1 // SPDX-License-Identifier: GPL-2.0
16 #include "map_symbol.h"
18 #include "mem-events.h"
30 #include <sys/types.h>
34 #include "linux/hash.h"
36 #include "bpf-event.h"
37 #include <internal/lib.h> // page_size
39 #include "arm64-frame-pointer-unwind-support.h"
41 #include <linux/ctype.h>
42 #include <symbol/kallsyms.h>
43 #include <linux/mman.h>
44 #include <linux/string.h>
45 #include <linux/zalloc.h>
47 static struct dso *machine__kernel_dso(struct machine *machine)
49 return map__dso(machine->vmlinux_map);
52 static int machine__set_mmap_name(struct machine *machine)
54 if (machine__is_host(machine))
55 machine->mmap_name = strdup("[kernel.kallsyms]");
56 else if (machine__is_default_guest(machine))
57 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
58 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
60 machine->mmap_name = NULL;
62 return machine->mmap_name ? 0 : -ENOMEM;
65 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
69 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
70 thread__set_comm(thread, comm, 0);
73 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
77 memset(machine, 0, sizeof(*machine));
78 machine->kmaps = maps__new(machine);
79 if (machine->kmaps == NULL)
82 RB_CLEAR_NODE(&machine->rb_node);
83 dsos__init(&machine->dsos);
85 threads__init(&machine->threads);
87 machine->vdso_info = NULL;
92 machine->id_hdr_size = 0;
93 machine->kptr_restrict_warned = false;
94 machine->comm_exec = false;
95 machine->kernel_start = 0;
96 machine->vmlinux_map = NULL;
98 machine->root_dir = strdup(root_dir);
99 if (machine->root_dir == NULL)
102 if (machine__set_mmap_name(machine))
105 if (pid != HOST_KERNEL_ID) {
106 struct thread *thread = machine__findnew_thread(machine, -1,
112 thread__set_guest_comm(thread, pid);
116 machine->current_tid = NULL;
121 zfree(&machine->kmaps);
122 zfree(&machine->root_dir);
123 zfree(&machine->mmap_name);
128 struct machine *machine__new_host(void)
130 struct machine *machine = malloc(sizeof(*machine));
132 if (machine != NULL) {
133 machine__init(machine, "", HOST_KERNEL_ID);
135 if (machine__create_kernel_maps(machine) < 0)
138 machine->env = &perf_env;
147 struct machine *machine__new_kallsyms(void)
149 struct machine *machine = machine__new_host();
152 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
153 * ask for not using the kcore parsing code, once this one is fixed
154 * to create a map per module.
156 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
157 machine__delete(machine);
164 void machine__delete_threads(struct machine *machine)
166 threads__remove_all_threads(&machine->threads);
169 void machine__exit(struct machine *machine)
174 machine__destroy_kernel_maps(machine);
175 maps__zput(machine->kmaps);
176 dsos__exit(&machine->dsos);
177 machine__exit_vdso(machine);
178 zfree(&machine->root_dir);
179 zfree(&machine->mmap_name);
180 zfree(&machine->current_tid);
181 zfree(&machine->kallsyms_filename);
183 threads__exit(&machine->threads);
186 void machine__delete(struct machine *machine)
189 machine__exit(machine);
194 void machines__init(struct machines *machines)
196 machine__init(&machines->host, "", HOST_KERNEL_ID);
197 machines->guests = RB_ROOT_CACHED;
200 void machines__exit(struct machines *machines)
202 machine__exit(&machines->host);
206 struct machine *machines__add(struct machines *machines, pid_t pid,
207 const char *root_dir)
209 struct rb_node **p = &machines->guests.rb_root.rb_node;
210 struct rb_node *parent = NULL;
211 struct machine *pos, *machine = malloc(sizeof(*machine));
212 bool leftmost = true;
217 if (machine__init(machine, root_dir, pid) != 0) {
224 pos = rb_entry(parent, struct machine, rb_node);
233 rb_link_node(&machine->rb_node, parent, p);
234 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
236 machine->machines = machines;
241 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
245 machines->host.comm_exec = comm_exec;
247 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
248 struct machine *machine = rb_entry(nd, struct machine, rb_node);
250 machine->comm_exec = comm_exec;
254 struct machine *machines__find(struct machines *machines, pid_t pid)
256 struct rb_node **p = &machines->guests.rb_root.rb_node;
257 struct rb_node *parent = NULL;
258 struct machine *machine;
259 struct machine *default_machine = NULL;
261 if (pid == HOST_KERNEL_ID)
262 return &machines->host;
266 machine = rb_entry(parent, struct machine, rb_node);
267 if (pid < machine->pid)
269 else if (pid > machine->pid)
274 default_machine = machine;
277 return default_machine;
280 struct machine *machines__findnew(struct machines *machines, pid_t pid)
283 const char *root_dir = "";
284 struct machine *machine = machines__find(machines, pid);
286 if (machine && (machine->pid == pid))
289 if ((pid != HOST_KERNEL_ID) &&
290 (pid != DEFAULT_GUEST_KERNEL_ID) &&
291 (symbol_conf.guestmount)) {
292 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
293 if (access(path, R_OK)) {
294 static struct strlist *seen;
297 seen = strlist__new(NULL, NULL);
299 if (!strlist__has_entry(seen, path)) {
300 pr_err("Can't access file %s\n", path);
301 strlist__add(seen, path);
309 machine = machines__add(machines, pid, root_dir);
314 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
316 struct machine *machine = machines__find(machines, pid);
319 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
324 * A common case for KVM test programs is that the test program acts as the
325 * hypervisor, creating, running and destroying the virtual machine, and
326 * providing the guest object code from its own object code. In this case,
327 * the VM is not running an OS, but only the functions loaded into it by the
328 * hypervisor test program, and conveniently, loaded at the same virtual
331 * Normally to resolve addresses, MMAP events are needed to map addresses
332 * back to the object code and debug symbols for that object code.
334 * Currently, there is no way to get such mapping information from guests
335 * but, in the scenario described above, the guest has the same mappings
336 * as the hypervisor, so support for that scenario can be achieved.
338 * To support that, copy the host thread's maps to the guest thread's maps.
339 * Note, we do not discover the guest until we encounter a guest event,
340 * which works well because it is not until then that we know that the host
341 * thread's maps have been set up.
343 * This function returns the guest thread. Apart from keeping the data
344 * structures sane, using a thread belonging to the guest machine, instead
345 * of the host thread, allows it to have its own comm (refer
346 * thread__set_guest_comm()).
348 static struct thread *findnew_guest_code(struct machine *machine,
349 struct machine *host_machine,
352 struct thread *host_thread;
353 struct thread *thread;
359 thread = machine__findnew_thread(machine, -1, pid);
363 /* Assume maps are set up if there are any */
364 if (!maps__empty(thread__maps(thread)))
367 host_thread = machine__find_thread(host_machine, -1, pid);
371 thread__set_guest_comm(thread, pid);
374 * Guest code can be found in hypervisor process at the same address
377 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
378 thread__put(host_thread);
385 thread__zput(thread);
389 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
391 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
392 struct machine *machine = machines__findnew(machines, pid);
394 return findnew_guest_code(machine, host_machine, pid);
397 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
399 struct machines *machines = machine->machines;
400 struct machine *host_machine;
405 host_machine = machines__find(machines, HOST_KERNEL_ID);
407 return findnew_guest_code(machine, host_machine, pid);
410 void machines__process_guests(struct machines *machines,
411 machine__process_t process, void *data)
415 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
416 struct machine *pos = rb_entry(nd, struct machine, rb_node);
421 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
423 struct rb_node *node;
424 struct machine *machine;
426 machines->host.id_hdr_size = id_hdr_size;
428 for (node = rb_first_cached(&machines->guests); node;
429 node = rb_next(node)) {
430 machine = rb_entry(node, struct machine, rb_node);
431 machine->id_hdr_size = id_hdr_size;
437 static void machine__update_thread_pid(struct machine *machine,
438 struct thread *th, pid_t pid)
440 struct thread *leader;
442 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
445 thread__set_pid(th, pid);
447 if (thread__pid(th) == thread__tid(th))
450 leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
454 if (!thread__maps(leader))
455 thread__set_maps(leader, maps__new(machine));
457 if (!thread__maps(leader))
460 if (thread__maps(th) == thread__maps(leader))
463 if (thread__maps(th)) {
465 * Maps are created from MMAP events which provide the pid and
466 * tid. Consequently there never should be any maps on a thread
467 * with an unknown pid. Just print an error if there are.
469 if (!maps__empty(thread__maps(th)))
470 pr_err("Discarding thread maps for %d:%d\n",
471 thread__pid(th), thread__tid(th));
472 maps__put(thread__maps(th));
475 thread__set_maps(th, maps__get(thread__maps(leader)));
480 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
485 * Caller must eventually drop thread->refcnt returned with a successful
486 * lookup/new thread inserted.
488 static struct thread *__machine__findnew_thread(struct machine *machine,
493 struct thread *th = threads__find(&machine->threads, tid);
497 machine__update_thread_pid(machine, th, pid);
503 th = threads__findnew(&machine->threads, pid, tid, &created);
506 * We have to initialize maps separately after rb tree is
509 * The reason is that we call machine__findnew_thread within
510 * thread__init_maps to find the thread leader and that would
511 * screwed the rb tree.
513 if (thread__init_maps(th, machine)) {
514 pr_err("Thread init failed thread %d\n", pid);
515 threads__remove(&machine->threads, th);
520 machine__update_thread_pid(machine, th, pid);
525 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
527 return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
530 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
533 return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
537 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
538 * So here a single thread is created for that, but actually there is a separate
539 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
540 * is only 1. That causes problems for some tools, requiring workarounds. For
541 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
543 struct thread *machine__idle_thread(struct machine *machine)
545 struct thread *thread = machine__findnew_thread(machine, 0, 0);
547 if (!thread || thread__set_comm(thread, "swapper", 0) ||
548 thread__set_namespaces(thread, 0, NULL))
549 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
554 struct comm *machine__thread_exec_comm(struct machine *machine,
555 struct thread *thread)
557 if (machine->comm_exec)
558 return thread__exec_comm(thread);
560 return thread__comm(thread);
563 int machine__process_comm_event(struct machine *machine, union perf_event *event,
564 struct perf_sample *sample)
566 struct thread *thread = machine__findnew_thread(machine,
569 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
573 machine->comm_exec = true;
576 perf_event__fprintf_comm(event, stdout);
578 if (thread == NULL ||
579 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
580 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
589 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
590 union perf_event *event,
591 struct perf_sample *sample __maybe_unused)
593 struct thread *thread = machine__findnew_thread(machine,
594 event->namespaces.pid,
595 event->namespaces.tid);
598 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
599 "\nWARNING: kernel seems to support more namespaces than perf"
600 " tool.\nTry updating the perf tool..\n\n");
602 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
603 "\nWARNING: perf tool seems to support more namespaces than"
604 " the kernel.\nTry updating the kernel..\n\n");
607 perf_event__fprintf_namespaces(event, stdout);
609 if (thread == NULL ||
610 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
611 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
620 int machine__process_cgroup_event(struct machine *machine,
621 union perf_event *event,
622 struct perf_sample *sample __maybe_unused)
627 perf_event__fprintf_cgroup(event, stdout);
629 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
636 int machine__process_lost_event(struct machine *machine __maybe_unused,
637 union perf_event *event, struct perf_sample *sample __maybe_unused)
639 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
640 event->lost.id, event->lost.lost);
644 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
645 union perf_event *event, struct perf_sample *sample)
647 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "%s\n",
648 sample->id, event->lost_samples.lost,
649 event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF ? " (BPF)" : "");
653 int machine__process_aux_event(struct machine *machine __maybe_unused,
654 union perf_event *event)
657 perf_event__fprintf_aux(event, stdout);
661 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
662 union perf_event *event)
665 perf_event__fprintf_itrace_start(event, stdout);
669 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
670 union perf_event *event)
673 perf_event__fprintf_aux_output_hw_id(event, stdout);
677 int machine__process_switch_event(struct machine *machine __maybe_unused,
678 union perf_event *event)
681 perf_event__fprintf_switch(event, stdout);
685 static int machine__process_ksymbol_register(struct machine *machine,
686 union perf_event *event,
687 struct perf_sample *sample __maybe_unused)
690 struct dso *dso = NULL;
691 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
695 dso = dso__new(event->ksymbol.name);
701 dso__set_kernel(dso, DSO_SPACE__KERNEL);
702 map = map__new2(0, dso);
707 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
708 dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL);
709 dso__data(dso)->file_size = event->ksymbol.len;
710 dso__set_loaded(dso);
713 map__set_start(map, event->ksymbol.addr);
714 map__set_end(map, map__start(map) + event->ksymbol.len);
715 err = maps__insert(machine__kernel_maps(machine), map);
721 dso__set_loaded(dso);
723 if (is_bpf_image(event->ksymbol.name)) {
724 dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE);
725 dso__set_long_name(dso, "", false);
728 dso = dso__get(map__dso(map));
731 sym = symbol__new(map__map_ip(map, map__start(map)),
733 0, 0, event->ksymbol.name);
738 dso__insert_symbol(dso, sym);
745 static int machine__process_ksymbol_unregister(struct machine *machine,
746 union perf_event *event,
747 struct perf_sample *sample __maybe_unused)
752 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
756 if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
757 maps__remove(machine__kernel_maps(machine), map);
759 struct dso *dso = map__dso(map);
761 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
763 dso__delete_symbol(dso, sym);
769 int machine__process_ksymbol(struct machine *machine __maybe_unused,
770 union perf_event *event,
771 struct perf_sample *sample)
774 perf_event__fprintf_ksymbol(event, stdout);
776 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
777 return machine__process_ksymbol_unregister(machine, event,
779 return machine__process_ksymbol_register(machine, event, sample);
782 int machine__process_text_poke(struct machine *machine, union perf_event *event,
783 struct perf_sample *sample __maybe_unused)
785 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
786 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
787 struct dso *dso = map ? map__dso(map) : NULL;
790 perf_event__fprintf_text_poke(event, machine, stdout);
792 if (!event->text_poke.new_len)
795 if (cpumode != PERF_RECORD_MISC_KERNEL) {
796 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
801 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
805 * Kernel maps might be changed when loading symbols so loading
806 * must be done prior to using kernel maps.
809 ret = dso__data_write_cache_addr(dso, map, machine,
810 event->text_poke.addr,
812 event->text_poke.new_len);
813 if (ret != event->text_poke.new_len)
814 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
815 event->text_poke.addr);
817 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
818 event->text_poke.addr);
825 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
826 const char *filename)
828 struct map *map = NULL;
833 if (kmod_path__parse_name(&m, filename))
836 dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename);
840 map = map__new2(start, dso);
844 err = maps__insert(machine__kernel_maps(machine), map);
845 /* If maps__insert failed, return NULL. */
851 /* put the dso here, corresponding to machine__findnew_module_dso */
857 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
860 size_t ret = dsos__fprintf(&machines->host.dsos, fp);
862 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
863 struct machine *pos = rb_entry(nd, struct machine, rb_node);
864 ret += dsos__fprintf(&pos->dsos, fp);
870 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
871 bool (skip)(struct dso *dso, int parm), int parm)
873 return dsos__fprintf_buildid(&m->dsos, fp, skip, parm);
876 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
877 bool (skip)(struct dso *dso, int parm), int parm)
880 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
882 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
883 struct machine *pos = rb_entry(nd, struct machine, rb_node);
884 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
889 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
893 struct dso *kdso = machine__kernel_dso(machine);
895 if (dso__has_build_id(kdso)) {
896 char filename[PATH_MAX];
898 if (dso__build_id_filename(kdso, filename, sizeof(filename), false))
899 printed += fprintf(fp, "[0] %s\n", filename);
902 for (i = 0; i < vmlinux_path__nr_entries; ++i) {
903 printed += fprintf(fp, "[%d] %s\n", i + dso__has_build_id(kdso),
909 struct machine_fprintf_cb_args {
914 static int machine_fprintf_cb(struct thread *thread, void *data)
916 struct machine_fprintf_cb_args *args = data;
918 /* TODO: handle fprintf errors. */
919 args->printed += thread__fprintf(thread, args->fp);
923 size_t machine__fprintf(struct machine *machine, FILE *fp)
925 struct machine_fprintf_cb_args args = {
929 size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
931 machine__for_each_thread(machine, machine_fprintf_cb, &args);
932 return ret + args.printed;
935 static struct dso *machine__get_kernel(struct machine *machine)
937 const char *vmlinux_name = machine->mmap_name;
940 if (machine__is_host(machine)) {
941 if (symbol_conf.vmlinux_name)
942 vmlinux_name = symbol_conf.vmlinux_name;
944 kernel = machine__findnew_kernel(machine, vmlinux_name,
945 "[kernel]", DSO_SPACE__KERNEL);
947 if (symbol_conf.default_guest_vmlinux_name)
948 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
950 kernel = machine__findnew_kernel(machine, vmlinux_name,
952 DSO_SPACE__KERNEL_GUEST);
955 if (kernel != NULL && (!dso__has_build_id(kernel)))
956 dso__read_running_kernel_build_id(kernel, machine);
961 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
964 if (machine__is_default_guest(machine))
965 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
967 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
970 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
972 /* Figure out the start address of kernel map from /proc/kallsyms.
973 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
974 * symbol_name if it's not that important.
976 static int machine__get_running_kernel_start(struct machine *machine,
977 const char **symbol_name,
978 u64 *start, u64 *end)
980 char filename[PATH_MAX];
985 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
987 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
990 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
991 err = kallsyms__get_function_start(filename, name, &addr);
1000 *symbol_name = name;
1004 err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1006 err = kallsyms__get_function_start(filename, "_etext", &addr);
1013 int machine__create_extra_kernel_map(struct machine *machine,
1015 struct extra_kernel_map *xm)
1021 map = map__new2(xm->start, kernel);
1025 map__set_end(map, xm->end);
1026 map__set_pgoff(map, xm->pgoff);
1028 kmap = map__kmap(map);
1030 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1032 err = maps__insert(machine__kernel_maps(machine), map);
1035 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1036 kmap->name, map__start(map), map__end(map));
1044 static u64 find_entry_trampoline(struct dso *dso)
1046 /* Duplicates are removed so lookup all aliases */
1047 const char *syms[] = {
1048 "_entry_trampoline",
1049 "__entry_trampoline_start",
1050 "entry_SYSCALL_64_trampoline",
1052 struct symbol *sym = dso__first_symbol(dso);
1055 for (; sym; sym = dso__next_symbol(sym)) {
1056 if (sym->binding != STB_GLOBAL)
1058 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1059 if (!strcmp(sym->name, syms[i]))
1068 * These values can be used for kernels that do not have symbols for the entry
1069 * trampolines in kallsyms.
1071 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1072 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1073 #define X86_64_ENTRY_TRAMPOLINE 0x6000
1075 struct machine__map_x86_64_entry_trampolines_args {
1080 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1082 struct machine__map_x86_64_entry_trampolines_args *args = data;
1083 struct map *dest_map;
1084 struct kmap *kmap = __map__kmap(map);
1086 if (!kmap || !is_entry_trampoline(kmap->name))
1089 dest_map = maps__find(args->kmaps, map__pgoff(map));
1090 if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1091 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1098 /* Map x86_64 PTI entry trampolines */
1099 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1102 struct machine__map_x86_64_entry_trampolines_args args = {
1103 .kmaps = machine__kernel_maps(machine),
1106 int nr_cpus_avail, cpu;
1110 * In the vmlinux case, pgoff is a virtual address which must now be
1111 * mapped to a vmlinux offset.
1113 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1115 if (args.found || machine->trampolines_mapped)
1118 pgoff = find_entry_trampoline(kernel);
1122 nr_cpus_avail = machine__nr_cpus_avail(machine);
1124 /* Add a 1 page map for each CPU's entry trampoline */
1125 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1126 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1127 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1128 X86_64_ENTRY_TRAMPOLINE;
1129 struct extra_kernel_map xm = {
1131 .end = va + page_size,
1135 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1137 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1141 machine->trampolines_mapped = nr_cpus_avail;
1146 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1147 struct dso *kernel __maybe_unused)
1153 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1155 /* In case of renewal the kernel map, destroy previous one */
1156 machine__destroy_kernel_maps(machine);
1158 map__put(machine->vmlinux_map);
1159 machine->vmlinux_map = map__new2(0, kernel);
1160 if (machine->vmlinux_map == NULL)
1163 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1164 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1167 void machine__destroy_kernel_maps(struct machine *machine)
1170 struct map *map = machine__kernel_map(machine);
1175 kmap = map__kmap(map);
1176 maps__remove(machine__kernel_maps(machine), map);
1177 if (kmap && kmap->ref_reloc_sym) {
1178 zfree((char **)&kmap->ref_reloc_sym->name);
1179 zfree(&kmap->ref_reloc_sym);
1182 map__zput(machine->vmlinux_map);
1185 int machines__create_guest_kernel_maps(struct machines *machines)
1188 struct dirent **namelist = NULL;
1190 char path[PATH_MAX];
1194 if (symbol_conf.default_guest_vmlinux_name ||
1195 symbol_conf.default_guest_modules ||
1196 symbol_conf.default_guest_kallsyms) {
1197 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1200 if (symbol_conf.guestmount) {
1201 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1204 for (i = 0; i < items; i++) {
1205 if (!isdigit(namelist[i]->d_name[0])) {
1206 /* Filter out . and .. */
1209 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1210 if ((*endp != '\0') ||
1211 (endp == namelist[i]->d_name) ||
1212 (errno == ERANGE)) {
1213 pr_debug("invalid directory (%s). Skipping.\n",
1214 namelist[i]->d_name);
1217 sprintf(path, "%s/%s/proc/kallsyms",
1218 symbol_conf.guestmount,
1219 namelist[i]->d_name);
1220 ret = access(path, R_OK);
1222 pr_debug("Can't access file %s\n", path);
1225 machines__create_kernel_maps(machines, pid);
1234 void machines__destroy_kernel_maps(struct machines *machines)
1236 struct rb_node *next = rb_first_cached(&machines->guests);
1238 machine__destroy_kernel_maps(&machines->host);
1241 struct machine *pos = rb_entry(next, struct machine, rb_node);
1243 next = rb_next(&pos->rb_node);
1244 rb_erase_cached(&pos->rb_node, &machines->guests);
1245 machine__delete(pos);
1249 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1251 struct machine *machine = machines__findnew(machines, pid);
1253 if (machine == NULL)
1256 return machine__create_kernel_maps(machine);
1259 int machine__load_kallsyms(struct machine *machine, const char *filename)
1261 struct map *map = machine__kernel_map(machine);
1262 struct dso *dso = map__dso(map);
1263 int ret = __dso__load_kallsyms(dso, filename, map, true);
1266 dso__set_loaded(dso);
1268 * Since /proc/kallsyms will have multiple sessions for the
1269 * kernel, with modules between them, fixup the end of all
1272 maps__fixup_end(machine__kernel_maps(machine));
1278 int machine__load_vmlinux_path(struct machine *machine)
1280 struct map *map = machine__kernel_map(machine);
1281 struct dso *dso = map__dso(map);
1282 int ret = dso__load_vmlinux_path(dso, map);
1285 dso__set_loaded(dso);
1290 static char *get_kernel_version(const char *root_dir)
1292 char version[PATH_MAX];
1295 const char *prefix = "Linux version ";
1297 sprintf(version, "%s/proc/version", root_dir);
1298 file = fopen(version, "r");
1302 tmp = fgets(version, sizeof(version), file);
1307 name = strstr(version, prefix);
1310 name += strlen(prefix);
1311 tmp = strchr(name, ' ');
1315 return strdup(name);
1318 static bool is_kmod_dso(struct dso *dso)
1320 return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1321 dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE;
1324 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1328 struct map *map = maps__find_by_name(maps, m->name);
1333 long_name = strdup(path);
1334 if (long_name == NULL) {
1339 dso = map__dso(map);
1340 dso__set_long_name(dso, long_name, true);
1341 dso__kernel_module_get_build_id(dso, "");
1344 * Full name could reveal us kmod compression, so
1345 * we need to update the symtab_type if needed.
1347 if (m->comp && is_kmod_dso(dso)) {
1348 dso__set_symtab_type(dso, dso__symtab_type(dso)+1);
1349 dso__set_comp(dso, m->comp);
1355 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1357 struct dirent *dent;
1358 DIR *dir = opendir(dir_name);
1362 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1366 while ((dent = readdir(dir)) != NULL) {
1367 char path[PATH_MAX];
1370 /*sshfs might return bad dent->d_type, so we have to stat*/
1371 path__join(path, sizeof(path), dir_name, dent->d_name);
1372 if (stat(path, &st))
1375 if (S_ISDIR(st.st_mode)) {
1376 if (!strcmp(dent->d_name, ".") ||
1377 !strcmp(dent->d_name, ".."))
1380 /* Do not follow top-level source and build symlinks */
1382 if (!strcmp(dent->d_name, "source") ||
1383 !strcmp(dent->d_name, "build"))
1387 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1393 ret = kmod_path__parse_name(&m, dent->d_name);
1398 ret = maps__set_module_path(maps, path, &m);
1412 static int machine__set_modules_path(struct machine *machine)
1415 char modules_path[PATH_MAX];
1417 version = get_kernel_version(machine->root_dir);
1421 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1422 machine->root_dir, version);
1425 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1427 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1428 u64 *size __maybe_unused,
1429 const char *name __maybe_unused)
1434 static int machine__create_module(void *arg, const char *name, u64 start,
1437 struct machine *machine = arg;
1440 if (arch__fix_module_text_start(&start, &size, name) < 0)
1443 map = machine__addnew_module_map(machine, start, name);
1446 map__set_end(map, start + size);
1448 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1453 static int machine__create_modules(struct machine *machine)
1455 const char *modules;
1456 char path[PATH_MAX];
1458 if (machine__is_default_guest(machine)) {
1459 modules = symbol_conf.default_guest_modules;
1461 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1465 if (symbol__restricted_filename(modules, "/proc/modules"))
1468 if (modules__parse(modules, machine, machine__create_module))
1471 if (!machine__set_modules_path(machine))
1474 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1479 static void machine__set_kernel_mmap(struct machine *machine,
1482 map__set_start(machine->vmlinux_map, start);
1483 map__set_end(machine->vmlinux_map, end);
1485 * Be a bit paranoid here, some perf.data file came with
1486 * a zero sized synthesized MMAP event for the kernel.
1488 if (start == 0 && end == 0)
1489 map__set_end(machine->vmlinux_map, ~0ULL);
1492 static int machine__update_kernel_mmap(struct machine *machine,
1495 struct map *orig, *updated;
1498 orig = machine->vmlinux_map;
1499 updated = map__get(orig);
1501 machine->vmlinux_map = updated;
1502 maps__remove(machine__kernel_maps(machine), orig);
1503 machine__set_kernel_mmap(machine, start, end);
1504 err = maps__insert(machine__kernel_maps(machine), updated);
1510 int machine__create_kernel_maps(struct machine *machine)
1512 struct dso *kernel = machine__get_kernel(machine);
1513 const char *name = NULL;
1514 u64 start = 0, end = ~0ULL;
1520 ret = __machine__create_kernel_maps(machine, kernel);
1524 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1525 if (machine__is_host(machine))
1526 pr_debug("Problems creating module maps, "
1527 "continuing anyway...\n");
1529 pr_debug("Problems creating module maps for guest %d, "
1530 "continuing anyway...\n", machine->pid);
1533 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1535 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1536 machine__destroy_kernel_maps(machine);
1542 * we have a real start address now, so re-order the kmaps
1543 * assume it's the last in the kmaps
1545 ret = machine__update_kernel_mmap(machine, start, end);
1550 if (machine__create_extra_kernel_maps(machine, kernel))
1551 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1554 /* update end address of the kernel map using adjacent module address */
1555 struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1556 machine__kernel_map(machine));
1559 machine__set_kernel_mmap(machine, start, map__start(next));
1569 static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused)
1571 return dso__is_kcore(dso) ? 1 : 0;
1574 static bool machine__uses_kcore(struct machine *machine)
1576 return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false;
1579 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1580 struct extra_kernel_map *xm)
1582 return machine__is(machine, "x86_64") &&
1583 is_entry_trampoline(xm->name);
1586 static int machine__process_extra_kernel_map(struct machine *machine,
1587 struct extra_kernel_map *xm)
1589 struct dso *kernel = machine__kernel_dso(machine);
1594 return machine__create_extra_kernel_map(machine, kernel, xm);
1597 static int machine__process_kernel_mmap_event(struct machine *machine,
1598 struct extra_kernel_map *xm,
1599 struct build_id *bid)
1601 enum dso_space_type dso_space;
1602 bool is_kernel_mmap;
1603 const char *mmap_name = machine->mmap_name;
1605 /* If we have maps from kcore then we do not need or want any others */
1606 if (machine__uses_kcore(machine))
1609 if (machine__is_host(machine))
1610 dso_space = DSO_SPACE__KERNEL;
1612 dso_space = DSO_SPACE__KERNEL_GUEST;
1614 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1615 if (!is_kernel_mmap && !machine__is_host(machine)) {
1617 * If the event was recorded inside the guest and injected into
1618 * the host perf.data file, then it will match a host mmap_name,
1619 * so try that - see machine__set_mmap_name().
1621 mmap_name = "[kernel.kallsyms]";
1622 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1624 if (xm->name[0] == '/' ||
1625 (!is_kernel_mmap && xm->name[0] == '[')) {
1626 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1631 map__set_end(map, map__start(map) + xm->end - xm->start);
1633 if (build_id__is_defined(bid))
1634 dso__set_build_id(map__dso(map), bid);
1637 } else if (is_kernel_mmap) {
1638 const char *symbol_name = xm->name + strlen(mmap_name);
1640 * Should be there already, from the build-id table in
1643 struct dso *kernel = dsos__find_kernel_dso(&machine->dsos);
1646 kernel = machine__findnew_dso(machine, machine->mmap_name);
1650 dso__set_kernel(kernel, dso_space);
1651 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1656 if (strstr(dso__long_name(kernel), "vmlinux"))
1657 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1659 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1664 if (build_id__is_defined(bid))
1665 dso__set_build_id(kernel, bid);
1668 * Avoid using a zero address (kptr_restrict) for the ref reloc
1669 * symbol. Effectively having zero here means that at record
1670 * time /proc/sys/kernel/kptr_restrict was non zero.
1672 if (xm->pgoff != 0) {
1673 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1678 if (machine__is_default_guest(machine)) {
1680 * preload dso of guest kernel and modules
1682 dso__load(kernel, machine__kernel_map(machine));
1685 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1686 return machine__process_extra_kernel_map(machine, xm);
1693 int machine__process_mmap2_event(struct machine *machine,
1694 union perf_event *event,
1695 struct perf_sample *sample)
1697 struct thread *thread;
1699 struct dso_id dso_id = {
1700 .maj = event->mmap2.maj,
1701 .min = event->mmap2.min,
1702 .ino = event->mmap2.ino,
1703 .ino_generation = event->mmap2.ino_generation,
1705 struct build_id __bid, *bid = NULL;
1709 perf_event__fprintf_mmap2(event, stdout);
1711 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1713 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1716 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1717 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1718 struct extra_kernel_map xm = {
1719 .start = event->mmap2.start,
1720 .end = event->mmap2.start + event->mmap2.len,
1721 .pgoff = event->mmap2.pgoff,
1724 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1725 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1731 thread = machine__findnew_thread(machine, event->mmap2.pid,
1736 map = map__new(machine, event->mmap2.start,
1737 event->mmap2.len, event->mmap2.pgoff,
1738 &dso_id, event->mmap2.prot,
1739 event->mmap2.flags, bid,
1740 event->mmap2.filename, thread);
1743 goto out_problem_map;
1745 ret = thread__insert_map(thread, map);
1747 goto out_problem_insert;
1749 thread__put(thread);
1756 thread__put(thread);
1758 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1762 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1763 struct perf_sample *sample)
1765 struct thread *thread;
1771 perf_event__fprintf_mmap(event, stdout);
1773 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1774 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1775 struct extra_kernel_map xm = {
1776 .start = event->mmap.start,
1777 .end = event->mmap.start + event->mmap.len,
1778 .pgoff = event->mmap.pgoff,
1781 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1782 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1788 thread = machine__findnew_thread(machine, event->mmap.pid,
1793 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1796 map = map__new(machine, event->mmap.start,
1797 event->mmap.len, event->mmap.pgoff,
1798 NULL, prot, 0, NULL, event->mmap.filename, thread);
1801 goto out_problem_map;
1803 ret = thread__insert_map(thread, map);
1805 goto out_problem_insert;
1807 thread__put(thread);
1814 thread__put(thread);
1816 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1820 void machine__remove_thread(struct machine *machine, struct thread *th)
1822 return threads__remove(&machine->threads, th);
1825 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1826 struct perf_sample *sample)
1828 struct thread *thread = machine__find_thread(machine,
1831 struct thread *parent = machine__findnew_thread(machine,
1834 bool do_maps_clone = true;
1838 perf_event__fprintf_task(event, stdout);
1841 * There may be an existing thread that is not actually the parent,
1842 * either because we are processing events out of order, or because the
1843 * (fork) event that would have removed the thread was lost. Assume the
1844 * latter case and continue on as best we can.
1846 if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1847 dump_printf("removing erroneous parent thread %d/%d\n",
1848 thread__pid(parent), thread__tid(parent));
1849 machine__remove_thread(machine, parent);
1850 thread__put(parent);
1851 parent = machine__findnew_thread(machine, event->fork.ppid,
1855 /* if a thread currently exists for the thread id remove it */
1856 if (thread != NULL) {
1857 machine__remove_thread(machine, thread);
1858 thread__put(thread);
1861 thread = machine__findnew_thread(machine, event->fork.pid,
1864 * When synthesizing FORK events, we are trying to create thread
1865 * objects for the already running tasks on the machine.
1867 * Normally, for a kernel FORK event, we want to clone the parent's
1868 * maps because that is what the kernel just did.
1870 * But when synthesizing, this should not be done. If we do, we end up
1871 * with overlapping maps as we process the synthesized MMAP2 events that
1872 * get delivered shortly thereafter.
1874 * Use the FORK event misc flags in an internal way to signal this
1875 * situation, so we can elide the map clone when appropriate.
1877 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1878 do_maps_clone = false;
1880 if (thread == NULL || parent == NULL ||
1881 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1882 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1885 thread__put(thread);
1886 thread__put(parent);
1891 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1892 struct perf_sample *sample __maybe_unused)
1894 struct thread *thread = machine__find_thread(machine,
1899 perf_event__fprintf_task(event, stdout);
1901 if (thread != NULL) {
1902 if (symbol_conf.keep_exited_threads)
1903 thread__set_exited(thread, /*exited=*/true);
1905 machine__remove_thread(machine, thread);
1907 thread__put(thread);
1911 int machine__process_event(struct machine *machine, union perf_event *event,
1912 struct perf_sample *sample)
1916 switch (event->header.type) {
1917 case PERF_RECORD_COMM:
1918 ret = machine__process_comm_event(machine, event, sample); break;
1919 case PERF_RECORD_MMAP:
1920 ret = machine__process_mmap_event(machine, event, sample); break;
1921 case PERF_RECORD_NAMESPACES:
1922 ret = machine__process_namespaces_event(machine, event, sample); break;
1923 case PERF_RECORD_CGROUP:
1924 ret = machine__process_cgroup_event(machine, event, sample); break;
1925 case PERF_RECORD_MMAP2:
1926 ret = machine__process_mmap2_event(machine, event, sample); break;
1927 case PERF_RECORD_FORK:
1928 ret = machine__process_fork_event(machine, event, sample); break;
1929 case PERF_RECORD_EXIT:
1930 ret = machine__process_exit_event(machine, event, sample); break;
1931 case PERF_RECORD_LOST:
1932 ret = machine__process_lost_event(machine, event, sample); break;
1933 case PERF_RECORD_AUX:
1934 ret = machine__process_aux_event(machine, event); break;
1935 case PERF_RECORD_ITRACE_START:
1936 ret = machine__process_itrace_start_event(machine, event); break;
1937 case PERF_RECORD_LOST_SAMPLES:
1938 ret = machine__process_lost_samples_event(machine, event, sample); break;
1939 case PERF_RECORD_SWITCH:
1940 case PERF_RECORD_SWITCH_CPU_WIDE:
1941 ret = machine__process_switch_event(machine, event); break;
1942 case PERF_RECORD_KSYMBOL:
1943 ret = machine__process_ksymbol(machine, event, sample); break;
1944 case PERF_RECORD_BPF_EVENT:
1945 ret = machine__process_bpf(machine, event, sample); break;
1946 case PERF_RECORD_TEXT_POKE:
1947 ret = machine__process_text_poke(machine, event, sample); break;
1948 case PERF_RECORD_AUX_OUTPUT_HW_ID:
1949 ret = machine__process_aux_output_hw_id_event(machine, event); break;
1958 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1960 return regexec(regex, sym->name, 0, NULL, 0) == 0;
1963 static void ip__resolve_ams(struct thread *thread,
1964 struct addr_map_symbol *ams,
1967 struct addr_location al;
1969 addr_location__init(&al);
1971 * We cannot use the header.misc hint to determine whether a
1972 * branch stack address is user, kernel, guest, hypervisor.
1973 * Branches may straddle the kernel/user/hypervisor boundaries.
1974 * Thus, we have to try consecutively until we find a match
1975 * or else, the symbol is unknown
1977 thread__find_cpumode_addr_location(thread, ip, &al);
1980 ams->al_addr = al.addr;
1981 ams->al_level = al.level;
1982 ams->ms.maps = maps__get(al.maps);
1983 ams->ms.sym = al.sym;
1984 ams->ms.map = map__get(al.map);
1986 ams->data_page_size = 0;
1987 addr_location__exit(&al);
1990 static void ip__resolve_data(struct thread *thread,
1991 u8 m, struct addr_map_symbol *ams,
1992 u64 addr, u64 phys_addr, u64 daddr_page_size)
1994 struct addr_location al;
1996 addr_location__init(&al);
1998 thread__find_symbol(thread, m, addr, &al);
2001 ams->al_addr = al.addr;
2002 ams->al_level = al.level;
2003 ams->ms.maps = maps__get(al.maps);
2004 ams->ms.sym = al.sym;
2005 ams->ms.map = map__get(al.map);
2006 ams->phys_addr = phys_addr;
2007 ams->data_page_size = daddr_page_size;
2008 addr_location__exit(&al);
2011 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2012 struct addr_location *al)
2014 struct mem_info *mi = mem_info__new();
2019 ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip);
2020 ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi),
2021 sample->addr, sample->phys_addr,
2022 sample->data_page_size);
2023 mem_info__data_src(mi)->val = sample->data_src;
2028 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2030 struct map *map = ms->map;
2031 char *srcline = NULL;
2034 if (!map || callchain_param.key == CCKEY_FUNCTION)
2037 dso = map__dso(map);
2038 srcline = srcline__tree_find(dso__srclines(dso), ip);
2040 bool show_sym = false;
2041 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2043 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2044 ms->sym, show_sym, show_addr, ip);
2045 srcline__tree_insert(dso__srclines(dso), ip, srcline);
2056 static int add_callchain_ip(struct thread *thread,
2057 struct callchain_cursor *cursor,
2058 struct symbol **parent,
2059 struct addr_location *root_al,
2063 struct branch_flags *flags,
2064 struct iterations *iter,
2068 struct map_symbol ms = {};
2069 struct addr_location al;
2070 int nr_loop_iter = 0, err = 0;
2071 u64 iter_cycles = 0;
2072 const char *srcline = NULL;
2074 addr_location__init(&al);
2079 thread__find_cpumode_addr_location(thread, ip, &al);
2081 if (ip >= PERF_CONTEXT_MAX) {
2083 case PERF_CONTEXT_HV:
2084 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2086 case PERF_CONTEXT_KERNEL:
2087 *cpumode = PERF_RECORD_MISC_KERNEL;
2089 case PERF_CONTEXT_USER:
2090 *cpumode = PERF_RECORD_MISC_USER;
2093 pr_debug("invalid callchain context: "
2094 "%"PRId64"\n", (s64) ip);
2096 * It seems the callchain is corrupted.
2099 callchain_cursor_reset(cursor);
2106 thread__find_symbol(thread, *cpumode, ip, &al);
2109 if (al.sym != NULL) {
2110 if (perf_hpp_list.parent && !*parent &&
2111 symbol__match_regex(al.sym, &parent_regex))
2113 else if (have_ignore_callees && root_al &&
2114 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2115 /* Treat this symbol as the root,
2116 forgetting its callees. */
2117 addr_location__copy(root_al, &al);
2118 callchain_cursor_reset(cursor);
2122 if (symbol_conf.hide_unresolved && al.sym == NULL)
2126 nr_loop_iter = iter->nr_loop_iter;
2127 iter_cycles = iter->cycles;
2130 ms.maps = maps__get(al.maps);
2131 ms.map = map__get(al.map);
2133 srcline = callchain_srcline(&ms, al.addr);
2134 err = callchain_cursor_append(cursor, ip, &ms,
2135 branch, flags, nr_loop_iter,
2136 iter_cycles, branch_from, srcline);
2138 addr_location__exit(&al);
2139 map_symbol__exit(&ms);
2143 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2144 struct addr_location *al)
2147 const struct branch_stack *bs = sample->branch_stack;
2148 struct branch_entry *entries = perf_sample__branch_entries(sample);
2149 u64 *branch_stack_cntr = sample->branch_stack_cntr;
2150 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2155 for (i = 0; i < bs->nr; i++) {
2156 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2157 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2158 bi[i].flags = entries[i].flags;
2159 if (branch_stack_cntr)
2160 bi[i].branch_stack_cntr = branch_stack_cntr[i];
2165 static void save_iterations(struct iterations *iter,
2166 struct branch_entry *be, int nr)
2170 iter->nr_loop_iter++;
2173 for (i = 0; i < nr; i++)
2174 iter->cycles += be[i].flags.cycles;
2179 #define NO_ENTRY 0xff
2181 #define PERF_MAX_BRANCH_DEPTH 127
2184 static int remove_loops(struct branch_entry *l, int nr,
2185 struct iterations *iter)
2188 unsigned char chash[CHASHSZ];
2190 memset(chash, NO_ENTRY, sizeof(chash));
2192 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2194 for (i = 0; i < nr; i++) {
2195 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2197 /* no collision handling for now */
2198 if (chash[h] == NO_ENTRY) {
2200 } else if (l[chash[h]].from == l[i].from) {
2201 bool is_loop = true;
2202 /* check if it is a real loop */
2204 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2205 if (l[j].from != l[i + off].from) {
2212 save_iterations(iter + i + off,
2215 memmove(iter + i, iter + i + off,
2218 memmove(l + i, l + i + off,
2229 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2230 struct callchain_cursor *cursor,
2231 struct perf_sample *sample,
2232 struct symbol **parent,
2233 struct addr_location *root_al,
2235 bool callee, int end,
2238 struct ip_callchain *chain = sample->callchain;
2239 u8 cpumode = PERF_RECORD_MISC_USER;
2243 for (i = 0; i < end + 1; i++) {
2244 err = add_callchain_ip(thread, cursor, parent,
2245 root_al, &cpumode, chain->ips[i],
2246 false, NULL, NULL, branch_from,
2254 for (i = end; i >= 0; i--) {
2255 err = add_callchain_ip(thread, cursor, parent,
2256 root_al, &cpumode, chain->ips[i],
2257 false, NULL, NULL, branch_from,
2266 static void save_lbr_cursor_node(struct thread *thread,
2267 struct callchain_cursor *cursor,
2270 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2275 if (cursor->pos == cursor->nr) {
2276 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2281 cursor->curr = cursor->first;
2283 cursor->curr = cursor->curr->next;
2285 map_symbol__exit(&lbr_stitch->prev_lbr_cursor[idx].ms);
2286 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2287 sizeof(struct callchain_cursor_node));
2288 lbr_stitch->prev_lbr_cursor[idx].ms.maps = maps__get(cursor->curr->ms.maps);
2289 lbr_stitch->prev_lbr_cursor[idx].ms.map = map__get(cursor->curr->ms.map);
2291 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2295 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2296 struct callchain_cursor *cursor,
2297 struct perf_sample *sample,
2298 struct symbol **parent,
2299 struct addr_location *root_al,
2304 struct branch_stack *lbr_stack = sample->branch_stack;
2305 struct branch_entry *entries = perf_sample__branch_entries(sample);
2306 u8 cpumode = PERF_RECORD_MISC_USER;
2307 int lbr_nr = lbr_stack->nr;
2308 struct branch_flags *flags;
2313 * The curr and pos are not used in writing session. They are cleared
2314 * in callchain_cursor_commit() when the writing session is closed.
2315 * Using curr and pos to track the current cursor node.
2317 if (thread__lbr_stitch(thread)) {
2318 cursor->curr = NULL;
2319 cursor->pos = cursor->nr;
2321 cursor->curr = cursor->first;
2322 for (i = 0; i < (int)(cursor->nr - 1); i++)
2323 cursor->curr = cursor->curr->next;
2328 /* Add LBR ip from first entries.to */
2330 flags = &entries[0].flags;
2331 *branch_from = entries[0].from;
2332 err = add_callchain_ip(thread, cursor, parent,
2333 root_al, &cpumode, ip,
2335 *branch_from, symbols);
2340 * The number of cursor node increases.
2341 * Move the current cursor node.
2342 * But does not need to save current cursor node for entry 0.
2343 * It's impossible to stitch the whole LBRs of previous sample.
2345 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2347 cursor->curr = cursor->first;
2349 cursor->curr = cursor->curr->next;
2353 /* Add LBR ip from entries.from one by one. */
2354 for (i = 0; i < lbr_nr; i++) {
2355 ip = entries[i].from;
2356 flags = &entries[i].flags;
2357 err = add_callchain_ip(thread, cursor, parent,
2358 root_al, &cpumode, ip,
2360 *branch_from, symbols);
2363 save_lbr_cursor_node(thread, cursor, i);
2368 /* Add LBR ip from entries.from one by one. */
2369 for (i = lbr_nr - 1; i >= 0; i--) {
2370 ip = entries[i].from;
2371 flags = &entries[i].flags;
2372 err = add_callchain_ip(thread, cursor, parent,
2373 root_al, &cpumode, ip,
2375 *branch_from, symbols);
2378 save_lbr_cursor_node(thread, cursor, i);
2382 /* Add LBR ip from first entries.to */
2384 flags = &entries[0].flags;
2385 *branch_from = entries[0].from;
2386 err = add_callchain_ip(thread, cursor, parent,
2387 root_al, &cpumode, ip,
2389 *branch_from, symbols);
2397 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2398 struct callchain_cursor *cursor)
2400 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2401 struct callchain_cursor_node *cnode;
2402 struct stitch_list *stitch_node;
2405 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2406 cnode = &stitch_node->cursor;
2408 err = callchain_cursor_append(cursor, cnode->ip,
2411 &cnode->branch_flags,
2412 cnode->nr_loop_iter,
2422 static struct stitch_list *get_stitch_node(struct thread *thread)
2424 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2425 struct stitch_list *stitch_node;
2427 if (!list_empty(&lbr_stitch->free_lists)) {
2428 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2429 struct stitch_list, node);
2430 list_del(&stitch_node->node);
2435 return malloc(sizeof(struct stitch_list));
2438 static bool has_stitched_lbr(struct thread *thread,
2439 struct perf_sample *cur,
2440 struct perf_sample *prev,
2441 unsigned int max_lbr,
2444 struct branch_stack *cur_stack = cur->branch_stack;
2445 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2446 struct branch_stack *prev_stack = prev->branch_stack;
2447 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2448 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2449 int i, j, nr_identical_branches = 0;
2450 struct stitch_list *stitch_node;
2451 u64 cur_base, distance;
2453 if (!cur_stack || !prev_stack)
2456 /* Find the physical index of the base-of-stack for current sample. */
2457 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2459 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2460 (max_lbr + prev_stack->hw_idx - cur_base);
2461 /* Previous sample has shorter stack. Nothing can be stitched. */
2462 if (distance + 1 > prev_stack->nr)
2466 * Check if there are identical LBRs between two samples.
2467 * Identical LBRs must have same from, to and flags values. Also,
2468 * they have to be saved in the same LBR registers (same physical
2471 * Starts from the base-of-stack of current sample.
2473 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2474 if ((prev_entries[i].from != cur_entries[j].from) ||
2475 (prev_entries[i].to != cur_entries[j].to) ||
2476 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2478 nr_identical_branches++;
2481 if (!nr_identical_branches)
2485 * Save the LBRs between the base-of-stack of previous sample
2486 * and the base-of-stack of current sample into lbr_stitch->lists.
2487 * These LBRs will be stitched later.
2489 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2491 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2494 stitch_node = get_stitch_node(thread);
2498 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2499 sizeof(struct callchain_cursor_node));
2501 stitch_node->cursor.ms.maps = maps__get(lbr_stitch->prev_lbr_cursor[i].ms.maps);
2502 stitch_node->cursor.ms.map = map__get(lbr_stitch->prev_lbr_cursor[i].ms.map);
2505 list_add(&stitch_node->node, &lbr_stitch->lists);
2507 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2513 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2515 if (thread__lbr_stitch(thread))
2518 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2519 if (!thread__lbr_stitch(thread))
2522 thread__lbr_stitch(thread)->prev_lbr_cursor =
2523 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2524 if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2525 goto free_lbr_stitch;
2527 thread__lbr_stitch(thread)->prev_lbr_cursor_size = max_lbr + 1;
2529 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2530 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2535 free(thread__lbr_stitch(thread));
2536 thread__set_lbr_stitch(thread, NULL);
2538 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2539 thread__set_lbr_stitch_enable(thread, false);
2544 * Resolve LBR callstack chain sample
2546 * 1 on success get LBR callchain information
2547 * 0 no available LBR callchain information, should try fp
2548 * negative error code on other errors.
2550 static int resolve_lbr_callchain_sample(struct thread *thread,
2551 struct callchain_cursor *cursor,
2552 struct perf_sample *sample,
2553 struct symbol **parent,
2554 struct addr_location *root_al,
2556 unsigned int max_lbr,
2559 bool callee = (callchain_param.order == ORDER_CALLEE);
2560 struct ip_callchain *chain = sample->callchain;
2561 int chain_nr = min(max_stack, (int)chain->nr), i;
2562 struct lbr_stitch *lbr_stitch;
2563 bool stitched_lbr = false;
2564 u64 branch_from = 0;
2567 for (i = 0; i < chain_nr; i++) {
2568 if (chain->ips[i] == PERF_CONTEXT_USER)
2572 /* LBR only affects the user callchain */
2576 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2577 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2578 lbr_stitch = thread__lbr_stitch(thread);
2580 stitched_lbr = has_stitched_lbr(thread, sample,
2581 &lbr_stitch->prev_sample,
2584 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2585 struct stitch_list *stitch_node;
2587 list_for_each_entry(stitch_node, &lbr_stitch->lists, node)
2588 map_symbol__exit(&stitch_node->cursor.ms);
2590 list_splice_init(&lbr_stitch->lists, &lbr_stitch->free_lists);
2592 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2597 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2598 parent, root_al, branch_from,
2603 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2604 root_al, &branch_from, true, symbols);
2609 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2616 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2620 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2621 root_al, &branch_from, false, symbols);
2626 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2627 parent, root_al, branch_from,
2635 return (err < 0) ? err : 0;
2638 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2639 struct callchain_cursor *cursor,
2640 struct symbol **parent,
2641 struct addr_location *root_al,
2642 u8 *cpumode, int ent, bool symbols)
2646 while (--ent >= 0) {
2647 u64 ip = chain->ips[ent];
2649 if (ip >= PERF_CONTEXT_MAX) {
2650 err = add_callchain_ip(thread, cursor, parent,
2651 root_al, cpumode, ip,
2652 false, NULL, NULL, 0, symbols);
2659 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2660 struct thread *thread, int usr_idx)
2662 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2663 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2668 static int thread__resolve_callchain_sample(struct thread *thread,
2669 struct callchain_cursor *cursor,
2670 struct evsel *evsel,
2671 struct perf_sample *sample,
2672 struct symbol **parent,
2673 struct addr_location *root_al,
2677 struct branch_stack *branch = sample->branch_stack;
2678 struct branch_entry *entries = perf_sample__branch_entries(sample);
2679 struct ip_callchain *chain = sample->callchain;
2681 u8 cpumode = PERF_RECORD_MISC_USER;
2682 int i, j, err, nr_entries, usr_idx;
2685 u64 leaf_frame_caller;
2688 chain_nr = chain->nr;
2690 if (evsel__has_branch_callstack(evsel)) {
2691 struct perf_env *env = evsel__env(evsel);
2693 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2695 !env ? 0 : env->max_branches,
2698 return (err < 0) ? err : 0;
2702 * Based on DWARF debug information, some architectures skip
2703 * a callchain entry saved by the kernel.
2705 skip_idx = arch_skip_callchain_idx(thread, chain);
2708 * Add branches to call stack for easier browsing. This gives
2709 * more context for a sample than just the callers.
2711 * This uses individual histograms of paths compared to the
2712 * aggregated histograms the normal LBR mode uses.
2714 * Limitations for now:
2715 * - No extra filters
2716 * - No annotations (should annotate somehow)
2719 if (branch && callchain_param.branch_callstack) {
2720 int nr = min(max_stack, (int)branch->nr);
2721 struct branch_entry be[nr];
2722 struct iterations iter[nr];
2724 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2725 pr_warning("corrupted branch chain. skipping...\n");
2729 for (i = 0; i < nr; i++) {
2730 if (callchain_param.order == ORDER_CALLEE) {
2737 * Check for overlap into the callchain.
2738 * The return address is one off compared to
2739 * the branch entry. To adjust for this
2740 * assume the calling instruction is not longer
2743 if (i == skip_idx ||
2744 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2746 else if (be[i].from < chain->ips[first_call] &&
2747 be[i].from >= chain->ips[first_call] - 8)
2750 be[i] = entries[branch->nr - i - 1];
2753 memset(iter, 0, sizeof(struct iterations) * nr);
2754 nr = remove_loops(be, nr, iter);
2756 for (i = 0; i < nr; i++) {
2757 err = add_callchain_ip(thread, cursor, parent,
2761 NULL, be[i].from, symbols);
2764 err = add_callchain_ip(thread, cursor, parent, root_al,
2767 &iter[i], 0, symbols);
2782 if (chain && callchain_param.order != ORDER_CALLEE) {
2783 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2784 &cpumode, chain->nr - first_call, symbols);
2786 return (err < 0) ? err : 0;
2788 for (i = first_call, nr_entries = 0;
2789 i < chain_nr && nr_entries < max_stack; i++) {
2792 if (callchain_param.order == ORDER_CALLEE)
2795 j = chain->nr - i - 1;
2797 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2802 if (ip < PERF_CONTEXT_MAX)
2804 else if (callchain_param.order != ORDER_CALLEE) {
2805 err = find_prev_cpumode(chain, thread, cursor, parent,
2806 root_al, &cpumode, j, symbols);
2808 return (err < 0) ? err : 0;
2813 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2814 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2815 * the index will be different in order to add the missing frame
2816 * at the right place.
2819 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2821 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2823 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2826 * check if leaf_frame_Caller != ip to not add the same
2830 if (leaf_frame_caller && leaf_frame_caller != ip) {
2832 err = add_callchain_ip(thread, cursor, parent,
2833 root_al, &cpumode, leaf_frame_caller,
2834 false, NULL, NULL, 0, symbols);
2836 return (err < 0) ? err : 0;
2840 err = add_callchain_ip(thread, cursor, parent,
2841 root_al, &cpumode, ip,
2842 false, NULL, NULL, 0, symbols);
2845 return (err < 0) ? err : 0;
2851 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2853 struct symbol *sym = ms->sym;
2854 struct map *map = ms->map;
2855 struct inline_node *inline_node;
2856 struct inline_list *ilist;
2860 struct map_symbol ilist_ms;
2862 if (!symbol_conf.inline_name || !map || !sym)
2865 addr = map__dso_map_ip(map, ip);
2866 addr = map__rip_2objdump(map, addr);
2867 dso = map__dso(map);
2869 inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr);
2871 inline_node = dso__parse_addr_inlines(dso, addr, sym);
2874 inlines__tree_insert(dso__inlined_nodes(dso), inline_node);
2877 ilist_ms = (struct map_symbol) {
2878 .maps = maps__get(ms->maps),
2879 .map = map__get(map),
2881 list_for_each_entry(ilist, &inline_node->val, list) {
2882 ilist_ms.sym = ilist->symbol;
2883 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2884 NULL, 0, 0, 0, ilist->srcline);
2889 map_symbol__exit(&ilist_ms);
2894 static int unwind_entry(struct unwind_entry *entry, void *arg)
2896 struct callchain_cursor *cursor = arg;
2897 const char *srcline = NULL;
2898 u64 addr = entry->ip;
2900 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2903 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2907 * Convert entry->ip from a virtual address to an offset in
2908 * its corresponding binary.
2911 addr = map__dso_map_ip(entry->ms.map, entry->ip);
2913 srcline = callchain_srcline(&entry->ms, addr);
2914 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2915 false, NULL, 0, 0, 0, srcline);
2918 static int thread__resolve_callchain_unwind(struct thread *thread,
2919 struct callchain_cursor *cursor,
2920 struct evsel *evsel,
2921 struct perf_sample *sample,
2922 int max_stack, bool symbols)
2924 /* Can we do dwarf post unwind? */
2925 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2926 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2929 /* Bail out if nothing was captured. */
2930 if ((!sample->user_regs.regs) ||
2931 (!sample->user_stack.size))
2935 pr_debug("Not resolving symbols with an unwinder isn't currently supported\n");
2937 return unwind__get_entries(unwind_entry, cursor,
2938 thread, sample, max_stack, false);
2941 int __thread__resolve_callchain(struct thread *thread,
2942 struct callchain_cursor *cursor,
2943 struct evsel *evsel,
2944 struct perf_sample *sample,
2945 struct symbol **parent,
2946 struct addr_location *root_al,
2955 callchain_cursor_reset(cursor);
2957 if (callchain_param.order == ORDER_CALLEE) {
2958 ret = thread__resolve_callchain_sample(thread, cursor,
2961 max_stack, symbols);
2964 ret = thread__resolve_callchain_unwind(thread, cursor,
2966 max_stack, symbols);
2968 ret = thread__resolve_callchain_unwind(thread, cursor,
2970 max_stack, symbols);
2973 ret = thread__resolve_callchain_sample(thread, cursor,
2976 max_stack, symbols);
2982 int machine__for_each_thread(struct machine *machine,
2983 int (*fn)(struct thread *thread, void *p),
2986 return threads__for_each_thread(&machine->threads, fn, priv);
2989 int machines__for_each_thread(struct machines *machines,
2990 int (*fn)(struct thread *thread, void *p),
2996 rc = machine__for_each_thread(&machines->host, fn, priv);
3000 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3001 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3003 rc = machine__for_each_thread(machine, fn, priv);
3011 static int thread_list_cb(struct thread *thread, void *data)
3013 struct list_head *list = data;
3014 struct thread_list *entry = malloc(sizeof(*entry));
3019 entry->thread = thread__get(thread);
3020 list_add_tail(&entry->list, list);
3024 int machine__thread_list(struct machine *machine, struct list_head *list)
3026 return machine__for_each_thread(machine, thread_list_cb, list);
3029 void thread_list__delete(struct list_head *list)
3031 struct thread_list *pos, *next;
3033 list_for_each_entry_safe(pos, next, list, list) {
3034 thread__zput(pos->thread);
3035 list_del(&pos->list);
3040 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3042 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3045 return machine->current_tid[cpu];
3048 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3051 struct thread *thread;
3052 const pid_t init_val = -1;
3057 if (realloc_array_as_needed(machine->current_tid,
3058 machine->current_tid_sz,
3063 machine->current_tid[cpu] = tid;
3065 thread = machine__findnew_thread(machine, pid, tid);
3069 thread__set_cpu(thread, cpu);
3070 thread__put(thread);
3076 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3077 * machine__normalized_is() if a normalized arch is needed.
3079 bool machine__is(struct machine *machine, const char *arch)
3081 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3084 bool machine__normalized_is(struct machine *machine, const char *arch)
3086 return machine && !strcmp(perf_env__arch(machine->env), arch);
3089 int machine__nr_cpus_avail(struct machine *machine)
3091 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3094 int machine__get_kernel_start(struct machine *machine)
3096 struct map *map = machine__kernel_map(machine);
3100 * The only addresses above 2^63 are kernel addresses of a 64-bit
3101 * kernel. Note that addresses are unsigned so that on a 32-bit system
3102 * all addresses including kernel addresses are less than 2^32. In
3103 * that case (32-bit system), if the kernel mapping is unknown, all
3104 * addresses will be assumed to be in user space - see
3105 * machine__kernel_ip().
3107 machine->kernel_start = 1ULL << 63;
3109 err = map__load(map);
3111 * On x86_64, PTI entry trampolines are less than the
3112 * start of kernel text, but still above 2^63. So leave
3113 * kernel_start = 1ULL << 63 for x86_64.
3115 if (!err && !machine__is(machine, "x86_64"))
3116 machine->kernel_start = map__start(map);
3121 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3123 u8 addr_cpumode = cpumode;
3126 if (!machine->single_address_space)
3129 kernel_ip = machine__kernel_ip(machine, addr);
3131 case PERF_RECORD_MISC_KERNEL:
3132 case PERF_RECORD_MISC_USER:
3133 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3134 PERF_RECORD_MISC_USER;
3136 case PERF_RECORD_MISC_GUEST_KERNEL:
3137 case PERF_RECORD_MISC_GUEST_USER:
3138 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3139 PERF_RECORD_MISC_GUEST_USER;
3145 return addr_cpumode;
3148 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename,
3149 const struct dso_id *id)
3151 return dsos__findnew_id(&machine->dsos, filename, id);
3154 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3156 return machine__findnew_dso_id(machine, filename, NULL);
3159 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3161 struct machine *machine = vmachine;
3163 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3168 *modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL;
3169 *addrp = map__unmap_ip(map, sym->start);
3173 struct machine__for_each_dso_cb_args {
3174 struct machine *machine;
3179 static int machine__for_each_dso_cb(struct dso *dso, void *data)
3181 struct machine__for_each_dso_cb_args *args = data;
3183 return args->fn(dso, args->machine, args->priv);
3186 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3188 struct machine__for_each_dso_cb_args args = {
3194 return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args);
3197 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3199 struct maps *maps = machine__kernel_maps(machine);
3201 return maps__for_each_map(maps, fn, priv);
3204 bool machine__is_lock_function(struct machine *machine, u64 addr)
3206 if (!machine->sched.text_start) {
3208 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3211 /* to avoid retry */
3212 machine->sched.text_start = 1;
3216 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3218 /* should not fail from here */
3219 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3220 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3222 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3223 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3225 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3226 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3228 sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap);
3230 machine->traceiter.text_start = map__unmap_ip(kmap, sym->start);
3231 machine->traceiter.text_end = map__unmap_ip(kmap, sym->end);
3233 sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap);
3235 machine->trace.text_start = map__unmap_ip(kmap, sym->start);
3236 machine->trace.text_end = map__unmap_ip(kmap, sym->end);
3240 /* failed to get kernel symbols */
3241 if (machine->sched.text_start == 1)
3244 /* mutex and rwsem functions are in sched text section */
3245 if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3248 /* spinlock functions are in lock text section */
3249 if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3252 /* traceiter functions currently don't have their own section
3253 * but we consider them lock functions
3255 if (machine->traceiter.text_start != 0) {
3256 if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end)
3260 if (machine->trace.text_start != 0) {
3261 if (machine->trace.text_start <= addr && addr < machine->trace.text_end)
3268 int machine__hit_all_dsos(struct machine *machine)
3270 return dsos__hit_all(&machine->dsos);