]> Git Repo - J-linux.git/blob - drivers/gpu/drm/i915/gt/intel_execlists_submission.c
PM: sleep: Fix runtime PM based cpuidle support
[J-linux.git] / drivers / gpu / drm / i915 / gt / intel_execlists_submission.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5
6 /**
7  * DOC: Logical Rings, Logical Ring Contexts and Execlists
8  *
9  * Motivation:
10  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11  * These expanded contexts enable a number of new abilities, especially
12  * "Execlists" (also implemented in this file).
13  *
14  * One of the main differences with the legacy HW contexts is that logical
15  * ring contexts incorporate many more things to the context's state, like
16  * PDPs or ringbuffer control registers:
17  *
18  * The reason why PDPs are included in the context is straightforward: as
19  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21  * instead, the GPU will do it for you on the context switch.
22  *
23  * But, what about the ringbuffer control registers (head, tail, etc..)?
24  * shouldn't we just need a set of those per engine command streamer? This is
25  * where the name "Logical Rings" starts to make sense: by virtualizing the
26  * rings, the engine cs shifts to a new "ring buffer" with every context
27  * switch. When you want to submit a workload to the GPU you: A) choose your
28  * context, B) find its appropriate virtualized ring, C) write commands to it
29  * and then, finally, D) tell the GPU to switch to that context.
30  *
31  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32  * to a contexts is via a context execution list, ergo "Execlists".
33  *
34  * LRC implementation:
35  * Regarding the creation of contexts, we have:
36  *
37  * - One global default context.
38  * - One local default context for each opened fd.
39  * - One local extra context for each context create ioctl call.
40  *
41  * Now that ringbuffers belong per-context (and not per-engine, like before)
42  * and that contexts are uniquely tied to a given engine (and not reusable,
43  * like before) we need:
44  *
45  * - One ringbuffer per-engine inside each context.
46  * - One backing object per-engine inside each context.
47  *
48  * The global default context starts its life with these new objects fully
49  * allocated and populated. The local default context for each opened fd is
50  * more complex, because we don't know at creation time which engine is going
51  * to use them. To handle this, we have implemented a deferred creation of LR
52  * contexts:
53  *
54  * The local context starts its life as a hollow or blank holder, that only
55  * gets populated for a given engine once we receive an execbuffer. If later
56  * on we receive another execbuffer ioctl for the same context but a different
57  * engine, we allocate/populate a new ringbuffer and context backing object and
58  * so on.
59  *
60  * Finally, regarding local contexts created using the ioctl call: as they are
61  * only allowed with the render ring, we can allocate & populate them right
62  * away (no need to defer anything, at least for now).
63  *
64  * Execlists implementation:
65  * Execlists are the new method by which, on gen8+ hardware, workloads are
66  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67  * This method works as follows:
68  *
69  * When a request is committed, its commands (the BB start and any leading or
70  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71  * for the appropriate context. The tail pointer in the hardware context is not
72  * updated at this time, but instead, kept by the driver in the ringbuffer
73  * structure. A structure representing this request is added to a request queue
74  * for the appropriate engine: this structure contains a copy of the context's
75  * tail after the request was written to the ring buffer and a pointer to the
76  * context itself.
77  *
78  * If the engine's request queue was empty before the request was added, the
79  * queue is processed immediately. Otherwise the queue will be processed during
80  * a context switch interrupt. In any case, elements on the queue will get sent
81  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82  * globally unique 20-bits submission ID.
83  *
84  * When execution of a request completes, the GPU updates the context status
85  * buffer with a context complete event and generates a context switch interrupt.
86  * During the interrupt handling, the driver examines the events in the buffer:
87  * for each context complete event, if the announced ID matches that on the head
88  * of the request queue, then that request is retired and removed from the queue.
89  *
90  * After processing, if any requests were retired and the queue is not empty
91  * then a new execution list can be submitted. The two requests at the front of
92  * the queue are next to be submitted but since a context may not occur twice in
93  * an execution list, if subsequent requests have the same ID as the first then
94  * the two requests must be combined. This is done simply by discarding requests
95  * at the head of the queue until either only one requests is left (in which case
96  * we use a NULL second context) or the first two requests have unique IDs.
97  *
98  * By always executing the first two requests in the queue the driver ensures
99  * that the GPU is kept as busy as possible. In the case where a single context
100  * completes but a second context is still executing, the request for this second
101  * context will be at the head of the queue when we remove the first one. This
102  * request will then be resubmitted along with a new request for a different context,
103  * which will cause the hardware to continue executing the second request and queue
104  * the new request (the GPU detects the condition of a context getting preempted
105  * with the same context and optimizes the context switch flow by not doing
106  * preemption, but just sampling the new tail pointer).
107  *
108  */
109 #include <linux/interrupt.h>
110
111 #include "i915_drv.h"
112 #include "i915_trace.h"
113 #include "i915_vgpu.h"
114 #include "gen8_engine_cs.h"
115 #include "intel_breadcrumbs.h"
116 #include "intel_context.h"
117 #include "intel_engine_heartbeat.h"
118 #include "intel_engine_pm.h"
119 #include "intel_engine_stats.h"
120 #include "intel_execlists_submission.h"
121 #include "intel_gt.h"
122 #include "intel_gt_irq.h"
123 #include "intel_gt_pm.h"
124 #include "intel_gt_requests.h"
125 #include "intel_lrc.h"
126 #include "intel_lrc_reg.h"
127 #include "intel_mocs.h"
128 #include "intel_reset.h"
129 #include "intel_ring.h"
130 #include "intel_workarounds.h"
131 #include "shmem_utils.h"
132
133 #define RING_EXECLIST_QFULL             (1 << 0x2)
134 #define RING_EXECLIST1_VALID            (1 << 0x3)
135 #define RING_EXECLIST0_VALID            (1 << 0x4)
136 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
137 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
138 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
139
140 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
141 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
142 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
143 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
144 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
145 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
146
147 #define GEN8_CTX_STATUS_COMPLETED_MASK \
148          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
149
150 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE  (0x1) /* lower csb dword */
151 #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
152 #define GEN12_CSB_SW_CTX_ID_MASK                GENMASK(25, 15)
153 #define GEN12_IDLE_CTX_ID               0x7FF
154 #define GEN12_CSB_CTX_VALID(csb_dw) \
155         (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
156
157 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE   BIT(1) /* upper csb dword */
158 #define XEHP_CSB_SW_CTX_ID_MASK                 GENMASK(31, 10)
159 #define XEHP_IDLE_CTX_ID                        0xFFFF
160 #define XEHP_CSB_CTX_VALID(csb_dw) \
161         (FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
162
163 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
164 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
165
166 struct virtual_engine {
167         struct intel_engine_cs base;
168         struct intel_context context;
169         struct rcu_work rcu;
170
171         /*
172          * We allow only a single request through the virtual engine at a time
173          * (each request in the timeline waits for the completion fence of
174          * the previous before being submitted). By restricting ourselves to
175          * only submitting a single request, each request is placed on to a
176          * physical to maximise load spreading (by virtue of the late greedy
177          * scheduling -- each real engine takes the next available request
178          * upon idling).
179          */
180         struct i915_request *request;
181
182         /*
183          * We keep a rbtree of available virtual engines inside each physical
184          * engine, sorted by priority. Here we preallocate the nodes we need
185          * for the virtual engine, indexed by physical_engine->id.
186          */
187         struct ve_node {
188                 struct rb_node rb;
189                 int prio;
190         } nodes[I915_NUM_ENGINES];
191
192         /* And finally, which physical engines this virtual engine maps onto. */
193         unsigned int num_siblings;
194         struct intel_engine_cs *siblings[];
195 };
196
197 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
198 {
199         GEM_BUG_ON(!intel_engine_is_virtual(engine));
200         return container_of(engine, struct virtual_engine, base);
201 }
202
203 static struct intel_context *
204 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count);
205
206 static struct i915_request *
207 __active_request(const struct intel_timeline * const tl,
208                  struct i915_request *rq,
209                  int error)
210 {
211         struct i915_request *active = rq;
212
213         list_for_each_entry_from_reverse(rq, &tl->requests, link) {
214                 if (__i915_request_is_complete(rq))
215                         break;
216
217                 if (error) {
218                         i915_request_set_error_once(rq, error);
219                         __i915_request_skip(rq);
220                 }
221                 active = rq;
222         }
223
224         return active;
225 }
226
227 static struct i915_request *
228 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
229 {
230         return __active_request(tl, rq, 0);
231 }
232
233 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
234 {
235         /*
236          * We inspect HWS_PREEMPT with a semaphore inside
237          * engine->emit_fini_breadcrumb. If the dword is true,
238          * the ring is paused as the semaphore will busywait
239          * until the dword is false.
240          */
241         engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
242         if (state)
243                 wmb();
244 }
245
246 static struct i915_priolist *to_priolist(struct rb_node *rb)
247 {
248         return rb_entry(rb, struct i915_priolist, node);
249 }
250
251 static int rq_prio(const struct i915_request *rq)
252 {
253         return READ_ONCE(rq->sched.attr.priority);
254 }
255
256 static int effective_prio(const struct i915_request *rq)
257 {
258         int prio = rq_prio(rq);
259
260         /*
261          * If this request is special and must not be interrupted at any
262          * cost, so be it. Note we are only checking the most recent request
263          * in the context and so may be masking an earlier vip request. It
264          * is hoped that under the conditions where nopreempt is used, this
265          * will not matter (i.e. all requests to that context will be
266          * nopreempt for as long as desired).
267          */
268         if (i915_request_has_nopreempt(rq))
269                 prio = I915_PRIORITY_UNPREEMPTABLE;
270
271         return prio;
272 }
273
274 static int queue_prio(const struct i915_sched_engine *sched_engine)
275 {
276         struct rb_node *rb;
277
278         rb = rb_first_cached(&sched_engine->queue);
279         if (!rb)
280                 return INT_MIN;
281
282         return to_priolist(rb)->priority;
283 }
284
285 static int virtual_prio(const struct intel_engine_execlists *el)
286 {
287         struct rb_node *rb = rb_first_cached(&el->virtual);
288
289         return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
290 }
291
292 static bool need_preempt(const struct intel_engine_cs *engine,
293                          const struct i915_request *rq)
294 {
295         int last_prio;
296
297         if (!intel_engine_has_semaphores(engine))
298                 return false;
299
300         /*
301          * Check if the current priority hint merits a preemption attempt.
302          *
303          * We record the highest value priority we saw during rescheduling
304          * prior to this dequeue, therefore we know that if it is strictly
305          * less than the current tail of ESLP[0], we do not need to force
306          * a preempt-to-idle cycle.
307          *
308          * However, the priority hint is a mere hint that we may need to
309          * preempt. If that hint is stale or we may be trying to preempt
310          * ourselves, ignore the request.
311          *
312          * More naturally we would write
313          *      prio >= max(0, last);
314          * except that we wish to prevent triggering preemption at the same
315          * priority level: the task that is running should remain running
316          * to preserve FIFO ordering of dependencies.
317          */
318         last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
319         if (engine->sched_engine->queue_priority_hint <= last_prio)
320                 return false;
321
322         /*
323          * Check against the first request in ELSP[1], it will, thanks to the
324          * power of PI, be the highest priority of that context.
325          */
326         if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
327             rq_prio(list_next_entry(rq, sched.link)) > last_prio)
328                 return true;
329
330         /*
331          * If the inflight context did not trigger the preemption, then maybe
332          * it was the set of queued requests? Pick the highest priority in
333          * the queue (the first active priolist) and see if it deserves to be
334          * running instead of ELSP[0].
335          *
336          * The highest priority request in the queue can not be either
337          * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
338          * context, it's priority would not exceed ELSP[0] aka last_prio.
339          */
340         return max(virtual_prio(&engine->execlists),
341                    queue_prio(engine->sched_engine)) > last_prio;
342 }
343
344 __maybe_unused static bool
345 assert_priority_queue(const struct i915_request *prev,
346                       const struct i915_request *next)
347 {
348         /*
349          * Without preemption, the prev may refer to the still active element
350          * which we refuse to let go.
351          *
352          * Even with preemption, there are times when we think it is better not
353          * to preempt and leave an ostensibly lower priority request in flight.
354          */
355         if (i915_request_is_active(prev))
356                 return true;
357
358         return rq_prio(prev) >= rq_prio(next);
359 }
360
361 static struct i915_request *
362 __unwind_incomplete_requests(struct intel_engine_cs *engine)
363 {
364         struct i915_request *rq, *rn, *active = NULL;
365         struct list_head *pl;
366         int prio = I915_PRIORITY_INVALID;
367
368         lockdep_assert_held(&engine->sched_engine->lock);
369
370         list_for_each_entry_safe_reverse(rq, rn,
371                                          &engine->sched_engine->requests,
372                                          sched.link) {
373                 if (__i915_request_is_complete(rq)) {
374                         list_del_init(&rq->sched.link);
375                         continue;
376                 }
377
378                 __i915_request_unsubmit(rq);
379
380                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
381                 if (rq_prio(rq) != prio) {
382                         prio = rq_prio(rq);
383                         pl = i915_sched_lookup_priolist(engine->sched_engine,
384                                                         prio);
385                 }
386                 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
387
388                 list_move(&rq->sched.link, pl);
389                 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
390
391                 /* Check in case we rollback so far we wrap [size/2] */
392                 if (intel_ring_direction(rq->ring,
393                                          rq->tail,
394                                          rq->ring->tail + 8) > 0)
395                         rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
396
397                 active = rq;
398         }
399
400         return active;
401 }
402
403 struct i915_request *
404 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
405 {
406         struct intel_engine_cs *engine =
407                 container_of(execlists, typeof(*engine), execlists);
408
409         return __unwind_incomplete_requests(engine);
410 }
411
412 static void
413 execlists_context_status_change(struct i915_request *rq, unsigned long status)
414 {
415         /*
416          * Only used when GVT-g is enabled now. When GVT-g is disabled,
417          * The compiler should eliminate this function as dead-code.
418          */
419         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
420                 return;
421
422         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
423                                    status, rq);
424 }
425
426 static void reset_active(struct i915_request *rq,
427                          struct intel_engine_cs *engine)
428 {
429         struct intel_context * const ce = rq->context;
430         u32 head;
431
432         /*
433          * The executing context has been cancelled. We want to prevent
434          * further execution along this context and propagate the error on
435          * to anything depending on its results.
436          *
437          * In __i915_request_submit(), we apply the -EIO and remove the
438          * requests' payloads for any banned requests. But first, we must
439          * rewind the context back to the start of the incomplete request so
440          * that we do not jump back into the middle of the batch.
441          *
442          * We preserve the breadcrumbs and semaphores of the incomplete
443          * requests so that inter-timeline dependencies (i.e other timelines)
444          * remain correctly ordered. And we defer to __i915_request_submit()
445          * so that all asynchronous waits are correctly handled.
446          */
447         ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
448                      rq->fence.context, rq->fence.seqno);
449
450         /* On resubmission of the active request, payload will be scrubbed */
451         if (__i915_request_is_complete(rq))
452                 head = rq->tail;
453         else
454                 head = __active_request(ce->timeline, rq, -EIO)->head;
455         head = intel_ring_wrap(ce->ring, head);
456
457         /* Scrub the context image to prevent replaying the previous batch */
458         lrc_init_regs(ce, engine, true);
459
460         /* We've switched away, so this should be a no-op, but intent matters */
461         ce->lrc.lrca = lrc_update_regs(ce, engine, head);
462 }
463
464 static bool bad_request(const struct i915_request *rq)
465 {
466         return rq->fence.error && i915_request_started(rq);
467 }
468
469 static struct intel_engine_cs *
470 __execlists_schedule_in(struct i915_request *rq)
471 {
472         struct intel_engine_cs * const engine = rq->engine;
473         struct intel_context * const ce = rq->context;
474
475         intel_context_get(ce);
476
477         if (unlikely(intel_context_is_closed(ce) &&
478                      !intel_engine_has_heartbeat(engine)))
479                 intel_context_set_banned(ce);
480
481         if (unlikely(intel_context_is_banned(ce) || bad_request(rq)))
482                 reset_active(rq, engine);
483
484         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
485                 lrc_check_regs(ce, engine, "before");
486
487         if (ce->tag) {
488                 /* Use a fixed tag for OA and friends */
489                 GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
490                 ce->lrc.ccid = ce->tag;
491         } else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
492                 /* We don't need a strict matching tag, just different values */
493                 unsigned int tag = ffs(READ_ONCE(engine->context_tag));
494
495                 GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
496                 clear_bit(tag - 1, &engine->context_tag);
497                 ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
498
499                 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
500
501         } else {
502                 /* We don't need a strict matching tag, just different values */
503                 unsigned int tag = __ffs(engine->context_tag);
504
505                 GEM_BUG_ON(tag >= BITS_PER_LONG);
506                 __clear_bit(tag, &engine->context_tag);
507                 ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
508
509                 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
510         }
511
512         ce->lrc.ccid |= engine->execlists.ccid;
513
514         __intel_gt_pm_get(engine->gt);
515         if (engine->fw_domain && !engine->fw_active++)
516                 intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
517         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
518         intel_engine_context_in(engine);
519
520         CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
521
522         return engine;
523 }
524
525 static void execlists_schedule_in(struct i915_request *rq, int idx)
526 {
527         struct intel_context * const ce = rq->context;
528         struct intel_engine_cs *old;
529
530         GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
531         trace_i915_request_in(rq, idx);
532
533         old = ce->inflight;
534         if (!old)
535                 old = __execlists_schedule_in(rq);
536         WRITE_ONCE(ce->inflight, ptr_inc(old));
537
538         GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
539 }
540
541 static void
542 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
543 {
544         struct intel_engine_cs *engine = rq->engine;
545
546         spin_lock_irq(&engine->sched_engine->lock);
547
548         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
549         WRITE_ONCE(rq->engine, &ve->base);
550         ve->base.submit_request(rq);
551
552         spin_unlock_irq(&engine->sched_engine->lock);
553 }
554
555 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
556 {
557         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
558         struct intel_engine_cs *engine = rq->engine;
559
560         /*
561          * After this point, the rq may be transferred to a new sibling, so
562          * before we clear ce->inflight make sure that the context has been
563          * removed from the b->signalers and furthermore we need to make sure
564          * that the concurrent iterator in signal_irq_work is no longer
565          * following ce->signal_link.
566          */
567         if (!list_empty(&ce->signals))
568                 intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
569
570         /*
571          * This engine is now too busy to run this virtual request, so
572          * see if we can find an alternative engine for it to execute on.
573          * Once a request has become bonded to this engine, we treat it the
574          * same as other native request.
575          */
576         if (i915_request_in_priority_queue(rq) &&
577             rq->execution_mask != engine->mask)
578                 resubmit_virtual_request(rq, ve);
579
580         if (READ_ONCE(ve->request))
581                 tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
582 }
583
584 static void __execlists_schedule_out(struct i915_request * const rq,
585                                      struct intel_context * const ce)
586 {
587         struct intel_engine_cs * const engine = rq->engine;
588         unsigned int ccid;
589
590         /*
591          * NB process_csb() is not under the engine->sched_engine->lock and hence
592          * schedule_out can race with schedule_in meaning that we should
593          * refrain from doing non-trivial work here.
594          */
595
596         CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
597         GEM_BUG_ON(ce->inflight != engine);
598
599         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
600                 lrc_check_regs(ce, engine, "after");
601
602         /*
603          * If we have just completed this context, the engine may now be
604          * idle and we want to re-enter powersaving.
605          */
606         if (intel_timeline_is_last(ce->timeline, rq) &&
607             __i915_request_is_complete(rq))
608                 intel_engine_add_retire(engine, ce->timeline);
609
610         ccid = ce->lrc.ccid;
611         if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
612                 ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
613                 ccid &= XEHP_MAX_CONTEXT_HW_ID;
614         } else {
615                 ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
616                 ccid &= GEN12_MAX_CONTEXT_HW_ID;
617         }
618
619         if (ccid < BITS_PER_LONG) {
620                 GEM_BUG_ON(ccid == 0);
621                 GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
622                 __set_bit(ccid - 1, &engine->context_tag);
623         }
624
625         lrc_update_runtime(ce);
626         intel_engine_context_out(engine);
627         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
628         if (engine->fw_domain && !--engine->fw_active)
629                 intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
630         intel_gt_pm_put_async(engine->gt);
631
632         /*
633          * If this is part of a virtual engine, its next request may
634          * have been blocked waiting for access to the active context.
635          * We have to kick all the siblings again in case we need to
636          * switch (e.g. the next request is not runnable on this
637          * engine). Hopefully, we will already have submitted the next
638          * request before the tasklet runs and do not need to rebuild
639          * each virtual tree and kick everyone again.
640          */
641         if (ce->engine != engine)
642                 kick_siblings(rq, ce);
643
644         WRITE_ONCE(ce->inflight, NULL);
645         intel_context_put(ce);
646 }
647
648 static inline void execlists_schedule_out(struct i915_request *rq)
649 {
650         struct intel_context * const ce = rq->context;
651
652         trace_i915_request_out(rq);
653
654         GEM_BUG_ON(!ce->inflight);
655         ce->inflight = ptr_dec(ce->inflight);
656         if (!__intel_context_inflight_count(ce->inflight))
657                 __execlists_schedule_out(rq, ce);
658
659         i915_request_put(rq);
660 }
661
662 static u64 execlists_update_context(struct i915_request *rq)
663 {
664         struct intel_context *ce = rq->context;
665         u64 desc = ce->lrc.desc;
666         u32 tail, prev;
667
668         /*
669          * WaIdleLiteRestore:bdw,skl
670          *
671          * We should never submit the context with the same RING_TAIL twice
672          * just in case we submit an empty ring, which confuses the HW.
673          *
674          * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
675          * the normal request to be able to always advance the RING_TAIL on
676          * subsequent resubmissions (for lite restore). Should that fail us,
677          * and we try and submit the same tail again, force the context
678          * reload.
679          *
680          * If we need to return to a preempted context, we need to skip the
681          * lite-restore and force it to reload the RING_TAIL. Otherwise, the
682          * HW has a tendency to ignore us rewinding the TAIL to the end of
683          * an earlier request.
684          */
685         GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
686         prev = rq->ring->tail;
687         tail = intel_ring_set_tail(rq->ring, rq->tail);
688         if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
689                 desc |= CTX_DESC_FORCE_RESTORE;
690         ce->lrc_reg_state[CTX_RING_TAIL] = tail;
691         rq->tail = rq->wa_tail;
692
693         /*
694          * Make sure the context image is complete before we submit it to HW.
695          *
696          * Ostensibly, writes (including the WCB) should be flushed prior to
697          * an uncached write such as our mmio register access, the empirical
698          * evidence (esp. on Braswell) suggests that the WC write into memory
699          * may not be visible to the HW prior to the completion of the UC
700          * register write and that we may begin execution from the context
701          * before its image is complete leading to invalid PD chasing.
702          */
703         wmb();
704
705         ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
706         return desc;
707 }
708
709 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
710 {
711         if (execlists->ctrl_reg) {
712                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
713                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
714         } else {
715                 writel(upper_32_bits(desc), execlists->submit_reg);
716                 writel(lower_32_bits(desc), execlists->submit_reg);
717         }
718 }
719
720 static __maybe_unused char *
721 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
722 {
723         if (!rq)
724                 return "";
725
726         snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
727                  prefix,
728                  rq->context->lrc.ccid,
729                  rq->fence.context, rq->fence.seqno,
730                  __i915_request_is_complete(rq) ? "!" :
731                  __i915_request_has_started(rq) ? "*" :
732                  "",
733                  rq_prio(rq));
734
735         return buf;
736 }
737
738 static __maybe_unused noinline void
739 trace_ports(const struct intel_engine_execlists *execlists,
740             const char *msg,
741             struct i915_request * const *ports)
742 {
743         const struct intel_engine_cs *engine =
744                 container_of(execlists, typeof(*engine), execlists);
745         char __maybe_unused p0[40], p1[40];
746
747         if (!ports[0])
748                 return;
749
750         ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
751                      dump_port(p0, sizeof(p0), "", ports[0]),
752                      dump_port(p1, sizeof(p1), ", ", ports[1]));
753 }
754
755 static bool
756 reset_in_progress(const struct intel_engine_cs *engine)
757 {
758         return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
759 }
760
761 static __maybe_unused noinline bool
762 assert_pending_valid(const struct intel_engine_execlists *execlists,
763                      const char *msg)
764 {
765         struct intel_engine_cs *engine =
766                 container_of(execlists, typeof(*engine), execlists);
767         struct i915_request * const *port, *rq, *prev = NULL;
768         struct intel_context *ce = NULL;
769         u32 ccid = -1;
770
771         trace_ports(execlists, msg, execlists->pending);
772
773         /* We may be messing around with the lists during reset, lalala */
774         if (reset_in_progress(engine))
775                 return true;
776
777         if (!execlists->pending[0]) {
778                 GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
779                               engine->name);
780                 return false;
781         }
782
783         if (execlists->pending[execlists_num_ports(execlists)]) {
784                 GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
785                               engine->name, execlists_num_ports(execlists));
786                 return false;
787         }
788
789         for (port = execlists->pending; (rq = *port); port++) {
790                 unsigned long flags;
791                 bool ok = true;
792
793                 GEM_BUG_ON(!kref_read(&rq->fence.refcount));
794                 GEM_BUG_ON(!i915_request_is_active(rq));
795
796                 if (ce == rq->context) {
797                         GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
798                                       engine->name,
799                                       ce->timeline->fence_context,
800                                       port - execlists->pending);
801                         return false;
802                 }
803                 ce = rq->context;
804
805                 if (ccid == ce->lrc.ccid) {
806                         GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
807                                       engine->name,
808                                       ccid, ce->timeline->fence_context,
809                                       port - execlists->pending);
810                         return false;
811                 }
812                 ccid = ce->lrc.ccid;
813
814                 /*
815                  * Sentinels are supposed to be the last request so they flush
816                  * the current execution off the HW. Check that they are the only
817                  * request in the pending submission.
818                  *
819                  * NB: Due to the async nature of preempt-to-busy and request
820                  * cancellation we need to handle the case where request
821                  * becomes a sentinel in parallel to CSB processing.
822                  */
823                 if (prev && i915_request_has_sentinel(prev) &&
824                     !READ_ONCE(prev->fence.error)) {
825                         GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
826                                       engine->name,
827                                       ce->timeline->fence_context,
828                                       port - execlists->pending);
829                         return false;
830                 }
831                 prev = rq;
832
833                 /*
834                  * We want virtual requests to only be in the first slot so
835                  * that they are never stuck behind a hog and can be immediately
836                  * transferred onto the next idle engine.
837                  */
838                 if (rq->execution_mask != engine->mask &&
839                     port != execlists->pending) {
840                         GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
841                                       engine->name,
842                                       ce->timeline->fence_context,
843                                       port - execlists->pending);
844                         return false;
845                 }
846
847                 /* Hold tightly onto the lock to prevent concurrent retires! */
848                 if (!spin_trylock_irqsave(&rq->lock, flags))
849                         continue;
850
851                 if (__i915_request_is_complete(rq))
852                         goto unlock;
853
854                 if (i915_active_is_idle(&ce->active) &&
855                     !intel_context_is_barrier(ce)) {
856                         GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
857                                       engine->name,
858                                       ce->timeline->fence_context,
859                                       port - execlists->pending);
860                         ok = false;
861                         goto unlock;
862                 }
863
864                 if (!i915_vma_is_pinned(ce->state)) {
865                         GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
866                                       engine->name,
867                                       ce->timeline->fence_context,
868                                       port - execlists->pending);
869                         ok = false;
870                         goto unlock;
871                 }
872
873                 if (!i915_vma_is_pinned(ce->ring->vma)) {
874                         GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
875                                       engine->name,
876                                       ce->timeline->fence_context,
877                                       port - execlists->pending);
878                         ok = false;
879                         goto unlock;
880                 }
881
882 unlock:
883                 spin_unlock_irqrestore(&rq->lock, flags);
884                 if (!ok)
885                         return false;
886         }
887
888         return ce;
889 }
890
891 static void execlists_submit_ports(struct intel_engine_cs *engine)
892 {
893         struct intel_engine_execlists *execlists = &engine->execlists;
894         unsigned int n;
895
896         GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
897
898         /*
899          * We can skip acquiring intel_runtime_pm_get() here as it was taken
900          * on our behalf by the request (see i915_gem_mark_busy()) and it will
901          * not be relinquished until the device is idle (see
902          * i915_gem_idle_work_handler()). As a precaution, we make sure
903          * that all ELSP are drained i.e. we have processed the CSB,
904          * before allowing ourselves to idle and calling intel_runtime_pm_put().
905          */
906         GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
907
908         /*
909          * ELSQ note: the submit queue is not cleared after being submitted
910          * to the HW so we need to make sure we always clean it up. This is
911          * currently ensured by the fact that we always write the same number
912          * of elsq entries, keep this in mind before changing the loop below.
913          */
914         for (n = execlists_num_ports(execlists); n--; ) {
915                 struct i915_request *rq = execlists->pending[n];
916
917                 write_desc(execlists,
918                            rq ? execlists_update_context(rq) : 0,
919                            n);
920         }
921
922         /* we need to manually load the submit queue */
923         if (execlists->ctrl_reg)
924                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
925 }
926
927 static bool ctx_single_port_submission(const struct intel_context *ce)
928 {
929         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
930                 intel_context_force_single_submission(ce));
931 }
932
933 static bool can_merge_ctx(const struct intel_context *prev,
934                           const struct intel_context *next)
935 {
936         if (prev != next)
937                 return false;
938
939         if (ctx_single_port_submission(prev))
940                 return false;
941
942         return true;
943 }
944
945 static unsigned long i915_request_flags(const struct i915_request *rq)
946 {
947         return READ_ONCE(rq->fence.flags);
948 }
949
950 static bool can_merge_rq(const struct i915_request *prev,
951                          const struct i915_request *next)
952 {
953         GEM_BUG_ON(prev == next);
954         GEM_BUG_ON(!assert_priority_queue(prev, next));
955
956         /*
957          * We do not submit known completed requests. Therefore if the next
958          * request is already completed, we can pretend to merge it in
959          * with the previous context (and we will skip updating the ELSP
960          * and tracking). Thus hopefully keeping the ELSP full with active
961          * contexts, despite the best efforts of preempt-to-busy to confuse
962          * us.
963          */
964         if (__i915_request_is_complete(next))
965                 return true;
966
967         if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
968                      (BIT(I915_FENCE_FLAG_NOPREEMPT) |
969                       BIT(I915_FENCE_FLAG_SENTINEL))))
970                 return false;
971
972         if (!can_merge_ctx(prev->context, next->context))
973                 return false;
974
975         GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
976         return true;
977 }
978
979 static bool virtual_matches(const struct virtual_engine *ve,
980                             const struct i915_request *rq,
981                             const struct intel_engine_cs *engine)
982 {
983         const struct intel_engine_cs *inflight;
984
985         if (!rq)
986                 return false;
987
988         if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
989                 return false;
990
991         /*
992          * We track when the HW has completed saving the context image
993          * (i.e. when we have seen the final CS event switching out of
994          * the context) and must not overwrite the context image before
995          * then. This restricts us to only using the active engine
996          * while the previous virtualized request is inflight (so
997          * we reuse the register offsets). This is a very small
998          * hystersis on the greedy seelction algorithm.
999          */
1000         inflight = intel_context_inflight(&ve->context);
1001         if (inflight && inflight != engine)
1002                 return false;
1003
1004         return true;
1005 }
1006
1007 static struct virtual_engine *
1008 first_virtual_engine(struct intel_engine_cs *engine)
1009 {
1010         struct intel_engine_execlists *el = &engine->execlists;
1011         struct rb_node *rb = rb_first_cached(&el->virtual);
1012
1013         while (rb) {
1014                 struct virtual_engine *ve =
1015                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1016                 struct i915_request *rq = READ_ONCE(ve->request);
1017
1018                 /* lazily cleanup after another engine handled rq */
1019                 if (!rq || !virtual_matches(ve, rq, engine)) {
1020                         rb_erase_cached(rb, &el->virtual);
1021                         RB_CLEAR_NODE(rb);
1022                         rb = rb_first_cached(&el->virtual);
1023                         continue;
1024                 }
1025
1026                 return ve;
1027         }
1028
1029         return NULL;
1030 }
1031
1032 static void virtual_xfer_context(struct virtual_engine *ve,
1033                                  struct intel_engine_cs *engine)
1034 {
1035         unsigned int n;
1036
1037         if (likely(engine == ve->siblings[0]))
1038                 return;
1039
1040         GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1041         if (!intel_engine_has_relative_mmio(engine))
1042                 lrc_update_offsets(&ve->context, engine);
1043
1044         /*
1045          * Move the bound engine to the top of the list for
1046          * future execution. We then kick this tasklet first
1047          * before checking others, so that we preferentially
1048          * reuse this set of bound registers.
1049          */
1050         for (n = 1; n < ve->num_siblings; n++) {
1051                 if (ve->siblings[n] == engine) {
1052                         swap(ve->siblings[n], ve->siblings[0]);
1053                         break;
1054                 }
1055         }
1056 }
1057
1058 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1059 {
1060         LIST_HEAD(list);
1061
1062         /*
1063          * We want to move the interrupted request to the back of
1064          * the round-robin list (i.e. its priority level), but
1065          * in doing so, we must then move all requests that were in
1066          * flight and were waiting for the interrupted request to
1067          * be run after it again.
1068          */
1069         do {
1070                 struct i915_dependency *p;
1071
1072                 GEM_BUG_ON(i915_request_is_active(rq));
1073                 list_move_tail(&rq->sched.link, pl);
1074
1075                 for_each_waiter(p, rq) {
1076                         struct i915_request *w =
1077                                 container_of(p->waiter, typeof(*w), sched);
1078
1079                         if (p->flags & I915_DEPENDENCY_WEAK)
1080                                 continue;
1081
1082                         /* Leave semaphores spinning on the other engines */
1083                         if (w->engine != rq->engine)
1084                                 continue;
1085
1086                         /* No waiter should start before its signaler */
1087                         GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1088                                    __i915_request_has_started(w) &&
1089                                    !__i915_request_is_complete(rq));
1090
1091                         if (!i915_request_is_ready(w))
1092                                 continue;
1093
1094                         if (rq_prio(w) < rq_prio(rq))
1095                                 continue;
1096
1097                         GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1098                         GEM_BUG_ON(i915_request_is_active(w));
1099                         list_move_tail(&w->sched.link, &list);
1100                 }
1101
1102                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1103         } while (rq);
1104 }
1105
1106 static void defer_active(struct intel_engine_cs *engine)
1107 {
1108         struct i915_request *rq;
1109
1110         rq = __unwind_incomplete_requests(engine);
1111         if (!rq)
1112                 return;
1113
1114         defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1115                                                      rq_prio(rq)));
1116 }
1117
1118 static bool
1119 timeslice_yield(const struct intel_engine_execlists *el,
1120                 const struct i915_request *rq)
1121 {
1122         /*
1123          * Once bitten, forever smitten!
1124          *
1125          * If the active context ever busy-waited on a semaphore,
1126          * it will be treated as a hog until the end of its timeslice (i.e.
1127          * until it is scheduled out and replaced by a new submission,
1128          * possibly even its own lite-restore). The HW only sends an interrupt
1129          * on the first miss, and we do know if that semaphore has been
1130          * signaled, or even if it is now stuck on another semaphore. Play
1131          * safe, yield if it might be stuck -- it will be given a fresh
1132          * timeslice in the near future.
1133          */
1134         return rq->context->lrc.ccid == READ_ONCE(el->yield);
1135 }
1136
1137 static bool needs_timeslice(const struct intel_engine_cs *engine,
1138                             const struct i915_request *rq)
1139 {
1140         if (!intel_engine_has_timeslices(engine))
1141                 return false;
1142
1143         /* If not currently active, or about to switch, wait for next event */
1144         if (!rq || __i915_request_is_complete(rq))
1145                 return false;
1146
1147         /* We do not need to start the timeslice until after the ACK */
1148         if (READ_ONCE(engine->execlists.pending[0]))
1149                 return false;
1150
1151         /* If ELSP[1] is occupied, always check to see if worth slicing */
1152         if (!list_is_last_rcu(&rq->sched.link,
1153                               &engine->sched_engine->requests)) {
1154                 ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1155                 return true;
1156         }
1157
1158         /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1159         if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1160                 ENGINE_TRACE(engine, "timeslice required for queue\n");
1161                 return true;
1162         }
1163
1164         if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1165                 ENGINE_TRACE(engine, "timeslice required for virtual\n");
1166                 return true;
1167         }
1168
1169         return false;
1170 }
1171
1172 static bool
1173 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1174 {
1175         const struct intel_engine_execlists *el = &engine->execlists;
1176
1177         if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1178                 return false;
1179
1180         if (!needs_timeslice(engine, rq))
1181                 return false;
1182
1183         return timer_expired(&el->timer) || timeslice_yield(el, rq);
1184 }
1185
1186 static unsigned long timeslice(const struct intel_engine_cs *engine)
1187 {
1188         return READ_ONCE(engine->props.timeslice_duration_ms);
1189 }
1190
1191 static void start_timeslice(struct intel_engine_cs *engine)
1192 {
1193         struct intel_engine_execlists *el = &engine->execlists;
1194         unsigned long duration;
1195
1196         /* Disable the timer if there is nothing to switch to */
1197         duration = 0;
1198         if (needs_timeslice(engine, *el->active)) {
1199                 /* Avoid continually prolonging an active timeslice */
1200                 if (timer_active(&el->timer)) {
1201                         /*
1202                          * If we just submitted a new ELSP after an old
1203                          * context, that context may have already consumed
1204                          * its timeslice, so recheck.
1205                          */
1206                         if (!timer_pending(&el->timer))
1207                                 tasklet_hi_schedule(&engine->sched_engine->tasklet);
1208                         return;
1209                 }
1210
1211                 duration = timeslice(engine);
1212         }
1213
1214         set_timer_ms(&el->timer, duration);
1215 }
1216
1217 static void record_preemption(struct intel_engine_execlists *execlists)
1218 {
1219         (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1220 }
1221
1222 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1223                                             const struct i915_request *rq)
1224 {
1225         if (!rq)
1226                 return 0;
1227
1228         /* Force a fast reset for terminated contexts (ignoring sysfs!) */
1229         if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1230                 return 1;
1231
1232         return READ_ONCE(engine->props.preempt_timeout_ms);
1233 }
1234
1235 static void set_preempt_timeout(struct intel_engine_cs *engine,
1236                                 const struct i915_request *rq)
1237 {
1238         if (!intel_engine_has_preempt_reset(engine))
1239                 return;
1240
1241         set_timer_ms(&engine->execlists.preempt,
1242                      active_preempt_timeout(engine, rq));
1243 }
1244
1245 static bool completed(const struct i915_request *rq)
1246 {
1247         if (i915_request_has_sentinel(rq))
1248                 return false;
1249
1250         return __i915_request_is_complete(rq);
1251 }
1252
1253 static void execlists_dequeue(struct intel_engine_cs *engine)
1254 {
1255         struct intel_engine_execlists * const execlists = &engine->execlists;
1256         struct i915_sched_engine * const sched_engine = engine->sched_engine;
1257         struct i915_request **port = execlists->pending;
1258         struct i915_request ** const last_port = port + execlists->port_mask;
1259         struct i915_request *last, * const *active;
1260         struct virtual_engine *ve;
1261         struct rb_node *rb;
1262         bool submit = false;
1263
1264         /*
1265          * Hardware submission is through 2 ports. Conceptually each port
1266          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1267          * static for a context, and unique to each, so we only execute
1268          * requests belonging to a single context from each ring. RING_HEAD
1269          * is maintained by the CS in the context image, it marks the place
1270          * where it got up to last time, and through RING_TAIL we tell the CS
1271          * where we want to execute up to this time.
1272          *
1273          * In this list the requests are in order of execution. Consecutive
1274          * requests from the same context are adjacent in the ringbuffer. We
1275          * can combine these requests into a single RING_TAIL update:
1276          *
1277          *              RING_HEAD...req1...req2
1278          *                                    ^- RING_TAIL
1279          * since to execute req2 the CS must first execute req1.
1280          *
1281          * Our goal then is to point each port to the end of a consecutive
1282          * sequence of requests as being the most optimal (fewest wake ups
1283          * and context switches) submission.
1284          */
1285
1286         spin_lock(&sched_engine->lock);
1287
1288         /*
1289          * If the queue is higher priority than the last
1290          * request in the currently active context, submit afresh.
1291          * We will resubmit again afterwards in case we need to split
1292          * the active context to interject the preemption request,
1293          * i.e. we will retrigger preemption following the ack in case
1294          * of trouble.
1295          *
1296          */
1297         active = execlists->active;
1298         while ((last = *active) && completed(last))
1299                 active++;
1300
1301         if (last) {
1302                 if (need_preempt(engine, last)) {
1303                         ENGINE_TRACE(engine,
1304                                      "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1305                                      last->fence.context,
1306                                      last->fence.seqno,
1307                                      last->sched.attr.priority,
1308                                      sched_engine->queue_priority_hint);
1309                         record_preemption(execlists);
1310
1311                         /*
1312                          * Don't let the RING_HEAD advance past the breadcrumb
1313                          * as we unwind (and until we resubmit) so that we do
1314                          * not accidentally tell it to go backwards.
1315                          */
1316                         ring_set_paused(engine, 1);
1317
1318                         /*
1319                          * Note that we have not stopped the GPU at this point,
1320                          * so we are unwinding the incomplete requests as they
1321                          * remain inflight and so by the time we do complete
1322                          * the preemption, some of the unwound requests may
1323                          * complete!
1324                          */
1325                         __unwind_incomplete_requests(engine);
1326
1327                         last = NULL;
1328                 } else if (timeslice_expired(engine, last)) {
1329                         ENGINE_TRACE(engine,
1330                                      "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1331                                      yesno(timer_expired(&execlists->timer)),
1332                                      last->fence.context, last->fence.seqno,
1333                                      rq_prio(last),
1334                                      sched_engine->queue_priority_hint,
1335                                      yesno(timeslice_yield(execlists, last)));
1336
1337                         /*
1338                          * Consume this timeslice; ensure we start a new one.
1339                          *
1340                          * The timeslice expired, and we will unwind the
1341                          * running contexts and recompute the next ELSP.
1342                          * If that submit will be the same pair of contexts
1343                          * (due to dependency ordering), we will skip the
1344                          * submission. If we don't cancel the timer now,
1345                          * we will see that the timer has expired and
1346                          * reschedule the tasklet; continually until the
1347                          * next context switch or other preeemption event.
1348                          *
1349                          * Since we have decided to reschedule based on
1350                          * consumption of this timeslice, if we submit the
1351                          * same context again, grant it a full timeslice.
1352                          */
1353                         cancel_timer(&execlists->timer);
1354                         ring_set_paused(engine, 1);
1355                         defer_active(engine);
1356
1357                         /*
1358                          * Unlike for preemption, if we rewind and continue
1359                          * executing the same context as previously active,
1360                          * the order of execution will remain the same and
1361                          * the tail will only advance. We do not need to
1362                          * force a full context restore, as a lite-restore
1363                          * is sufficient to resample the monotonic TAIL.
1364                          *
1365                          * If we switch to any other context, similarly we
1366                          * will not rewind TAIL of current context, and
1367                          * normal save/restore will preserve state and allow
1368                          * us to later continue executing the same request.
1369                          */
1370                         last = NULL;
1371                 } else {
1372                         /*
1373                          * Otherwise if we already have a request pending
1374                          * for execution after the current one, we can
1375                          * just wait until the next CS event before
1376                          * queuing more. In either case we will force a
1377                          * lite-restore preemption event, but if we wait
1378                          * we hopefully coalesce several updates into a single
1379                          * submission.
1380                          */
1381                         if (active[1]) {
1382                                 /*
1383                                  * Even if ELSP[1] is occupied and not worthy
1384                                  * of timeslices, our queue might be.
1385                                  */
1386                                 spin_unlock(&sched_engine->lock);
1387                                 return;
1388                         }
1389                 }
1390         }
1391
1392         /* XXX virtual is always taking precedence */
1393         while ((ve = first_virtual_engine(engine))) {
1394                 struct i915_request *rq;
1395
1396                 spin_lock(&ve->base.sched_engine->lock);
1397
1398                 rq = ve->request;
1399                 if (unlikely(!virtual_matches(ve, rq, engine)))
1400                         goto unlock; /* lost the race to a sibling */
1401
1402                 GEM_BUG_ON(rq->engine != &ve->base);
1403                 GEM_BUG_ON(rq->context != &ve->context);
1404
1405                 if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1406                         spin_unlock(&ve->base.sched_engine->lock);
1407                         break;
1408                 }
1409
1410                 if (last && !can_merge_rq(last, rq)) {
1411                         spin_unlock(&ve->base.sched_engine->lock);
1412                         spin_unlock(&engine->sched_engine->lock);
1413                         return; /* leave this for another sibling */
1414                 }
1415
1416                 ENGINE_TRACE(engine,
1417                              "virtual rq=%llx:%lld%s, new engine? %s\n",
1418                              rq->fence.context,
1419                              rq->fence.seqno,
1420                              __i915_request_is_complete(rq) ? "!" :
1421                              __i915_request_has_started(rq) ? "*" :
1422                              "",
1423                              yesno(engine != ve->siblings[0]));
1424
1425                 WRITE_ONCE(ve->request, NULL);
1426                 WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1427
1428                 rb = &ve->nodes[engine->id].rb;
1429                 rb_erase_cached(rb, &execlists->virtual);
1430                 RB_CLEAR_NODE(rb);
1431
1432                 GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1433                 WRITE_ONCE(rq->engine, engine);
1434
1435                 if (__i915_request_submit(rq)) {
1436                         /*
1437                          * Only after we confirm that we will submit
1438                          * this request (i.e. it has not already
1439                          * completed), do we want to update the context.
1440                          *
1441                          * This serves two purposes. It avoids
1442                          * unnecessary work if we are resubmitting an
1443                          * already completed request after timeslicing.
1444                          * But more importantly, it prevents us altering
1445                          * ve->siblings[] on an idle context, where
1446                          * we may be using ve->siblings[] in
1447                          * virtual_context_enter / virtual_context_exit.
1448                          */
1449                         virtual_xfer_context(ve, engine);
1450                         GEM_BUG_ON(ve->siblings[0] != engine);
1451
1452                         submit = true;
1453                         last = rq;
1454                 }
1455
1456                 i915_request_put(rq);
1457 unlock:
1458                 spin_unlock(&ve->base.sched_engine->lock);
1459
1460                 /*
1461                  * Hmm, we have a bunch of virtual engine requests,
1462                  * but the first one was already completed (thanks
1463                  * preempt-to-busy!). Keep looking at the veng queue
1464                  * until we have no more relevant requests (i.e.
1465                  * the normal submit queue has higher priority).
1466                  */
1467                 if (submit)
1468                         break;
1469         }
1470
1471         while ((rb = rb_first_cached(&sched_engine->queue))) {
1472                 struct i915_priolist *p = to_priolist(rb);
1473                 struct i915_request *rq, *rn;
1474
1475                 priolist_for_each_request_consume(rq, rn, p) {
1476                         bool merge = true;
1477
1478                         /*
1479                          * Can we combine this request with the current port?
1480                          * It has to be the same context/ringbuffer and not
1481                          * have any exceptions (e.g. GVT saying never to
1482                          * combine contexts).
1483                          *
1484                          * If we can combine the requests, we can execute both
1485                          * by updating the RING_TAIL to point to the end of the
1486                          * second request, and so we never need to tell the
1487                          * hardware about the first.
1488                          */
1489                         if (last && !can_merge_rq(last, rq)) {
1490                                 /*
1491                                  * If we are on the second port and cannot
1492                                  * combine this request with the last, then we
1493                                  * are done.
1494                                  */
1495                                 if (port == last_port)
1496                                         goto done;
1497
1498                                 /*
1499                                  * We must not populate both ELSP[] with the
1500                                  * same LRCA, i.e. we must submit 2 different
1501                                  * contexts if we submit 2 ELSP.
1502                                  */
1503                                 if (last->context == rq->context)
1504                                         goto done;
1505
1506                                 if (i915_request_has_sentinel(last))
1507                                         goto done;
1508
1509                                 /*
1510                                  * We avoid submitting virtual requests into
1511                                  * the secondary ports so that we can migrate
1512                                  * the request immediately to another engine
1513                                  * rather than wait for the primary request.
1514                                  */
1515                                 if (rq->execution_mask != engine->mask)
1516                                         goto done;
1517
1518                                 /*
1519                                  * If GVT overrides us we only ever submit
1520                                  * port[0], leaving port[1] empty. Note that we
1521                                  * also have to be careful that we don't queue
1522                                  * the same context (even though a different
1523                                  * request) to the second port.
1524                                  */
1525                                 if (ctx_single_port_submission(last->context) ||
1526                                     ctx_single_port_submission(rq->context))
1527                                         goto done;
1528
1529                                 merge = false;
1530                         }
1531
1532                         if (__i915_request_submit(rq)) {
1533                                 if (!merge) {
1534                                         *port++ = i915_request_get(last);
1535                                         last = NULL;
1536                                 }
1537
1538                                 GEM_BUG_ON(last &&
1539                                            !can_merge_ctx(last->context,
1540                                                           rq->context));
1541                                 GEM_BUG_ON(last &&
1542                                            i915_seqno_passed(last->fence.seqno,
1543                                                              rq->fence.seqno));
1544
1545                                 submit = true;
1546                                 last = rq;
1547                         }
1548                 }
1549
1550                 rb_erase_cached(&p->node, &sched_engine->queue);
1551                 i915_priolist_free(p);
1552         }
1553 done:
1554         *port++ = i915_request_get(last);
1555
1556         /*
1557          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1558          *
1559          * We choose the priority hint such that if we add a request of greater
1560          * priority than this, we kick the submission tasklet to decide on
1561          * the right order of submitting the requests to hardware. We must
1562          * also be prepared to reorder requests as they are in-flight on the
1563          * HW. We derive the priority hint then as the first "hole" in
1564          * the HW submission ports and if there are no available slots,
1565          * the priority of the lowest executing request, i.e. last.
1566          *
1567          * When we do receive a higher priority request ready to run from the
1568          * user, see queue_request(), the priority hint is bumped to that
1569          * request triggering preemption on the next dequeue (or subsequent
1570          * interrupt for secondary ports).
1571          */
1572         sched_engine->queue_priority_hint = queue_prio(sched_engine);
1573         i915_sched_engine_reset_on_empty(sched_engine);
1574         spin_unlock(&sched_engine->lock);
1575
1576         /*
1577          * We can skip poking the HW if we ended up with exactly the same set
1578          * of requests as currently running, e.g. trying to timeslice a pair
1579          * of ordered contexts.
1580          */
1581         if (submit &&
1582             memcmp(active,
1583                    execlists->pending,
1584                    (port - execlists->pending) * sizeof(*port))) {
1585                 *port = NULL;
1586                 while (port-- != execlists->pending)
1587                         execlists_schedule_in(*port, port - execlists->pending);
1588
1589                 WRITE_ONCE(execlists->yield, -1);
1590                 set_preempt_timeout(engine, *active);
1591                 execlists_submit_ports(engine);
1592         } else {
1593                 ring_set_paused(engine, 0);
1594                 while (port-- != execlists->pending)
1595                         i915_request_put(*port);
1596                 *execlists->pending = NULL;
1597         }
1598 }
1599
1600 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1601 {
1602         local_irq_disable(); /* Suspend interrupts across request submission */
1603         execlists_dequeue(engine);
1604         local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1605 }
1606
1607 static void clear_ports(struct i915_request **ports, int count)
1608 {
1609         memset_p((void **)ports, NULL, count);
1610 }
1611
1612 static void
1613 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1614 {
1615         /* A memcpy_p() would be very useful here! */
1616         while (count--)
1617                 WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1618 }
1619
1620 static struct i915_request **
1621 cancel_port_requests(struct intel_engine_execlists * const execlists,
1622                      struct i915_request **inactive)
1623 {
1624         struct i915_request * const *port;
1625
1626         for (port = execlists->pending; *port; port++)
1627                 *inactive++ = *port;
1628         clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1629
1630         /* Mark the end of active before we overwrite *active */
1631         for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1632                 *inactive++ = *port;
1633         clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1634
1635         smp_wmb(); /* complete the seqlock for execlists_active() */
1636         WRITE_ONCE(execlists->active, execlists->inflight);
1637
1638         /* Having cancelled all outstanding process_csb(), stop their timers */
1639         GEM_BUG_ON(execlists->pending[0]);
1640         cancel_timer(&execlists->timer);
1641         cancel_timer(&execlists->preempt);
1642
1643         return inactive;
1644 }
1645
1646 static void invalidate_csb_entries(const u64 *first, const u64 *last)
1647 {
1648         clflush((void *)first);
1649         clflush((void *)last);
1650 }
1651
1652 /*
1653  * Starting with Gen12, the status has a new format:
1654  *
1655  *     bit  0:     switched to new queue
1656  *     bit  1:     reserved
1657  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1658  *                 switch detail is set to "wait on semaphore"
1659  *     bits 3-5:   engine class
1660  *     bits 6-11:  engine instance
1661  *     bits 12-14: reserved
1662  *     bits 15-25: sw context id of the lrc the GT switched to
1663  *     bits 26-31: sw counter of the lrc the GT switched to
1664  *     bits 32-35: context switch detail
1665  *                  - 0: ctx complete
1666  *                  - 1: wait on sync flip
1667  *                  - 2: wait on vblank
1668  *                  - 3: wait on scanline
1669  *                  - 4: wait on semaphore
1670  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1671  *                       WAIT_FOR_EVENT)
1672  *     bit  36:    reserved
1673  *     bits 37-43: wait detail (for switch detail 1 to 4)
1674  *     bits 44-46: reserved
1675  *     bits 47-57: sw context id of the lrc the GT switched away from
1676  *     bits 58-63: sw counter of the lrc the GT switched away from
1677  *
1678  * Xe_HP csb shuffles things around compared to TGL:
1679  *
1680  *     bits 0-3:   context switch detail (same possible values as TGL)
1681  *     bits 4-9:   engine instance
1682  *     bits 10-25: sw context id of the lrc the GT switched to
1683  *     bits 26-31: sw counter of the lrc the GT switched to
1684  *     bit  32:    semaphore wait mode (poll or signal), Only valid when
1685  *                 switch detail is set to "wait on semaphore"
1686  *     bit  33:    switched to new queue
1687  *     bits 34-41: wait detail (for switch detail 1 to 4)
1688  *     bits 42-57: sw context id of the lrc the GT switched away from
1689  *     bits 58-63: sw counter of the lrc the GT switched away from
1690  */
1691 static inline bool
1692 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1693                   u8 switch_detail)
1694 {
1695         /*
1696          * The context switch detail is not guaranteed to be 5 when a preemption
1697          * occurs, so we can't just check for that. The check below works for
1698          * all the cases we care about, including preemptions of WAIT
1699          * instructions and lite-restore. Preempt-to-idle via the CTRL register
1700          * would require some extra handling, but we don't support that.
1701          */
1702         if (!ctx_away_valid || new_queue) {
1703                 GEM_BUG_ON(!ctx_to_valid);
1704                 return true;
1705         }
1706
1707         /*
1708          * switch detail = 5 is covered by the case above and we do not expect a
1709          * context switch on an unsuccessful wait instruction since we always
1710          * use polling mode.
1711          */
1712         GEM_BUG_ON(switch_detail);
1713         return false;
1714 }
1715
1716 static bool xehp_csb_parse(const u64 csb)
1717 {
1718         return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1719                                  XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1720                                  upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1721                                  GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1722 }
1723
1724 static bool gen12_csb_parse(const u64 csb)
1725 {
1726         return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1727                                  GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1728                                  lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1729                                  GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1730 }
1731
1732 static bool gen8_csb_parse(const u64 csb)
1733 {
1734         return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1735 }
1736
1737 static noinline u64
1738 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1739 {
1740         u64 entry;
1741
1742         /*
1743          * Reading from the HWSP has one particular advantage: we can detect
1744          * a stale entry. Since the write into HWSP is broken, we have no reason
1745          * to trust the HW at all, the mmio entry may equally be unordered, so
1746          * we prefer the path that is self-checking and as a last resort,
1747          * return the mmio value.
1748          *
1749          * tgl,dg1:HSDES#22011327657
1750          */
1751         preempt_disable();
1752         if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1753                 int idx = csb - engine->execlists.csb_status;
1754                 int status;
1755
1756                 status = GEN8_EXECLISTS_STATUS_BUF;
1757                 if (idx >= 6) {
1758                         status = GEN11_EXECLISTS_STATUS_BUF2;
1759                         idx -= 6;
1760                 }
1761                 status += sizeof(u64) * idx;
1762
1763                 entry = intel_uncore_read64(engine->uncore,
1764                                             _MMIO(engine->mmio_base + status));
1765         }
1766         preempt_enable();
1767
1768         return entry;
1769 }
1770
1771 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1772 {
1773         u64 entry = READ_ONCE(*csb);
1774
1775         /*
1776          * Unfortunately, the GPU does not always serialise its write
1777          * of the CSB entries before its write of the CSB pointer, at least
1778          * from the perspective of the CPU, using what is known as a Global
1779          * Observation Point. We may read a new CSB tail pointer, but then
1780          * read the stale CSB entries, causing us to misinterpret the
1781          * context-switch events, and eventually declare the GPU hung.
1782          *
1783          * icl:HSDES#1806554093
1784          * tgl:HSDES#22011248461
1785          */
1786         if (unlikely(entry == -1))
1787                 entry = wa_csb_read(engine, csb);
1788
1789         /* Consume this entry so that we can spot its future reuse. */
1790         WRITE_ONCE(*csb, -1);
1791
1792         /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1793         return entry;
1794 }
1795
1796 static void new_timeslice(struct intel_engine_execlists *el)
1797 {
1798         /* By cancelling, we will start afresh in start_timeslice() */
1799         cancel_timer(&el->timer);
1800 }
1801
1802 static struct i915_request **
1803 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1804 {
1805         struct intel_engine_execlists * const execlists = &engine->execlists;
1806         u64 * const buf = execlists->csb_status;
1807         const u8 num_entries = execlists->csb_size;
1808         struct i915_request **prev;
1809         u8 head, tail;
1810
1811         /*
1812          * As we modify our execlists state tracking we require exclusive
1813          * access. Either we are inside the tasklet, or the tasklet is disabled
1814          * and we assume that is only inside the reset paths and so serialised.
1815          */
1816         GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1817                    !reset_in_progress(engine));
1818
1819         /*
1820          * Note that csb_write, csb_status may be either in HWSP or mmio.
1821          * When reading from the csb_write mmio register, we have to be
1822          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1823          * the low 4bits. As it happens we know the next 4bits are always
1824          * zero and so we can simply masked off the low u8 of the register
1825          * and treat it identically to reading from the HWSP (without having
1826          * to use explicit shifting and masking, and probably bifurcating
1827          * the code to handle the legacy mmio read).
1828          */
1829         head = execlists->csb_head;
1830         tail = READ_ONCE(*execlists->csb_write);
1831         if (unlikely(head == tail))
1832                 return inactive;
1833
1834         /*
1835          * We will consume all events from HW, or at least pretend to.
1836          *
1837          * The sequence of events from the HW is deterministic, and derived
1838          * from our writes to the ELSP, with a smidgen of variability for
1839          * the arrival of the asynchronous requests wrt to the inflight
1840          * execution. If the HW sends an event that does not correspond with
1841          * the one we are expecting, we have to abandon all hope as we lose
1842          * all tracking of what the engine is actually executing. We will
1843          * only detect we are out of sequence with the HW when we get an
1844          * 'impossible' event because we have already drained our own
1845          * preemption/promotion queue. If this occurs, we know that we likely
1846          * lost track of execution earlier and must unwind and restart, the
1847          * simplest way is by stop processing the event queue and force the
1848          * engine to reset.
1849          */
1850         execlists->csb_head = tail;
1851         ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1852
1853         /*
1854          * Hopefully paired with a wmb() in HW!
1855          *
1856          * We must complete the read of the write pointer before any reads
1857          * from the CSB, so that we do not see stale values. Without an rmb
1858          * (lfence) the HW may speculatively perform the CSB[] reads *before*
1859          * we perform the READ_ONCE(*csb_write).
1860          */
1861         rmb();
1862
1863         /* Remember who was last running under the timer */
1864         prev = inactive;
1865         *prev = NULL;
1866
1867         do {
1868                 bool promote;
1869                 u64 csb;
1870
1871                 if (++head == num_entries)
1872                         head = 0;
1873
1874                 /*
1875                  * We are flying near dragons again.
1876                  *
1877                  * We hold a reference to the request in execlist_port[]
1878                  * but no more than that. We are operating in softirq
1879                  * context and so cannot hold any mutex or sleep. That
1880                  * prevents us stopping the requests we are processing
1881                  * in port[] from being retired simultaneously (the
1882                  * breadcrumb will be complete before we see the
1883                  * context-switch). As we only hold the reference to the
1884                  * request, any pointer chasing underneath the request
1885                  * is subject to a potential use-after-free. Thus we
1886                  * store all of the bookkeeping within port[] as
1887                  * required, and avoid using unguarded pointers beneath
1888                  * request itself. The same applies to the atomic
1889                  * status notifier.
1890                  */
1891
1892                 csb = csb_read(engine, buf + head);
1893                 ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1894                              head, upper_32_bits(csb), lower_32_bits(csb));
1895
1896                 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1897                         promote = xehp_csb_parse(csb);
1898                 else if (GRAPHICS_VER(engine->i915) >= 12)
1899                         promote = gen12_csb_parse(csb);
1900                 else
1901                         promote = gen8_csb_parse(csb);
1902                 if (promote) {
1903                         struct i915_request * const *old = execlists->active;
1904
1905                         if (GEM_WARN_ON(!*execlists->pending)) {
1906                                 execlists->error_interrupt |= ERROR_CSB;
1907                                 break;
1908                         }
1909
1910                         ring_set_paused(engine, 0);
1911
1912                         /* Point active to the new ELSP; prevent overwriting */
1913                         WRITE_ONCE(execlists->active, execlists->pending);
1914                         smp_wmb(); /* notify execlists_active() */
1915
1916                         /* cancel old inflight, prepare for switch */
1917                         trace_ports(execlists, "preempted", old);
1918                         while (*old)
1919                                 *inactive++ = *old++;
1920
1921                         /* switch pending to inflight */
1922                         GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1923                         copy_ports(execlists->inflight,
1924                                    execlists->pending,
1925                                    execlists_num_ports(execlists));
1926                         smp_wmb(); /* complete the seqlock */
1927                         WRITE_ONCE(execlists->active, execlists->inflight);
1928
1929                         /* XXX Magic delay for tgl */
1930                         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1931
1932                         WRITE_ONCE(execlists->pending[0], NULL);
1933                 } else {
1934                         if (GEM_WARN_ON(!*execlists->active)) {
1935                                 execlists->error_interrupt |= ERROR_CSB;
1936                                 break;
1937                         }
1938
1939                         /* port0 completed, advanced to port1 */
1940                         trace_ports(execlists, "completed", execlists->active);
1941
1942                         /*
1943                          * We rely on the hardware being strongly
1944                          * ordered, that the breadcrumb write is
1945                          * coherent (visible from the CPU) before the
1946                          * user interrupt is processed. One might assume
1947                          * that the breadcrumb write being before the
1948                          * user interrupt and the CS event for the context
1949                          * switch would therefore be before the CS event
1950                          * itself...
1951                          */
1952                         if (GEM_SHOW_DEBUG() &&
1953                             !__i915_request_is_complete(*execlists->active)) {
1954                                 struct i915_request *rq = *execlists->active;
1955                                 const u32 *regs __maybe_unused =
1956                                         rq->context->lrc_reg_state;
1957
1958                                 ENGINE_TRACE(engine,
1959                                              "context completed before request!\n");
1960                                 ENGINE_TRACE(engine,
1961                                              "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1962                                              ENGINE_READ(engine, RING_START),
1963                                              ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1964                                              ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1965                                              ENGINE_READ(engine, RING_CTL),
1966                                              ENGINE_READ(engine, RING_MI_MODE));
1967                                 ENGINE_TRACE(engine,
1968                                              "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1969                                              i915_ggtt_offset(rq->ring->vma),
1970                                              rq->head, rq->tail,
1971                                              rq->fence.context,
1972                                              lower_32_bits(rq->fence.seqno),
1973                                              hwsp_seqno(rq));
1974                                 ENGINE_TRACE(engine,
1975                                              "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1976                                              regs[CTX_RING_START],
1977                                              regs[CTX_RING_HEAD],
1978                                              regs[CTX_RING_TAIL]);
1979                         }
1980
1981                         *inactive++ = *execlists->active++;
1982
1983                         GEM_BUG_ON(execlists->active - execlists->inflight >
1984                                    execlists_num_ports(execlists));
1985                 }
1986         } while (head != tail);
1987
1988         /*
1989          * Gen11 has proven to fail wrt global observation point between
1990          * entry and tail update, failing on the ordering and thus
1991          * we see an old entry in the context status buffer.
1992          *
1993          * Forcibly evict out entries for the next gpu csb update,
1994          * to increase the odds that we get a fresh entries with non
1995          * working hardware. The cost for doing so comes out mostly with
1996          * the wash as hardware, working or not, will need to do the
1997          * invalidation before.
1998          */
1999         invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
2000
2001         /*
2002          * We assume that any event reflects a change in context flow
2003          * and merits a fresh timeslice. We reinstall the timer after
2004          * inspecting the queue to see if we need to resumbit.
2005          */
2006         if (*prev != *execlists->active) /* elide lite-restores */
2007                 new_timeslice(execlists);
2008
2009         return inactive;
2010 }
2011
2012 static void post_process_csb(struct i915_request **port,
2013                              struct i915_request **last)
2014 {
2015         while (port != last)
2016                 execlists_schedule_out(*port++);
2017 }
2018
2019 static void __execlists_hold(struct i915_request *rq)
2020 {
2021         LIST_HEAD(list);
2022
2023         do {
2024                 struct i915_dependency *p;
2025
2026                 if (i915_request_is_active(rq))
2027                         __i915_request_unsubmit(rq);
2028
2029                 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2030                 list_move_tail(&rq->sched.link,
2031                                &rq->engine->sched_engine->hold);
2032                 i915_request_set_hold(rq);
2033                 RQ_TRACE(rq, "on hold\n");
2034
2035                 for_each_waiter(p, rq) {
2036                         struct i915_request *w =
2037                                 container_of(p->waiter, typeof(*w), sched);
2038
2039                         if (p->flags & I915_DEPENDENCY_WEAK)
2040                                 continue;
2041
2042                         /* Leave semaphores spinning on the other engines */
2043                         if (w->engine != rq->engine)
2044                                 continue;
2045
2046                         if (!i915_request_is_ready(w))
2047                                 continue;
2048
2049                         if (__i915_request_is_complete(w))
2050                                 continue;
2051
2052                         if (i915_request_on_hold(w))
2053                                 continue;
2054
2055                         list_move_tail(&w->sched.link, &list);
2056                 }
2057
2058                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2059         } while (rq);
2060 }
2061
2062 static bool execlists_hold(struct intel_engine_cs *engine,
2063                            struct i915_request *rq)
2064 {
2065         if (i915_request_on_hold(rq))
2066                 return false;
2067
2068         spin_lock_irq(&engine->sched_engine->lock);
2069
2070         if (__i915_request_is_complete(rq)) { /* too late! */
2071                 rq = NULL;
2072                 goto unlock;
2073         }
2074
2075         /*
2076          * Transfer this request onto the hold queue to prevent it
2077          * being resumbitted to HW (and potentially completed) before we have
2078          * released it. Since we may have already submitted following
2079          * requests, we need to remove those as well.
2080          */
2081         GEM_BUG_ON(i915_request_on_hold(rq));
2082         GEM_BUG_ON(rq->engine != engine);
2083         __execlists_hold(rq);
2084         GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2085
2086 unlock:
2087         spin_unlock_irq(&engine->sched_engine->lock);
2088         return rq;
2089 }
2090
2091 static bool hold_request(const struct i915_request *rq)
2092 {
2093         struct i915_dependency *p;
2094         bool result = false;
2095
2096         /*
2097          * If one of our ancestors is on hold, we must also be on hold,
2098          * otherwise we will bypass it and execute before it.
2099          */
2100         rcu_read_lock();
2101         for_each_signaler(p, rq) {
2102                 const struct i915_request *s =
2103                         container_of(p->signaler, typeof(*s), sched);
2104
2105                 if (s->engine != rq->engine)
2106                         continue;
2107
2108                 result = i915_request_on_hold(s);
2109                 if (result)
2110                         break;
2111         }
2112         rcu_read_unlock();
2113
2114         return result;
2115 }
2116
2117 static void __execlists_unhold(struct i915_request *rq)
2118 {
2119         LIST_HEAD(list);
2120
2121         do {
2122                 struct i915_dependency *p;
2123
2124                 RQ_TRACE(rq, "hold release\n");
2125
2126                 GEM_BUG_ON(!i915_request_on_hold(rq));
2127                 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2128
2129                 i915_request_clear_hold(rq);
2130                 list_move_tail(&rq->sched.link,
2131                                i915_sched_lookup_priolist(rq->engine->sched_engine,
2132                                                           rq_prio(rq)));
2133                 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2134
2135                 /* Also release any children on this engine that are ready */
2136                 for_each_waiter(p, rq) {
2137                         struct i915_request *w =
2138                                 container_of(p->waiter, typeof(*w), sched);
2139
2140                         if (p->flags & I915_DEPENDENCY_WEAK)
2141                                 continue;
2142
2143                         /* Propagate any change in error status */
2144                         if (rq->fence.error)
2145                                 i915_request_set_error_once(w, rq->fence.error);
2146
2147                         if (w->engine != rq->engine)
2148                                 continue;
2149
2150                         if (!i915_request_on_hold(w))
2151                                 continue;
2152
2153                         /* Check that no other parents are also on hold */
2154                         if (hold_request(w))
2155                                 continue;
2156
2157                         list_move_tail(&w->sched.link, &list);
2158                 }
2159
2160                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2161         } while (rq);
2162 }
2163
2164 static void execlists_unhold(struct intel_engine_cs *engine,
2165                              struct i915_request *rq)
2166 {
2167         spin_lock_irq(&engine->sched_engine->lock);
2168
2169         /*
2170          * Move this request back to the priority queue, and all of its
2171          * children and grandchildren that were suspended along with it.
2172          */
2173         __execlists_unhold(rq);
2174
2175         if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2176                 engine->sched_engine->queue_priority_hint = rq_prio(rq);
2177                 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2178         }
2179
2180         spin_unlock_irq(&engine->sched_engine->lock);
2181 }
2182
2183 struct execlists_capture {
2184         struct work_struct work;
2185         struct i915_request *rq;
2186         struct i915_gpu_coredump *error;
2187 };
2188
2189 static void execlists_capture_work(struct work_struct *work)
2190 {
2191         struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2192         const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
2193         struct intel_engine_cs *engine = cap->rq->engine;
2194         struct intel_gt_coredump *gt = cap->error->gt;
2195         struct intel_engine_capture_vma *vma;
2196
2197         /* Compress all the objects attached to the request, slow! */
2198         vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2199         if (vma) {
2200                 struct i915_vma_compress *compress =
2201                         i915_vma_capture_prepare(gt);
2202
2203                 intel_engine_coredump_add_vma(gt->engine, vma, compress);
2204                 i915_vma_capture_finish(gt, compress);
2205         }
2206
2207         gt->simulated = gt->engine->simulated;
2208         cap->error->simulated = gt->simulated;
2209
2210         /* Publish the error state, and announce it to the world */
2211         i915_error_state_store(cap->error);
2212         i915_gpu_coredump_put(cap->error);
2213
2214         /* Return this request and all that depend upon it for signaling */
2215         execlists_unhold(engine, cap->rq);
2216         i915_request_put(cap->rq);
2217
2218         kfree(cap);
2219 }
2220
2221 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2222 {
2223         const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2224         struct execlists_capture *cap;
2225
2226         cap = kmalloc(sizeof(*cap), gfp);
2227         if (!cap)
2228                 return NULL;
2229
2230         cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2231         if (!cap->error)
2232                 goto err_cap;
2233
2234         cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
2235         if (!cap->error->gt)
2236                 goto err_gpu;
2237
2238         cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
2239         if (!cap->error->gt->engine)
2240                 goto err_gt;
2241
2242         cap->error->gt->engine->hung = true;
2243
2244         return cap;
2245
2246 err_gt:
2247         kfree(cap->error->gt);
2248 err_gpu:
2249         kfree(cap->error);
2250 err_cap:
2251         kfree(cap);
2252         return NULL;
2253 }
2254
2255 static struct i915_request *
2256 active_context(struct intel_engine_cs *engine, u32 ccid)
2257 {
2258         const struct intel_engine_execlists * const el = &engine->execlists;
2259         struct i915_request * const *port, *rq;
2260
2261         /*
2262          * Use the most recent result from process_csb(), but just in case
2263          * we trigger an error (via interrupt) before the first CS event has
2264          * been written, peek at the next submission.
2265          */
2266
2267         for (port = el->active; (rq = *port); port++) {
2268                 if (rq->context->lrc.ccid == ccid) {
2269                         ENGINE_TRACE(engine,
2270                                      "ccid:%x found at active:%zd\n",
2271                                      ccid, port - el->active);
2272                         return rq;
2273                 }
2274         }
2275
2276         for (port = el->pending; (rq = *port); port++) {
2277                 if (rq->context->lrc.ccid == ccid) {
2278                         ENGINE_TRACE(engine,
2279                                      "ccid:%x found at pending:%zd\n",
2280                                      ccid, port - el->pending);
2281                         return rq;
2282                 }
2283         }
2284
2285         ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2286         return NULL;
2287 }
2288
2289 static u32 active_ccid(struct intel_engine_cs *engine)
2290 {
2291         return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2292 }
2293
2294 static void execlists_capture(struct intel_engine_cs *engine)
2295 {
2296         struct execlists_capture *cap;
2297
2298         if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2299                 return;
2300
2301         /*
2302          * We need to _quickly_ capture the engine state before we reset.
2303          * We are inside an atomic section (softirq) here and we are delaying
2304          * the forced preemption event.
2305          */
2306         cap = capture_regs(engine);
2307         if (!cap)
2308                 return;
2309
2310         spin_lock_irq(&engine->sched_engine->lock);
2311         cap->rq = active_context(engine, active_ccid(engine));
2312         if (cap->rq) {
2313                 cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2314                 cap->rq = i915_request_get_rcu(cap->rq);
2315         }
2316         spin_unlock_irq(&engine->sched_engine->lock);
2317         if (!cap->rq)
2318                 goto err_free;
2319
2320         /*
2321          * Remove the request from the execlists queue, and take ownership
2322          * of the request. We pass it to our worker who will _slowly_ compress
2323          * all the pages the _user_ requested for debugging their batch, after
2324          * which we return it to the queue for signaling.
2325          *
2326          * By removing them from the execlists queue, we also remove the
2327          * requests from being processed by __unwind_incomplete_requests()
2328          * during the intel_engine_reset(), and so they will *not* be replayed
2329          * afterwards.
2330          *
2331          * Note that because we have not yet reset the engine at this point,
2332          * it is possible for the request that we have identified as being
2333          * guilty, did in fact complete and we will then hit an arbitration
2334          * point allowing the outstanding preemption to succeed. The likelihood
2335          * of that is very low (as capturing of the engine registers should be
2336          * fast enough to run inside an irq-off atomic section!), so we will
2337          * simply hold that request accountable for being non-preemptible
2338          * long enough to force the reset.
2339          */
2340         if (!execlists_hold(engine, cap->rq))
2341                 goto err_rq;
2342
2343         INIT_WORK(&cap->work, execlists_capture_work);
2344         schedule_work(&cap->work);
2345         return;
2346
2347 err_rq:
2348         i915_request_put(cap->rq);
2349 err_free:
2350         i915_gpu_coredump_put(cap->error);
2351         kfree(cap);
2352 }
2353
2354 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2355 {
2356         const unsigned int bit = I915_RESET_ENGINE + engine->id;
2357         unsigned long *lock = &engine->gt->reset.flags;
2358
2359         if (!intel_has_reset_engine(engine->gt))
2360                 return;
2361
2362         if (test_and_set_bit(bit, lock))
2363                 return;
2364
2365         ENGINE_TRACE(engine, "reset for %s\n", msg);
2366
2367         /* Mark this tasklet as disabled to avoid waiting for it to complete */
2368         tasklet_disable_nosync(&engine->sched_engine->tasklet);
2369
2370         ring_set_paused(engine, 1); /* Freeze the current request in place */
2371         execlists_capture(engine);
2372         intel_engine_reset(engine, msg);
2373
2374         tasklet_enable(&engine->sched_engine->tasklet);
2375         clear_and_wake_up_bit(bit, lock);
2376 }
2377
2378 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2379 {
2380         const struct timer_list *t = &engine->execlists.preempt;
2381
2382         if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2383                 return false;
2384
2385         if (!timer_expired(t))
2386                 return false;
2387
2388         return engine->execlists.pending[0];
2389 }
2390
2391 /*
2392  * Check the unread Context Status Buffers and manage the submission of new
2393  * contexts to the ELSP accordingly.
2394  */
2395 static void execlists_submission_tasklet(struct tasklet_struct *t)
2396 {
2397         struct i915_sched_engine *sched_engine =
2398                 from_tasklet(sched_engine, t, tasklet);
2399         struct intel_engine_cs * const engine = sched_engine->private_data;
2400         struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2401         struct i915_request **inactive;
2402
2403         rcu_read_lock();
2404         inactive = process_csb(engine, post);
2405         GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2406
2407         if (unlikely(preempt_timeout(engine))) {
2408                 cancel_timer(&engine->execlists.preempt);
2409                 engine->execlists.error_interrupt |= ERROR_PREEMPT;
2410         }
2411
2412         if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2413                 const char *msg;
2414
2415                 /* Generate the error message in priority wrt to the user! */
2416                 if (engine->execlists.error_interrupt & GENMASK(15, 0))
2417                         msg = "CS error"; /* thrown by a user payload */
2418                 else if (engine->execlists.error_interrupt & ERROR_CSB)
2419                         msg = "invalid CSB event";
2420                 else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2421                         msg = "preemption time out";
2422                 else
2423                         msg = "internal error";
2424
2425                 engine->execlists.error_interrupt = 0;
2426                 execlists_reset(engine, msg);
2427         }
2428
2429         if (!engine->execlists.pending[0]) {
2430                 execlists_dequeue_irq(engine);
2431                 start_timeslice(engine);
2432         }
2433
2434         post_process_csb(post, inactive);
2435         rcu_read_unlock();
2436 }
2437
2438 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2439 {
2440         bool tasklet = false;
2441
2442         if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2443                 u32 eir;
2444
2445                 /* Upper 16b are the enabling mask, rsvd for internal errors */
2446                 eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2447                 ENGINE_TRACE(engine, "CS error: %x\n", eir);
2448
2449                 /* Disable the error interrupt until after the reset */
2450                 if (likely(eir)) {
2451                         ENGINE_WRITE(engine, RING_EMR, ~0u);
2452                         ENGINE_WRITE(engine, RING_EIR, eir);
2453                         WRITE_ONCE(engine->execlists.error_interrupt, eir);
2454                         tasklet = true;
2455                 }
2456         }
2457
2458         if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2459                 WRITE_ONCE(engine->execlists.yield,
2460                            ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2461                 ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2462                              engine->execlists.yield);
2463                 if (del_timer(&engine->execlists.timer))
2464                         tasklet = true;
2465         }
2466
2467         if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2468                 tasklet = true;
2469
2470         if (iir & GT_RENDER_USER_INTERRUPT)
2471                 intel_engine_signal_breadcrumbs(engine);
2472
2473         if (tasklet)
2474                 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2475 }
2476
2477 static void __execlists_kick(struct intel_engine_execlists *execlists)
2478 {
2479         struct intel_engine_cs *engine =
2480                 container_of(execlists, typeof(*engine), execlists);
2481
2482         /* Kick the tasklet for some interrupt coalescing and reset handling */
2483         tasklet_hi_schedule(&engine->sched_engine->tasklet);
2484 }
2485
2486 #define execlists_kick(t, member) \
2487         __execlists_kick(container_of(t, struct intel_engine_execlists, member))
2488
2489 static void execlists_timeslice(struct timer_list *timer)
2490 {
2491         execlists_kick(timer, timer);
2492 }
2493
2494 static void execlists_preempt(struct timer_list *timer)
2495 {
2496         execlists_kick(timer, preempt);
2497 }
2498
2499 static void queue_request(struct intel_engine_cs *engine,
2500                           struct i915_request *rq)
2501 {
2502         GEM_BUG_ON(!list_empty(&rq->sched.link));
2503         list_add_tail(&rq->sched.link,
2504                       i915_sched_lookup_priolist(engine->sched_engine,
2505                                                  rq_prio(rq)));
2506         set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2507 }
2508
2509 static bool submit_queue(struct intel_engine_cs *engine,
2510                          const struct i915_request *rq)
2511 {
2512         struct i915_sched_engine *sched_engine = engine->sched_engine;
2513
2514         if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2515                 return false;
2516
2517         sched_engine->queue_priority_hint = rq_prio(rq);
2518         return true;
2519 }
2520
2521 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2522                              const struct i915_request *rq)
2523 {
2524         GEM_BUG_ON(i915_request_on_hold(rq));
2525         return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2526 }
2527
2528 static void execlists_submit_request(struct i915_request *request)
2529 {
2530         struct intel_engine_cs *engine = request->engine;
2531         unsigned long flags;
2532
2533         /* Will be called from irq-context when using foreign fences. */
2534         spin_lock_irqsave(&engine->sched_engine->lock, flags);
2535
2536         if (unlikely(ancestor_on_hold(engine, request))) {
2537                 RQ_TRACE(request, "ancestor on hold\n");
2538                 list_add_tail(&request->sched.link,
2539                               &engine->sched_engine->hold);
2540                 i915_request_set_hold(request);
2541         } else {
2542                 queue_request(engine, request);
2543
2544                 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2545                 GEM_BUG_ON(list_empty(&request->sched.link));
2546
2547                 if (submit_queue(engine, request))
2548                         __execlists_kick(&engine->execlists);
2549         }
2550
2551         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2552 }
2553
2554 static int
2555 __execlists_context_pre_pin(struct intel_context *ce,
2556                             struct intel_engine_cs *engine,
2557                             struct i915_gem_ww_ctx *ww, void **vaddr)
2558 {
2559         int err;
2560
2561         err = lrc_pre_pin(ce, engine, ww, vaddr);
2562         if (err)
2563                 return err;
2564
2565         if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2566                 lrc_init_state(ce, engine, *vaddr);
2567
2568                  __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2569         }
2570
2571         return 0;
2572 }
2573
2574 static int execlists_context_pre_pin(struct intel_context *ce,
2575                                      struct i915_gem_ww_ctx *ww,
2576                                      void **vaddr)
2577 {
2578         return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2579 }
2580
2581 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2582 {
2583         return lrc_pin(ce, ce->engine, vaddr);
2584 }
2585
2586 static int execlists_context_alloc(struct intel_context *ce)
2587 {
2588         return lrc_alloc(ce, ce->engine);
2589 }
2590
2591 static void execlists_context_cancel_request(struct intel_context *ce,
2592                                              struct i915_request *rq)
2593 {
2594         struct intel_engine_cs *engine = NULL;
2595
2596         i915_request_active_engine(rq, &engine);
2597
2598         if (engine && intel_engine_pulse(engine))
2599                 intel_gt_handle_error(engine->gt, engine->mask, 0,
2600                                       "request cancellation by %s",
2601                                       current->comm);
2602 }
2603
2604 static const struct intel_context_ops execlists_context_ops = {
2605         .flags = COPS_HAS_INFLIGHT,
2606
2607         .alloc = execlists_context_alloc,
2608
2609         .cancel_request = execlists_context_cancel_request,
2610
2611         .pre_pin = execlists_context_pre_pin,
2612         .pin = execlists_context_pin,
2613         .unpin = lrc_unpin,
2614         .post_unpin = lrc_post_unpin,
2615
2616         .enter = intel_context_enter_engine,
2617         .exit = intel_context_exit_engine,
2618
2619         .reset = lrc_reset,
2620         .destroy = lrc_destroy,
2621
2622         .create_virtual = execlists_create_virtual,
2623 };
2624
2625 static int emit_pdps(struct i915_request *rq)
2626 {
2627         const struct intel_engine_cs * const engine = rq->engine;
2628         struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2629         int err, i;
2630         u32 *cs;
2631
2632         GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2633
2634         /*
2635          * Beware ye of the dragons, this sequence is magic!
2636          *
2637          * Small changes to this sequence can cause anything from
2638          * GPU hangs to forcewake errors and machine lockups!
2639          */
2640
2641         cs = intel_ring_begin(rq, 2);
2642         if (IS_ERR(cs))
2643                 return PTR_ERR(cs);
2644
2645         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2646         *cs++ = MI_NOOP;
2647         intel_ring_advance(rq, cs);
2648
2649         /* Flush any residual operations from the context load */
2650         err = engine->emit_flush(rq, EMIT_FLUSH);
2651         if (err)
2652                 return err;
2653
2654         /* Magic required to prevent forcewake errors! */
2655         err = engine->emit_flush(rq, EMIT_INVALIDATE);
2656         if (err)
2657                 return err;
2658
2659         cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2660         if (IS_ERR(cs))
2661                 return PTR_ERR(cs);
2662
2663         /* Ensure the LRI have landed before we invalidate & continue */
2664         *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2665         for (i = GEN8_3LVL_PDPES; i--; ) {
2666                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2667                 u32 base = engine->mmio_base;
2668
2669                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2670                 *cs++ = upper_32_bits(pd_daddr);
2671                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2672                 *cs++ = lower_32_bits(pd_daddr);
2673         }
2674         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2675         intel_ring_advance(rq, cs);
2676
2677         intel_ring_advance(rq, cs);
2678
2679         return 0;
2680 }
2681
2682 static int execlists_request_alloc(struct i915_request *request)
2683 {
2684         int ret;
2685
2686         GEM_BUG_ON(!intel_context_is_pinned(request->context));
2687
2688         /*
2689          * Flush enough space to reduce the likelihood of waiting after
2690          * we start building the request - in which case we will just
2691          * have to repeat work.
2692          */
2693         request->reserved_space += EXECLISTS_REQUEST_SIZE;
2694
2695         /*
2696          * Note that after this point, we have committed to using
2697          * this request as it is being used to both track the
2698          * state of engine initialisation and liveness of the
2699          * golden renderstate above. Think twice before you try
2700          * to cancel/unwind this request now.
2701          */
2702
2703         if (!i915_vm_is_4lvl(request->context->vm)) {
2704                 ret = emit_pdps(request);
2705                 if (ret)
2706                         return ret;
2707         }
2708
2709         /* Unconditionally invalidate GPU caches and TLBs. */
2710         ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2711         if (ret)
2712                 return ret;
2713
2714         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2715         return 0;
2716 }
2717
2718 static void reset_csb_pointers(struct intel_engine_cs *engine)
2719 {
2720         struct intel_engine_execlists * const execlists = &engine->execlists;
2721         const unsigned int reset_value = execlists->csb_size - 1;
2722
2723         ring_set_paused(engine, 0);
2724
2725         /*
2726          * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2727          * Bludgeon them with a mmio update to be sure.
2728          */
2729         ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2730                      0xffff << 16 | reset_value << 8 | reset_value);
2731         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2732
2733         /*
2734          * After a reset, the HW starts writing into CSB entry [0]. We
2735          * therefore have to set our HEAD pointer back one entry so that
2736          * the *first* entry we check is entry 0. To complicate this further,
2737          * as we don't wait for the first interrupt after reset, we have to
2738          * fake the HW write to point back to the last entry so that our
2739          * inline comparison of our cached head position against the last HW
2740          * write works even before the first interrupt.
2741          */
2742         execlists->csb_head = reset_value;
2743         WRITE_ONCE(*execlists->csb_write, reset_value);
2744         wmb(); /* Make sure this is visible to HW (paranoia?) */
2745
2746         /* Check that the GPU does indeed update the CSB entries! */
2747         memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2748         invalidate_csb_entries(&execlists->csb_status[0],
2749                                &execlists->csb_status[reset_value]);
2750
2751         /* Once more for luck and our trusty paranoia */
2752         ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2753                      0xffff << 16 | reset_value << 8 | reset_value);
2754         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2755
2756         GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2757 }
2758
2759 static void sanitize_hwsp(struct intel_engine_cs *engine)
2760 {
2761         struct intel_timeline *tl;
2762
2763         list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2764                 intel_timeline_reset_seqno(tl);
2765 }
2766
2767 static void execlists_sanitize(struct intel_engine_cs *engine)
2768 {
2769         GEM_BUG_ON(execlists_active(&engine->execlists));
2770
2771         /*
2772          * Poison residual state on resume, in case the suspend didn't!
2773          *
2774          * We have to assume that across suspend/resume (or other loss
2775          * of control) that the contents of our pinned buffers has been
2776          * lost, replaced by garbage. Since this doesn't always happen,
2777          * let's poison such state so that we more quickly spot when
2778          * we falsely assume it has been preserved.
2779          */
2780         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2781                 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2782
2783         reset_csb_pointers(engine);
2784
2785         /*
2786          * The kernel_context HWSP is stored in the status_page. As above,
2787          * that may be lost on resume/initialisation, and so we need to
2788          * reset the value in the HWSP.
2789          */
2790         sanitize_hwsp(engine);
2791
2792         /* And scrub the dirty cachelines for the HWSP */
2793         clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
2794 }
2795
2796 static void enable_error_interrupt(struct intel_engine_cs *engine)
2797 {
2798         u32 status;
2799
2800         engine->execlists.error_interrupt = 0;
2801         ENGINE_WRITE(engine, RING_EMR, ~0u);
2802         ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2803
2804         status = ENGINE_READ(engine, RING_ESR);
2805         if (unlikely(status)) {
2806                 drm_err(&engine->i915->drm,
2807                         "engine '%s' resumed still in error: %08x\n",
2808                         engine->name, status);
2809                 __intel_gt_reset(engine->gt, engine->mask);
2810         }
2811
2812         /*
2813          * On current gen8+, we have 2 signals to play with
2814          *
2815          * - I915_ERROR_INSTUCTION (bit 0)
2816          *
2817          *    Generate an error if the command parser encounters an invalid
2818          *    instruction
2819          *
2820          *    This is a fatal error.
2821          *
2822          * - CP_PRIV (bit 2)
2823          *
2824          *    Generate an error on privilege violation (where the CP replaces
2825          *    the instruction with a no-op). This also fires for writes into
2826          *    read-only scratch pages.
2827          *
2828          *    This is a non-fatal error, parsing continues.
2829          *
2830          * * there are a few others defined for odd HW that we do not use
2831          *
2832          * Since CP_PRIV fires for cases where we have chosen to ignore the
2833          * error (as the HW is validating and suppressing the mistakes), we
2834          * only unmask the instruction error bit.
2835          */
2836         ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2837 }
2838
2839 static void enable_execlists(struct intel_engine_cs *engine)
2840 {
2841         u32 mode;
2842
2843         assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2844
2845         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2846
2847         if (GRAPHICS_VER(engine->i915) >= 11)
2848                 mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2849         else
2850                 mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2851         ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2852
2853         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2854
2855         ENGINE_WRITE_FW(engine,
2856                         RING_HWS_PGA,
2857                         i915_ggtt_offset(engine->status_page.vma));
2858         ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2859
2860         enable_error_interrupt(engine);
2861 }
2862
2863 static int execlists_resume(struct intel_engine_cs *engine)
2864 {
2865         intel_mocs_init_engine(engine);
2866         intel_breadcrumbs_reset(engine->breadcrumbs);
2867
2868         enable_execlists(engine);
2869
2870         return 0;
2871 }
2872
2873 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2874 {
2875         ENGINE_TRACE(engine, "depth<-%d\n",
2876                      atomic_read(&engine->sched_engine->tasklet.count));
2877
2878         /*
2879          * Prevent request submission to the hardware until we have
2880          * completed the reset in i915_gem_reset_finish(). If a request
2881          * is completed by one engine, it may then queue a request
2882          * to a second via its execlists->tasklet *just* as we are
2883          * calling engine->resume() and also writing the ELSP.
2884          * Turning off the execlists->tasklet until the reset is over
2885          * prevents the race.
2886          */
2887         __tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2888         GEM_BUG_ON(!reset_in_progress(engine));
2889
2890         /*
2891          * We stop engines, otherwise we might get failed reset and a
2892          * dead gpu (on elk). Also as modern gpu as kbl can suffer
2893          * from system hang if batchbuffer is progressing when
2894          * the reset is issued, regardless of READY_TO_RESET ack.
2895          * Thus assume it is best to stop engines on all gens
2896          * where we have a gpu reset.
2897          *
2898          * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2899          *
2900          * FIXME: Wa for more modern gens needs to be validated
2901          */
2902         ring_set_paused(engine, 1);
2903         intel_engine_stop_cs(engine);
2904
2905         engine->execlists.reset_ccid = active_ccid(engine);
2906 }
2907
2908 static struct i915_request **
2909 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
2910 {
2911         struct intel_engine_execlists * const execlists = &engine->execlists;
2912
2913         mb(); /* paranoia: read the CSB pointers from after the reset */
2914         clflush(execlists->csb_write);
2915         mb();
2916
2917         inactive = process_csb(engine, inactive); /* drain preemption events */
2918
2919         /* Following the reset, we need to reload the CSB read/write pointers */
2920         reset_csb_pointers(engine);
2921
2922         return inactive;
2923 }
2924
2925 static void
2926 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
2927 {
2928         struct intel_context *ce;
2929         struct i915_request *rq;
2930         u32 head;
2931
2932         /*
2933          * Save the currently executing context, even if we completed
2934          * its request, it was still running at the time of the
2935          * reset and will have been clobbered.
2936          */
2937         rq = active_context(engine, engine->execlists.reset_ccid);
2938         if (!rq)
2939                 return;
2940
2941         ce = rq->context;
2942         GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2943
2944         if (__i915_request_is_complete(rq)) {
2945                 /* Idle context; tidy up the ring so we can restart afresh */
2946                 head = intel_ring_wrap(ce->ring, rq->tail);
2947                 goto out_replay;
2948         }
2949
2950         /* We still have requests in-flight; the engine should be active */
2951         GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
2952
2953         /* Context has requests still in-flight; it should not be idle! */
2954         GEM_BUG_ON(i915_active_is_idle(&ce->active));
2955
2956         rq = active_request(ce->timeline, rq);
2957         head = intel_ring_wrap(ce->ring, rq->head);
2958         GEM_BUG_ON(head == ce->ring->tail);
2959
2960         /*
2961          * If this request hasn't started yet, e.g. it is waiting on a
2962          * semaphore, we need to avoid skipping the request or else we
2963          * break the signaling chain. However, if the context is corrupt
2964          * the request will not restart and we will be stuck with a wedged
2965          * device. It is quite often the case that if we issue a reset
2966          * while the GPU is loading the context image, that the context
2967          * image becomes corrupt.
2968          *
2969          * Otherwise, if we have not started yet, the request should replay
2970          * perfectly and we do not need to flag the result as being erroneous.
2971          */
2972         if (!__i915_request_has_started(rq))
2973                 goto out_replay;
2974
2975         /*
2976          * If the request was innocent, we leave the request in the ELSP
2977          * and will try to replay it on restarting. The context image may
2978          * have been corrupted by the reset, in which case we may have
2979          * to service a new GPU hang, but more likely we can continue on
2980          * without impact.
2981          *
2982          * If the request was guilty, we presume the context is corrupt
2983          * and have to at least restore the RING register in the context
2984          * image back to the expected values to skip over the guilty request.
2985          */
2986         __i915_request_reset(rq, stalled);
2987
2988         /*
2989          * We want a simple context + ring to execute the breadcrumb update.
2990          * We cannot rely on the context being intact across the GPU hang,
2991          * so clear it and rebuild just what we need for the breadcrumb.
2992          * All pending requests for this context will be zapped, and any
2993          * future request will be after userspace has had the opportunity
2994          * to recreate its own state.
2995          */
2996 out_replay:
2997         ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
2998                      head, ce->ring->tail);
2999         lrc_reset_regs(ce, engine);
3000         ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3001 }
3002
3003 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3004 {
3005         struct intel_engine_execlists * const execlists = &engine->execlists;
3006         struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3007         struct i915_request **inactive;
3008
3009         rcu_read_lock();
3010         inactive = reset_csb(engine, post);
3011
3012         execlists_reset_active(engine, true);
3013
3014         inactive = cancel_port_requests(execlists, inactive);
3015         post_process_csb(post, inactive);
3016         rcu_read_unlock();
3017 }
3018
3019 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3020 {
3021         unsigned long flags;
3022
3023         ENGINE_TRACE(engine, "\n");
3024
3025         /* Process the csb, find the guilty context and throw away */
3026         execlists_reset_csb(engine, stalled);
3027
3028         /* Push back any incomplete requests for replay after the reset. */
3029         rcu_read_lock();
3030         spin_lock_irqsave(&engine->sched_engine->lock, flags);
3031         __unwind_incomplete_requests(engine);
3032         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3033         rcu_read_unlock();
3034 }
3035
3036 static void nop_submission_tasklet(struct tasklet_struct *t)
3037 {
3038         struct i915_sched_engine *sched_engine =
3039                 from_tasklet(sched_engine, t, tasklet);
3040         struct intel_engine_cs * const engine = sched_engine->private_data;
3041
3042         /* The driver is wedged; don't process any more events. */
3043         WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3044 }
3045
3046 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3047 {
3048         struct intel_engine_execlists * const execlists = &engine->execlists;
3049         struct i915_sched_engine * const sched_engine = engine->sched_engine;
3050         struct i915_request *rq, *rn;
3051         struct rb_node *rb;
3052         unsigned long flags;
3053
3054         ENGINE_TRACE(engine, "\n");
3055
3056         /*
3057          * Before we call engine->cancel_requests(), we should have exclusive
3058          * access to the submission state. This is arranged for us by the
3059          * caller disabling the interrupt generation, the tasklet and other
3060          * threads that may then access the same state, giving us a free hand
3061          * to reset state. However, we still need to let lockdep be aware that
3062          * we know this state may be accessed in hardirq context, so we
3063          * disable the irq around this manipulation and we want to keep
3064          * the spinlock focused on its duties and not accidentally conflate
3065          * coverage to the submission's irq state. (Similarly, although we
3066          * shouldn't need to disable irq around the manipulation of the
3067          * submission's irq state, we also wish to remind ourselves that
3068          * it is irq state.)
3069          */
3070         execlists_reset_csb(engine, true);
3071
3072         rcu_read_lock();
3073         spin_lock_irqsave(&engine->sched_engine->lock, flags);
3074
3075         /* Mark all executing requests as skipped. */
3076         list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3077                 i915_request_put(i915_request_mark_eio(rq));
3078         intel_engine_signal_breadcrumbs(engine);
3079
3080         /* Flush the queued requests to the timeline list (for retiring). */
3081         while ((rb = rb_first_cached(&sched_engine->queue))) {
3082                 struct i915_priolist *p = to_priolist(rb);
3083
3084                 priolist_for_each_request_consume(rq, rn, p) {
3085                         if (i915_request_mark_eio(rq)) {
3086                                 __i915_request_submit(rq);
3087                                 i915_request_put(rq);
3088                         }
3089                 }
3090
3091                 rb_erase_cached(&p->node, &sched_engine->queue);
3092                 i915_priolist_free(p);
3093         }
3094
3095         /* On-hold requests will be flushed to timeline upon their release */
3096         list_for_each_entry(rq, &sched_engine->hold, sched.link)
3097                 i915_request_put(i915_request_mark_eio(rq));
3098
3099         /* Cancel all attached virtual engines */
3100         while ((rb = rb_first_cached(&execlists->virtual))) {
3101                 struct virtual_engine *ve =
3102                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3103
3104                 rb_erase_cached(rb, &execlists->virtual);
3105                 RB_CLEAR_NODE(rb);
3106
3107                 spin_lock(&ve->base.sched_engine->lock);
3108                 rq = fetch_and_zero(&ve->request);
3109                 if (rq) {
3110                         if (i915_request_mark_eio(rq)) {
3111                                 rq->engine = engine;
3112                                 __i915_request_submit(rq);
3113                                 i915_request_put(rq);
3114                         }
3115                         i915_request_put(rq);
3116
3117                         ve->base.sched_engine->queue_priority_hint = INT_MIN;
3118                 }
3119                 spin_unlock(&ve->base.sched_engine->lock);
3120         }
3121
3122         /* Remaining _unready_ requests will be nop'ed when submitted */
3123
3124         sched_engine->queue_priority_hint = INT_MIN;
3125         sched_engine->queue = RB_ROOT_CACHED;
3126
3127         GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3128         engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3129
3130         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3131         rcu_read_unlock();
3132 }
3133
3134 static void execlists_reset_finish(struct intel_engine_cs *engine)
3135 {
3136         struct intel_engine_execlists * const execlists = &engine->execlists;
3137
3138         /*
3139          * After a GPU reset, we may have requests to replay. Do so now while
3140          * we still have the forcewake to be sure that the GPU is not allowed
3141          * to sleep before we restart and reload a context.
3142          *
3143          * If the GPU reset fails, the engine may still be alive with requests
3144          * inflight. We expect those to complete, or for the device to be
3145          * reset as the next level of recovery, and as a final resort we
3146          * will declare the device wedged.
3147          */
3148         GEM_BUG_ON(!reset_in_progress(engine));
3149
3150         /* And kick in case we missed a new request submission. */
3151         if (__tasklet_enable(&engine->sched_engine->tasklet))
3152                 __execlists_kick(execlists);
3153
3154         ENGINE_TRACE(engine, "depth->%d\n",
3155                      atomic_read(&engine->sched_engine->tasklet.count));
3156 }
3157
3158 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3159 {
3160         ENGINE_WRITE(engine, RING_IMR,
3161                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
3162         ENGINE_POSTING_READ(engine, RING_IMR);
3163 }
3164
3165 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3166 {
3167         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3168 }
3169
3170 static void execlists_park(struct intel_engine_cs *engine)
3171 {
3172         cancel_timer(&engine->execlists.timer);
3173         cancel_timer(&engine->execlists.preempt);
3174 }
3175
3176 static void add_to_engine(struct i915_request *rq)
3177 {
3178         lockdep_assert_held(&rq->engine->sched_engine->lock);
3179         list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3180 }
3181
3182 static void remove_from_engine(struct i915_request *rq)
3183 {
3184         struct intel_engine_cs *engine, *locked;
3185
3186         /*
3187          * Virtual engines complicate acquiring the engine timeline lock,
3188          * as their rq->engine pointer is not stable until under that
3189          * engine lock. The simple ploy we use is to take the lock then
3190          * check that the rq still belongs to the newly locked engine.
3191          */
3192         locked = READ_ONCE(rq->engine);
3193         spin_lock_irq(&locked->sched_engine->lock);
3194         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3195                 spin_unlock(&locked->sched_engine->lock);
3196                 spin_lock(&engine->sched_engine->lock);
3197                 locked = engine;
3198         }
3199         list_del_init(&rq->sched.link);
3200
3201         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3202         clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3203
3204         /* Prevent further __await_execution() registering a cb, then flush */
3205         set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3206
3207         spin_unlock_irq(&locked->sched_engine->lock);
3208
3209         i915_request_notify_execute_cb_imm(rq);
3210 }
3211
3212 static bool can_preempt(struct intel_engine_cs *engine)
3213 {
3214         if (GRAPHICS_VER(engine->i915) > 8)
3215                 return true;
3216
3217         /* GPGPU on bdw requires extra w/a; not implemented */
3218         return engine->class != RENDER_CLASS;
3219 }
3220
3221 static void kick_execlists(const struct i915_request *rq, int prio)
3222 {
3223         struct intel_engine_cs *engine = rq->engine;
3224         struct i915_sched_engine *sched_engine = engine->sched_engine;
3225         const struct i915_request *inflight;
3226
3227         /*
3228          * We only need to kick the tasklet once for the high priority
3229          * new context we add into the queue.
3230          */
3231         if (prio <= sched_engine->queue_priority_hint)
3232                 return;
3233
3234         rcu_read_lock();
3235
3236         /* Nothing currently active? We're overdue for a submission! */
3237         inflight = execlists_active(&engine->execlists);
3238         if (!inflight)
3239                 goto unlock;
3240
3241         /*
3242          * If we are already the currently executing context, don't
3243          * bother evaluating if we should preempt ourselves.
3244          */
3245         if (inflight->context == rq->context)
3246                 goto unlock;
3247
3248         ENGINE_TRACE(engine,
3249                      "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3250                      prio,
3251                      rq->fence.context, rq->fence.seqno,
3252                      inflight->fence.context, inflight->fence.seqno,
3253                      inflight->sched.attr.priority);
3254
3255         sched_engine->queue_priority_hint = prio;
3256
3257         /*
3258          * Allow preemption of low -> normal -> high, but we do
3259          * not allow low priority tasks to preempt other low priority
3260          * tasks under the impression that latency for low priority
3261          * tasks does not matter (as much as background throughput),
3262          * so kiss.
3263          */
3264         if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3265                 tasklet_hi_schedule(&sched_engine->tasklet);
3266
3267 unlock:
3268         rcu_read_unlock();
3269 }
3270
3271 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3272 {
3273         engine->submit_request = execlists_submit_request;
3274         engine->sched_engine->schedule = i915_schedule;
3275         engine->sched_engine->kick_backend = kick_execlists;
3276         engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3277 }
3278
3279 static void execlists_shutdown(struct intel_engine_cs *engine)
3280 {
3281         /* Synchronise with residual timers and any softirq they raise */
3282         del_timer_sync(&engine->execlists.timer);
3283         del_timer_sync(&engine->execlists.preempt);
3284         tasklet_kill(&engine->sched_engine->tasklet);
3285 }
3286
3287 static void execlists_release(struct intel_engine_cs *engine)
3288 {
3289         engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3290
3291         execlists_shutdown(engine);
3292
3293         intel_engine_cleanup_common(engine);
3294         lrc_fini_wa_ctx(engine);
3295 }
3296
3297 static void
3298 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3299 {
3300         /* Default vfuncs which can be overridden by each engine. */
3301
3302         engine->resume = execlists_resume;
3303
3304         engine->cops = &execlists_context_ops;
3305         engine->request_alloc = execlists_request_alloc;
3306         engine->add_active_request = add_to_engine;
3307         engine->remove_active_request = remove_from_engine;
3308
3309         engine->reset.prepare = execlists_reset_prepare;
3310         engine->reset.rewind = execlists_reset_rewind;
3311         engine->reset.cancel = execlists_reset_cancel;
3312         engine->reset.finish = execlists_reset_finish;
3313
3314         engine->park = execlists_park;
3315         engine->unpark = NULL;
3316
3317         engine->emit_flush = gen8_emit_flush_xcs;
3318         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3319         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3320         if (GRAPHICS_VER(engine->i915) >= 12) {
3321                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3322                 engine->emit_flush = gen12_emit_flush_xcs;
3323         }
3324         engine->set_default_submission = execlists_set_default_submission;
3325
3326         if (GRAPHICS_VER(engine->i915) < 11) {
3327                 engine->irq_enable = gen8_logical_ring_enable_irq;
3328                 engine->irq_disable = gen8_logical_ring_disable_irq;
3329         } else {
3330                 /*
3331                  * TODO: On Gen11 interrupt masks need to be clear
3332                  * to allow C6 entry. Keep interrupts enabled at
3333                  * and take the hit of generating extra interrupts
3334                  * until a more refined solution exists.
3335                  */
3336         }
3337         intel_engine_set_irq_handler(engine, execlists_irq_handler);
3338
3339         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3340         if (!intel_vgpu_active(engine->i915)) {
3341                 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3342                 if (can_preempt(engine)) {
3343                         engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3344                         if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
3345                                 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3346                 }
3347         }
3348
3349         if (intel_engine_has_preemption(engine))
3350                 engine->emit_bb_start = gen8_emit_bb_start;
3351         else
3352                 engine->emit_bb_start = gen8_emit_bb_start_noarb;
3353 }
3354
3355 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3356 {
3357         unsigned int shift = 0;
3358
3359         if (GRAPHICS_VER(engine->i915) < 11) {
3360                 const u8 irq_shifts[] = {
3361                         [RCS0]  = GEN8_RCS_IRQ_SHIFT,
3362                         [BCS0]  = GEN8_BCS_IRQ_SHIFT,
3363                         [VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3364                         [VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3365                         [VECS0] = GEN8_VECS_IRQ_SHIFT,
3366                 };
3367
3368                 shift = irq_shifts[engine->id];
3369         }
3370
3371         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3372         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3373         engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3374         engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3375 }
3376
3377 static void rcs_submission_override(struct intel_engine_cs *engine)
3378 {
3379         switch (GRAPHICS_VER(engine->i915)) {
3380         case 12:
3381                 engine->emit_flush = gen12_emit_flush_rcs;
3382                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3383                 break;
3384         case 11:
3385                 engine->emit_flush = gen11_emit_flush_rcs;
3386                 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3387                 break;
3388         default:
3389                 engine->emit_flush = gen8_emit_flush_rcs;
3390                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3391                 break;
3392         }
3393 }
3394
3395 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3396 {
3397         struct intel_engine_execlists * const execlists = &engine->execlists;
3398         struct drm_i915_private *i915 = engine->i915;
3399         struct intel_uncore *uncore = engine->uncore;
3400         u32 base = engine->mmio_base;
3401
3402         tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3403         timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3404         timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3405
3406         logical_ring_default_vfuncs(engine);
3407         logical_ring_default_irqs(engine);
3408
3409         if (engine->class == RENDER_CLASS)
3410                 rcs_submission_override(engine);
3411
3412         lrc_init_wa_ctx(engine);
3413
3414         if (HAS_LOGICAL_RING_ELSQ(i915)) {
3415                 execlists->submit_reg = uncore->regs +
3416                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3417                 execlists->ctrl_reg = uncore->regs +
3418                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3419
3420                 engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3421                                     RING_EXECLIST_CONTROL(engine->mmio_base),
3422                                     FW_REG_WRITE);
3423         } else {
3424                 execlists->submit_reg = uncore->regs +
3425                         i915_mmio_reg_offset(RING_ELSP(base));
3426         }
3427
3428         execlists->csb_status =
3429                 (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3430
3431         execlists->csb_write =
3432                 &engine->status_page.addr[intel_hws_csb_write_index(i915)];
3433
3434         if (GRAPHICS_VER(i915) < 11)
3435                 execlists->csb_size = GEN8_CSB_ENTRIES;
3436         else
3437                 execlists->csb_size = GEN11_CSB_ENTRIES;
3438
3439         engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3440         if (GRAPHICS_VER(engine->i915) >= 11 &&
3441             GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3442                 execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3443                 execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3444         }
3445
3446         /* Finally, take ownership and responsibility for cleanup! */
3447         engine->sanitize = execlists_sanitize;
3448         engine->release = execlists_release;
3449
3450         return 0;
3451 }
3452
3453 static struct list_head *virtual_queue(struct virtual_engine *ve)
3454 {
3455         return &ve->base.sched_engine->default_priolist.requests;
3456 }
3457
3458 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3459 {
3460         struct virtual_engine *ve =
3461                 container_of(wrk, typeof(*ve), rcu.work);
3462         unsigned int n;
3463
3464         GEM_BUG_ON(ve->context.inflight);
3465
3466         /* Preempt-to-busy may leave a stale request behind. */
3467         if (unlikely(ve->request)) {
3468                 struct i915_request *old;
3469
3470                 spin_lock_irq(&ve->base.sched_engine->lock);
3471
3472                 old = fetch_and_zero(&ve->request);
3473                 if (old) {
3474                         GEM_BUG_ON(!__i915_request_is_complete(old));
3475                         __i915_request_submit(old);
3476                         i915_request_put(old);
3477                 }
3478
3479                 spin_unlock_irq(&ve->base.sched_engine->lock);
3480         }
3481
3482         /*
3483          * Flush the tasklet in case it is still running on another core.
3484          *
3485          * This needs to be done before we remove ourselves from the siblings'
3486          * rbtrees as in the case it is running in parallel, it may reinsert
3487          * the rb_node into a sibling.
3488          */
3489         tasklet_kill(&ve->base.sched_engine->tasklet);
3490
3491         /* Decouple ourselves from the siblings, no more access allowed. */
3492         for (n = 0; n < ve->num_siblings; n++) {
3493                 struct intel_engine_cs *sibling = ve->siblings[n];
3494                 struct rb_node *node = &ve->nodes[sibling->id].rb;
3495
3496                 if (RB_EMPTY_NODE(node))
3497                         continue;
3498
3499                 spin_lock_irq(&sibling->sched_engine->lock);
3500
3501                 /* Detachment is lazily performed in the sched_engine->tasklet */
3502                 if (!RB_EMPTY_NODE(node))
3503                         rb_erase_cached(node, &sibling->execlists.virtual);
3504
3505                 spin_unlock_irq(&sibling->sched_engine->lock);
3506         }
3507         GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3508         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3509
3510         lrc_fini(&ve->context);
3511         intel_context_fini(&ve->context);
3512
3513         if (ve->base.breadcrumbs)
3514                 intel_breadcrumbs_put(ve->base.breadcrumbs);
3515         if (ve->base.sched_engine)
3516                 i915_sched_engine_put(ve->base.sched_engine);
3517         intel_engine_free_request_pool(&ve->base);
3518
3519         kfree(ve);
3520 }
3521
3522 static void virtual_context_destroy(struct kref *kref)
3523 {
3524         struct virtual_engine *ve =
3525                 container_of(kref, typeof(*ve), context.ref);
3526
3527         GEM_BUG_ON(!list_empty(&ve->context.signals));
3528
3529         /*
3530          * When destroying the virtual engine, we have to be aware that
3531          * it may still be in use from an hardirq/softirq context causing
3532          * the resubmission of a completed request (background completion
3533          * due to preempt-to-busy). Before we can free the engine, we need
3534          * to flush the submission code and tasklets that are still potentially
3535          * accessing the engine. Flushing the tasklets requires process context,
3536          * and since we can guard the resubmit onto the engine with an RCU read
3537          * lock, we can delegate the free of the engine to an RCU worker.
3538          */
3539         INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3540         queue_rcu_work(system_wq, &ve->rcu);
3541 }
3542
3543 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3544 {
3545         int swp;
3546
3547         /*
3548          * Pick a random sibling on starting to help spread the load around.
3549          *
3550          * New contexts are typically created with exactly the same order
3551          * of siblings, and often started in batches. Due to the way we iterate
3552          * the array of sibling when submitting requests, sibling[0] is
3553          * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3554          * randomised across the system, we also help spread the load by the
3555          * first engine we inspect being different each time.
3556          *
3557          * NB This does not force us to execute on this engine, it will just
3558          * typically be the first we inspect for submission.
3559          */
3560         swp = prandom_u32_max(ve->num_siblings);
3561         if (swp)
3562                 swap(ve->siblings[swp], ve->siblings[0]);
3563 }
3564
3565 static int virtual_context_alloc(struct intel_context *ce)
3566 {
3567         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3568
3569         return lrc_alloc(ce, ve->siblings[0]);
3570 }
3571
3572 static int virtual_context_pre_pin(struct intel_context *ce,
3573                                    struct i915_gem_ww_ctx *ww,
3574                                    void **vaddr)
3575 {
3576         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3577
3578          /* Note: we must use a real engine class for setting up reg state */
3579         return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3580 }
3581
3582 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3583 {
3584         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3585
3586         return lrc_pin(ce, ve->siblings[0], vaddr);
3587 }
3588
3589 static void virtual_context_enter(struct intel_context *ce)
3590 {
3591         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3592         unsigned int n;
3593
3594         for (n = 0; n < ve->num_siblings; n++)
3595                 intel_engine_pm_get(ve->siblings[n]);
3596
3597         intel_timeline_enter(ce->timeline);
3598 }
3599
3600 static void virtual_context_exit(struct intel_context *ce)
3601 {
3602         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3603         unsigned int n;
3604
3605         intel_timeline_exit(ce->timeline);
3606
3607         for (n = 0; n < ve->num_siblings; n++)
3608                 intel_engine_pm_put(ve->siblings[n]);
3609 }
3610
3611 static struct intel_engine_cs *
3612 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3613 {
3614         struct virtual_engine *ve = to_virtual_engine(engine);
3615
3616         if (sibling >= ve->num_siblings)
3617                 return NULL;
3618
3619         return ve->siblings[sibling];
3620 }
3621
3622 static const struct intel_context_ops virtual_context_ops = {
3623         .flags = COPS_HAS_INFLIGHT,
3624
3625         .alloc = virtual_context_alloc,
3626
3627         .cancel_request = execlists_context_cancel_request,
3628
3629         .pre_pin = virtual_context_pre_pin,
3630         .pin = virtual_context_pin,
3631         .unpin = lrc_unpin,
3632         .post_unpin = lrc_post_unpin,
3633
3634         .enter = virtual_context_enter,
3635         .exit = virtual_context_exit,
3636
3637         .destroy = virtual_context_destroy,
3638
3639         .get_sibling = virtual_get_sibling,
3640 };
3641
3642 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3643 {
3644         struct i915_request *rq;
3645         intel_engine_mask_t mask;
3646
3647         rq = READ_ONCE(ve->request);
3648         if (!rq)
3649                 return 0;
3650
3651         /* The rq is ready for submission; rq->execution_mask is now stable. */
3652         mask = rq->execution_mask;
3653         if (unlikely(!mask)) {
3654                 /* Invalid selection, submit to a random engine in error */
3655                 i915_request_set_error_once(rq, -ENODEV);
3656                 mask = ve->siblings[0]->mask;
3657         }
3658
3659         ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3660                      rq->fence.context, rq->fence.seqno,
3661                      mask, ve->base.sched_engine->queue_priority_hint);
3662
3663         return mask;
3664 }
3665
3666 static void virtual_submission_tasklet(struct tasklet_struct *t)
3667 {
3668         struct i915_sched_engine *sched_engine =
3669                 from_tasklet(sched_engine, t, tasklet);
3670         struct virtual_engine * const ve =
3671                 (struct virtual_engine *)sched_engine->private_data;
3672         const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3673         intel_engine_mask_t mask;
3674         unsigned int n;
3675
3676         rcu_read_lock();
3677         mask = virtual_submission_mask(ve);
3678         rcu_read_unlock();
3679         if (unlikely(!mask))
3680                 return;
3681
3682         for (n = 0; n < ve->num_siblings; n++) {
3683                 struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3684                 struct ve_node * const node = &ve->nodes[sibling->id];
3685                 struct rb_node **parent, *rb;
3686                 bool first;
3687
3688                 if (!READ_ONCE(ve->request))
3689                         break; /* already handled by a sibling's tasklet */
3690
3691                 spin_lock_irq(&sibling->sched_engine->lock);
3692
3693                 if (unlikely(!(mask & sibling->mask))) {
3694                         if (!RB_EMPTY_NODE(&node->rb)) {
3695                                 rb_erase_cached(&node->rb,
3696                                                 &sibling->execlists.virtual);
3697                                 RB_CLEAR_NODE(&node->rb);
3698                         }
3699
3700                         goto unlock_engine;
3701                 }
3702
3703                 if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3704                         /*
3705                          * Cheat and avoid rebalancing the tree if we can
3706                          * reuse this node in situ.
3707                          */
3708                         first = rb_first_cached(&sibling->execlists.virtual) ==
3709                                 &node->rb;
3710                         if (prio == node->prio || (prio > node->prio && first))
3711                                 goto submit_engine;
3712
3713                         rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3714                 }
3715
3716                 rb = NULL;
3717                 first = true;
3718                 parent = &sibling->execlists.virtual.rb_root.rb_node;
3719                 while (*parent) {
3720                         struct ve_node *other;
3721
3722                         rb = *parent;
3723                         other = rb_entry(rb, typeof(*other), rb);
3724                         if (prio > other->prio) {
3725                                 parent = &rb->rb_left;
3726                         } else {
3727                                 parent = &rb->rb_right;
3728                                 first = false;
3729                         }
3730                 }
3731
3732                 rb_link_node(&node->rb, rb, parent);
3733                 rb_insert_color_cached(&node->rb,
3734                                        &sibling->execlists.virtual,
3735                                        first);
3736
3737 submit_engine:
3738                 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3739                 node->prio = prio;
3740                 if (first && prio > sibling->sched_engine->queue_priority_hint)
3741                         tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3742
3743 unlock_engine:
3744                 spin_unlock_irq(&sibling->sched_engine->lock);
3745
3746                 if (intel_context_inflight(&ve->context))
3747                         break;
3748         }
3749 }
3750
3751 static void virtual_submit_request(struct i915_request *rq)
3752 {
3753         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3754         unsigned long flags;
3755
3756         ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3757                      rq->fence.context,
3758                      rq->fence.seqno);
3759
3760         GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3761
3762         spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3763
3764         /* By the time we resubmit a request, it may be completed */
3765         if (__i915_request_is_complete(rq)) {
3766                 __i915_request_submit(rq);
3767                 goto unlock;
3768         }
3769
3770         if (ve->request) { /* background completion from preempt-to-busy */
3771                 GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3772                 __i915_request_submit(ve->request);
3773                 i915_request_put(ve->request);
3774         }
3775
3776         ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3777         ve->request = i915_request_get(rq);
3778
3779         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3780         list_move_tail(&rq->sched.link, virtual_queue(ve));
3781
3782         tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3783
3784 unlock:
3785         spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3786 }
3787
3788 static struct intel_context *
3789 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count)
3790 {
3791         struct virtual_engine *ve;
3792         unsigned int n;
3793         int err;
3794
3795         ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3796         if (!ve)
3797                 return ERR_PTR(-ENOMEM);
3798
3799         ve->base.i915 = siblings[0]->i915;
3800         ve->base.gt = siblings[0]->gt;
3801         ve->base.uncore = siblings[0]->uncore;
3802         ve->base.id = -1;
3803
3804         ve->base.class = OTHER_CLASS;
3805         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3806         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3807         ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3808
3809         /*
3810          * The decision on whether to submit a request using semaphores
3811          * depends on the saturated state of the engine. We only compute
3812          * this during HW submission of the request, and we need for this
3813          * state to be globally applied to all requests being submitted
3814          * to this engine. Virtual engines encompass more than one physical
3815          * engine and so we cannot accurately tell in advance if one of those
3816          * engines is already saturated and so cannot afford to use a semaphore
3817          * and be pessimized in priority for doing so -- if we are the only
3818          * context using semaphores after all other clients have stopped, we
3819          * will be starved on the saturated system. Such a global switch for
3820          * semaphores is less than ideal, but alas is the current compromise.
3821          */
3822         ve->base.saturated = ALL_ENGINES;
3823
3824         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3825
3826         intel_engine_init_execlists(&ve->base);
3827
3828         ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3829         if (!ve->base.sched_engine) {
3830                 err = -ENOMEM;
3831                 goto err_put;
3832         }
3833         ve->base.sched_engine->private_data = &ve->base;
3834
3835         ve->base.cops = &virtual_context_ops;
3836         ve->base.request_alloc = execlists_request_alloc;
3837
3838         ve->base.sched_engine->schedule = i915_schedule;
3839         ve->base.sched_engine->kick_backend = kick_execlists;
3840         ve->base.submit_request = virtual_submit_request;
3841
3842         INIT_LIST_HEAD(virtual_queue(ve));
3843         tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3844
3845         intel_context_init(&ve->context, &ve->base);
3846
3847         ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3848         if (!ve->base.breadcrumbs) {
3849                 err = -ENOMEM;
3850                 goto err_put;
3851         }
3852
3853         for (n = 0; n < count; n++) {
3854                 struct intel_engine_cs *sibling = siblings[n];
3855
3856                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
3857                 if (sibling->mask & ve->base.mask) {
3858                         DRM_DEBUG("duplicate %s entry in load balancer\n",
3859                                   sibling->name);
3860                         err = -EINVAL;
3861                         goto err_put;
3862                 }
3863
3864                 /*
3865                  * The virtual engine implementation is tightly coupled to
3866                  * the execlists backend -- we push out request directly
3867                  * into a tree inside each physical engine. We could support
3868                  * layering if we handle cloning of the requests and
3869                  * submitting a copy into each backend.
3870                  */
3871                 if (sibling->sched_engine->tasklet.callback !=
3872                     execlists_submission_tasklet) {
3873                         err = -ENODEV;
3874                         goto err_put;
3875                 }
3876
3877                 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3878                 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3879
3880                 ve->siblings[ve->num_siblings++] = sibling;
3881                 ve->base.mask |= sibling->mask;
3882
3883                 /*
3884                  * All physical engines must be compatible for their emission
3885                  * functions (as we build the instructions during request
3886                  * construction and do not alter them before submission
3887                  * on the physical engine). We use the engine class as a guide
3888                  * here, although that could be refined.
3889                  */
3890                 if (ve->base.class != OTHER_CLASS) {
3891                         if (ve->base.class != sibling->class) {
3892                                 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3893                                           sibling->class, ve->base.class);
3894                                 err = -EINVAL;
3895                                 goto err_put;
3896                         }
3897                         continue;
3898                 }
3899
3900                 ve->base.class = sibling->class;
3901                 ve->base.uabi_class = sibling->uabi_class;
3902                 snprintf(ve->base.name, sizeof(ve->base.name),
3903                          "v%dx%d", ve->base.class, count);
3904                 ve->base.context_size = sibling->context_size;
3905
3906                 ve->base.add_active_request = sibling->add_active_request;
3907                 ve->base.remove_active_request = sibling->remove_active_request;
3908                 ve->base.emit_bb_start = sibling->emit_bb_start;
3909                 ve->base.emit_flush = sibling->emit_flush;
3910                 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3911                 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3912                 ve->base.emit_fini_breadcrumb_dw =
3913                         sibling->emit_fini_breadcrumb_dw;
3914
3915                 ve->base.flags = sibling->flags;
3916         }
3917
3918         ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
3919
3920         virtual_engine_initial_hint(ve);
3921         return &ve->context;
3922
3923 err_put:
3924         intel_context_put(&ve->context);
3925         return ERR_PTR(err);
3926 }
3927
3928 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3929                                    struct drm_printer *m,
3930                                    void (*show_request)(struct drm_printer *m,
3931                                                         const struct i915_request *rq,
3932                                                         const char *prefix,
3933                                                         int indent),
3934                                    unsigned int max)
3935 {
3936         const struct intel_engine_execlists *execlists = &engine->execlists;
3937         struct i915_sched_engine *sched_engine = engine->sched_engine;
3938         struct i915_request *rq, *last;
3939         unsigned long flags;
3940         unsigned int count;
3941         struct rb_node *rb;
3942
3943         spin_lock_irqsave(&sched_engine->lock, flags);
3944
3945         last = NULL;
3946         count = 0;
3947         list_for_each_entry(rq, &sched_engine->requests, sched.link) {
3948                 if (count++ < max - 1)
3949                         show_request(m, rq, "\t\t", 0);
3950                 else
3951                         last = rq;
3952         }
3953         if (last) {
3954                 if (count > max) {
3955                         drm_printf(m,
3956                                    "\t\t...skipping %d executing requests...\n",
3957                                    count - max);
3958                 }
3959                 show_request(m, last, "\t\t", 0);
3960         }
3961
3962         if (sched_engine->queue_priority_hint != INT_MIN)
3963                 drm_printf(m, "\t\tQueue priority hint: %d\n",
3964                            READ_ONCE(sched_engine->queue_priority_hint));
3965
3966         last = NULL;
3967         count = 0;
3968         for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
3969                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3970
3971                 priolist_for_each_request(rq, p) {
3972                         if (count++ < max - 1)
3973                                 show_request(m, rq, "\t\t", 0);
3974                         else
3975                                 last = rq;
3976                 }
3977         }
3978         if (last) {
3979                 if (count > max) {
3980                         drm_printf(m,
3981                                    "\t\t...skipping %d queued requests...\n",
3982                                    count - max);
3983                 }
3984                 show_request(m, last, "\t\t", 0);
3985         }
3986
3987         last = NULL;
3988         count = 0;
3989         for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3990                 struct virtual_engine *ve =
3991                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3992                 struct i915_request *rq = READ_ONCE(ve->request);
3993
3994                 if (rq) {
3995                         if (count++ < max - 1)
3996                                 show_request(m, rq, "\t\t", 0);
3997                         else
3998                                 last = rq;
3999                 }
4000         }
4001         if (last) {
4002                 if (count > max) {
4003                         drm_printf(m,
4004                                    "\t\t...skipping %d virtual requests...\n",
4005                                    count - max);
4006                 }
4007                 show_request(m, last, "\t\t", 0);
4008         }
4009
4010         spin_unlock_irqrestore(&sched_engine->lock, flags);
4011 }
4012
4013 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4014 #include "selftest_execlists.c"
4015 #endif
This page took 0.285481 seconds and 4 git commands to generate.