sw = tb_to_switch(dev);
1876 switch (sw->link_width) {
1877 case TB_LINK_WIDTH_SINGLE:
1878 case TB_LINK_WIDTH_ASYM_TX:
1881 case TB_LINK_WIDTH_DUAL:
1884 case TB_LINK_WIDTH_ASYM_RX:
1892 return sysfs_emit(buf, "%u\n", width);
1894 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1896 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
1899 struct tb_switch *sw = tb_to_switch(dev);
1902 switch (sw->link_width) {
1903 case TB_LINK_WIDTH_SINGLE:
1904 case TB_LINK_WIDTH_ASYM_RX:
1907 case TB_LINK_WIDTH_DUAL:
1910 case TB_LINK_WIDTH_ASYM_TX:
1918 return sysfs_emit(buf, "%u\n", width);
1920 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
1922 static ssize_t nvm_authenticate_show(struct device *dev,
1923 struct device_attribute *attr, char *buf)
1925 struct tb_switch *sw = tb_to_switch(dev);
1928 nvm_get_auth_status(sw, &status);
1929 return sysfs_emit(buf, "%#x\n", status);
1932 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1935 struct tb_switch *sw = tb_to_switch(dev);
1938 pm_runtime_get_sync(&sw->dev);
1940 if (!mutex_trylock(&sw->tb->lock)) {
1941 ret = restart_syscall();
1945 if (sw->no_nvm_upgrade) {
1950 /* If NVMem devices are not yet added */
1956 ret = kstrtoint(buf, 10, &val);
1960 /* Always clear the authentication status */
1961 nvm_clear_auth_status(sw);
1964 if (val == AUTHENTICATE_ONLY) {
1968 ret = nvm_authenticate(sw, true);
1970 if (!sw->nvm->flushed) {
1971 if (!sw->nvm->buf) {
1976 ret = nvm_validate_and_write(sw);
1977 if (ret || val == WRITE_ONLY)
1980 if (val == WRITE_AND_AUTHENTICATE) {
1982 ret = tb_lc_force_power(sw);
1984 ret = nvm_authenticate(sw, false);
1990 mutex_unlock(&sw->tb->lock);
1992 pm_runtime_mark_last_busy(&sw->dev);
1993 pm_runtime_put_autosuspend(&sw->dev);
1998 static ssize_t nvm_authenticate_store(struct device *dev,
1999 struct device_attribute *attr, const char *buf, size_t count)
2001 int ret = nvm_authenticate_sysfs(dev, buf, false);
2006 static DEVICE_ATTR_RW(nvm_authenticate);
2008 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
2009 struct device_attribute *attr, char *buf)
2011 return nvm_authenticate_show(dev, attr, buf);
2014 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2015 struct device_attribute *attr, const char *buf, size_t count)
2019 ret = nvm_authenticate_sysfs(dev, buf, true);
2020 return ret ? ret : count;
2022 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2024 static ssize_t nvm_version_show(struct device *dev,
2025 struct device_attribute *attr, char *buf)
2027 struct tb_switch *sw = tb_to_switch(dev);
2030 if (!mutex_trylock(&sw->tb->lock))
2031 return restart_syscall();
2038 ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2040 mutex_unlock(&sw->tb->lock);
2044 static DEVICE_ATTR_RO(nvm_version);
2046 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2049 struct tb_switch *sw = tb_to_switch(dev);
2051 return sysfs_emit(buf, "%#x\n", sw->vendor);
2053 static DEVICE_ATTR_RO(vendor);
2056 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2058 struct tb_switch *sw = tb_to_switch(dev);
2060 return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2062 static DEVICE_ATTR_RO(vendor_name);
2064 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2067 struct tb_switch *sw = tb_to_switch(dev);
2069 return sysfs_emit(buf, "%pUb\n", sw->uuid);
2071 static DEVICE_ATTR_RO(unique_id);
2073 static struct attribute *switch_attrs[] = {
2074 &dev_attr_authorized.attr,
2075 &dev_attr_boot.attr,
2076 &dev_attr_device.attr,
2077 &dev_attr_device_name.attr,
2078 &dev_attr_generation.attr,
2080 &dev_attr_nvm_authenticate.attr,
2081 &dev_attr_nvm_authenticate_on_disconnect.attr,
2082 &dev_attr_nvm_version.attr,
2083 &dev_attr_rx_speed.attr,
2084 &dev_attr_rx_lanes.attr,
2085 &dev_attr_tx_speed.attr,
2086 &dev_attr_tx_lanes.attr,
2087 &dev_attr_vendor.attr,
2088 &dev_attr_vendor_name.attr,
2089 &dev_attr_unique_id.attr,
2093 static umode_t switch_attr_is_visible(struct kobject *kobj,
2094 struct attribute *attr, int n)
2096 struct device *dev = kobj_to_dev(kobj);
2097 struct tb_switch *sw = tb_to_switch(dev);
2099 if (attr == &dev_attr_authorized.attr) {
2100 if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2101 sw->tb->security_level == TB_SECURITY_DPONLY)
2103 } else if (attr == &dev_attr_device.attr) {
2106 } else if (attr == &dev_attr_device_name.attr) {
2107 if (!sw->device_name)
2109 } else if (attr == &dev_attr_vendor.attr) {
2112 } else if (attr == &dev_attr_vendor_name.attr) {
2113 if (!sw->vendor_name)
2115 } else if (attr == &dev_attr_key.attr) {
2117 sw->tb->security_level == TB_SECURITY_SECURE &&
2118 sw->security_level == TB_SECURITY_SECURE)
2121 } else if (attr == &dev_attr_rx_speed.attr ||
2122 attr == &dev_attr_rx_lanes.attr ||
2123 attr == &dev_attr_tx_speed.attr ||
2124 attr == &dev_attr_tx_lanes.attr) {
2128 } else if (attr == &dev_attr_nvm_authenticate.attr) {
2129 if (nvm_upgradeable(sw))
2132 } else if (attr == &dev_attr_nvm_version.attr) {
2133 if (nvm_readable(sw))
2136 } else if (attr == &dev_attr_boot.attr) {
2140 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2141 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2146 return sw->safe_mode ? 0 : attr->mode;
2149 static const struct attribute_group switch_group = {
2150 .is_visible = switch_attr_is_visible,
2151 .attrs = switch_attrs,
2154 static const struct attribute_group *switch_groups[] = {
2159 static void tb_switch_release(struct device *dev)
2161 struct tb_switch *sw = tb_to_switch(dev);
2162 struct tb_port *port;
2164 dma_port_free(sw->dma_port);
2166 tb_switch_for_each_port(sw, port) {
2167 ida_destroy(&port->in_hopids);
2168 ida_destroy(&port->out_hopids);
2172 kfree(sw->device_name);
2173 kfree(sw->vendor_name);
2180 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2182 const struct tb_switch *sw = tb_to_switch(dev);
2185 if (tb_switch_is_usb4(sw)) {
2186 if (add_uevent_var(env, "USB4_VERSION=%u.0",
2187 usb4_switch_version(sw)))
2191 if (!tb_route(sw)) {
2194 const struct tb_port *port;
2197 /* Device is hub if it has any downstream ports */
2198 tb_switch_for_each_port(sw, port) {
2199 if (!port->disabled && !tb_is_upstream_port(port) &&
2200 tb_port_is_null(port)) {
2206 type = hub ? "hub" : "device";
2209 if (add_uevent_var(env, "USB4_TYPE=%s", type))
2215 * Currently only need to provide the callbacks. Everything else is handled
2216 * in the connection manager.
2218 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2220 struct tb_switch *sw = tb_to_switch(dev);
2221 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2223 if (cm_ops->runtime_suspend_switch)
2224 return cm_ops->runtime_suspend_switch(sw);
2229 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2231 struct tb_switch *sw = tb_to_switch(dev);
2232 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2234 if (cm_ops->runtime_resume_switch)
2235 return cm_ops->runtime_resume_switch(sw);
2239 static const struct dev_pm_ops tb_switch_pm_ops = {
2240 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2244 struct device_type tb_switch_type = {
2245 .name = "thunderbolt_device",
2246 .release = tb_switch_release,
2247 .uevent = tb_switch_uevent,
2248 .pm = &tb_switch_pm_ops,
2251 static int tb_switch_get_generation(struct tb_switch *sw)
2253 if (tb_switch_is_usb4(sw))
2256 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2257 switch (sw->config.device_id) {
2258 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2259 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2260 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2261 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2262 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2263 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2264 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2265 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2268 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2269 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2270 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2273 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2274 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2275 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2276 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2277 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2278 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2279 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2280 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2281 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2282 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2288 * For unknown switches assume generation to be 1 to be on the
2291 tb_sw_warn(sw, "unsupported switch device id %#x\n",
2292 sw->config.device_id);
2296 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2300 if (tb_switch_is_usb4(sw) ||
2301 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2302 max_depth = USB4_SWITCH_MAX_DEPTH;
2304 max_depth = TB_SWITCH_MAX_DEPTH;
2306 return depth > max_depth;
2310 * tb_switch_alloc() - allocate a switch
2311 * @tb: Pointer to the owning domain
2312 * @parent: Parent device for this switch
2313 * @route: Route string for this switch
2315 * Allocates and initializes a switch. Will not upload configuration to
2316 * the switch. For that you need to call tb_switch_configure()
2317 * separately. The returned switch should be released by calling
2320 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2323 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2326 struct tb_switch *sw;
2330 /* Unlock the downstream port so we can access the switch below */
2332 struct tb_switch *parent_sw = tb_to_switch(parent);
2333 struct tb_port *down;
2335 down = tb_port_at(route, parent_sw);
2336 tb_port_unlock(down);
2339 depth = tb_route_length(route);
2341 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2342 if (upstream_port < 0)
2343 return ERR_PTR(upstream_port);
2345 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2347 return ERR_PTR(-ENOMEM);
2350 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2352 goto err_free_sw_ports;
2354 sw->generation = tb_switch_get_generation(sw);
2356 tb_dbg(tb, "current switch config:\n");
2357 tb_dump_switch(tb, sw);
2359 /* configure switch */
2360 sw->config.upstream_port_number = upstream_port;
2361 sw->config.depth = depth;
2362 sw->config.route_hi = upper_32_bits(route);
2363 sw->config.route_lo = lower_32_bits(route);
2364 sw->config.enabled = 0;
2366 /* Make sure we do not exceed maximum topology limit */
2367 if (tb_switch_exceeds_max_depth(sw, depth)) {
2368 ret = -EADDRNOTAVAIL;
2369 goto err_free_sw_ports;
2372 /* initialize ports */
2373 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2377 goto err_free_sw_ports;
2380 for (i = 0; i <= sw->config.max_port_number; i++) {
2381 /* minimum setup for tb_find_cap and tb_drom_read to work */
2382 sw->ports[i].sw = sw;
2383 sw->ports[i].port = i;
2385 /* Control port does not need HopID allocation */
2387 ida_init(&sw->ports[i].in_hopids);
2388 ida_init(&sw->ports[i].out_hopids);
2392 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2394 sw->cap_plug_events = ret;
2396 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2398 sw->cap_vsec_tmu = ret;
2400 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2404 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2408 /* Root switch is always authorized */
2410 sw->authorized = true;
2412 device_initialize(&sw->dev);
2413 sw->dev.parent = parent;
2414 sw->dev.bus = &tb_bus_type;
2415 sw->dev.type = &tb_switch_type;
2416 sw->dev.groups = switch_groups;
2417 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2425 return ERR_PTR(ret);
2429 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2430 * @tb: Pointer to the owning domain
2431 * @parent: Parent device for this switch
2432 * @route: Route string for this switch
2434 * This creates a switch in safe mode. This means the switch pretty much
2435 * lacks all capabilities except DMA configuration port before it is
2436 * flashed with a valid NVM firmware.
2438 * The returned switch must be released by calling tb_switch_put().
2440 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2443 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2445 struct tb_switch *sw;
2447 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2449 return ERR_PTR(-ENOMEM);
2452 sw->config.depth = tb_route_length(route);
2453 sw->config.route_hi = upper_32_bits(route);
2454 sw->config.route_lo = lower_32_bits(route);
2455 sw->safe_mode = true;
2457 device_initialize(&sw->dev);
2458 sw->dev.parent = parent;
2459 sw->dev.bus = &tb_bus_type;
2460 sw->dev.type = &tb_switch_type;
2461 sw->dev.groups = switch_groups;
2462 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2468 * tb_switch_configure() - Uploads configuration to the switch
2469 * @sw: Switch to configure
2471 * Call this function before the switch is added to the system. It will
2472 * upload configuration to the switch and makes it available for the
2473 * connection manager to use. Can be called to the switch again after
2474 * resume from low power states to re-initialize it.
2476 * Return: %0 in case of success and negative errno in case of failure
2478 int tb_switch_configure(struct tb_switch *sw)
2480 struct tb *tb = sw->tb;
2484 route = tb_route(sw);
2486 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2487 sw->config.enabled ? "restoring" : "initializing", route,
2488 tb_route_length(route), sw->config.upstream_port_number);
2490 sw->config.enabled = 1;
2492 if (tb_switch_is_usb4(sw)) {
2494 * For USB4 devices, we need to program the CM version
2495 * accordingly so that it knows to expose all the
2496 * additional capabilities. Program it according to USB4
2497 * version to avoid changing existing (v1) routers behaviour.
2499 if (usb4_switch_version(sw) < 2)
2500 sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2502 sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2503 sw->config.plug_events_delay = 0xa;
2505 /* Enumerate the switch */
2506 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2511 ret = usb4_switch_setup(sw);
2513 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2514 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2515 sw->config.vendor_id);
2517 if (!sw->cap_plug_events) {
2518 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2522 /* Enumerate the switch */
2523 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2529 return tb_plug_events_active(sw, true);
2533 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2534 * @sw: Router to configure
2536 * Needs to be called before any tunnels can be setup through the
2537 * router. Can be called to any router.
2539 * Returns %0 in success and negative errno otherwise.
2541 int tb_switch_configuration_valid(struct tb_switch *sw)
2543 if (tb_switch_is_usb4(sw))
2544 return usb4_switch_configuration_valid(sw);
2548 static int tb_switch_set_uuid(struct tb_switch *sw)
2557 if (tb_switch_is_usb4(sw)) {
2558 ret = usb4_switch_read_uid(sw, &sw->uid);
2564 * The newer controllers include fused UUID as part of
2565 * link controller specific registers
2567 ret = tb_lc_read_uuid(sw, uuid);
2577 * ICM generates UUID based on UID and fills the upper
2578 * two words with ones. This is not strictly following
2579 * UUID format but we want to be compatible with it so
2580 * we do the same here.
2582 uuid[0] = sw->uid & 0xffffffff;
2583 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2584 uuid[2] = 0xffffffff;
2585 uuid[3] = 0xffffffff;
2588 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2594 static int tb_switch_add_dma_port(struct tb_switch *sw)
2599 switch (sw->generation) {
2601 /* Only root switch can be upgraded */
2608 ret = tb_switch_set_uuid(sw);
2615 * DMA port is the only thing available when the switch
2623 if (sw->no_nvm_upgrade)
2626 if (tb_switch_is_usb4(sw)) {
2627 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2632 tb_sw_info(sw, "switch flash authentication failed\n");
2633 nvm_set_auth_status(sw, status);
2639 /* Root switch DMA port requires running firmware */
2640 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2643 sw->dma_port = dma_port_alloc(sw);
2648 * If there is status already set then authentication failed
2649 * when the dma_port_flash_update_auth() returned. Power cycling
2650 * is not needed (it was done already) so only thing we do here
2651 * is to unblock runtime PM of the root port.
2653 nvm_get_auth_status(sw, &status);
2656 nvm_authenticate_complete_dma_port(sw);
2661 * Check status of the previous flash authentication. If there
2662 * is one we need to power cycle the switch in any case to make
2663 * it functional again.
2665 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2669 /* Now we can allow root port to suspend again */
2671 nvm_authenticate_complete_dma_port(sw);
2674 tb_sw_info(sw, "switch flash authentication failed\n");
2675 nvm_set_auth_status(sw, status);
2678 tb_sw_info(sw, "power cycling the switch now\n");
2679 dma_port_power_cycle(sw->dma_port);
2682 * We return error here which causes the switch adding failure.
2683 * It should appear back after power cycle is complete.
2688 static void tb_switch_default_link_ports(struct tb_switch *sw)
2692 for (i = 1; i <= sw->config.max_port_number; i++) {
2693 struct tb_port *port = &sw->ports[i];
2694 struct tb_port *subordinate;
2696 if (!tb_port_is_null(port))
2699 /* Check for the subordinate port */
2700 if (i == sw->config.max_port_number ||
2701 !tb_port_is_null(&sw->ports[i + 1]))
2704 /* Link them if not already done so (by DROM) */
2705 subordinate = &sw->ports[i + 1];
2706 if (!port->dual_link_port && !subordinate->dual_link_port) {
2708 port->dual_link_port = subordinate;
2709 subordinate->link_nr = 1;
2710 subordinate->dual_link_port = port;
2712 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2713 port->port, subordinate->port);
2718 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2720 const struct tb_port *up = tb_upstream_port(sw);
2722 if (!up->dual_link_port || !up->dual_link_port->remote)
2725 if (tb_switch_is_usb4(sw))
2726 return usb4_switch_lane_bonding_possible(sw);
2727 return tb_lc_lane_bonding_possible(sw);
2730 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2733 bool change = false;
2736 if (!tb_route(sw) || tb_switch_is_icm(sw))
2739 up = tb_upstream_port(sw);
2741 ret = tb_port_get_link_speed(up);
2744 if (sw->link_speed != ret)
2746 sw->link_speed = ret;
2748 ret = tb_port_get_link_width(up);
2751 if (sw->link_width != ret)
2753 sw->link_width = ret;
2755 /* Notify userspace that there is possible link attribute change */
2756 if (device_is_registered(&sw->dev) && change)
2757 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2762 /* Must be called after tb_switch_update_link_attributes() */
2763 static void tb_switch_link_init(struct tb_switch *sw)
2765 struct tb_port *up, *down;
2768 if (!tb_route(sw) || tb_switch_is_icm(sw))
2771 tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed);
2772 tb_sw_dbg(sw, "current link width %s\n", width_name(sw->link_width));
2774 bonded = sw->link_width >= TB_LINK_WIDTH_DUAL;
2777 * Gen 4 links come up as bonded so update the port structures
2780 up = tb_upstream_port(sw);
2781 down = tb_switch_downstream_port(sw);
2783 up->bonded = bonded;
2784 if (up->dual_link_port)
2785 up->dual_link_port->bonded = bonded;
2786 tb_port_update_credits(up);
2788 down->bonded = bonded;
2789 if (down->dual_link_port)
2790 down->dual_link_port->bonded = bonded;
2791 tb_port_update_credits(down);
2795 * tb_switch_lane_bonding_enable() - Enable lane bonding
2796 * @sw: Switch to enable lane bonding
2798 * Connection manager can call this function to enable lane bonding of a
2799 * switch. If conditions are correct and both switches support the feature,
2800 * lanes are bonded. It is safe to call this to any switch.
2802 static int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2804 struct tb_port *up, *down;
2808 if (!tb_switch_lane_bonding_possible(sw))
2811 up = tb_upstream_port(sw);
2812 down = tb_switch_downstream_port(sw);
2814 if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2815 !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL))
2818 ret = tb_port_lane_bonding_enable(up);
2820 tb_port_warn(up, "failed to enable lane bonding\n");
2824 ret = tb_port_lane_bonding_enable(down);
2826 tb_port_warn(down, "failed to enable lane bonding\n");
2827 tb_port_lane_bonding_disable(up);
2831 /* Any of the widths are all bonded */
2832 width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2833 TB_LINK_WIDTH_ASYM_RX;
2835 return tb_port_wait_for_link_width(down, width, 100);
2839 * tb_switch_lane_bonding_disable() - Disable lane bonding
2840 * @sw: Switch whose lane bonding to disable
2842 * Disables lane bonding between @sw and parent. This can be called even
2843 * if lanes were not bonded originally.
2845 static int tb_switch_lane_bonding_disable(struct tb_switch *sw)
2847 struct tb_port *up, *down;
2850 up = tb_upstream_port(sw);
2855 * If the link is Gen 4 there is no way to switch the link to
2856 * two single lane links so avoid that here. Also don't bother
2857 * if the link is not up anymore (sw is unplugged).
2859 ret = tb_port_get_link_generation(up);
2865 down = tb_switch_downstream_port(sw);
2866 tb_port_lane_bonding_disable(up);
2867 tb_port_lane_bonding_disable(down);
2870 * It is fine if we get other errors as the router might have
2873 return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2876 static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width)
2878 struct tb_port *up, *down, *port;
2879 enum tb_link_width down_width;
2882 up = tb_upstream_port(sw);
2883 down = tb_switch_downstream_port(sw);
2885 if (width == TB_LINK_WIDTH_ASYM_TX) {
2886 down_width = TB_LINK_WIDTH_ASYM_RX;
2889 down_width = TB_LINK_WIDTH_ASYM_TX;
2893 ret = tb_port_set_link_width(up, width);
2897 ret = tb_port_set_link_width(down, down_width);
2902 * Initiate the change in the router that one of its TX lanes is
2903 * changing to RX but do so only if there is an actual change.
2905 if (sw->link_width != width) {
2906 ret = usb4_port_asym_start(port);
2910 ret = tb_port_wait_for_link_width(up, width, 100);
2915 sw->link_width = width;
2919 static int tb_switch_asym_disable(struct tb_switch *sw)
2921 struct tb_port *up, *down;
2924 up = tb_upstream_port(sw);
2925 down = tb_switch_downstream_port(sw);
2927 ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL);
2931 ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL);
2936 * Initiate the change in the router that has three TX lanes and
2937 * is changing one of its TX lanes to RX but only if there is a
2938 * change in the link width.
2940 if (sw->link_width > TB_LINK_WIDTH_DUAL) {
2941 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX)
2942 ret = usb4_port_asym_start(up);
2944 ret = usb4_port_asym_start(down);
2948 ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100);
2953 sw->link_width = TB_LINK_WIDTH_DUAL;
2958 * tb_switch_set_link_width() - Configure router link width
2959 * @sw: Router to configure
2960 * @width: The new link width
2962 * Set device router link width to @width from router upstream port
2963 * perspective. Supports also asymmetric links if the routers boths side
2964 * of the link supports it.
2966 * Does nothing for host router.
2968 * Returns %0 in case of success, negative errno otherwise.
2970 int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width)
2972 struct tb_port *up, *down;
2978 up = tb_upstream_port(sw);
2979 down = tb_switch_downstream_port(sw);
2982 case TB_LINK_WIDTH_SINGLE:
2983 ret = tb_switch_lane_bonding_disable(sw);
2986 case TB_LINK_WIDTH_DUAL:
2987 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX ||
2988 sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
2989 ret = tb_switch_asym_disable(sw);
2993 ret = tb_switch_lane_bonding_enable(sw);
2996 case TB_LINK_WIDTH_ASYM_TX:
2997 case TB_LINK_WIDTH_ASYM_RX:
2998 ret = tb_switch_asym_enable(sw, width);
3007 tb_sw_warn(sw, "timeout changing link width\n");
3016 tb_sw_dbg(sw, "failed to change link width: %d\n", ret);
3020 tb_port_update_credits(down);
3021 tb_port_update_credits(up);
3023 tb_switch_update_link_attributes(sw);
3025 tb_sw_dbg(sw, "link width set to %s\n", width_name(width));
3030 * tb_switch_configure_link() - Set link configured
3031 * @sw: Switch whose link is configured
3033 * Sets the link upstream from @sw configured (from both ends) so that
3034 * it will not be disconnected when the domain exits sleep. Can be
3035 * called for any switch.
3037 * It is recommended that this is called after lane bonding is enabled.
3039 * Returns %0 on success and negative errno in case of error.
3041 int tb_switch_configure_link(struct tb_switch *sw)
3043 struct tb_port *up, *down;
3046 if (!tb_route(sw) || tb_switch_is_icm(sw))
3049 up = tb_upstream_port(sw);
3050 if (tb_switch_is_usb4(up->sw))
3051 ret = usb4_port_configure(up);
3053 ret = tb_lc_configure_port(up);
3058 if (tb_switch_is_usb4(down->sw))
3059 return usb4_port_configure(down);
3060 return tb_lc_configure_port(down);
3064 * tb_switch_unconfigure_link() - Unconfigure link
3065 * @sw: Switch whose link is unconfigured
3067 * Sets the link unconfigured so the @sw will be disconnected if the
3068 * domain exists sleep.
3070 void tb_switch_unconfigure_link(struct tb_switch *sw)
3072 struct tb_port *up, *down;
3074 if (sw->is_unplugged)
3076 if (!tb_route(sw) || tb_switch_is_icm(sw))
3079 up = tb_upstream_port(sw);
3080 if (tb_switch_is_usb4(up->sw))
3081 usb4_port_unconfigure(up);
3083 tb_lc_unconfigure_port(up);
3086 if (tb_switch_is_usb4(down->sw))
3087 usb4_port_unconfigure(down);
3089 tb_lc_unconfigure_port(down);
3092 static void tb_switch_credits_init(struct tb_switch *sw)
3094 if (tb_switch_is_icm(sw))
3096 if (!tb_switch_is_usb4(sw))
3098 if (usb4_switch_credits_init(sw))
3099 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
3102 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
3104 struct tb_port *port;
3106 if (tb_switch_is_icm(sw))
3109 tb_switch_for_each_port(sw, port) {
3112 if (!port->cap_usb4)
3115 res = usb4_port_hotplug_enable(port);
3123 * tb_switch_add() - Add a switch to the domain
3124 * @sw: Switch to add
3126 * This is the last step in adding switch to the domain. It will read
3127 * identification information from DROM and initializes ports so that
3128 * they can be used to connect other switches. The switch will be
3129 * exposed to the userspace when this function successfully returns. To
3130 * remove and release the switch, call tb_switch_remove().
3132 * Return: %0 in case of success and negative errno in case of failure
3134 int tb_switch_add(struct tb_switch *sw)
3139 * Initialize DMA control port now before we read DROM. Recent
3140 * host controllers have more complete DROM on NVM that includes
3141 * vendor and model identification strings which we then expose
3142 * to the userspace. NVM can be accessed through DMA
3143 * configuration based mailbox.
3145 ret = tb_switch_add_dma_port(sw);
3147 dev_err(&sw->dev, "failed to add DMA port\n");
3151 if (!sw->safe_mode) {
3152 tb_switch_credits_init(sw);
3155 ret = tb_drom_read(sw);
3157 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
3158 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
3160 ret = tb_switch_set_uuid(sw);
3162 dev_err(&sw->dev, "failed to set UUID\n");
3166 for (i = 0; i <= sw->config.max_port_number; i++) {
3167 if (sw->ports[i].disabled) {
3168 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
3171 ret = tb_init_port(&sw->ports[i]);
3173 dev_err(&sw->dev, "failed to initialize port %d\n", i);
3178 tb_check_quirks(sw);
3180 tb_switch_default_link_ports(sw);
3182 ret = tb_switch_update_link_attributes(sw);
3186 tb_switch_link_init(sw);
3188 ret = tb_switch_clx_init(sw);
3192 ret = tb_switch_tmu_init(sw);
3197 ret = tb_switch_port_hotplug_enable(sw);
3201 ret = device_add(&sw->dev);
3203 dev_err(&sw->dev, "failed to add device: %d\n", ret);
3208 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3209 sw->vendor, sw->device);
3210 if (sw->vendor_name && sw->device_name)
3211 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3215 ret = usb4_switch_add_ports(sw);
3217 dev_err(&sw->dev, "failed to add USB4 ports\n");
3221 ret = tb_switch_nvm_add(sw);
3223 dev_err(&sw->dev, "failed to add NVM devices\n");
3228 * Thunderbolt routers do not generate wakeups themselves but
3229 * they forward wakeups from tunneled protocols, so enable it
3232 device_init_wakeup(&sw->dev, true);
3234 pm_runtime_set_active(&sw->dev);
3236 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3237 pm_runtime_use_autosuspend(&sw->dev);
3238 pm_runtime_mark_last_busy(&sw->dev);
3239 pm_runtime_enable(&sw->dev);
3240 pm_request_autosuspend(&sw->dev);
3243 tb_switch_debugfs_init(sw);
3247 usb4_switch_remove_ports(sw);
3249 device_del(&sw->dev);
3255 * tb_switch_remove() - Remove and release a switch
3256 * @sw: Switch to remove
3258 * This will remove the switch from the domain and release it after last
3259 * reference count drops to zero. If there are switches connected below
3260 * this switch, they will be removed as well.
3262 void tb_switch_remove(struct tb_switch *sw)
3264 struct tb_port *port;
3266 tb_switch_debugfs_remove(sw);
3269 pm_runtime_get_sync(&sw->dev);
3270 pm_runtime_disable(&sw->dev);
3273 /* port 0 is the switch itself and never has a remote */
3274 tb_switch_for_each_port(sw, port) {
3275 if (tb_port_has_remote(port)) {
3276 tb_switch_remove(port->remote->sw);
3277 port->remote = NULL;
3278 } else if (port->xdomain) {
3279 tb_xdomain_remove(port->xdomain);
3280 port->xdomain = NULL;
3283 /* Remove any downstream retimers */
3284 tb_retimer_remove_all(port);
3287 if (!sw->is_unplugged)
3288 tb_plug_events_active(sw, false);
3290 tb_switch_nvm_remove(sw);
3291 usb4_switch_remove_ports(sw);
3294 dev_info(&sw->dev, "device disconnected\n");
3295 device_unregister(&sw->dev);
3299 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3300 * @sw: Router to mark unplugged
3302 void tb_sw_set_unplugged(struct tb_switch *sw)
3304 struct tb_port *port;
3306 if (sw == sw->tb->root_switch) {
3307 tb_sw_WARN(sw, "cannot unplug root switch\n");
3310 if (sw->is_unplugged) {
3311 tb_sw_WARN(sw, "is_unplugged already set\n");
3314 sw->is_unplugged = true;
3315 tb_switch_for_each_port(sw, port) {
3316 if (tb_port_has_remote(port))
3317 tb_sw_set_unplugged(port->remote->sw);
3318 else if (port->xdomain)
3319 port->xdomain->is_unplugged = true;
3323 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3326 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3328 tb_sw_dbg(sw, "disabling wakeup\n");
3330 if (tb_switch_is_usb4(sw))
3331 return usb4_switch_set_wake(sw, flags);
3332 return tb_lc_set_wake(sw, flags);
3335 int tb_switch_resume(struct tb_switch *sw)
3337 struct tb_port *port;
3340 tb_sw_dbg(sw, "resuming switch\n");
3343 * Check for UID of the connected switches except for root
3344 * switch which we assume cannot be removed.
3350 * Check first that we can still read the switch config
3351 * space. It may be that there is now another domain
3354 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3356 tb_sw_info(sw, "switch not present anymore\n");
3360 /* We don't have any way to confirm this was the same device */
3364 if (tb_switch_is_usb4(sw))
3365 err = usb4_switch_read_uid(sw, &uid);
3367 err = tb_drom_read_uid_only(sw, &uid);
3369 tb_sw_warn(sw, "uid read failed\n");
3372 if (sw->uid != uid) {
3374 "changed while suspended (uid %#llx -> %#llx)\n",
3380 err = tb_switch_configure(sw);
3385 tb_switch_set_wake(sw, 0);
3387 err = tb_switch_tmu_init(sw);
3391 /* check for surviving downstream switches */
3392 tb_switch_for_each_port(sw, port) {
3393 if (!tb_port_is_null(port))
3396 if (!tb_port_resume(port))
3399 if (tb_wait_for_port(port, true) <= 0) {
3401 "lost during suspend, disconnecting\n");
3402 if (tb_port_has_remote(port))
3403 tb_sw_set_unplugged(port->remote->sw);
3404 else if (port->xdomain)
3405 port->xdomain->is_unplugged = true;
3408 * Always unlock the port so the downstream
3409 * switch/domain is accessible.
3411 if (tb_port_unlock(port))
3412 tb_port_warn(port, "failed to unlock port\n");
3413 if (port->remote && tb_switch_resume(port->remote->sw)) {
3415 "lost during suspend, disconnecting\n");
3416 tb_sw_set_unplugged(port->remote->sw);
3424 * tb_switch_suspend() - Put a switch to sleep
3425 * @sw: Switch to suspend
3426 * @runtime: Is this runtime suspend or system sleep
3428 * Suspends router and all its children. Enables wakes according to
3429 * value of @runtime and then sets sleep bit for the router. If @sw is
3430 * host router the domain is ready to go to sleep once this function
3433 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3435 unsigned int flags = 0;
3436 struct tb_port *port;
3439 tb_sw_dbg(sw, "suspending switch\n");
3442 * Actually only needed for Titan Ridge but for simplicity can be
3443 * done for USB4 device too as CLx is re-enabled at resume.
3445 tb_switch_clx_disable(sw);
3447 err = tb_plug_events_active(sw, false);
3451 tb_switch_for_each_port(sw, port) {
3452 if (tb_port_has_remote(port))
3453 tb_switch_suspend(port->remote->sw, runtime);
3457 /* Trigger wake when something is plugged in/out */
3458 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3459 flags |= TB_WAKE_ON_USB4;
3460 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3461 } else if (device_may_wakeup(&sw->dev)) {
3462 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3465 tb_switch_set_wake(sw, flags);
3467 if (tb_switch_is_usb4(sw))
3468 usb4_switch_set_sleep(sw);
3470 tb_lc_set_sleep(sw);
3474 * tb_switch_query_dp_resource() - Query availability of DP resource
3475 * @sw: Switch whose DP resource is queried
3478 * Queries availability of DP resource for DP tunneling using switch
3479 * specific means. Returns %true if resource is available.
3481 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3483 if (tb_switch_is_usb4(sw))
3484 return usb4_switch_query_dp_resource(sw, in);
3485 return tb_lc_dp_sink_query(sw, in);
3489 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3490 * @sw: Switch whose DP resource is allocated
3493 * Allocates DP resource for DP tunneling. The resource must be
3494 * available for this to succeed (see tb_switch_query_dp_resource()).
3495 * Returns %0 in success and negative errno otherwise.
3497 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3501 if (tb_switch_is_usb4(sw))
3502 ret = usb4_switch_alloc_dp_resource(sw, in);
3504 ret = tb_lc_dp_sink_alloc(sw, in);
3507 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3510 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3516 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3517 * @sw: Switch whose DP resource is de-allocated
3520 * De-allocates DP resource that was previously allocated for DP
3523 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3527 if (tb_switch_is_usb4(sw))
3528 ret = usb4_switch_dealloc_dp_resource(sw, in);
3530 ret = tb_lc_dp_sink_dealloc(sw, in);
3533 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3536 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3539 struct tb_sw_lookup {
3547 static int tb_switch_match(struct device *dev, const void *data)
3549 struct tb_switch *sw = tb_to_switch(dev);
3550 const struct tb_sw_lookup *lookup = data;
3554 if (sw->tb != lookup->tb)
3558 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3560 if (lookup->route) {
3561 return sw->config.route_lo == lower_32_bits(lookup->route) &&
3562 sw->config.route_hi == upper_32_bits(lookup->route);
3565 /* Root switch is matched only by depth */
3569 return sw->link == lookup->link && sw->depth == lookup->depth;
3573 * tb_switch_find_by_link_depth() - Find switch by link and depth
3574 * @tb: Domain the switch belongs
3575 * @link: Link number the switch is connected
3576 * @depth: Depth of the switch in link
3578 * Returned switch has reference count increased so the caller needs to
3579 * call tb_switch_put() when done with the switch.
3581 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3583 struct tb_sw_lookup lookup;
3586 memset(&lookup, 0, sizeof(lookup));
3589 lookup.depth = depth;
3591 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3593 return tb_to_switch(dev);
3599 * tb_switch_find_by_uuid() - Find switch by UUID
3600 * @tb: Domain the switch belongs
3601 * @uuid: UUID to look for
3603 * Returned switch has reference count increased so the caller needs to
3604 * call tb_switch_put() when done with the switch.
3606 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3608 struct tb_sw_lookup lookup;
3611 memset(&lookup, 0, sizeof(lookup));
3615 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3617 return tb_to_switch(dev);
3623 * tb_switch_find_by_route() - Find switch by route string
3624 * @tb: Domain the switch belongs
3625 * @route: Route string to look for
3627 * Returned switch has reference count increased so the caller needs to
3628 * call tb_switch_put() when done with the switch.
3630 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3632 struct tb_sw_lookup lookup;
3636 return tb_switch_get(tb->root_switch);
3638 memset(&lookup, 0, sizeof(lookup));
3640 lookup.route = route;
3642 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3644 return tb_to_switch(dev);
3650 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3651 * @sw: Switch to find the port from
3652 * @type: Port type to look for
3654 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3655 enum tb_port_type type)
3657 struct tb_port *port;
3659 tb_switch_for_each_port(sw, port) {
3660 if (port->config.type == type)
3668 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3669 * device. For now used only for Titan Ridge.
3671 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3672 unsigned int pcie_offset, u32 value)
3674 u32 offset, command, val;
3677 if (sw->generation != 3)
3680 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3681 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3685 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3686 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3687 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3688 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3689 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3690 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3692 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3694 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3698 ret = tb_switch_wait_for_bit(sw, offset,
3699 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3703 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3707 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3714 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3715 * @sw: Router to enable PCIe L1
3717 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3718 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3719 * was configured. Due to Intel platforms limitation, shall be called only
3720 * for first hop switch.
3722 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3724 struct tb_switch *parent = tb_switch_parent(sw);
3730 if (!tb_switch_is_titan_ridge(sw))
3733 /* Enable PCIe L1 enable only for first hop router (depth = 1) */
3734 if (tb_route(parent))
3737 /* Write to downstream PCIe bridge #5 aka Dn4 */
3738 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3742 /* Write to Upstream PCIe bridge #0 aka Up0 */
3743 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3747 * tb_switch_xhci_connect() - Connect internal xHCI
3748 * @sw: Router whose xHCI to connect
3750 * Can be called to any router. For Alpine Ridge and Titan Ridge
3751 * performs special flows that bring the xHCI functional for any device
3752 * connected to the type-C port. Call only after PCIe tunnel has been
3753 * established. The function only does the connect if not done already
3754 * so can be called several times for the same router.
3756 int tb_switch_xhci_connect(struct tb_switch *sw)
3758 struct tb_port *port1, *port3;
3761 if (sw->generation != 3)
3764 port1 = &sw->ports[1];
3765 port3 = &sw->ports[3];
3767 if (tb_switch_is_alpine_ridge(sw)) {
3768 bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3770 usb_port1 = tb_lc_is_usb_plugged(port1);
3771 usb_port3 = tb_lc_is_usb_plugged(port3);
3772 xhci_port1 = tb_lc_is_xhci_connected(port1);
3773 xhci_port3 = tb_lc_is_xhci_connected(port3);
3775 /* Figure out correct USB port to connect */
3776 if (usb_port1 && !xhci_port1) {
3777 ret = tb_lc_xhci_connect(port1);
3781 if (usb_port3 && !xhci_port3)
3782 return tb_lc_xhci_connect(port3);
3783 } else if (tb_switch_is_titan_ridge(sw)) {
3784 ret = tb_lc_xhci_connect(port1);
3787 return tb_lc_xhci_connect(port3);
3794 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3795 * @sw: Router whose xHCI to disconnect
3797 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3800 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3802 if (sw->generation == 3) {
3803 struct tb_port *port1 = &sw->ports[1];
3804 struct tb_port *port3 = &sw->ports[3];
3806 tb_lc_xhci_disconnect(port1);
3807 tb_port_dbg(port1, "disconnected xHCI\n");
3808 tb_lc_xhci_disconnect(port3);
3809 tb_port_dbg(port3, "disconnected xHCI\n");