1 // SPDX-License-Identifier: LGPL-2.1
4 #include <linux/membarrier.h>
15 #include <sys/types.h>
21 static inline pid_t rseq_gettid(void)
23 return syscall(__NR_gettid);
27 static int loop_cnt[NR_INJECT + 1];
29 static int loop_cnt_1 asm("asm_loop_cnt_1") __attribute__((used));
30 static int loop_cnt_2 asm("asm_loop_cnt_2") __attribute__((used));
31 static int loop_cnt_3 asm("asm_loop_cnt_3") __attribute__((used));
32 static int loop_cnt_4 asm("asm_loop_cnt_4") __attribute__((used));
33 static int loop_cnt_5 asm("asm_loop_cnt_5") __attribute__((used));
34 static int loop_cnt_6 asm("asm_loop_cnt_6") __attribute__((used));
36 static int opt_modulo, verbose;
38 static int opt_yield, opt_signal, opt_sleep,
39 opt_disable_rseq, opt_threads = 200,
40 opt_disable_mod = 0, opt_test = 's';
42 static long long opt_reps = 5000;
44 static __thread __attribute__((tls_model("initial-exec")))
45 unsigned int signals_delivered;
49 static __thread __attribute__((tls_model("initial-exec"), unused))
50 unsigned int yield_mod_cnt, nr_abort;
52 #define printf_verbose(fmt, ...) \
55 printf(fmt, ## __VA_ARGS__); \
60 #define INJECT_ASM_REG "eax"
62 #define RSEQ_INJECT_CLOBBER \
65 #define RSEQ_INJECT_ASM(n) \
66 "mov asm_loop_cnt_" #n ", %%" INJECT_ASM_REG "\n\t" \
67 "test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
70 "dec %%" INJECT_ASM_REG "\n\t" \
74 #elif defined(__x86_64__)
76 #define INJECT_ASM_REG_P "rax"
77 #define INJECT_ASM_REG "eax"
79 #define RSEQ_INJECT_CLOBBER \
83 #define RSEQ_INJECT_ASM(n) \
84 "lea asm_loop_cnt_" #n "(%%rip), %%" INJECT_ASM_REG_P "\n\t" \
85 "mov (%%" INJECT_ASM_REG_P "), %%" INJECT_ASM_REG "\n\t" \
86 "test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
89 "dec %%" INJECT_ASM_REG "\n\t" \
93 #elif defined(__s390__)
95 #define RSEQ_INJECT_INPUT \
96 , [loop_cnt_1]"m"(loop_cnt[1]) \
97 , [loop_cnt_2]"m"(loop_cnt[2]) \
98 , [loop_cnt_3]"m"(loop_cnt[3]) \
99 , [loop_cnt_4]"m"(loop_cnt[4]) \
100 , [loop_cnt_5]"m"(loop_cnt[5]) \
101 , [loop_cnt_6]"m"(loop_cnt[6])
103 #define INJECT_ASM_REG "r12"
105 #define RSEQ_INJECT_CLOBBER \
108 #define RSEQ_INJECT_ASM(n) \
109 "l %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
110 "ltr %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG "\n\t" \
113 "ahi %%" INJECT_ASM_REG ", -1\n\t" \
117 #elif defined(__ARMEL__)
119 #define RSEQ_INJECT_INPUT \
120 , [loop_cnt_1]"m"(loop_cnt[1]) \
121 , [loop_cnt_2]"m"(loop_cnt[2]) \
122 , [loop_cnt_3]"m"(loop_cnt[3]) \
123 , [loop_cnt_4]"m"(loop_cnt[4]) \
124 , [loop_cnt_5]"m"(loop_cnt[5]) \
125 , [loop_cnt_6]"m"(loop_cnt[6])
127 #define INJECT_ASM_REG "r4"
129 #define RSEQ_INJECT_CLOBBER \
132 #define RSEQ_INJECT_ASM(n) \
133 "ldr " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
134 "cmp " INJECT_ASM_REG ", #0\n\t" \
137 "subs " INJECT_ASM_REG ", #1\n\t" \
141 #elif defined(__AARCH64EL__)
143 #define RSEQ_INJECT_INPUT \
144 , [loop_cnt_1] "Qo" (loop_cnt[1]) \
145 , [loop_cnt_2] "Qo" (loop_cnt[2]) \
146 , [loop_cnt_3] "Qo" (loop_cnt[3]) \
147 , [loop_cnt_4] "Qo" (loop_cnt[4]) \
148 , [loop_cnt_5] "Qo" (loop_cnt[5]) \
149 , [loop_cnt_6] "Qo" (loop_cnt[6])
151 #define INJECT_ASM_REG RSEQ_ASM_TMP_REG32
153 #define RSEQ_INJECT_ASM(n) \
154 " ldr " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n" \
155 " cbz " INJECT_ASM_REG ", 333f\n" \
157 " sub " INJECT_ASM_REG ", " INJECT_ASM_REG ", #1\n" \
158 " cbnz " INJECT_ASM_REG ", 222b\n" \
161 #elif defined(__PPC__)
163 #define RSEQ_INJECT_INPUT \
164 , [loop_cnt_1]"m"(loop_cnt[1]) \
165 , [loop_cnt_2]"m"(loop_cnt[2]) \
166 , [loop_cnt_3]"m"(loop_cnt[3]) \
167 , [loop_cnt_4]"m"(loop_cnt[4]) \
168 , [loop_cnt_5]"m"(loop_cnt[5]) \
169 , [loop_cnt_6]"m"(loop_cnt[6])
171 #define INJECT_ASM_REG "r18"
173 #define RSEQ_INJECT_CLOBBER \
176 #define RSEQ_INJECT_ASM(n) \
177 "lwz %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
178 "cmpwi %%" INJECT_ASM_REG ", 0\n\t" \
181 "subic. %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG ", 1\n\t" \
185 #elif defined(__mips__)
187 #define RSEQ_INJECT_INPUT \
188 , [loop_cnt_1]"m"(loop_cnt[1]) \
189 , [loop_cnt_2]"m"(loop_cnt[2]) \
190 , [loop_cnt_3]"m"(loop_cnt[3]) \
191 , [loop_cnt_4]"m"(loop_cnt[4]) \
192 , [loop_cnt_5]"m"(loop_cnt[5]) \
193 , [loop_cnt_6]"m"(loop_cnt[6])
195 #define INJECT_ASM_REG "$5"
197 #define RSEQ_INJECT_CLOBBER \
200 #define RSEQ_INJECT_ASM(n) \
201 "lw " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
202 "beqz " INJECT_ASM_REG ", 333f\n\t" \
204 "addiu " INJECT_ASM_REG ", -1\n\t" \
205 "bnez " INJECT_ASM_REG ", 222b\n\t" \
207 #elif defined(__riscv)
209 #define RSEQ_INJECT_INPUT \
210 , [loop_cnt_1]"m"(loop_cnt[1]) \
211 , [loop_cnt_2]"m"(loop_cnt[2]) \
212 , [loop_cnt_3]"m"(loop_cnt[3]) \
213 , [loop_cnt_4]"m"(loop_cnt[4]) \
214 , [loop_cnt_5]"m"(loop_cnt[5]) \
215 , [loop_cnt_6]"m"(loop_cnt[6])
217 #define INJECT_ASM_REG "t1"
219 #define RSEQ_INJECT_CLOBBER \
222 #define RSEQ_INJECT_ASM(n) \
223 "lw " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
224 "beqz " INJECT_ASM_REG ", 333f\n\t" \
226 "addi " INJECT_ASM_REG "," INJECT_ASM_REG ", -1\n\t" \
227 "bnez " INJECT_ASM_REG ", 222b\n\t" \
232 #error unsupported target
235 #define RSEQ_INJECT_FAILED \
238 #define RSEQ_INJECT_C(n) \
240 int loc_i, loc_nr_loops = loop_cnt[n]; \
242 for (loc_i = 0; loc_i < loc_nr_loops; loc_i++) { \
245 if (loc_nr_loops == -1 && opt_modulo) { \
246 if (yield_mod_cnt == opt_modulo - 1) { \
248 poll(NULL, 0, opt_sleep); \
262 #define printf_verbose(fmt, ...)
264 #endif /* BENCHMARK */
268 static enum rseq_mo opt_mo = RSEQ_MO_RELAXED;
270 #ifdef RSEQ_ARCH_HAS_OFFSET_DEREF_ADDV
271 #define TEST_MEMBARRIER
273 static int sys_membarrier(int cmd, int flags, int cpu_id)
275 return syscall(__NR_membarrier, cmd, flags, cpu_id);
279 #ifdef BUILDOPT_RSEQ_PERCPU_MM_CID
280 # define RSEQ_PERCPU RSEQ_PERCPU_MM_CID
282 int get_current_cpu_id(void)
284 return rseq_current_mm_cid();
287 bool rseq_validate_cpu_id(void)
289 return rseq_mm_cid_available();
292 bool rseq_use_cpu_index(void)
294 return false; /* Use mm_cid */
296 # ifdef TEST_MEMBARRIER
298 * Membarrier does not currently support targeting a mm_cid, so
299 * issue the barrier on all cpus.
302 int rseq_membarrier_expedited(int cpu)
304 return sys_membarrier(MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ,
307 # endif /* TEST_MEMBARRIER */
309 # define RSEQ_PERCPU RSEQ_PERCPU_CPU_ID
311 int get_current_cpu_id(void)
313 return rseq_cpu_start();
316 bool rseq_validate_cpu_id(void)
318 return rseq_current_cpu_raw() >= 0;
321 bool rseq_use_cpu_index(void)
323 return true; /* Use cpu_id as index. */
325 # ifdef TEST_MEMBARRIER
327 int rseq_membarrier_expedited(int cpu)
329 return sys_membarrier(MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ,
330 MEMBARRIER_CMD_FLAG_CPU, cpu);
332 # endif /* TEST_MEMBARRIER */
335 struct percpu_lock_entry {
337 } __attribute__((aligned(128)));
340 struct percpu_lock_entry c[CPU_SETSIZE];
343 struct test_data_entry {
345 } __attribute__((aligned(128)));
347 struct spinlock_test_data {
348 struct percpu_lock lock;
349 struct test_data_entry c[CPU_SETSIZE];
352 struct spinlock_thread_test_data {
353 struct spinlock_test_data *data;
358 struct inc_test_data {
359 struct test_data_entry c[CPU_SETSIZE];
362 struct inc_thread_test_data {
363 struct inc_test_data *data;
368 struct percpu_list_node {
370 struct percpu_list_node *next;
373 struct percpu_list_entry {
374 struct percpu_list_node *head;
375 } __attribute__((aligned(128)));
378 struct percpu_list_entry c[CPU_SETSIZE];
381 #define BUFFER_ITEM_PER_CPU 100
383 struct percpu_buffer_node {
387 struct percpu_buffer_entry {
390 struct percpu_buffer_node **array;
391 } __attribute__((aligned(128)));
393 struct percpu_buffer {
394 struct percpu_buffer_entry c[CPU_SETSIZE];
397 #define MEMCPY_BUFFER_ITEM_PER_CPU 100
399 struct percpu_memcpy_buffer_node {
404 struct percpu_memcpy_buffer_entry {
407 struct percpu_memcpy_buffer_node *array;
408 } __attribute__((aligned(128)));
410 struct percpu_memcpy_buffer {
411 struct percpu_memcpy_buffer_entry c[CPU_SETSIZE];
414 /* A simple percpu spinlock. Grabs lock on current cpu. */
415 static int rseq_this_cpu_lock(struct percpu_lock *lock)
422 cpu = get_current_cpu_id();
424 fprintf(stderr, "pid: %d: tid: %d, cpu: %d: cid: %d\n",
425 getpid(), (int) rseq_gettid(), rseq_current_cpu_raw(), cpu);
428 ret = rseq_cmpeqv_storev(RSEQ_MO_RELAXED, RSEQ_PERCPU,
431 if (rseq_likely(!ret))
433 /* Retry if comparison fails or rseq aborts. */
436 * Acquire semantic when taking lock after control dependency.
437 * Matches rseq_smp_store_release().
439 rseq_smp_acquire__after_ctrl_dep();
443 static void rseq_percpu_unlock(struct percpu_lock *lock, int cpu)
445 assert(lock->c[cpu].v == 1);
447 * Release lock, with release semantic. Matches
448 * rseq_smp_acquire__after_ctrl_dep().
450 rseq_smp_store_release(&lock->c[cpu].v, 0);
453 void *test_percpu_spinlock_thread(void *arg)
455 struct spinlock_thread_test_data *thread_data = arg;
456 struct spinlock_test_data *data = thread_data->data;
459 if (!opt_disable_rseq && thread_data->reg &&
460 rseq_register_current_thread())
462 reps = thread_data->reps;
463 for (i = 0; i < reps; i++) {
464 int cpu = rseq_this_cpu_lock(&data->lock);
465 data->c[cpu].count++;
466 rseq_percpu_unlock(&data->lock, cpu);
468 if (i != 0 && !(i % (reps / 10)))
469 printf_verbose("tid %d: count %lld\n",
470 (int) rseq_gettid(), i);
473 printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
474 (int) rseq_gettid(), nr_abort, signals_delivered);
475 if (!opt_disable_rseq && thread_data->reg &&
476 rseq_unregister_current_thread())
482 * A simple test which implements a sharded counter using a per-cpu
483 * lock. Obviously real applications might prefer to simply use a
484 * per-cpu increment; however, this is reasonable for a test and the
485 * lock can be extended to synchronize more complicated operations.
487 void test_percpu_spinlock(void)
489 const int num_threads = opt_threads;
492 pthread_t test_threads[num_threads];
493 struct spinlock_test_data data;
494 struct spinlock_thread_test_data thread_data[num_threads];
496 memset(&data, 0, sizeof(data));
497 for (i = 0; i < num_threads; i++) {
498 thread_data[i].reps = opt_reps;
499 if (opt_disable_mod <= 0 || (i % opt_disable_mod))
500 thread_data[i].reg = 1;
502 thread_data[i].reg = 0;
503 thread_data[i].data = &data;
504 ret = pthread_create(&test_threads[i], NULL,
505 test_percpu_spinlock_thread,
509 perror("pthread_create");
514 for (i = 0; i < num_threads; i++) {
515 ret = pthread_join(test_threads[i], NULL);
518 perror("pthread_join");
524 for (i = 0; i < CPU_SETSIZE; i++)
525 sum += data.c[i].count;
527 assert(sum == (uint64_t)opt_reps * num_threads);
530 void *test_percpu_inc_thread(void *arg)
532 struct inc_thread_test_data *thread_data = arg;
533 struct inc_test_data *data = thread_data->data;
536 if (!opt_disable_rseq && thread_data->reg &&
537 rseq_register_current_thread())
539 reps = thread_data->reps;
540 for (i = 0; i < reps; i++) {
546 cpu = get_current_cpu_id();
547 ret = rseq_addv(RSEQ_MO_RELAXED, RSEQ_PERCPU,
548 &data->c[cpu].count, 1, cpu);
549 } while (rseq_unlikely(ret));
551 if (i != 0 && !(i % (reps / 10)))
552 printf_verbose("tid %d: count %lld\n",
553 (int) rseq_gettid(), i);
556 printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
557 (int) rseq_gettid(), nr_abort, signals_delivered);
558 if (!opt_disable_rseq && thread_data->reg &&
559 rseq_unregister_current_thread())
564 void test_percpu_inc(void)
566 const int num_threads = opt_threads;
569 pthread_t test_threads[num_threads];
570 struct inc_test_data data;
571 struct inc_thread_test_data thread_data[num_threads];
573 memset(&data, 0, sizeof(data));
574 for (i = 0; i < num_threads; i++) {
575 thread_data[i].reps = opt_reps;
576 if (opt_disable_mod <= 0 || (i % opt_disable_mod))
577 thread_data[i].reg = 1;
579 thread_data[i].reg = 0;
580 thread_data[i].data = &data;
581 ret = pthread_create(&test_threads[i], NULL,
582 test_percpu_inc_thread,
586 perror("pthread_create");
591 for (i = 0; i < num_threads; i++) {
592 ret = pthread_join(test_threads[i], NULL);
595 perror("pthread_join");
601 for (i = 0; i < CPU_SETSIZE; i++)
602 sum += data.c[i].count;
604 assert(sum == (uint64_t)opt_reps * num_threads);
607 void this_cpu_list_push(struct percpu_list *list,
608 struct percpu_list_node *node,
614 intptr_t *targetptr, newval, expect;
617 cpu = get_current_cpu_id();
618 /* Load list->c[cpu].head with single-copy atomicity. */
619 expect = (intptr_t)RSEQ_READ_ONCE(list->c[cpu].head);
620 newval = (intptr_t)node;
621 targetptr = (intptr_t *)&list->c[cpu].head;
622 node->next = (struct percpu_list_node *)expect;
623 ret = rseq_cmpeqv_storev(RSEQ_MO_RELAXED, RSEQ_PERCPU,
624 targetptr, expect, newval, cpu);
625 if (rseq_likely(!ret))
627 /* Retry if comparison fails or rseq aborts. */
634 * Unlike a traditional lock-less linked list; the availability of a
635 * rseq primitive allows us to implement pop without concerns over
638 struct percpu_list_node *this_cpu_list_pop(struct percpu_list *list,
641 struct percpu_list_node *node = NULL;
645 struct percpu_list_node *head;
646 intptr_t *targetptr, expectnot, *load;
650 cpu = get_current_cpu_id();
651 targetptr = (intptr_t *)&list->c[cpu].head;
652 expectnot = (intptr_t)NULL;
653 offset = offsetof(struct percpu_list_node, next);
654 load = (intptr_t *)&head;
655 ret = rseq_cmpnev_storeoffp_load(RSEQ_MO_RELAXED, RSEQ_PERCPU,
656 targetptr, expectnot,
658 if (rseq_likely(!ret)) {
664 /* Retry if rseq aborts. */
672 * __percpu_list_pop is not safe against concurrent accesses. Should
673 * only be used on lists that are not concurrently modified.
675 struct percpu_list_node *__percpu_list_pop(struct percpu_list *list, int cpu)
677 struct percpu_list_node *node;
679 node = list->c[cpu].head;
682 list->c[cpu].head = node->next;
686 void *test_percpu_list_thread(void *arg)
689 struct percpu_list *list = (struct percpu_list *)arg;
691 if (!opt_disable_rseq && rseq_register_current_thread())
695 for (i = 0; i < reps; i++) {
696 struct percpu_list_node *node;
698 node = this_cpu_list_pop(list, NULL);
700 sched_yield(); /* encourage shuffling */
702 this_cpu_list_push(list, node, NULL);
705 printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
706 (int) rseq_gettid(), nr_abort, signals_delivered);
707 if (!opt_disable_rseq && rseq_unregister_current_thread())
713 /* Simultaneous modification to a per-cpu linked list from many threads. */
714 void test_percpu_list(void)
716 const int num_threads = opt_threads;
718 uint64_t sum = 0, expected_sum = 0;
719 struct percpu_list list;
720 pthread_t test_threads[num_threads];
721 cpu_set_t allowed_cpus;
723 memset(&list, 0, sizeof(list));
725 /* Generate list entries for every usable cpu. */
726 sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
727 for (i = 0; i < CPU_SETSIZE; i++) {
728 if (rseq_use_cpu_index() && !CPU_ISSET(i, &allowed_cpus))
730 for (j = 1; j <= 100; j++) {
731 struct percpu_list_node *node;
735 node = malloc(sizeof(*node));
738 node->next = list.c[i].head;
739 list.c[i].head = node;
743 for (i = 0; i < num_threads; i++) {
744 ret = pthread_create(&test_threads[i], NULL,
745 test_percpu_list_thread, &list);
748 perror("pthread_create");
753 for (i = 0; i < num_threads; i++) {
754 ret = pthread_join(test_threads[i], NULL);
757 perror("pthread_join");
762 for (i = 0; i < CPU_SETSIZE; i++) {
763 struct percpu_list_node *node;
765 if (rseq_use_cpu_index() && !CPU_ISSET(i, &allowed_cpus))
768 while ((node = __percpu_list_pop(&list, i))) {
775 * All entries should now be accounted for (unless some external
776 * actor is interfering with our allowed affinity while this
779 assert(sum == expected_sum);
782 bool this_cpu_buffer_push(struct percpu_buffer *buffer,
783 struct percpu_buffer_node *node,
790 intptr_t *targetptr_spec, newval_spec;
791 intptr_t *targetptr_final, newval_final;
795 cpu = get_current_cpu_id();
796 offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
797 if (offset == buffer->c[cpu].buflen)
799 newval_spec = (intptr_t)node;
800 targetptr_spec = (intptr_t *)&buffer->c[cpu].array[offset];
801 newval_final = offset + 1;
802 targetptr_final = &buffer->c[cpu].offset;
803 ret = rseq_cmpeqv_trystorev_storev(opt_mo, RSEQ_PERCPU,
804 targetptr_final, offset, targetptr_spec,
805 newval_spec, newval_final, cpu);
806 if (rseq_likely(!ret)) {
810 /* Retry if comparison fails or rseq aborts. */
817 struct percpu_buffer_node *this_cpu_buffer_pop(struct percpu_buffer *buffer,
820 struct percpu_buffer_node *head;
824 intptr_t *targetptr, newval;
828 cpu = get_current_cpu_id();
829 /* Load offset with single-copy atomicity. */
830 offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
835 head = RSEQ_READ_ONCE(buffer->c[cpu].array[offset - 1]);
837 targetptr = (intptr_t *)&buffer->c[cpu].offset;
838 ret = rseq_cmpeqv_cmpeqv_storev(RSEQ_MO_RELAXED, RSEQ_PERCPU,
840 (intptr_t *)&buffer->c[cpu].array[offset - 1],
841 (intptr_t)head, newval, cpu);
842 if (rseq_likely(!ret))
844 /* Retry if comparison fails or rseq aborts. */
852 * __percpu_buffer_pop is not safe against concurrent accesses. Should
853 * only be used on buffers that are not concurrently modified.
855 struct percpu_buffer_node *__percpu_buffer_pop(struct percpu_buffer *buffer,
858 struct percpu_buffer_node *head;
861 offset = buffer->c[cpu].offset;
864 head = buffer->c[cpu].array[offset - 1];
865 buffer->c[cpu].offset = offset - 1;
869 void *test_percpu_buffer_thread(void *arg)
872 struct percpu_buffer *buffer = (struct percpu_buffer *)arg;
874 if (!opt_disable_rseq && rseq_register_current_thread())
878 for (i = 0; i < reps; i++) {
879 struct percpu_buffer_node *node;
881 node = this_cpu_buffer_pop(buffer, NULL);
883 sched_yield(); /* encourage shuffling */
885 if (!this_cpu_buffer_push(buffer, node, NULL)) {
886 /* Should increase buffer size. */
892 printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
893 (int) rseq_gettid(), nr_abort, signals_delivered);
894 if (!opt_disable_rseq && rseq_unregister_current_thread())
900 /* Simultaneous modification to a per-cpu buffer from many threads. */
901 void test_percpu_buffer(void)
903 const int num_threads = opt_threads;
905 uint64_t sum = 0, expected_sum = 0;
906 struct percpu_buffer buffer;
907 pthread_t test_threads[num_threads];
908 cpu_set_t allowed_cpus;
910 memset(&buffer, 0, sizeof(buffer));
912 /* Generate list entries for every usable cpu. */
913 sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
914 for (i = 0; i < CPU_SETSIZE; i++) {
915 if (rseq_use_cpu_index() && !CPU_ISSET(i, &allowed_cpus))
917 /* Worse-case is every item in same CPU. */
919 malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
920 BUFFER_ITEM_PER_CPU);
921 assert(buffer.c[i].array);
922 buffer.c[i].buflen = CPU_SETSIZE * BUFFER_ITEM_PER_CPU;
923 for (j = 1; j <= BUFFER_ITEM_PER_CPU; j++) {
924 struct percpu_buffer_node *node;
929 * We could theoretically put the word-sized
930 * "data" directly in the buffer. However, we
931 * want to model objects that would not fit
932 * within a single word, so allocate an object
935 node = malloc(sizeof(*node));
938 buffer.c[i].array[j - 1] = node;
939 buffer.c[i].offset++;
943 for (i = 0; i < num_threads; i++) {
944 ret = pthread_create(&test_threads[i], NULL,
945 test_percpu_buffer_thread, &buffer);
948 perror("pthread_create");
953 for (i = 0; i < num_threads; i++) {
954 ret = pthread_join(test_threads[i], NULL);
957 perror("pthread_join");
962 for (i = 0; i < CPU_SETSIZE; i++) {
963 struct percpu_buffer_node *node;
965 if (rseq_use_cpu_index() && !CPU_ISSET(i, &allowed_cpus))
968 while ((node = __percpu_buffer_pop(&buffer, i))) {
972 free(buffer.c[i].array);
976 * All entries should now be accounted for (unless some external
977 * actor is interfering with our allowed affinity while this
980 assert(sum == expected_sum);
983 bool this_cpu_memcpy_buffer_push(struct percpu_memcpy_buffer *buffer,
984 struct percpu_memcpy_buffer_node item,
991 intptr_t *targetptr_final, newval_final, offset;
992 char *destptr, *srcptr;
996 cpu = get_current_cpu_id();
997 /* Load offset with single-copy atomicity. */
998 offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
999 if (offset == buffer->c[cpu].buflen)
1001 destptr = (char *)&buffer->c[cpu].array[offset];
1002 srcptr = (char *)&item;
1003 /* copylen must be <= 4kB. */
1004 copylen = sizeof(item);
1005 newval_final = offset + 1;
1006 targetptr_final = &buffer->c[cpu].offset;
1007 ret = rseq_cmpeqv_trymemcpy_storev(
1008 opt_mo, RSEQ_PERCPU,
1009 targetptr_final, offset,
1010 destptr, srcptr, copylen,
1012 if (rseq_likely(!ret)) {
1016 /* Retry if comparison fails or rseq aborts. */
1023 bool this_cpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
1024 struct percpu_memcpy_buffer_node *item,
1027 bool result = false;
1031 intptr_t *targetptr_final, newval_final, offset;
1032 char *destptr, *srcptr;
1036 cpu = get_current_cpu_id();
1037 /* Load offset with single-copy atomicity. */
1038 offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
1041 destptr = (char *)item;
1042 srcptr = (char *)&buffer->c[cpu].array[offset - 1];
1043 /* copylen must be <= 4kB. */
1044 copylen = sizeof(*item);
1045 newval_final = offset - 1;
1046 targetptr_final = &buffer->c[cpu].offset;
1047 ret = rseq_cmpeqv_trymemcpy_storev(RSEQ_MO_RELAXED, RSEQ_PERCPU,
1048 targetptr_final, offset, destptr, srcptr, copylen,
1050 if (rseq_likely(!ret)) {
1054 /* Retry if comparison fails or rseq aborts. */
1062 * __percpu_memcpy_buffer_pop is not safe against concurrent accesses. Should
1063 * only be used on buffers that are not concurrently modified.
1065 bool __percpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
1066 struct percpu_memcpy_buffer_node *item,
1071 offset = buffer->c[cpu].offset;
1074 memcpy(item, &buffer->c[cpu].array[offset - 1], sizeof(*item));
1075 buffer->c[cpu].offset = offset - 1;
1079 void *test_percpu_memcpy_buffer_thread(void *arg)
1082 struct percpu_memcpy_buffer *buffer = (struct percpu_memcpy_buffer *)arg;
1084 if (!opt_disable_rseq && rseq_register_current_thread())
1088 for (i = 0; i < reps; i++) {
1089 struct percpu_memcpy_buffer_node item;
1092 result = this_cpu_memcpy_buffer_pop(buffer, &item, NULL);
1094 sched_yield(); /* encourage shuffling */
1096 if (!this_cpu_memcpy_buffer_push(buffer, item, NULL)) {
1097 /* Should increase buffer size. */
1103 printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
1104 (int) rseq_gettid(), nr_abort, signals_delivered);
1105 if (!opt_disable_rseq && rseq_unregister_current_thread())
1111 /* Simultaneous modification to a per-cpu buffer from many threads. */
1112 void test_percpu_memcpy_buffer(void)
1114 const int num_threads = opt_threads;
1116 uint64_t sum = 0, expected_sum = 0;
1117 struct percpu_memcpy_buffer buffer;
1118 pthread_t test_threads[num_threads];
1119 cpu_set_t allowed_cpus;
1121 memset(&buffer, 0, sizeof(buffer));
1123 /* Generate list entries for every usable cpu. */
1124 sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
1125 for (i = 0; i < CPU_SETSIZE; i++) {
1126 if (rseq_use_cpu_index() && !CPU_ISSET(i, &allowed_cpus))
1128 /* Worse-case is every item in same CPU. */
1130 malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
1131 MEMCPY_BUFFER_ITEM_PER_CPU);
1132 assert(buffer.c[i].array);
1133 buffer.c[i].buflen = CPU_SETSIZE * MEMCPY_BUFFER_ITEM_PER_CPU;
1134 for (j = 1; j <= MEMCPY_BUFFER_ITEM_PER_CPU; j++) {
1135 expected_sum += 2 * j + 1;
1138 * We could theoretically put the word-sized
1139 * "data" directly in the buffer. However, we
1140 * want to model objects that would not fit
1141 * within a single word, so allocate an object
1144 buffer.c[i].array[j - 1].data1 = j;
1145 buffer.c[i].array[j - 1].data2 = j + 1;
1146 buffer.c[i].offset++;
1150 for (i = 0; i < num_threads; i++) {
1151 ret = pthread_create(&test_threads[i], NULL,
1152 test_percpu_memcpy_buffer_thread,
1156 perror("pthread_create");
1161 for (i = 0; i < num_threads; i++) {
1162 ret = pthread_join(test_threads[i], NULL);
1165 perror("pthread_join");
1170 for (i = 0; i < CPU_SETSIZE; i++) {
1171 struct percpu_memcpy_buffer_node item;
1173 if (rseq_use_cpu_index() && !CPU_ISSET(i, &allowed_cpus))
1176 while (__percpu_memcpy_buffer_pop(&buffer, &item, i)) {
1180 free(buffer.c[i].array);
1184 * All entries should now be accounted for (unless some external
1185 * actor is interfering with our allowed affinity while this
1188 assert(sum == expected_sum);
1191 static void test_signal_interrupt_handler(int signo)
1193 signals_delivered++;
1196 static int set_signal_handler(void)
1199 struct sigaction sa;
1202 ret = sigemptyset(&sigset);
1204 perror("sigemptyset");
1208 sa.sa_handler = test_signal_interrupt_handler;
1209 sa.sa_mask = sigset;
1211 ret = sigaction(SIGUSR1, &sa, NULL);
1213 perror("sigaction");
1217 printf_verbose("Signal handler set for SIGUSR1\n");
1222 /* Test MEMBARRIER_CMD_PRIVATE_RESTART_RSEQ_ON_CPU membarrier command. */
1223 #ifdef TEST_MEMBARRIER
1224 struct test_membarrier_thread_args {
1226 intptr_t percpu_list_ptr;
1229 /* Worker threads modify data in their "active" percpu lists. */
1230 void *test_membarrier_worker_thread(void *arg)
1232 struct test_membarrier_thread_args *args =
1233 (struct test_membarrier_thread_args *)arg;
1234 const int iters = opt_reps;
1237 if (rseq_register_current_thread()) {
1238 fprintf(stderr, "Error: rseq_register_current_thread(...) failed(%d): %s\n",
1239 errno, strerror(errno));
1243 /* Wait for initialization. */
1244 while (!__atomic_load_n(&args->percpu_list_ptr, __ATOMIC_ACQUIRE)) {}
1246 for (i = 0; i < iters; ++i) {
1250 int cpu = get_current_cpu_id();
1252 ret = rseq_offset_deref_addv(RSEQ_MO_RELAXED, RSEQ_PERCPU,
1253 &args->percpu_list_ptr,
1254 sizeof(struct percpu_list_entry) * cpu, 1, cpu);
1255 } while (rseq_unlikely(ret));
1258 if (rseq_unregister_current_thread()) {
1259 fprintf(stderr, "Error: rseq_unregister_current_thread(...) failed(%d): %s\n",
1260 errno, strerror(errno));
1266 void test_membarrier_init_percpu_list(struct percpu_list *list)
1270 memset(list, 0, sizeof(*list));
1271 for (i = 0; i < CPU_SETSIZE; i++) {
1272 struct percpu_list_node *node;
1274 node = malloc(sizeof(*node));
1278 list->c[i].head = node;
1282 void test_membarrier_free_percpu_list(struct percpu_list *list)
1286 for (i = 0; i < CPU_SETSIZE; i++)
1287 free(list->c[i].head);
1291 * The manager thread swaps per-cpu lists that worker threads see,
1292 * and validates that there are no unexpected modifications.
1294 void *test_membarrier_manager_thread(void *arg)
1296 struct test_membarrier_thread_args *args =
1297 (struct test_membarrier_thread_args *)arg;
1298 struct percpu_list list_a, list_b;
1299 intptr_t expect_a = 0, expect_b = 0;
1300 int cpu_a = 0, cpu_b = 0;
1302 if (rseq_register_current_thread()) {
1303 fprintf(stderr, "Error: rseq_register_current_thread(...) failed(%d): %s\n",
1304 errno, strerror(errno));
1309 test_membarrier_init_percpu_list(&list_a);
1310 test_membarrier_init_percpu_list(&list_b);
1312 __atomic_store_n(&args->percpu_list_ptr, (intptr_t)&list_a, __ATOMIC_RELEASE);
1314 while (!__atomic_load_n(&args->stop, __ATOMIC_ACQUIRE)) {
1315 /* list_a is "active". */
1316 cpu_a = rand() % CPU_SETSIZE;
1318 * As list_b is "inactive", we should never see changes
1321 if (expect_b != __atomic_load_n(&list_b.c[cpu_b].head->data, __ATOMIC_ACQUIRE)) {
1322 fprintf(stderr, "Membarrier test failed\n");
1326 /* Make list_b "active". */
1327 __atomic_store_n(&args->percpu_list_ptr, (intptr_t)&list_b, __ATOMIC_RELEASE);
1328 if (rseq_membarrier_expedited(cpu_a) &&
1329 errno != ENXIO /* missing CPU */) {
1330 perror("sys_membarrier");
1334 * Cpu A should now only modify list_b, so the values
1335 * in list_a should be stable.
1337 expect_a = __atomic_load_n(&list_a.c[cpu_a].head->data, __ATOMIC_ACQUIRE);
1339 cpu_b = rand() % CPU_SETSIZE;
1341 * As list_a is "inactive", we should never see changes
1344 if (expect_a != __atomic_load_n(&list_a.c[cpu_a].head->data, __ATOMIC_ACQUIRE)) {
1345 fprintf(stderr, "Membarrier test failed\n");
1349 /* Make list_a "active". */
1350 __atomic_store_n(&args->percpu_list_ptr, (intptr_t)&list_a, __ATOMIC_RELEASE);
1351 if (rseq_membarrier_expedited(cpu_b) &&
1352 errno != ENXIO /* missing CPU*/) {
1353 perror("sys_membarrier");
1356 /* Remember a value from list_b. */
1357 expect_b = __atomic_load_n(&list_b.c[cpu_b].head->data, __ATOMIC_ACQUIRE);
1360 test_membarrier_free_percpu_list(&list_a);
1361 test_membarrier_free_percpu_list(&list_b);
1363 if (rseq_unregister_current_thread()) {
1364 fprintf(stderr, "Error: rseq_unregister_current_thread(...) failed(%d): %s\n",
1365 errno, strerror(errno));
1371 void test_membarrier(void)
1373 const int num_threads = opt_threads;
1374 struct test_membarrier_thread_args thread_args;
1375 pthread_t worker_threads[num_threads];
1376 pthread_t manager_thread;
1379 if (sys_membarrier(MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ, 0, 0)) {
1380 perror("sys_membarrier");
1384 thread_args.stop = 0;
1385 thread_args.percpu_list_ptr = 0;
1386 ret = pthread_create(&manager_thread, NULL,
1387 test_membarrier_manager_thread, &thread_args);
1390 perror("pthread_create");
1394 for (i = 0; i < num_threads; i++) {
1395 ret = pthread_create(&worker_threads[i], NULL,
1396 test_membarrier_worker_thread, &thread_args);
1399 perror("pthread_create");
1405 for (i = 0; i < num_threads; i++) {
1406 ret = pthread_join(worker_threads[i], NULL);
1409 perror("pthread_join");
1414 __atomic_store_n(&thread_args.stop, 1, __ATOMIC_RELEASE);
1415 ret = pthread_join(manager_thread, NULL);
1418 perror("pthread_join");
1422 #else /* TEST_MEMBARRIER */
1423 void test_membarrier(void)
1425 fprintf(stderr, "rseq_offset_deref_addv is not implemented on this architecture. "
1426 "Skipping membarrier test.\n");
1430 static void show_usage(int argc, char **argv)
1432 printf("Usage : %s <OPTIONS>\n",
1434 printf("OPTIONS:\n");
1435 printf(" [-1 loops] Number of loops for delay injection 1\n");
1436 printf(" [-2 loops] Number of loops for delay injection 2\n");
1437 printf(" [-3 loops] Number of loops for delay injection 3\n");
1438 printf(" [-4 loops] Number of loops for delay injection 4\n");
1439 printf(" [-5 loops] Number of loops for delay injection 5\n");
1440 printf(" [-6 loops] Number of loops for delay injection 6\n");
1441 printf(" [-7 loops] Number of loops for delay injection 7 (-1 to enable -m)\n");
1442 printf(" [-8 loops] Number of loops for delay injection 8 (-1 to enable -m)\n");
1443 printf(" [-9 loops] Number of loops for delay injection 9 (-1 to enable -m)\n");
1444 printf(" [-m N] Yield/sleep/kill every modulo N (default 0: disabled) (>= 0)\n");
1445 printf(" [-y] Yield\n");
1446 printf(" [-k] Kill thread with signal\n");
1447 printf(" [-s S] S: =0: disabled (default), >0: sleep time (ms)\n");
1448 printf(" [-t N] Number of threads (default 200)\n");
1449 printf(" [-r N] Number of repetitions per thread (default 5000)\n");
1450 printf(" [-d] Disable rseq system call (no initialization)\n");
1451 printf(" [-D M] Disable rseq for each M threads\n");
1452 printf(" [-T test] Choose test: (s)pinlock, (l)ist, (b)uffer, (m)emcpy, (i)ncrement, membarrie(r)\n");
1453 printf(" [-M] Push into buffer and memcpy buffer with memory barriers.\n");
1454 printf(" [-v] Verbose output.\n");
1455 printf(" [-h] Show this help.\n");
1459 int main(int argc, char **argv)
1463 for (i = 1; i < argc; i++) {
1464 if (argv[i][0] != '-')
1466 switch (argv[i][1]) {
1477 show_usage(argc, argv);
1480 loop_cnt[argv[i][1] - '0'] = atol(argv[i + 1]);
1485 show_usage(argc, argv);
1488 opt_modulo = atol(argv[i + 1]);
1489 if (opt_modulo < 0) {
1490 show_usage(argc, argv);
1497 show_usage(argc, argv);
1500 opt_sleep = atol(argv[i + 1]);
1501 if (opt_sleep < 0) {
1502 show_usage(argc, argv);
1514 opt_disable_rseq = 1;
1518 show_usage(argc, argv);
1521 opt_disable_mod = atol(argv[i + 1]);
1522 if (opt_disable_mod < 0) {
1523 show_usage(argc, argv);
1530 show_usage(argc, argv);
1533 opt_threads = atol(argv[i + 1]);
1534 if (opt_threads < 0) {
1535 show_usage(argc, argv);
1542 show_usage(argc, argv);
1545 opt_reps = atoll(argv[i + 1]);
1547 show_usage(argc, argv);
1553 show_usage(argc, argv);
1557 show_usage(argc, argv);
1560 opt_test = *argv[i + 1];
1570 show_usage(argc, argv);
1579 opt_mo = RSEQ_MO_RELEASE;
1582 show_usage(argc, argv);
1587 loop_cnt_1 = loop_cnt[1];
1588 loop_cnt_2 = loop_cnt[2];
1589 loop_cnt_3 = loop_cnt[3];
1590 loop_cnt_4 = loop_cnt[4];
1591 loop_cnt_5 = loop_cnt[5];
1592 loop_cnt_6 = loop_cnt[6];
1594 if (set_signal_handler())
1597 if (!opt_disable_rseq && rseq_register_current_thread())
1599 if (!opt_disable_rseq && !rseq_validate_cpu_id()) {
1600 fprintf(stderr, "Error: cpu id getter unavailable\n");
1605 printf_verbose("spinlock\n");
1606 test_percpu_spinlock();
1609 printf_verbose("linked list\n");
1613 printf_verbose("buffer\n");
1614 test_percpu_buffer();
1617 printf_verbose("memcpy buffer\n");
1618 test_percpu_memcpy_buffer();
1621 printf_verbose("counter increment\n");
1625 printf_verbose("membarrier\n");
1629 if (!opt_disable_rseq && rseq_unregister_current_thread())