]> Git Repo - J-linux.git/blob - tools/perf/util/intel-pt.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / tools / perf / util / intel-pt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <linux/perf_event.h>
9 #include <stdio.h>
10 #include <stdbool.h>
11 #include <errno.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16
17 #include "session.h"
18 #include "machine.h"
19 #include "memswap.h"
20 #include "sort.h"
21 #include "tool.h"
22 #include "event.h"
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "map.h"
26 #include "color.h"
27 #include "thread.h"
28 #include "thread-stack.h"
29 #include "symbol.h"
30 #include "callchain.h"
31 #include "dso.h"
32 #include "debug.h"
33 #include "auxtrace.h"
34 #include "tsc.h"
35 #include "intel-pt.h"
36 #include "config.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "time-utils.h"
40
41 #include "../arch/x86/include/uapi/asm/perf_regs.h"
42
43 #include "intel-pt-decoder/intel-pt-log.h"
44 #include "intel-pt-decoder/intel-pt-decoder.h"
45 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
46 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
47
48 #define MAX_TIMESTAMP (~0ULL)
49
50 #define INTEL_PT_CFG_PASS_THRU  BIT_ULL(0)
51 #define INTEL_PT_CFG_PWR_EVT_EN BIT_ULL(4)
52 #define INTEL_PT_CFG_BRANCH_EN  BIT_ULL(13)
53 #define INTEL_PT_CFG_EVT_EN     BIT_ULL(31)
54 #define INTEL_PT_CFG_TNT_DIS    BIT_ULL(55)
55
56 struct range {
57         u64 start;
58         u64 end;
59 };
60
61 struct intel_pt {
62         struct auxtrace auxtrace;
63         struct auxtrace_queues queues;
64         struct auxtrace_heap heap;
65         u32 auxtrace_type;
66         struct perf_session *session;
67         struct machine *machine;
68         struct evsel *switch_evsel;
69         struct thread *unknown_thread;
70         bool timeless_decoding;
71         bool sampling_mode;
72         bool snapshot_mode;
73         bool per_cpu_mmaps;
74         bool have_tsc;
75         bool data_queued;
76         bool est_tsc;
77         bool sync_switch;
78         bool sync_switch_not_supported;
79         bool mispred_all;
80         bool use_thread_stack;
81         bool callstack;
82         bool cap_event_trace;
83         bool have_guest_sideband;
84         unsigned int br_stack_sz;
85         unsigned int br_stack_sz_plus;
86         int have_sched_switch;
87         u32 pmu_type;
88         u64 kernel_start;
89         u64 switch_ip;
90         u64 ptss_ip;
91         u64 first_timestamp;
92
93         struct perf_tsc_conversion tc;
94         bool cap_user_time_zero;
95
96         struct itrace_synth_opts synth_opts;
97
98         bool sample_instructions;
99         u64 instructions_sample_type;
100         u64 instructions_id;
101
102         bool sample_cycles;
103         u64 cycles_sample_type;
104         u64 cycles_id;
105
106         bool sample_branches;
107         u32 branches_filter;
108         u64 branches_sample_type;
109         u64 branches_id;
110
111         bool sample_transactions;
112         u64 transactions_sample_type;
113         u64 transactions_id;
114
115         bool sample_ptwrites;
116         u64 ptwrites_sample_type;
117         u64 ptwrites_id;
118
119         bool sample_pwr_events;
120         u64 pwr_events_sample_type;
121         u64 mwait_id;
122         u64 pwre_id;
123         u64 exstop_id;
124         u64 pwrx_id;
125         u64 cbr_id;
126         u64 psb_id;
127
128         bool single_pebs;
129         bool sample_pebs;
130         struct evsel *pebs_evsel;
131
132         u64 evt_sample_type;
133         u64 evt_id;
134
135         u64 iflag_chg_sample_type;
136         u64 iflag_chg_id;
137
138         u64 tsc_bit;
139         u64 mtc_bit;
140         u64 mtc_freq_bits;
141         u32 tsc_ctc_ratio_n;
142         u32 tsc_ctc_ratio_d;
143         u64 cyc_bit;
144         u64 noretcomp_bit;
145         unsigned max_non_turbo_ratio;
146         unsigned cbr2khz;
147         int max_loops;
148
149         unsigned long num_events;
150
151         char *filter;
152         struct addr_filters filts;
153
154         struct range *time_ranges;
155         unsigned int range_cnt;
156
157         struct ip_callchain *chain;
158         struct branch_stack *br_stack;
159
160         u64 dflt_tsc_offset;
161         struct rb_root vmcs_info;
162 };
163
164 enum switch_state {
165         INTEL_PT_SS_NOT_TRACING,
166         INTEL_PT_SS_UNKNOWN,
167         INTEL_PT_SS_TRACING,
168         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
169         INTEL_PT_SS_EXPECTING_SWITCH_IP,
170 };
171
172 /* applicable_counters is 64-bits */
173 #define INTEL_PT_MAX_PEBS 64
174
175 struct intel_pt_pebs_event {
176         struct evsel *evsel;
177         u64 id;
178 };
179
180 struct intel_pt_queue {
181         struct intel_pt *pt;
182         unsigned int queue_nr;
183         struct auxtrace_buffer *buffer;
184         struct auxtrace_buffer *old_buffer;
185         void *decoder;
186         const struct intel_pt_state *state;
187         struct ip_callchain *chain;
188         struct branch_stack *last_branch;
189         union perf_event *event_buf;
190         bool on_heap;
191         bool stop;
192         bool step_through_buffers;
193         bool use_buffer_pid_tid;
194         bool sync_switch;
195         bool sample_ipc;
196         pid_t pid, tid;
197         int cpu;
198         int switch_state;
199         pid_t next_tid;
200         struct thread *thread;
201         struct machine *guest_machine;
202         struct thread *guest_thread;
203         struct thread *unknown_guest_thread;
204         pid_t guest_machine_pid;
205         pid_t guest_pid;
206         pid_t guest_tid;
207         int vcpu;
208         bool exclude_kernel;
209         bool have_sample;
210         u64 time;
211         u64 timestamp;
212         u64 sel_timestamp;
213         bool sel_start;
214         unsigned int sel_idx;
215         u32 flags;
216         u16 insn_len;
217         u64 last_insn_cnt;
218         u64 ipc_insn_cnt;
219         u64 ipc_cyc_cnt;
220         u64 last_in_insn_cnt;
221         u64 last_in_cyc_cnt;
222         u64 last_cy_insn_cnt;
223         u64 last_cy_cyc_cnt;
224         u64 last_br_insn_cnt;
225         u64 last_br_cyc_cnt;
226         unsigned int cbr_seen;
227         char insn[INTEL_PT_INSN_BUF_SZ];
228         struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
229 };
230
231 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
232                           unsigned char *buf, size_t len)
233 {
234         struct intel_pt_pkt packet;
235         size_t pos = 0;
236         int ret, pkt_len, i;
237         char desc[INTEL_PT_PKT_DESC_MAX];
238         const char *color = PERF_COLOR_BLUE;
239         enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
240
241         color_fprintf(stdout, color,
242                       ". ... Intel Processor Trace data: size %zu bytes\n",
243                       len);
244
245         while (len) {
246                 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
247                 if (ret > 0)
248                         pkt_len = ret;
249                 else
250                         pkt_len = 1;
251                 printf(".");
252                 color_fprintf(stdout, color, "  %08zx: ", pos);
253                 for (i = 0; i < pkt_len; i++)
254                         color_fprintf(stdout, color, " %02x", buf[i]);
255                 for (; i < 16; i++)
256                         color_fprintf(stdout, color, "   ");
257                 if (ret > 0) {
258                         ret = intel_pt_pkt_desc(&packet, desc,
259                                                 INTEL_PT_PKT_DESC_MAX);
260                         if (ret > 0)
261                                 color_fprintf(stdout, color, " %s\n", desc);
262                 } else {
263                         color_fprintf(stdout, color, " Bad packet!\n");
264                 }
265                 pos += pkt_len;
266                 buf += pkt_len;
267                 len -= pkt_len;
268         }
269 }
270
271 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
272                                 size_t len)
273 {
274         printf(".\n");
275         intel_pt_dump(pt, buf, len);
276 }
277
278 static void intel_pt_log_event(union perf_event *event)
279 {
280         FILE *f = intel_pt_log_fp();
281
282         if (!intel_pt_enable_logging || !f)
283                 return;
284
285         perf_event__fprintf(event, NULL, f);
286 }
287
288 static void intel_pt_dump_sample(struct perf_session *session,
289                                  struct perf_sample *sample)
290 {
291         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
292                                            auxtrace);
293
294         printf("\n");
295         intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
296 }
297
298 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
299 {
300         struct perf_time_interval *range = pt->synth_opts.ptime_range;
301         int n = pt->synth_opts.range_num;
302
303         if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
304                 return true;
305
306         if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
307                 return false;
308
309         /* perf_time__ranges_skip_sample does not work if time is zero */
310         if (!tm)
311                 tm = 1;
312
313         return !n || !perf_time__ranges_skip_sample(range, n, tm);
314 }
315
316 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
317                                                         u64 vmcs,
318                                                         u64 dflt_tsc_offset)
319 {
320         struct rb_node **p = &rb_root->rb_node;
321         struct rb_node *parent = NULL;
322         struct intel_pt_vmcs_info *v;
323
324         while (*p) {
325                 parent = *p;
326                 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
327
328                 if (v->vmcs == vmcs)
329                         return v;
330
331                 if (vmcs < v->vmcs)
332                         p = &(*p)->rb_left;
333                 else
334                         p = &(*p)->rb_right;
335         }
336
337         v = zalloc(sizeof(*v));
338         if (v) {
339                 v->vmcs = vmcs;
340                 v->tsc_offset = dflt_tsc_offset;
341                 v->reliable = dflt_tsc_offset;
342
343                 rb_link_node(&v->rb_node, parent, p);
344                 rb_insert_color(&v->rb_node, rb_root);
345         }
346
347         return v;
348 }
349
350 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
351 {
352         struct intel_pt_queue *ptq = data;
353         struct intel_pt *pt = ptq->pt;
354
355         if (!vmcs && !pt->dflt_tsc_offset)
356                 return NULL;
357
358         return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
359 }
360
361 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
362 {
363         struct intel_pt_vmcs_info *v;
364         struct rb_node *n;
365
366         n = rb_first(&pt->vmcs_info);
367         while (n) {
368                 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
369                 n = rb_next(n);
370                 rb_erase(&v->rb_node, &pt->vmcs_info);
371                 free(v);
372         }
373 }
374
375 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
376                                    struct auxtrace_buffer *b)
377 {
378         bool consecutive = false;
379         void *start;
380
381         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
382                                       pt->have_tsc, &consecutive,
383                                       pt->synth_opts.vm_time_correlation);
384         if (!start)
385                 return -EINVAL;
386         /*
387          * In the case of vm_time_correlation, the overlap might contain TSC
388          * packets that will not be fixed, and that will then no longer work for
389          * overlap detection. Avoid that by zeroing out the overlap.
390          */
391         if (pt->synth_opts.vm_time_correlation)
392                 memset(b->data, 0, start - b->data);
393         b->use_size = b->data + b->size - start;
394         b->use_data = start;
395         if (b->use_size && consecutive)
396                 b->consecutive = true;
397         return 0;
398 }
399
400 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
401                                struct auxtrace_buffer *buffer,
402                                struct auxtrace_buffer *old_buffer,
403                                struct intel_pt_buffer *b)
404 {
405         bool might_overlap;
406
407         if (!buffer->data) {
408                 int fd = perf_data__fd(ptq->pt->session->data);
409
410                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
411                 if (!buffer->data)
412                         return -ENOMEM;
413         }
414
415         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
416         if (might_overlap && !buffer->consecutive && old_buffer &&
417             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
418                 return -ENOMEM;
419
420         if (buffer->use_data) {
421                 b->len = buffer->use_size;
422                 b->buf = buffer->use_data;
423         } else {
424                 b->len = buffer->size;
425                 b->buf = buffer->data;
426         }
427         b->ref_timestamp = buffer->reference;
428
429         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
430                 b->consecutive = false;
431                 b->trace_nr = buffer->buffer_nr + 1;
432         } else {
433                 b->consecutive = true;
434         }
435
436         return 0;
437 }
438
439 /* Do not drop buffers with references - refer intel_pt_get_trace() */
440 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
441                                            struct auxtrace_buffer *buffer)
442 {
443         if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
444                 return;
445
446         auxtrace_buffer__drop_data(buffer);
447 }
448
449 /* Must be serialized with respect to intel_pt_get_trace() */
450 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
451                               void *cb_data)
452 {
453         struct intel_pt_queue *ptq = data;
454         struct auxtrace_buffer *buffer = ptq->buffer;
455         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
456         struct auxtrace_queue *queue;
457         int err = 0;
458
459         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
460
461         while (1) {
462                 struct intel_pt_buffer b = { .len = 0 };
463
464                 buffer = auxtrace_buffer__next(queue, buffer);
465                 if (!buffer)
466                         break;
467
468                 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
469                 if (err)
470                         break;
471
472                 if (b.len) {
473                         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
474                         old_buffer = buffer;
475                 } else {
476                         intel_pt_lookahead_drop_buffer(ptq, buffer);
477                         continue;
478                 }
479
480                 err = cb(&b, cb_data);
481                 if (err)
482                         break;
483         }
484
485         if (buffer != old_buffer)
486                 intel_pt_lookahead_drop_buffer(ptq, buffer);
487         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
488
489         return err;
490 }
491
492 /*
493  * This function assumes data is processed sequentially only.
494  * Must be serialized with respect to intel_pt_lookahead()
495  */
496 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
497 {
498         struct intel_pt_queue *ptq = data;
499         struct auxtrace_buffer *buffer = ptq->buffer;
500         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
501         struct auxtrace_queue *queue;
502         int err;
503
504         if (ptq->stop) {
505                 b->len = 0;
506                 return 0;
507         }
508
509         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
510
511         buffer = auxtrace_buffer__next(queue, buffer);
512         if (!buffer) {
513                 if (old_buffer)
514                         auxtrace_buffer__drop_data(old_buffer);
515                 b->len = 0;
516                 return 0;
517         }
518
519         ptq->buffer = buffer;
520
521         err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
522         if (err)
523                 return err;
524
525         if (ptq->step_through_buffers)
526                 ptq->stop = true;
527
528         if (b->len) {
529                 if (old_buffer)
530                         auxtrace_buffer__drop_data(old_buffer);
531                 ptq->old_buffer = buffer;
532         } else {
533                 auxtrace_buffer__drop_data(buffer);
534                 return intel_pt_get_trace(b, data);
535         }
536
537         return 0;
538 }
539
540 struct intel_pt_cache_entry {
541         struct auxtrace_cache_entry     entry;
542         u64                             insn_cnt;
543         u64                             byte_cnt;
544         enum intel_pt_insn_op           op;
545         enum intel_pt_insn_branch       branch;
546         bool                            emulated_ptwrite;
547         int                             length;
548         int32_t                         rel;
549         char                            insn[INTEL_PT_INSN_BUF_SZ];
550 };
551
552 static int intel_pt_config_div(const char *var, const char *value, void *data)
553 {
554         int *d = data;
555         long val;
556
557         if (!strcmp(var, "intel-pt.cache-divisor")) {
558                 val = strtol(value, NULL, 0);
559                 if (val > 0 && val <= INT_MAX)
560                         *d = val;
561         }
562
563         return 0;
564 }
565
566 static int intel_pt_cache_divisor(void)
567 {
568         static int d;
569
570         if (d)
571                 return d;
572
573         perf_config(intel_pt_config_div, &d);
574
575         if (!d)
576                 d = 64;
577
578         return d;
579 }
580
581 static unsigned int intel_pt_cache_size(struct dso *dso,
582                                         struct machine *machine)
583 {
584         off_t size;
585
586         size = dso__data_size(dso, machine);
587         size /= intel_pt_cache_divisor();
588         if (size < 1000)
589                 return 10;
590         if (size > (1 << 21))
591                 return 21;
592         return 32 - __builtin_clz(size);
593 }
594
595 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
596                                              struct machine *machine)
597 {
598         struct auxtrace_cache *c;
599         unsigned int bits;
600
601         if (dso__auxtrace_cache(dso))
602                 return dso__auxtrace_cache(dso);
603
604         bits = intel_pt_cache_size(dso, machine);
605
606         /* Ignoring cache creation failure */
607         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
608
609         dso__set_auxtrace_cache(dso, c);
610
611         return c;
612 }
613
614 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
615                               u64 offset, u64 insn_cnt, u64 byte_cnt,
616                               struct intel_pt_insn *intel_pt_insn)
617 {
618         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
619         struct intel_pt_cache_entry *e;
620         int err;
621
622         if (!c)
623                 return -ENOMEM;
624
625         e = auxtrace_cache__alloc_entry(c);
626         if (!e)
627                 return -ENOMEM;
628
629         e->insn_cnt = insn_cnt;
630         e->byte_cnt = byte_cnt;
631         e->op = intel_pt_insn->op;
632         e->branch = intel_pt_insn->branch;
633         e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
634         e->length = intel_pt_insn->length;
635         e->rel = intel_pt_insn->rel;
636         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
637
638         err = auxtrace_cache__add(c, offset, &e->entry);
639         if (err)
640                 auxtrace_cache__free_entry(c, e);
641
642         return err;
643 }
644
645 static struct intel_pt_cache_entry *
646 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
647 {
648         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
649
650         if (!c)
651                 return NULL;
652
653         return auxtrace_cache__lookup(dso__auxtrace_cache(dso), offset);
654 }
655
656 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
657                                       u64 offset)
658 {
659         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
660
661         if (!c)
662                 return;
663
664         auxtrace_cache__remove(dso__auxtrace_cache(dso), offset);
665 }
666
667 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
668 {
669         /* Assumes 64-bit kernel */
670         return ip & (1ULL << 63);
671 }
672
673 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
674 {
675         if (nr) {
676                 return intel_pt_guest_kernel_ip(ip) ?
677                        PERF_RECORD_MISC_GUEST_KERNEL :
678                        PERF_RECORD_MISC_GUEST_USER;
679         }
680
681         return ip >= ptq->pt->kernel_start ?
682                PERF_RECORD_MISC_KERNEL :
683                PERF_RECORD_MISC_USER;
684 }
685
686 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
687 {
688         /* No support for non-zero CS base */
689         if (from_ip)
690                 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
691         return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
692 }
693
694 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
695 {
696         struct machines *machines = &ptq->pt->session->machines;
697         struct machine *machine;
698         pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
699
700         if (ptq->guest_machine && pid == ptq->guest_machine->pid)
701                 return 0;
702
703         ptq->guest_machine = NULL;
704         thread__zput(ptq->unknown_guest_thread);
705
706         if (symbol_conf.guest_code) {
707                 thread__zput(ptq->guest_thread);
708                 ptq->guest_thread = machines__findnew_guest_code(machines, pid);
709         }
710
711         machine = machines__find_guest(machines, pid);
712         if (!machine)
713                 return -1;
714
715         ptq->unknown_guest_thread = machine__idle_thread(machine);
716         if (!ptq->unknown_guest_thread)
717                 return -1;
718
719         ptq->guest_machine = machine;
720
721         return 0;
722 }
723
724 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
725 {
726         return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
727 }
728
729 #define PTWRITE_MAGIC           "\x0f\x0bperf,ptwrite  "
730 #define PTWRITE_MAGIC_LEN       16
731
732 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
733 {
734         unsigned char buf[PTWRITE_MAGIC_LEN];
735         ssize_t len;
736
737         len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
738         if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
739                 intel_pt_log("Emulated ptwrite signature found\n");
740                 return true;
741         }
742         intel_pt_log("Emulated ptwrite signature not found\n");
743         return false;
744 }
745
746 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
747                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
748                                    uint64_t to_ip, uint64_t max_insn_cnt,
749                                    void *data)
750 {
751         struct intel_pt_queue *ptq = data;
752         struct machine *machine = ptq->pt->machine;
753         struct thread *thread;
754         struct addr_location al;
755         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
756         ssize_t len;
757         int x86_64, ret = 0;
758         u8 cpumode;
759         u64 offset, start_offset, start_ip;
760         u64 insn_cnt = 0;
761         bool one_map = true;
762         bool nr;
763
764
765         addr_location__init(&al);
766         intel_pt_insn->length = 0;
767         intel_pt_insn->op = INTEL_PT_OP_OTHER;
768
769         if (to_ip && *ip == to_ip)
770                 goto out_no_cache;
771
772         nr = ptq->state->to_nr;
773         cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
774
775         if (nr) {
776                 if (ptq->pt->have_guest_sideband) {
777                         if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
778                                 intel_pt_log("ERROR: guest sideband but no guest machine\n");
779                                 ret = -EINVAL;
780                                 goto out_ret;
781                         }
782                 } else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
783                            intel_pt_get_guest(ptq)) {
784                         intel_pt_log("ERROR: no guest machine\n");
785                         ret = -EINVAL;
786                         goto out_ret;
787                 }
788                 machine = ptq->guest_machine;
789                 thread = ptq->guest_thread;
790                 if (!thread) {
791                         if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
792                                 intel_pt_log("ERROR: no guest thread\n");
793                                 ret = -EINVAL;
794                                 goto out_ret;
795                         }
796                         thread = ptq->unknown_guest_thread;
797                 }
798         } else {
799                 thread = ptq->thread;
800                 if (!thread) {
801                         if (cpumode != PERF_RECORD_MISC_KERNEL) {
802                                 intel_pt_log("ERROR: no thread\n");
803                                 ret = -EINVAL;
804                                 goto out_ret;
805                         }
806                         thread = ptq->pt->unknown_thread;
807                 }
808         }
809
810         while (1) {
811                 struct dso *dso;
812
813                 if (!thread__find_map(thread, cpumode, *ip, &al) || !map__dso(al.map)) {
814                         if (al.map)
815                                 intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
816                         else
817                                 intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
818                         addr_location__exit(&al);
819                         ret = -EINVAL;
820                         goto out_ret;
821                 }
822                 dso = map__dso(al.map);
823
824                 if (dso__data(dso)->status == DSO_DATA_STATUS_ERROR &&
825                     dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) {
826                         ret = -ENOENT;
827                         goto out_ret;
828                 }
829
830                 offset = map__map_ip(al.map, *ip);
831
832                 if (!to_ip && one_map) {
833                         struct intel_pt_cache_entry *e;
834
835                         e = intel_pt_cache_lookup(dso, machine, offset);
836                         if (e &&
837                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
838                                 *insn_cnt_ptr = e->insn_cnt;
839                                 *ip += e->byte_cnt;
840                                 intel_pt_insn->op = e->op;
841                                 intel_pt_insn->branch = e->branch;
842                                 intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
843                                 intel_pt_insn->length = e->length;
844                                 intel_pt_insn->rel = e->rel;
845                                 memcpy(intel_pt_insn->buf, e->insn, INTEL_PT_INSN_BUF_SZ);
846                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
847                                 ret = 0;
848                                 goto out_ret;
849                         }
850                 }
851
852                 start_offset = offset;
853                 start_ip = *ip;
854
855                 /* Load maps to ensure dso->is_64_bit has been updated */
856                 map__load(al.map);
857
858                 x86_64 = dso__is_64_bit(dso);
859
860                 while (1) {
861                         len = dso__data_read_offset(dso, machine,
862                                                     offset, buf,
863                                                     INTEL_PT_INSN_BUF_SZ);
864                         if (len <= 0) {
865                                 intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
866                                              offset);
867                                 if (intel_pt_enable_logging)
868                                         dso__fprintf(dso, intel_pt_log_fp());
869                                 ret = -EINVAL;
870                                 goto out_ret;
871                         }
872
873                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) {
874                                 ret = -EINVAL;
875                                 goto out_ret;
876                         }
877
878                         intel_pt_log_insn(intel_pt_insn, *ip);
879
880                         insn_cnt += 1;
881
882                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
883                                 bool eptw;
884                                 u64 offs;
885
886                                 if (!intel_pt_jmp_16(intel_pt_insn))
887                                         goto out;
888                                 /* Check for emulated ptwrite */
889                                 offs = offset + intel_pt_insn->length;
890                                 eptw = intel_pt_emulated_ptwrite(dso, machine, offs);
891                                 intel_pt_insn->emulated_ptwrite = eptw;
892                                 goto out;
893                         }
894
895                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
896                                 goto out_no_cache;
897
898                         *ip += intel_pt_insn->length;
899
900                         if (to_ip && *ip == to_ip) {
901                                 intel_pt_insn->length = 0;
902                                 intel_pt_insn->op = INTEL_PT_OP_OTHER;
903                                 goto out_no_cache;
904                         }
905
906                         if (*ip >= map__end(al.map))
907                                 break;
908
909                         offset += intel_pt_insn->length;
910                 }
911                 one_map = false;
912         }
913 out:
914         *insn_cnt_ptr = insn_cnt;
915
916         if (!one_map)
917                 goto out_no_cache;
918
919         /*
920          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
921          * entries.
922          */
923         if (to_ip) {
924                 struct intel_pt_cache_entry *e;
925
926                 e = intel_pt_cache_lookup(map__dso(al.map), machine, start_offset);
927                 if (e)
928                         goto out_ret;
929         }
930
931         /* Ignore cache errors */
932         intel_pt_cache_add(map__dso(al.map), machine, start_offset, insn_cnt,
933                            *ip - start_ip, intel_pt_insn);
934
935 out_ret:
936         addr_location__exit(&al);
937         return ret;
938
939 out_no_cache:
940         *insn_cnt_ptr = insn_cnt;
941         addr_location__exit(&al);
942         return 0;
943 }
944
945 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
946                                   uint64_t offset, const char *filename)
947 {
948         struct addr_filter *filt;
949         bool have_filter   = false;
950         bool hit_tracestop = false;
951         bool hit_filter    = false;
952
953         list_for_each_entry(filt, &pt->filts.head, list) {
954                 if (filt->start)
955                         have_filter = true;
956
957                 if ((filename && !filt->filename) ||
958                     (!filename && filt->filename) ||
959                     (filename && strcmp(filename, filt->filename)))
960                         continue;
961
962                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
963                         continue;
964
965                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
966                              ip, offset, filename ? filename : "[kernel]",
967                              filt->start ? "filter" : "stop",
968                              filt->addr, filt->size);
969
970                 if (filt->start)
971                         hit_filter = true;
972                 else
973                         hit_tracestop = true;
974         }
975
976         if (!hit_tracestop && !hit_filter)
977                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
978                              ip, offset, filename ? filename : "[kernel]");
979
980         return hit_tracestop || (have_filter && !hit_filter);
981 }
982
983 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
984 {
985         struct intel_pt_queue *ptq = data;
986         struct thread *thread;
987         struct addr_location al;
988         u8 cpumode;
989         u64 offset;
990         int res;
991
992         if (ptq->state->to_nr) {
993                 if (intel_pt_guest_kernel_ip(ip))
994                         return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
995                 /* No support for decoding guest user space */
996                 return -EINVAL;
997         } else if (ip >= ptq->pt->kernel_start) {
998                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
999         }
1000
1001         cpumode = PERF_RECORD_MISC_USER;
1002
1003         thread = ptq->thread;
1004         if (!thread)
1005                 return -EINVAL;
1006
1007         addr_location__init(&al);
1008         if (!thread__find_map(thread, cpumode, ip, &al) || !map__dso(al.map))
1009                 return -EINVAL;
1010
1011         offset = map__map_ip(al.map, ip);
1012
1013         res = intel_pt_match_pgd_ip(ptq->pt, ip, offset, dso__long_name(map__dso(al.map)));
1014         addr_location__exit(&al);
1015         return res;
1016 }
1017
1018 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
1019 {
1020         return __intel_pt_pgd_ip(ip, data) > 0;
1021 }
1022
1023 static bool intel_pt_get_config(struct intel_pt *pt,
1024                                 struct perf_event_attr *attr, u64 *config)
1025 {
1026         if (attr->type == pt->pmu_type) {
1027                 if (config)
1028                         *config = attr->config;
1029                 return true;
1030         }
1031
1032         return false;
1033 }
1034
1035 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1036 {
1037         struct evsel *evsel;
1038
1039         evlist__for_each_entry(pt->session->evlist, evsel) {
1040                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1041                     !evsel->core.attr.exclude_kernel)
1042                         return false;
1043         }
1044         return true;
1045 }
1046
1047 static bool intel_pt_return_compression(struct intel_pt *pt)
1048 {
1049         struct evsel *evsel;
1050         u64 config;
1051
1052         if (!pt->noretcomp_bit)
1053                 return true;
1054
1055         evlist__for_each_entry(pt->session->evlist, evsel) {
1056                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1057                     (config & pt->noretcomp_bit))
1058                         return false;
1059         }
1060         return true;
1061 }
1062
1063 static bool intel_pt_branch_enable(struct intel_pt *pt)
1064 {
1065         struct evsel *evsel;
1066         u64 config;
1067
1068         evlist__for_each_entry(pt->session->evlist, evsel) {
1069                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1070                     (config & INTEL_PT_CFG_PASS_THRU) &&
1071                     !(config & INTEL_PT_CFG_BRANCH_EN))
1072                         return false;
1073         }
1074         return true;
1075 }
1076
1077 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1078 {
1079         struct evsel *evsel;
1080         u64 config;
1081
1082         evlist__for_each_entry(pt->session->evlist, evsel) {
1083                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1084                     config & INTEL_PT_CFG_TNT_DIS)
1085                         return true;
1086         }
1087         return false;
1088 }
1089
1090 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1091 {
1092         struct evsel *evsel;
1093         unsigned int shift;
1094         u64 config;
1095
1096         if (!pt->mtc_freq_bits)
1097                 return 0;
1098
1099         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1100                 config >>= 1;
1101
1102         evlist__for_each_entry(pt->session->evlist, evsel) {
1103                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1104                         return (config & pt->mtc_freq_bits) >> shift;
1105         }
1106         return 0;
1107 }
1108
1109 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1110 {
1111         struct evsel *evsel;
1112         bool timeless_decoding = true;
1113         u64 config;
1114
1115         if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1116                 return true;
1117
1118         evlist__for_each_entry(pt->session->evlist, evsel) {
1119                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1120                         return true;
1121                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1122                         if (config & pt->tsc_bit)
1123                                 timeless_decoding = false;
1124                         else
1125                                 return true;
1126                 }
1127         }
1128         return timeless_decoding;
1129 }
1130
1131 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1132 {
1133         struct evsel *evsel;
1134
1135         evlist__for_each_entry(pt->session->evlist, evsel) {
1136                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1137                     !evsel->core.attr.exclude_kernel)
1138                         return true;
1139         }
1140         return false;
1141 }
1142
1143 static bool intel_pt_have_tsc(struct intel_pt *pt)
1144 {
1145         struct evsel *evsel;
1146         bool have_tsc = false;
1147         u64 config;
1148
1149         if (!pt->tsc_bit)
1150                 return false;
1151
1152         evlist__for_each_entry(pt->session->evlist, evsel) {
1153                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1154                         if (config & pt->tsc_bit)
1155                                 have_tsc = true;
1156                         else
1157                                 return false;
1158                 }
1159         }
1160         return have_tsc;
1161 }
1162
1163 static bool intel_pt_have_mtc(struct intel_pt *pt)
1164 {
1165         struct evsel *evsel;
1166         u64 config;
1167
1168         evlist__for_each_entry(pt->session->evlist, evsel) {
1169                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1170                     (config & pt->mtc_bit))
1171                         return true;
1172         }
1173         return false;
1174 }
1175
1176 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1177 {
1178         struct evsel *evsel;
1179
1180         evlist__for_each_entry(pt->session->evlist, evsel) {
1181                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1182                     evsel->core.attr.aux_sample_size)
1183                         return true;
1184         }
1185         return false;
1186 }
1187
1188 static u64 intel_pt_ctl(struct intel_pt *pt)
1189 {
1190         struct evsel *evsel;
1191         u64 config;
1192
1193         evlist__for_each_entry(pt->session->evlist, evsel) {
1194                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1195                         return config;
1196         }
1197         return 0;
1198 }
1199
1200 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1201 {
1202         u64 quot, rem;
1203
1204         quot = ns / pt->tc.time_mult;
1205         rem  = ns % pt->tc.time_mult;
1206         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1207                 pt->tc.time_mult;
1208 }
1209
1210 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1211 {
1212         size_t sz = sizeof(struct ip_callchain);
1213
1214         /* Add 1 to callchain_sz for callchain context */
1215         sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1216         return zalloc(sz);
1217 }
1218
1219 static int intel_pt_callchain_init(struct intel_pt *pt)
1220 {
1221         struct evsel *evsel;
1222
1223         evlist__for_each_entry(pt->session->evlist, evsel) {
1224                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1225                         evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1226         }
1227
1228         pt->chain = intel_pt_alloc_chain(pt);
1229         if (!pt->chain)
1230                 return -ENOMEM;
1231
1232         return 0;
1233 }
1234
1235 static void intel_pt_add_callchain(struct intel_pt *pt,
1236                                    struct perf_sample *sample)
1237 {
1238         struct thread *thread = machine__findnew_thread(pt->machine,
1239                                                         sample->pid,
1240                                                         sample->tid);
1241
1242         thread_stack__sample_late(thread, sample->cpu, pt->chain,
1243                                   pt->synth_opts.callchain_sz + 1, sample->ip,
1244                                   pt->kernel_start);
1245
1246         sample->callchain = pt->chain;
1247 }
1248
1249 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1250 {
1251         size_t sz = sizeof(struct branch_stack);
1252
1253         sz += entry_cnt * sizeof(struct branch_entry);
1254         return zalloc(sz);
1255 }
1256
1257 static int intel_pt_br_stack_init(struct intel_pt *pt)
1258 {
1259         struct evsel *evsel;
1260
1261         evlist__for_each_entry(pt->session->evlist, evsel) {
1262                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1263                         evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1264         }
1265
1266         pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1267         if (!pt->br_stack)
1268                 return -ENOMEM;
1269
1270         return 0;
1271 }
1272
1273 static void intel_pt_add_br_stack(struct intel_pt *pt,
1274                                   struct perf_sample *sample)
1275 {
1276         struct thread *thread = machine__findnew_thread(pt->machine,
1277                                                         sample->pid,
1278                                                         sample->tid);
1279
1280         thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1281                                      pt->br_stack_sz, sample->ip,
1282                                      pt->kernel_start);
1283
1284         sample->branch_stack = pt->br_stack;
1285         thread__put(thread);
1286 }
1287
1288 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1289 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1290
1291 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1292                                                    unsigned int queue_nr)
1293 {
1294         struct intel_pt_params params = { .get_trace = 0, };
1295         struct perf_env *env = pt->machine->env;
1296         struct intel_pt_queue *ptq;
1297
1298         ptq = zalloc(sizeof(struct intel_pt_queue));
1299         if (!ptq)
1300                 return NULL;
1301
1302         if (pt->synth_opts.callchain) {
1303                 ptq->chain = intel_pt_alloc_chain(pt);
1304                 if (!ptq->chain)
1305                         goto out_free;
1306         }
1307
1308         if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1309                 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1310
1311                 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1312                 if (!ptq->last_branch)
1313                         goto out_free;
1314         }
1315
1316         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1317         if (!ptq->event_buf)
1318                 goto out_free;
1319
1320         ptq->pt = pt;
1321         ptq->queue_nr = queue_nr;
1322         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1323         ptq->pid = -1;
1324         ptq->tid = -1;
1325         ptq->cpu = -1;
1326         ptq->next_tid = -1;
1327
1328         params.get_trace = intel_pt_get_trace;
1329         params.walk_insn = intel_pt_walk_next_insn;
1330         params.lookahead = intel_pt_lookahead;
1331         params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1332         params.data = ptq;
1333         params.return_compression = intel_pt_return_compression(pt);
1334         params.branch_enable = intel_pt_branch_enable(pt);
1335         params.ctl = intel_pt_ctl(pt);
1336         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1337         params.mtc_period = intel_pt_mtc_period(pt);
1338         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1339         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1340         params.quick = pt->synth_opts.quick;
1341         params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1342         params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1343         params.first_timestamp = pt->first_timestamp;
1344         params.max_loops = pt->max_loops;
1345
1346         /* Cannot walk code without TNT, so force 'quick' mode */
1347         if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1348                 params.quick = 1;
1349
1350         if (pt->filts.cnt > 0)
1351                 params.pgd_ip = intel_pt_pgd_ip;
1352
1353         if (pt->synth_opts.instructions || pt->synth_opts.cycles) {
1354                 if (pt->synth_opts.period) {
1355                         switch (pt->synth_opts.period_type) {
1356                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1357                                 params.period_type =
1358                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
1359                                 params.period = pt->synth_opts.period;
1360                                 break;
1361                         case PERF_ITRACE_PERIOD_TICKS:
1362                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1363                                 params.period = pt->synth_opts.period;
1364                                 break;
1365                         case PERF_ITRACE_PERIOD_NANOSECS:
1366                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1367                                 params.period = intel_pt_ns_to_ticks(pt,
1368                                                         pt->synth_opts.period);
1369                                 break;
1370                         default:
1371                                 break;
1372                         }
1373                 }
1374
1375                 if (!params.period) {
1376                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1377                         params.period = 1;
1378                 }
1379         }
1380
1381         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1382                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1383
1384         ptq->decoder = intel_pt_decoder_new(&params);
1385         if (!ptq->decoder)
1386                 goto out_free;
1387
1388         return ptq;
1389
1390 out_free:
1391         zfree(&ptq->event_buf);
1392         zfree(&ptq->last_branch);
1393         zfree(&ptq->chain);
1394         free(ptq);
1395         return NULL;
1396 }
1397
1398 static void intel_pt_free_queue(void *priv)
1399 {
1400         struct intel_pt_queue *ptq = priv;
1401
1402         if (!ptq)
1403                 return;
1404         thread__zput(ptq->thread);
1405         thread__zput(ptq->guest_thread);
1406         thread__zput(ptq->unknown_guest_thread);
1407         intel_pt_decoder_free(ptq->decoder);
1408         zfree(&ptq->event_buf);
1409         zfree(&ptq->last_branch);
1410         zfree(&ptq->chain);
1411         free(ptq);
1412 }
1413
1414 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1415 {
1416         unsigned int i;
1417
1418         pt->first_timestamp = timestamp;
1419
1420         for (i = 0; i < pt->queues.nr_queues; i++) {
1421                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1422                 struct intel_pt_queue *ptq = queue->priv;
1423
1424                 if (ptq && ptq->decoder)
1425                         intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1426         }
1427 }
1428
1429 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1430 {
1431         struct machines *machines = &ptq->pt->session->machines;
1432         struct machine *machine;
1433         pid_t machine_pid = ptq->pid;
1434         pid_t tid;
1435         int vcpu;
1436
1437         if (machine_pid <= 0)
1438                 return 0; /* Not a guest machine */
1439
1440         machine = machines__find(machines, machine_pid);
1441         if (!machine)
1442                 return 0; /* Not a guest machine */
1443
1444         if (ptq->guest_machine != machine) {
1445                 ptq->guest_machine = NULL;
1446                 thread__zput(ptq->guest_thread);
1447                 thread__zput(ptq->unknown_guest_thread);
1448
1449                 ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1450                 if (!ptq->unknown_guest_thread)
1451                         return -1;
1452                 ptq->guest_machine = machine;
1453         }
1454
1455         vcpu = ptq->thread ? thread__guest_cpu(ptq->thread) : -1;
1456         if (vcpu < 0)
1457                 return -1;
1458
1459         tid = machine__get_current_tid(machine, vcpu);
1460
1461         if (ptq->guest_thread && thread__tid(ptq->guest_thread) != tid)
1462                 thread__zput(ptq->guest_thread);
1463
1464         if (!ptq->guest_thread) {
1465                 ptq->guest_thread = machine__find_thread(machine, -1, tid);
1466                 if (!ptq->guest_thread)
1467                         return -1;
1468         }
1469
1470         ptq->guest_machine_pid = machine_pid;
1471         ptq->guest_pid = thread__pid(ptq->guest_thread);
1472         ptq->guest_tid = tid;
1473         ptq->vcpu = vcpu;
1474
1475         return 0;
1476 }
1477
1478 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1479                                      struct auxtrace_queue *queue)
1480 {
1481         struct intel_pt_queue *ptq = queue->priv;
1482
1483         if (queue->tid == -1 || pt->have_sched_switch) {
1484                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1485                 if (ptq->tid == -1)
1486                         ptq->pid = -1;
1487                 thread__zput(ptq->thread);
1488         }
1489
1490         if (!ptq->thread && ptq->tid != -1)
1491                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1492
1493         if (ptq->thread) {
1494                 ptq->pid = thread__pid(ptq->thread);
1495                 if (queue->cpu == -1)
1496                         ptq->cpu = thread__cpu(ptq->thread);
1497         }
1498
1499         if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1500                 ptq->guest_machine_pid = 0;
1501                 ptq->guest_pid = -1;
1502                 ptq->guest_tid = -1;
1503                 ptq->vcpu = -1;
1504         }
1505 }
1506
1507 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1508 {
1509         struct intel_pt *pt = ptq->pt;
1510
1511         ptq->insn_len = 0;
1512         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1513                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1514         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1515                 if (!ptq->state->to_ip)
1516                         ptq->flags = PERF_IP_FLAG_BRANCH |
1517                                      PERF_IP_FLAG_ASYNC |
1518                                      PERF_IP_FLAG_TRACE_END;
1519                 else if (ptq->state->from_nr && !ptq->state->to_nr)
1520                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1521                                      PERF_IP_FLAG_ASYNC |
1522                                      PERF_IP_FLAG_VMEXIT;
1523                 else
1524                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1525                                      PERF_IP_FLAG_ASYNC |
1526                                      PERF_IP_FLAG_INTERRUPT;
1527         } else {
1528                 if (ptq->state->from_ip)
1529                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1530                 else
1531                         ptq->flags = PERF_IP_FLAG_BRANCH |
1532                                      PERF_IP_FLAG_TRACE_BEGIN;
1533                 if (ptq->state->flags & INTEL_PT_IN_TX)
1534                         ptq->flags |= PERF_IP_FLAG_IN_TX;
1535                 ptq->insn_len = ptq->state->insn_len;
1536                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1537         }
1538
1539         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1540                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1541         if (ptq->state->type & INTEL_PT_TRACE_END)
1542                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1543
1544         if (pt->cap_event_trace) {
1545                 if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1546                         if (!ptq->state->from_iflag)
1547                                 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1548                         if (ptq->state->from_iflag != ptq->state->to_iflag)
1549                                 ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1550                 } else if (!ptq->state->to_iflag) {
1551                         ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1552                 }
1553         }
1554 }
1555
1556 static void intel_pt_setup_time_range(struct intel_pt *pt,
1557                                       struct intel_pt_queue *ptq)
1558 {
1559         if (!pt->range_cnt)
1560                 return;
1561
1562         ptq->sel_timestamp = pt->time_ranges[0].start;
1563         ptq->sel_idx = 0;
1564
1565         if (ptq->sel_timestamp) {
1566                 ptq->sel_start = true;
1567         } else {
1568                 ptq->sel_timestamp = pt->time_ranges[0].end;
1569                 ptq->sel_start = false;
1570         }
1571 }
1572
1573 static int intel_pt_setup_queue(struct intel_pt *pt,
1574                                 struct auxtrace_queue *queue,
1575                                 unsigned int queue_nr)
1576 {
1577         struct intel_pt_queue *ptq = queue->priv;
1578
1579         if (list_empty(&queue->head))
1580                 return 0;
1581
1582         if (!ptq) {
1583                 ptq = intel_pt_alloc_queue(pt, queue_nr);
1584                 if (!ptq)
1585                         return -ENOMEM;
1586                 queue->priv = ptq;
1587
1588                 if (queue->cpu != -1)
1589                         ptq->cpu = queue->cpu;
1590                 ptq->tid = queue->tid;
1591
1592                 ptq->cbr_seen = UINT_MAX;
1593
1594                 if (pt->sampling_mode && !pt->snapshot_mode &&
1595                     pt->timeless_decoding)
1596                         ptq->step_through_buffers = true;
1597
1598                 ptq->sync_switch = pt->sync_switch;
1599
1600                 intel_pt_setup_time_range(pt, ptq);
1601         }
1602
1603         if (!ptq->on_heap &&
1604             (!ptq->sync_switch ||
1605              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1606                 const struct intel_pt_state *state;
1607                 int ret;
1608
1609                 if (pt->timeless_decoding)
1610                         return 0;
1611
1612                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1613                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1614                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1615
1616                 if (ptq->sel_start && ptq->sel_timestamp) {
1617                         ret = intel_pt_fast_forward(ptq->decoder,
1618                                                     ptq->sel_timestamp);
1619                         if (ret)
1620                                 return ret;
1621                 }
1622
1623                 while (1) {
1624                         state = intel_pt_decode(ptq->decoder);
1625                         if (state->err) {
1626                                 if (state->err == INTEL_PT_ERR_NODATA) {
1627                                         intel_pt_log("queue %u has no timestamp\n",
1628                                                      queue_nr);
1629                                         return 0;
1630                                 }
1631                                 continue;
1632                         }
1633                         if (state->timestamp)
1634                                 break;
1635                 }
1636
1637                 ptq->timestamp = state->timestamp;
1638                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1639                              queue_nr, ptq->timestamp);
1640                 ptq->state = state;
1641                 ptq->have_sample = true;
1642                 if (ptq->sel_start && ptq->sel_timestamp &&
1643                     ptq->timestamp < ptq->sel_timestamp)
1644                         ptq->have_sample = false;
1645                 intel_pt_sample_flags(ptq);
1646                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1647                 if (ret)
1648                         return ret;
1649                 ptq->on_heap = true;
1650         }
1651
1652         return 0;
1653 }
1654
1655 static int intel_pt_setup_queues(struct intel_pt *pt)
1656 {
1657         unsigned int i;
1658         int ret;
1659
1660         for (i = 0; i < pt->queues.nr_queues; i++) {
1661                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1662                 if (ret)
1663                         return ret;
1664         }
1665         return 0;
1666 }
1667
1668 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1669 {
1670         return pt->synth_opts.initial_skip &&
1671                pt->num_events++ < pt->synth_opts.initial_skip;
1672 }
1673
1674 /*
1675  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1676  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1677  * from this decoder state.
1678  */
1679 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1680 {
1681         return pt->synth_opts.initial_skip &&
1682                pt->num_events + 4 < pt->synth_opts.initial_skip;
1683 }
1684
1685 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1686                                    union perf_event *event,
1687                                    struct perf_sample *sample)
1688 {
1689         event->sample.header.type = PERF_RECORD_SAMPLE;
1690         event->sample.header.size = sizeof(struct perf_event_header);
1691
1692         sample->pid = ptq->pid;
1693         sample->tid = ptq->tid;
1694
1695         if (ptq->pt->have_guest_sideband) {
1696                 if ((ptq->state->from_ip && ptq->state->from_nr) ||
1697                     (ptq->state->to_ip && ptq->state->to_nr)) {
1698                         sample->pid = ptq->guest_pid;
1699                         sample->tid = ptq->guest_tid;
1700                         sample->machine_pid = ptq->guest_machine_pid;
1701                         sample->vcpu = ptq->vcpu;
1702                 }
1703         }
1704
1705         sample->cpu = ptq->cpu;
1706         sample->insn_len = ptq->insn_len;
1707         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1708 }
1709
1710 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1711                                    struct intel_pt_queue *ptq,
1712                                    union perf_event *event,
1713                                    struct perf_sample *sample)
1714 {
1715         intel_pt_prep_a_sample(ptq, event, sample);
1716
1717         if (!pt->timeless_decoding)
1718                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1719
1720         sample->ip = ptq->state->from_ip;
1721         sample->addr = ptq->state->to_ip;
1722         sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1723         sample->period = 1;
1724         sample->flags = ptq->flags;
1725
1726         event->sample.header.misc = sample->cpumode;
1727 }
1728
1729 static int intel_pt_inject_event(union perf_event *event,
1730                                  struct perf_sample *sample, u64 type)
1731 {
1732         event->header.size = perf_event__sample_event_size(sample, type, 0);
1733         return perf_event__synthesize_sample(event, type, 0, sample);
1734 }
1735
1736 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1737                                       union perf_event *event,
1738                                       struct perf_sample *sample, u64 type)
1739 {
1740         if (!pt->synth_opts.inject)
1741                 return 0;
1742
1743         return intel_pt_inject_event(event, sample, type);
1744 }
1745
1746 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1747                                         union perf_event *event,
1748                                         struct perf_sample *sample, u64 type)
1749 {
1750         int ret;
1751
1752         ret = intel_pt_opt_inject(pt, event, sample, type);
1753         if (ret)
1754                 return ret;
1755
1756         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1757         if (ret)
1758                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1759
1760         return ret;
1761 }
1762
1763 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1764 {
1765         struct intel_pt *pt = ptq->pt;
1766         union perf_event *event = ptq->event_buf;
1767         struct perf_sample sample = { .ip = 0, };
1768         struct dummy_branch_stack {
1769                 u64                     nr;
1770                 u64                     hw_idx;
1771                 struct branch_entry     entries;
1772         } dummy_bs;
1773
1774         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1775                 return 0;
1776
1777         if (intel_pt_skip_event(pt))
1778                 return 0;
1779
1780         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1781
1782         sample.id = ptq->pt->branches_id;
1783         sample.stream_id = ptq->pt->branches_id;
1784
1785         /*
1786          * perf report cannot handle events without a branch stack when using
1787          * SORT_MODE__BRANCH so make a dummy one.
1788          */
1789         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1790                 dummy_bs = (struct dummy_branch_stack){
1791                         .nr = 1,
1792                         .hw_idx = -1ULL,
1793                         .entries = {
1794                                 .from = sample.ip,
1795                                 .to = sample.addr,
1796                         },
1797                 };
1798                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1799         }
1800
1801         if (ptq->sample_ipc)
1802                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1803         if (sample.cyc_cnt) {
1804                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1805                 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1806                 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1807         }
1808
1809         return intel_pt_deliver_synth_event(pt, event, &sample,
1810                                             pt->branches_sample_type);
1811 }
1812
1813 static void intel_pt_prep_sample(struct intel_pt *pt,
1814                                  struct intel_pt_queue *ptq,
1815                                  union perf_event *event,
1816                                  struct perf_sample *sample)
1817 {
1818         intel_pt_prep_b_sample(pt, ptq, event, sample);
1819
1820         if (pt->synth_opts.callchain) {
1821                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1822                                      pt->synth_opts.callchain_sz + 1,
1823                                      sample->ip, pt->kernel_start);
1824                 sample->callchain = ptq->chain;
1825         }
1826
1827         if (pt->synth_opts.last_branch) {
1828                 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1829                                         pt->br_stack_sz);
1830                 sample->branch_stack = ptq->last_branch;
1831         }
1832 }
1833
1834 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1835 {
1836         struct intel_pt *pt = ptq->pt;
1837         union perf_event *event = ptq->event_buf;
1838         struct perf_sample sample = { .ip = 0, };
1839
1840         if (intel_pt_skip_event(pt))
1841                 return 0;
1842
1843         intel_pt_prep_sample(pt, ptq, event, &sample);
1844
1845         sample.id = ptq->pt->instructions_id;
1846         sample.stream_id = ptq->pt->instructions_id;
1847         if (pt->synth_opts.quick)
1848                 sample.period = 1;
1849         else
1850                 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1851
1852         if (ptq->sample_ipc)
1853                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1854         if (sample.cyc_cnt) {
1855                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1856                 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1857                 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1858         }
1859
1860         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1861
1862         return intel_pt_deliver_synth_event(pt, event, &sample,
1863                                             pt->instructions_sample_type);
1864 }
1865
1866 static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq)
1867 {
1868         struct intel_pt *pt = ptq->pt;
1869         union perf_event *event = ptq->event_buf;
1870         struct perf_sample sample = { .ip = 0, };
1871         u64 period = 0;
1872
1873         if (ptq->sample_ipc)
1874                 period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt;
1875
1876         if (!period || intel_pt_skip_event(pt))
1877                 return 0;
1878
1879         intel_pt_prep_sample(pt, ptq, event, &sample);
1880
1881         sample.id = ptq->pt->cycles_id;
1882         sample.stream_id = ptq->pt->cycles_id;
1883         sample.period = period;
1884
1885         sample.cyc_cnt = period;
1886         sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt;
1887         ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt;
1888         ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt;
1889
1890         return intel_pt_deliver_synth_event(pt, event, &sample, pt->cycles_sample_type);
1891 }
1892
1893 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1894 {
1895         struct intel_pt *pt = ptq->pt;
1896         union perf_event *event = ptq->event_buf;
1897         struct perf_sample sample = { .ip = 0, };
1898
1899         if (intel_pt_skip_event(pt))
1900                 return 0;
1901
1902         intel_pt_prep_sample(pt, ptq, event, &sample);
1903
1904         sample.id = ptq->pt->transactions_id;
1905         sample.stream_id = ptq->pt->transactions_id;
1906
1907         return intel_pt_deliver_synth_event(pt, event, &sample,
1908                                             pt->transactions_sample_type);
1909 }
1910
1911 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1912                                    struct intel_pt_queue *ptq,
1913                                    union perf_event *event,
1914                                    struct perf_sample *sample)
1915 {
1916         intel_pt_prep_sample(pt, ptq, event, sample);
1917
1918         /*
1919          * Zero IP is used to mean "trace start" but that is not the case for
1920          * power or PTWRITE events with no IP, so clear the flags.
1921          */
1922         if (!sample->ip)
1923                 sample->flags = 0;
1924 }
1925
1926 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1927 {
1928         struct intel_pt *pt = ptq->pt;
1929         union perf_event *event = ptq->event_buf;
1930         struct perf_sample sample = { .ip = 0, };
1931         struct perf_synth_intel_ptwrite raw;
1932
1933         if (intel_pt_skip_event(pt))
1934                 return 0;
1935
1936         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1937
1938         sample.id = ptq->pt->ptwrites_id;
1939         sample.stream_id = ptq->pt->ptwrites_id;
1940
1941         raw.flags = 0;
1942         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1943         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1944
1945         sample.raw_size = perf_synth__raw_size(raw);
1946         sample.raw_data = perf_synth__raw_data(&raw);
1947
1948         return intel_pt_deliver_synth_event(pt, event, &sample,
1949                                             pt->ptwrites_sample_type);
1950 }
1951
1952 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1953 {
1954         struct intel_pt *pt = ptq->pt;
1955         union perf_event *event = ptq->event_buf;
1956         struct perf_sample sample = { .ip = 0, };
1957         struct perf_synth_intel_cbr raw;
1958         u32 flags;
1959
1960         if (intel_pt_skip_cbr_event(pt))
1961                 return 0;
1962
1963         ptq->cbr_seen = ptq->state->cbr;
1964
1965         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1966
1967         sample.id = ptq->pt->cbr_id;
1968         sample.stream_id = ptq->pt->cbr_id;
1969
1970         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1971         raw.flags = cpu_to_le32(flags);
1972         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1973         raw.reserved3 = 0;
1974
1975         sample.raw_size = perf_synth__raw_size(raw);
1976         sample.raw_data = perf_synth__raw_data(&raw);
1977
1978         return intel_pt_deliver_synth_event(pt, event, &sample,
1979                                             pt->pwr_events_sample_type);
1980 }
1981
1982 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1983 {
1984         struct intel_pt *pt = ptq->pt;
1985         union perf_event *event = ptq->event_buf;
1986         struct perf_sample sample = { .ip = 0, };
1987         struct perf_synth_intel_psb raw;
1988
1989         if (intel_pt_skip_event(pt))
1990                 return 0;
1991
1992         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1993
1994         sample.id = ptq->pt->psb_id;
1995         sample.stream_id = ptq->pt->psb_id;
1996         sample.flags = 0;
1997
1998         raw.reserved = 0;
1999         raw.offset = ptq->state->psb_offset;
2000
2001         sample.raw_size = perf_synth__raw_size(raw);
2002         sample.raw_data = perf_synth__raw_data(&raw);
2003
2004         return intel_pt_deliver_synth_event(pt, event, &sample,
2005                                             pt->pwr_events_sample_type);
2006 }
2007
2008 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
2009 {
2010         struct intel_pt *pt = ptq->pt;
2011         union perf_event *event = ptq->event_buf;
2012         struct perf_sample sample = { .ip = 0, };
2013         struct perf_synth_intel_mwait raw;
2014
2015         if (intel_pt_skip_event(pt))
2016                 return 0;
2017
2018         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2019
2020         sample.id = ptq->pt->mwait_id;
2021         sample.stream_id = ptq->pt->mwait_id;
2022
2023         raw.reserved = 0;
2024         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
2025
2026         sample.raw_size = perf_synth__raw_size(raw);
2027         sample.raw_data = perf_synth__raw_data(&raw);
2028
2029         return intel_pt_deliver_synth_event(pt, event, &sample,
2030                                             pt->pwr_events_sample_type);
2031 }
2032
2033 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
2034 {
2035         struct intel_pt *pt = ptq->pt;
2036         union perf_event *event = ptq->event_buf;
2037         struct perf_sample sample = { .ip = 0, };
2038         struct perf_synth_intel_pwre raw;
2039
2040         if (intel_pt_skip_event(pt))
2041                 return 0;
2042
2043         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2044
2045         sample.id = ptq->pt->pwre_id;
2046         sample.stream_id = ptq->pt->pwre_id;
2047
2048         raw.reserved = 0;
2049         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
2050
2051         sample.raw_size = perf_synth__raw_size(raw);
2052         sample.raw_data = perf_synth__raw_data(&raw);
2053
2054         return intel_pt_deliver_synth_event(pt, event, &sample,
2055                                             pt->pwr_events_sample_type);
2056 }
2057
2058 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
2059 {
2060         struct intel_pt *pt = ptq->pt;
2061         union perf_event *event = ptq->event_buf;
2062         struct perf_sample sample = { .ip = 0, };
2063         struct perf_synth_intel_exstop raw;
2064
2065         if (intel_pt_skip_event(pt))
2066                 return 0;
2067
2068         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2069
2070         sample.id = ptq->pt->exstop_id;
2071         sample.stream_id = ptq->pt->exstop_id;
2072
2073         raw.flags = 0;
2074         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2075
2076         sample.raw_size = perf_synth__raw_size(raw);
2077         sample.raw_data = perf_synth__raw_data(&raw);
2078
2079         return intel_pt_deliver_synth_event(pt, event, &sample,
2080                                             pt->pwr_events_sample_type);
2081 }
2082
2083 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2084 {
2085         struct intel_pt *pt = ptq->pt;
2086         union perf_event *event = ptq->event_buf;
2087         struct perf_sample sample = { .ip = 0, };
2088         struct perf_synth_intel_pwrx raw;
2089
2090         if (intel_pt_skip_event(pt))
2091                 return 0;
2092
2093         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2094
2095         sample.id = ptq->pt->pwrx_id;
2096         sample.stream_id = ptq->pt->pwrx_id;
2097
2098         raw.reserved = 0;
2099         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2100
2101         sample.raw_size = perf_synth__raw_size(raw);
2102         sample.raw_data = perf_synth__raw_data(&raw);
2103
2104         return intel_pt_deliver_synth_event(pt, event, &sample,
2105                                             pt->pwr_events_sample_type);
2106 }
2107
2108 /*
2109  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2110  * intel_pt_add_gp_regs().
2111  */
2112 static const int pebs_gp_regs[] = {
2113         [PERF_REG_X86_FLAGS]    = 1,
2114         [PERF_REG_X86_IP]       = 2,
2115         [PERF_REG_X86_AX]       = 3,
2116         [PERF_REG_X86_CX]       = 4,
2117         [PERF_REG_X86_DX]       = 5,
2118         [PERF_REG_X86_BX]       = 6,
2119         [PERF_REG_X86_SP]       = 7,
2120         [PERF_REG_X86_BP]       = 8,
2121         [PERF_REG_X86_SI]       = 9,
2122         [PERF_REG_X86_DI]       = 10,
2123         [PERF_REG_X86_R8]       = 11,
2124         [PERF_REG_X86_R9]       = 12,
2125         [PERF_REG_X86_R10]      = 13,
2126         [PERF_REG_X86_R11]      = 14,
2127         [PERF_REG_X86_R12]      = 15,
2128         [PERF_REG_X86_R13]      = 16,
2129         [PERF_REG_X86_R14]      = 17,
2130         [PERF_REG_X86_R15]      = 18,
2131 };
2132
2133 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2134                                  const struct intel_pt_blk_items *items,
2135                                  u64 regs_mask)
2136 {
2137         const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2138         u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2139         u32 bit;
2140         int i;
2141
2142         for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2143                 /* Get the PEBS gp_regs array index */
2144                 int n = pebs_gp_regs[i] - 1;
2145
2146                 if (n < 0)
2147                         continue;
2148                 /*
2149                  * Add only registers that were requested (i.e. 'regs_mask') and
2150                  * that were provided (i.e. 'mask'), and update the resulting
2151                  * mask (i.e. 'intr_regs->mask') accordingly.
2152                  */
2153                 if (mask & 1 << n && regs_mask & bit) {
2154                         intr_regs->mask |= bit;
2155                         *pos++ = gp_regs[n];
2156                 }
2157         }
2158
2159         return pos;
2160 }
2161
2162 #ifndef PERF_REG_X86_XMM0
2163 #define PERF_REG_X86_XMM0 32
2164 #endif
2165
2166 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2167                              const struct intel_pt_blk_items *items,
2168                              u64 regs_mask)
2169 {
2170         u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2171         const u64 *xmm = items->xmm;
2172
2173         /*
2174          * If there are any XMM registers, then there should be all of them.
2175          * Nevertheless, follow the logic to add only registers that were
2176          * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2177          * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2178          */
2179         intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2180
2181         for (; mask; mask >>= 1, xmm++) {
2182                 if (mask & 1)
2183                         *pos++ = *xmm;
2184         }
2185 }
2186
2187 #define LBR_INFO_MISPRED        (1ULL << 63)
2188 #define LBR_INFO_IN_TX          (1ULL << 62)
2189 #define LBR_INFO_ABORT          (1ULL << 61)
2190 #define LBR_INFO_CYCLES         0xffff
2191
2192 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
2193 static u64 intel_pt_lbr_flags(u64 info)
2194 {
2195         union {
2196                 struct branch_flags flags;
2197                 u64 result;
2198         } u;
2199
2200         u.result          = 0;
2201         u.flags.mispred   = !!(info & LBR_INFO_MISPRED);
2202         u.flags.predicted = !(info & LBR_INFO_MISPRED);
2203         u.flags.in_tx     = !!(info & LBR_INFO_IN_TX);
2204         u.flags.abort     = !!(info & LBR_INFO_ABORT);
2205         u.flags.cycles    = info & LBR_INFO_CYCLES;
2206
2207         return u.result;
2208 }
2209
2210 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2211                               const struct intel_pt_blk_items *items)
2212 {
2213         u64 *to;
2214         int i;
2215
2216         br_stack->nr = 0;
2217
2218         to = &br_stack->entries[0].from;
2219
2220         for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2221                 u32 mask = items->mask[i];
2222                 const u64 *from = items->val[i];
2223
2224                 for (; mask; mask >>= 3, from += 3) {
2225                         if ((mask & 7) == 7) {
2226                                 *to++ = from[0];
2227                                 *to++ = from[1];
2228                                 *to++ = intel_pt_lbr_flags(from[2]);
2229                                 br_stack->nr += 1;
2230                         }
2231                 }
2232         }
2233 }
2234
2235 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2236 {
2237         const struct intel_pt_blk_items *items = &ptq->state->items;
2238         struct perf_sample sample = { .ip = 0, };
2239         union perf_event *event = ptq->event_buf;
2240         struct intel_pt *pt = ptq->pt;
2241         u64 sample_type = evsel->core.attr.sample_type;
2242         u8 cpumode;
2243         u64 regs[8 * sizeof(sample.intr_regs.mask)];
2244
2245         if (intel_pt_skip_event(pt))
2246                 return 0;
2247
2248         intel_pt_prep_a_sample(ptq, event, &sample);
2249
2250         sample.id = id;
2251         sample.stream_id = id;
2252
2253         if (!evsel->core.attr.freq)
2254                 sample.period = evsel->core.attr.sample_period;
2255
2256         /* No support for non-zero CS base */
2257         if (items->has_ip)
2258                 sample.ip = items->ip;
2259         else if (items->has_rip)
2260                 sample.ip = items->rip;
2261         else
2262                 sample.ip = ptq->state->from_ip;
2263
2264         cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2265
2266         event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2267
2268         sample.cpumode = cpumode;
2269
2270         if (sample_type & PERF_SAMPLE_TIME) {
2271                 u64 timestamp = 0;
2272
2273                 if (items->has_timestamp)
2274                         timestamp = items->timestamp;
2275                 else if (!pt->timeless_decoding)
2276                         timestamp = ptq->timestamp;
2277                 if (timestamp)
2278                         sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2279         }
2280
2281         if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2282             pt->synth_opts.callchain) {
2283                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2284                                      pt->synth_opts.callchain_sz, sample.ip,
2285                                      pt->kernel_start);
2286                 sample.callchain = ptq->chain;
2287         }
2288
2289         if (sample_type & PERF_SAMPLE_REGS_INTR &&
2290             (items->mask[INTEL_PT_GP_REGS_POS] ||
2291              items->mask[INTEL_PT_XMM_POS])) {
2292                 u64 regs_mask = evsel->core.attr.sample_regs_intr;
2293                 u64 *pos;
2294
2295                 sample.intr_regs.abi = items->is_32_bit ?
2296                                        PERF_SAMPLE_REGS_ABI_32 :
2297                                        PERF_SAMPLE_REGS_ABI_64;
2298                 sample.intr_regs.regs = regs;
2299
2300                 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2301
2302                 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2303         }
2304
2305         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2306                 if (items->mask[INTEL_PT_LBR_0_POS] ||
2307                     items->mask[INTEL_PT_LBR_1_POS] ||
2308                     items->mask[INTEL_PT_LBR_2_POS]) {
2309                         intel_pt_add_lbrs(ptq->last_branch, items);
2310                 } else if (pt->synth_opts.last_branch) {
2311                         thread_stack__br_sample(ptq->thread, ptq->cpu,
2312                                                 ptq->last_branch,
2313                                                 pt->br_stack_sz);
2314                 } else {
2315                         ptq->last_branch->nr = 0;
2316                 }
2317                 sample.branch_stack = ptq->last_branch;
2318         }
2319
2320         if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2321                 sample.addr = items->mem_access_address;
2322
2323         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2324                 /*
2325                  * Refer kernel's setup_pebs_adaptive_sample_data() and
2326                  * intel_hsw_weight().
2327                  */
2328                 if (items->has_mem_access_latency) {
2329                         u64 weight = items->mem_access_latency >> 32;
2330
2331                         /*
2332                          * Starts from SPR, the mem access latency field
2333                          * contains both cache latency [47:32] and instruction
2334                          * latency [15:0]. The cache latency is the same as the
2335                          * mem access latency on previous platforms.
2336                          *
2337                          * In practice, no memory access could last than 4G
2338                          * cycles. Use latency >> 32 to distinguish the
2339                          * different format of the mem access latency field.
2340                          */
2341                         if (weight > 0) {
2342                                 sample.weight = weight & 0xffff;
2343                                 sample.ins_lat = items->mem_access_latency & 0xffff;
2344                         } else
2345                                 sample.weight = items->mem_access_latency;
2346                 }
2347                 if (!sample.weight && items->has_tsx_aux_info) {
2348                         /* Cycles last block */
2349                         sample.weight = (u32)items->tsx_aux_info;
2350                 }
2351         }
2352
2353         if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2354                 u64 ax = items->has_rax ? items->rax : 0;
2355                 /* Refer kernel's intel_hsw_transaction() */
2356                 u64 txn = (u8)(items->tsx_aux_info >> 32);
2357
2358                 /* For RTM XABORTs also log the abort code from AX */
2359                 if (txn & PERF_TXN_TRANSACTION && ax & 1)
2360                         txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2361                 sample.transaction = txn;
2362         }
2363
2364         return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2365 }
2366
2367 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2368 {
2369         struct intel_pt *pt = ptq->pt;
2370         struct evsel *evsel = pt->pebs_evsel;
2371         u64 id = evsel->core.id[0];
2372
2373         return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2374 }
2375
2376 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2377 {
2378         const struct intel_pt_blk_items *items = &ptq->state->items;
2379         struct intel_pt_pebs_event *pe;
2380         struct intel_pt *pt = ptq->pt;
2381         int err = -EINVAL;
2382         int hw_id;
2383
2384         if (!items->has_applicable_counters || !items->applicable_counters) {
2385                 if (!pt->single_pebs)
2386                         pr_err("PEBS-via-PT record with no applicable_counters\n");
2387                 return intel_pt_synth_single_pebs_sample(ptq);
2388         }
2389
2390         for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2391                 pe = &ptq->pebs[hw_id];
2392                 if (!pe->evsel) {
2393                         if (!pt->single_pebs)
2394                                 pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2395                                        hw_id);
2396                         return intel_pt_synth_single_pebs_sample(ptq);
2397                 }
2398                 err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2399                 if (err)
2400                         return err;
2401         }
2402
2403         return err;
2404 }
2405
2406 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2407 {
2408         struct intel_pt *pt = ptq->pt;
2409         union perf_event *event = ptq->event_buf;
2410         struct perf_sample sample = { .ip = 0, };
2411         struct {
2412                 struct perf_synth_intel_evt cfe;
2413                 struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2414         } raw;
2415         int i;
2416
2417         if (intel_pt_skip_event(pt))
2418                 return 0;
2419
2420         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2421
2422         sample.id        = ptq->pt->evt_id;
2423         sample.stream_id = ptq->pt->evt_id;
2424
2425         raw.cfe.type     = ptq->state->cfe_type;
2426         raw.cfe.reserved = 0;
2427         raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2428         raw.cfe.vector   = ptq->state->cfe_vector;
2429         raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2430
2431         for (i = 0; i < ptq->state->evd_cnt; i++) {
2432                 raw.evd[i].et       = 0;
2433                 raw.evd[i].evd_type = ptq->state->evd[i].type;
2434                 raw.evd[i].payload  = ptq->state->evd[i].payload;
2435         }
2436
2437         sample.raw_size = perf_synth__raw_size(raw) +
2438                           ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2439         sample.raw_data = perf_synth__raw_data(&raw);
2440
2441         return intel_pt_deliver_synth_event(pt, event, &sample,
2442                                             pt->evt_sample_type);
2443 }
2444
2445 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2446 {
2447         struct intel_pt *pt = ptq->pt;
2448         union perf_event *event = ptq->event_buf;
2449         struct perf_sample sample = { .ip = 0, };
2450         struct perf_synth_intel_iflag_chg raw;
2451
2452         if (intel_pt_skip_event(pt))
2453                 return 0;
2454
2455         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2456
2457         sample.id = ptq->pt->iflag_chg_id;
2458         sample.stream_id = ptq->pt->iflag_chg_id;
2459
2460         raw.flags = 0;
2461         raw.iflag = ptq->state->to_iflag;
2462
2463         if (ptq->state->type & INTEL_PT_BRANCH) {
2464                 raw.via_branch = 1;
2465                 raw.branch_ip = ptq->state->to_ip;
2466         } else {
2467                 sample.addr = 0;
2468         }
2469         sample.flags = ptq->flags;
2470
2471         sample.raw_size = perf_synth__raw_size(raw);
2472         sample.raw_data = perf_synth__raw_data(&raw);
2473
2474         return intel_pt_deliver_synth_event(pt, event, &sample,
2475                                             pt->iflag_chg_sample_type);
2476 }
2477
2478 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2479                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2480                                 pid_t machine_pid, int vcpu)
2481 {
2482         bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2483         bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2484         union perf_event event;
2485         char msg[MAX_AUXTRACE_ERROR_MSG];
2486         int err;
2487
2488         if (pt->synth_opts.error_minus_flags) {
2489                 if (code == INTEL_PT_ERR_OVR &&
2490                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2491                         return 0;
2492                 if (code == INTEL_PT_ERR_LOST &&
2493                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2494                         return 0;
2495         }
2496
2497         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2498
2499         auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2500                                    code, cpu, pid, tid, ip, msg, timestamp,
2501                                    machine_pid, vcpu);
2502
2503         if (intel_pt_enable_logging && !log_on_stdout) {
2504                 FILE *fp = intel_pt_log_fp();
2505
2506                 if (fp)
2507                         perf_event__fprintf_auxtrace_error(&event, fp);
2508         }
2509
2510         if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2511                 intel_pt_log_dump_buf();
2512
2513         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2514         if (err)
2515                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2516                        err);
2517
2518         return err;
2519 }
2520
2521 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2522                                  const struct intel_pt_state *state)
2523 {
2524         struct intel_pt *pt = ptq->pt;
2525         u64 tm = ptq->timestamp;
2526         pid_t machine_pid = 0;
2527         pid_t pid = ptq->pid;
2528         pid_t tid = ptq->tid;
2529         int vcpu = -1;
2530
2531         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2532
2533         if (pt->have_guest_sideband && state->from_nr) {
2534                 machine_pid = ptq->guest_machine_pid;
2535                 vcpu = ptq->vcpu;
2536                 pid = ptq->guest_pid;
2537                 tid = ptq->guest_tid;
2538         }
2539
2540         return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2541                                     state->from_ip, tm, machine_pid, vcpu);
2542 }
2543
2544 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2545 {
2546         struct auxtrace_queue *queue;
2547         pid_t tid = ptq->next_tid;
2548         int err;
2549
2550         if (tid == -1)
2551                 return 0;
2552
2553         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2554
2555         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2556
2557         queue = &pt->queues.queue_array[ptq->queue_nr];
2558         intel_pt_set_pid_tid_cpu(pt, queue);
2559
2560         ptq->next_tid = -1;
2561
2562         return err;
2563 }
2564
2565 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2566 {
2567         struct intel_pt *pt = ptq->pt;
2568
2569         return ip == pt->switch_ip &&
2570                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2571                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2572                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2573 }
2574
2575 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2576                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2577
2578 static int intel_pt_sample(struct intel_pt_queue *ptq)
2579 {
2580         const struct intel_pt_state *state = ptq->state;
2581         struct intel_pt *pt = ptq->pt;
2582         int err;
2583
2584         if (!ptq->have_sample)
2585                 return 0;
2586
2587         ptq->have_sample = false;
2588
2589         if (pt->synth_opts.approx_ipc) {
2590                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2591                 ptq->ipc_cyc_cnt = ptq->state->cycles;
2592                 ptq->sample_ipc = true;
2593         } else {
2594                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2595                 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2596                 ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2597         }
2598
2599         /* Ensure guest code maps are set up */
2600         if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2601                 intel_pt_get_guest(ptq);
2602
2603         /*
2604          * Do PEBS first to allow for the possibility that the PEBS timestamp
2605          * precedes the current timestamp.
2606          */
2607         if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2608                 err = intel_pt_synth_pebs_sample(ptq);
2609                 if (err)
2610                         return err;
2611         }
2612
2613         if (pt->synth_opts.intr_events) {
2614                 if (state->type & INTEL_PT_EVT) {
2615                         err = intel_pt_synth_events_sample(ptq);
2616                         if (err)
2617                                 return err;
2618                 }
2619                 if (state->type & INTEL_PT_IFLAG_CHG) {
2620                         err = intel_pt_synth_iflag_chg_sample(ptq);
2621                         if (err)
2622                                 return err;
2623                 }
2624         }
2625
2626         if (pt->sample_pwr_events) {
2627                 if (state->type & INTEL_PT_PSB_EVT) {
2628                         err = intel_pt_synth_psb_sample(ptq);
2629                         if (err)
2630                                 return err;
2631                 }
2632                 if (ptq->state->cbr != ptq->cbr_seen) {
2633                         err = intel_pt_synth_cbr_sample(ptq);
2634                         if (err)
2635                                 return err;
2636                 }
2637                 if (state->type & INTEL_PT_PWR_EVT) {
2638                         if (state->type & INTEL_PT_MWAIT_OP) {
2639                                 err = intel_pt_synth_mwait_sample(ptq);
2640                                 if (err)
2641                                         return err;
2642                         }
2643                         if (state->type & INTEL_PT_PWR_ENTRY) {
2644                                 err = intel_pt_synth_pwre_sample(ptq);
2645                                 if (err)
2646                                         return err;
2647                         }
2648                         if (state->type & INTEL_PT_EX_STOP) {
2649                                 err = intel_pt_synth_exstop_sample(ptq);
2650                                 if (err)
2651                                         return err;
2652                         }
2653                         if (state->type & INTEL_PT_PWR_EXIT) {
2654                                 err = intel_pt_synth_pwrx_sample(ptq);
2655                                 if (err)
2656                                         return err;
2657                         }
2658                 }
2659         }
2660
2661         if (state->type & INTEL_PT_INSTRUCTION) {
2662                 if (pt->sample_instructions) {
2663                         err = intel_pt_synth_instruction_sample(ptq);
2664                         if (err)
2665                                 return err;
2666                 }
2667                 if (pt->sample_cycles) {
2668                         err = intel_pt_synth_cycle_sample(ptq);
2669                         if (err)
2670                                 return err;
2671                 }
2672         }
2673
2674         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2675                 err = intel_pt_synth_transaction_sample(ptq);
2676                 if (err)
2677                         return err;
2678         }
2679
2680         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2681                 err = intel_pt_synth_ptwrite_sample(ptq);
2682                 if (err)
2683                         return err;
2684         }
2685
2686         if (!(state->type & INTEL_PT_BRANCH))
2687                 return 0;
2688
2689         if (pt->use_thread_stack) {
2690                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2691                                     state->from_ip, state->to_ip, ptq->insn_len,
2692                                     state->trace_nr, pt->callstack,
2693                                     pt->br_stack_sz_plus,
2694                                     pt->mispred_all);
2695         } else {
2696                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2697         }
2698
2699         if (pt->sample_branches) {
2700                 if (state->from_nr != state->to_nr &&
2701                     state->from_ip && state->to_ip) {
2702                         struct intel_pt_state *st = (struct intel_pt_state *)state;
2703                         u64 to_ip = st->to_ip;
2704                         u64 from_ip = st->from_ip;
2705
2706                         /*
2707                          * perf cannot handle having different machines for ip
2708                          * and addr, so create 2 branches.
2709                          */
2710                         st->to_ip = 0;
2711                         err = intel_pt_synth_branch_sample(ptq);
2712                         if (err)
2713                                 return err;
2714                         st->from_ip = 0;
2715                         st->to_ip = to_ip;
2716                         err = intel_pt_synth_branch_sample(ptq);
2717                         st->from_ip = from_ip;
2718                 } else {
2719                         err = intel_pt_synth_branch_sample(ptq);
2720                 }
2721                 if (err)
2722                         return err;
2723         }
2724
2725         if (!ptq->sync_switch)
2726                 return 0;
2727
2728         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2729                 switch (ptq->switch_state) {
2730                 case INTEL_PT_SS_NOT_TRACING:
2731                 case INTEL_PT_SS_UNKNOWN:
2732                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2733                         err = intel_pt_next_tid(pt, ptq);
2734                         if (err)
2735                                 return err;
2736                         ptq->switch_state = INTEL_PT_SS_TRACING;
2737                         break;
2738                 default:
2739                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2740                         return 1;
2741                 }
2742         } else if (!state->to_ip) {
2743                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2744         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2745                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2746         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2747                    state->to_ip == pt->ptss_ip &&
2748                    (ptq->flags & PERF_IP_FLAG_CALL)) {
2749                 ptq->switch_state = INTEL_PT_SS_TRACING;
2750         }
2751
2752         return 0;
2753 }
2754
2755 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2756 {
2757         struct machine *machine = pt->machine;
2758         struct map *map;
2759         struct symbol *sym, *start;
2760         u64 ip, switch_ip = 0;
2761         const char *ptss;
2762
2763         if (ptss_ip)
2764                 *ptss_ip = 0;
2765
2766         map = machine__kernel_map(machine);
2767         if (!map)
2768                 return 0;
2769
2770         if (map__load(map))
2771                 return 0;
2772
2773         start = dso__first_symbol(map__dso(map));
2774
2775         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2776                 if (sym->binding == STB_GLOBAL &&
2777                     !strcmp(sym->name, "__switch_to")) {
2778                         ip = map__unmap_ip(map, sym->start);
2779                         if (ip >= map__start(map) && ip < map__end(map)) {
2780                                 switch_ip = ip;
2781                                 break;
2782                         }
2783                 }
2784         }
2785
2786         if (!switch_ip || !ptss_ip)
2787                 return 0;
2788
2789         if (pt->have_sched_switch == 1)
2790                 ptss = "perf_trace_sched_switch";
2791         else
2792                 ptss = "__perf_event_task_sched_out";
2793
2794         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2795                 if (!strcmp(sym->name, ptss)) {
2796                         ip = map__unmap_ip(map, sym->start);
2797                         if (ip >= map__start(map) && ip < map__end(map)) {
2798                                 *ptss_ip = ip;
2799                                 break;
2800                         }
2801                 }
2802         }
2803
2804         return switch_ip;
2805 }
2806
2807 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2808 {
2809         unsigned int i;
2810
2811         if (pt->sync_switch_not_supported)
2812                 return;
2813
2814         pt->sync_switch = true;
2815
2816         for (i = 0; i < pt->queues.nr_queues; i++) {
2817                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2818                 struct intel_pt_queue *ptq = queue->priv;
2819
2820                 if (ptq)
2821                         ptq->sync_switch = true;
2822         }
2823 }
2824
2825 static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2826 {
2827         unsigned int i;
2828
2829         pt->sync_switch = false;
2830
2831         for (i = 0; i < pt->queues.nr_queues; i++) {
2832                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2833                 struct intel_pt_queue *ptq = queue->priv;
2834
2835                 if (ptq) {
2836                         ptq->sync_switch = false;
2837                         intel_pt_next_tid(pt, ptq);
2838                 }
2839         }
2840 }
2841
2842 /*
2843  * To filter against time ranges, it is only necessary to look at the next start
2844  * or end time.
2845  */
2846 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2847 {
2848         struct intel_pt *pt = ptq->pt;
2849
2850         if (ptq->sel_start) {
2851                 /* Next time is an end time */
2852                 ptq->sel_start = false;
2853                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2854                 return true;
2855         } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2856                 /* Next time is a start time */
2857                 ptq->sel_start = true;
2858                 ptq->sel_idx += 1;
2859                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2860                 return true;
2861         }
2862
2863         /* No next time */
2864         return false;
2865 }
2866
2867 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2868 {
2869         int err;
2870
2871         while (1) {
2872                 if (ptq->sel_start) {
2873                         if (ptq->timestamp >= ptq->sel_timestamp) {
2874                                 /* After start time, so consider next time */
2875                                 intel_pt_next_time(ptq);
2876                                 if (!ptq->sel_timestamp) {
2877                                         /* No end time */
2878                                         return 0;
2879                                 }
2880                                 /* Check against end time */
2881                                 continue;
2882                         }
2883                         /* Before start time, so fast forward */
2884                         ptq->have_sample = false;
2885                         if (ptq->sel_timestamp > *ff_timestamp) {
2886                                 if (ptq->sync_switch) {
2887                                         intel_pt_next_tid(ptq->pt, ptq);
2888                                         ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2889                                 }
2890                                 *ff_timestamp = ptq->sel_timestamp;
2891                                 err = intel_pt_fast_forward(ptq->decoder,
2892                                                             ptq->sel_timestamp);
2893                                 if (err)
2894                                         return err;
2895                         }
2896                         return 0;
2897                 } else if (ptq->timestamp > ptq->sel_timestamp) {
2898                         /* After end time, so consider next time */
2899                         if (!intel_pt_next_time(ptq)) {
2900                                 /* No next time range, so stop decoding */
2901                                 ptq->have_sample = false;
2902                                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2903                                 return 1;
2904                         }
2905                         /* Check against next start time */
2906                         continue;
2907                 } else {
2908                         /* Before end time */
2909                         return 0;
2910                 }
2911         }
2912 }
2913
2914 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2915 {
2916         const struct intel_pt_state *state = ptq->state;
2917         struct intel_pt *pt = ptq->pt;
2918         u64 ff_timestamp = 0;
2919         int err;
2920
2921         if (!pt->kernel_start) {
2922                 pt->kernel_start = machine__kernel_start(pt->machine);
2923                 if (pt->per_cpu_mmaps &&
2924                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2925                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2926                     !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2927                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2928                         if (pt->switch_ip) {
2929                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2930                                              pt->switch_ip, pt->ptss_ip);
2931                                 intel_pt_enable_sync_switch(pt);
2932                         }
2933                 }
2934         }
2935
2936         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2937                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2938         while (1) {
2939                 err = intel_pt_sample(ptq);
2940                 if (err)
2941                         return err;
2942
2943                 state = intel_pt_decode(ptq->decoder);
2944                 if (state->err) {
2945                         if (state->err == INTEL_PT_ERR_NODATA)
2946                                 return 1;
2947                         if (ptq->sync_switch &&
2948                             state->from_ip >= pt->kernel_start) {
2949                                 ptq->sync_switch = false;
2950                                 intel_pt_next_tid(pt, ptq);
2951                         }
2952                         ptq->timestamp = state->est_timestamp;
2953                         if (pt->synth_opts.errors) {
2954                                 err = intel_ptq_synth_error(ptq, state);
2955                                 if (err)
2956                                         return err;
2957                         }
2958                         continue;
2959                 }
2960
2961                 ptq->state = state;
2962                 ptq->have_sample = true;
2963                 intel_pt_sample_flags(ptq);
2964
2965                 /* Use estimated TSC upon return to user space */
2966                 if (pt->est_tsc &&
2967                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2968                     state->to_ip && state->to_ip < pt->kernel_start) {
2969                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2970                                      state->timestamp, state->est_timestamp);
2971                         ptq->timestamp = state->est_timestamp;
2972                 /* Use estimated TSC in unknown switch state */
2973                 } else if (ptq->sync_switch &&
2974                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2975                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
2976                            ptq->next_tid == -1) {
2977                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2978                                      state->timestamp, state->est_timestamp);
2979                         ptq->timestamp = state->est_timestamp;
2980                 } else if (state->timestamp > ptq->timestamp) {
2981                         ptq->timestamp = state->timestamp;
2982                 }
2983
2984                 if (ptq->sel_timestamp) {
2985                         err = intel_pt_time_filter(ptq, &ff_timestamp);
2986                         if (err)
2987                                 return err;
2988                 }
2989
2990                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2991                         *timestamp = ptq->timestamp;
2992                         return 0;
2993                 }
2994         }
2995         return 0;
2996 }
2997
2998 static inline int intel_pt_update_queues(struct intel_pt *pt)
2999 {
3000         if (pt->queues.new_data) {
3001                 pt->queues.new_data = false;
3002                 return intel_pt_setup_queues(pt);
3003         }
3004         return 0;
3005 }
3006
3007 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
3008 {
3009         unsigned int queue_nr;
3010         u64 ts;
3011         int ret;
3012
3013         while (1) {
3014                 struct auxtrace_queue *queue;
3015                 struct intel_pt_queue *ptq;
3016
3017                 if (!pt->heap.heap_cnt)
3018                         return 0;
3019
3020                 if (pt->heap.heap_array[0].ordinal >= timestamp)
3021                         return 0;
3022
3023                 queue_nr = pt->heap.heap_array[0].queue_nr;
3024                 queue = &pt->queues.queue_array[queue_nr];
3025                 ptq = queue->priv;
3026
3027                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
3028                              queue_nr, pt->heap.heap_array[0].ordinal,
3029                              timestamp);
3030
3031                 auxtrace_heap__pop(&pt->heap);
3032
3033                 if (pt->heap.heap_cnt) {
3034                         ts = pt->heap.heap_array[0].ordinal + 1;
3035                         if (ts > timestamp)
3036                                 ts = timestamp;
3037                 } else {
3038                         ts = timestamp;
3039                 }
3040
3041                 intel_pt_set_pid_tid_cpu(pt, queue);
3042
3043                 ret = intel_pt_run_decoder(ptq, &ts);
3044
3045                 if (ret < 0) {
3046                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
3047                         return ret;
3048                 }
3049
3050                 if (!ret) {
3051                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
3052                         if (ret < 0)
3053                                 return ret;
3054                 } else {
3055                         ptq->on_heap = false;
3056                 }
3057         }
3058
3059         return 0;
3060 }
3061
3062 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
3063                                             u64 time_)
3064 {
3065         struct auxtrace_queues *queues = &pt->queues;
3066         unsigned int i;
3067         u64 ts = 0;
3068
3069         for (i = 0; i < queues->nr_queues; i++) {
3070                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3071                 struct intel_pt_queue *ptq = queue->priv;
3072
3073                 if (ptq && (tid == -1 || ptq->tid == tid)) {
3074                         ptq->time = time_;
3075                         intel_pt_set_pid_tid_cpu(pt, queue);
3076                         intel_pt_run_decoder(ptq, &ts);
3077                 }
3078         }
3079         return 0;
3080 }
3081
3082 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3083                                             struct auxtrace_queue *queue,
3084                                             struct perf_sample *sample)
3085 {
3086         struct machine *m = ptq->pt->machine;
3087
3088         ptq->pid = sample->pid;
3089         ptq->tid = sample->tid;
3090         ptq->cpu = queue->cpu;
3091
3092         intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3093                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3094
3095         thread__zput(ptq->thread);
3096
3097         if (ptq->tid == -1)
3098                 return;
3099
3100         if (ptq->pid == -1) {
3101                 ptq->thread = machine__find_thread(m, -1, ptq->tid);
3102                 if (ptq->thread)
3103                         ptq->pid = thread__pid(ptq->thread);
3104                 return;
3105         }
3106
3107         ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3108 }
3109
3110 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3111                                             struct perf_sample *sample)
3112 {
3113         struct auxtrace_queue *queue;
3114         struct intel_pt_queue *ptq;
3115         u64 ts = 0;
3116
3117         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3118         if (!queue)
3119                 return -EINVAL;
3120
3121         ptq = queue->priv;
3122         if (!ptq)
3123                 return 0;
3124
3125         ptq->stop = false;
3126         ptq->time = sample->time;
3127         intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3128         intel_pt_run_decoder(ptq, &ts);
3129         return 0;
3130 }
3131
3132 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3133 {
3134         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3135                                     sample->pid, sample->tid, 0, sample->time,
3136                                     sample->machine_pid, sample->vcpu);
3137 }
3138
3139 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3140 {
3141         unsigned i, j;
3142
3143         if (cpu < 0 || !pt->queues.nr_queues)
3144                 return NULL;
3145
3146         if ((unsigned)cpu >= pt->queues.nr_queues)
3147                 i = pt->queues.nr_queues - 1;
3148         else
3149                 i = cpu;
3150
3151         if (pt->queues.queue_array[i].cpu == cpu)
3152                 return pt->queues.queue_array[i].priv;
3153
3154         for (j = 0; i > 0; j++) {
3155                 if (pt->queues.queue_array[--i].cpu == cpu)
3156                         return pt->queues.queue_array[i].priv;
3157         }
3158
3159         for (; j < pt->queues.nr_queues; j++) {
3160                 if (pt->queues.queue_array[j].cpu == cpu)
3161                         return pt->queues.queue_array[j].priv;
3162         }
3163
3164         return NULL;
3165 }
3166
3167 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3168                                 u64 timestamp)
3169 {
3170         struct intel_pt_queue *ptq;
3171         int err;
3172
3173         if (!pt->sync_switch)
3174                 return 1;
3175
3176         ptq = intel_pt_cpu_to_ptq(pt, cpu);
3177         if (!ptq || !ptq->sync_switch)
3178                 return 1;
3179
3180         switch (ptq->switch_state) {
3181         case INTEL_PT_SS_NOT_TRACING:
3182                 break;
3183         case INTEL_PT_SS_UNKNOWN:
3184         case INTEL_PT_SS_TRACING:
3185                 ptq->next_tid = tid;
3186                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3187                 return 0;
3188         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3189                 if (!ptq->on_heap) {
3190                         ptq->timestamp = perf_time_to_tsc(timestamp,
3191                                                           &pt->tc);
3192                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3193                                                  ptq->timestamp);
3194                         if (err)
3195                                 return err;
3196                         ptq->on_heap = true;
3197                 }
3198                 ptq->switch_state = INTEL_PT_SS_TRACING;
3199                 break;
3200         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3201                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3202                 break;
3203         default:
3204                 break;
3205         }
3206
3207         ptq->next_tid = -1;
3208
3209         return 1;
3210 }
3211
3212 #ifdef HAVE_LIBTRACEEVENT
3213 static int intel_pt_process_switch(struct intel_pt *pt,
3214                                    struct perf_sample *sample)
3215 {
3216         pid_t tid;
3217         int cpu, ret;
3218         struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3219
3220         if (evsel != pt->switch_evsel)
3221                 return 0;
3222
3223         tid = evsel__intval(evsel, sample, "next_pid");
3224         cpu = sample->cpu;
3225
3226         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3227                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3228                      &pt->tc));
3229
3230         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3231         if (ret <= 0)
3232                 return ret;
3233
3234         return machine__set_current_tid(pt->machine, cpu, -1, tid);
3235 }
3236 #endif /* HAVE_LIBTRACEEVENT */
3237
3238 static int intel_pt_context_switch_in(struct intel_pt *pt,
3239                                       struct perf_sample *sample)
3240 {
3241         pid_t pid = sample->pid;
3242         pid_t tid = sample->tid;
3243         int cpu = sample->cpu;
3244
3245         if (pt->sync_switch) {
3246                 struct intel_pt_queue *ptq;
3247
3248                 ptq = intel_pt_cpu_to_ptq(pt, cpu);
3249                 if (ptq && ptq->sync_switch) {
3250                         ptq->next_tid = -1;
3251                         switch (ptq->switch_state) {
3252                         case INTEL_PT_SS_NOT_TRACING:
3253                         case INTEL_PT_SS_UNKNOWN:
3254                         case INTEL_PT_SS_TRACING:
3255                                 break;
3256                         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3257                         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3258                                 ptq->switch_state = INTEL_PT_SS_TRACING;
3259                                 break;
3260                         default:
3261                                 break;
3262                         }
3263                 }
3264         }
3265
3266         /*
3267          * If the current tid has not been updated yet, ensure it is now that
3268          * a "switch in" event has occurred.
3269          */
3270         if (machine__get_current_tid(pt->machine, cpu) == tid)
3271                 return 0;
3272
3273         return machine__set_current_tid(pt->machine, cpu, pid, tid);
3274 }
3275
3276 static int intel_pt_guest_context_switch(struct intel_pt *pt,
3277                                          union perf_event *event,
3278                                          struct perf_sample *sample)
3279 {
3280         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3281         struct machines *machines = &pt->session->machines;
3282         struct machine *machine = machines__find(machines, sample->machine_pid);
3283
3284         pt->have_guest_sideband = true;
3285
3286         /*
3287          * sync_switch cannot handle guest machines at present, so just disable
3288          * it.
3289          */
3290         pt->sync_switch_not_supported = true;
3291         if (pt->sync_switch)
3292                 intel_pt_disable_sync_switch(pt);
3293
3294         if (out)
3295                 return 0;
3296
3297         if (!machine)
3298                 return -EINVAL;
3299
3300         return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3301 }
3302
3303 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3304                                    struct perf_sample *sample)
3305 {
3306         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3307         pid_t pid, tid;
3308         int cpu, ret;
3309
3310         if (perf_event__is_guest(event))
3311                 return intel_pt_guest_context_switch(pt, event, sample);
3312
3313         cpu = sample->cpu;
3314
3315         if (pt->have_sched_switch == 3) {
3316                 if (!out)
3317                         return intel_pt_context_switch_in(pt, sample);
3318                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3319                         pr_err("Expecting CPU-wide context switch event\n");
3320                         return -EINVAL;
3321                 }
3322                 pid = event->context_switch.next_prev_pid;
3323                 tid = event->context_switch.next_prev_tid;
3324         } else {
3325                 if (out)
3326                         return 0;
3327                 pid = sample->pid;
3328                 tid = sample->tid;
3329         }
3330
3331         if (tid == -1)
3332                 intel_pt_log("context_switch event has no tid\n");
3333
3334         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3335         if (ret <= 0)
3336                 return ret;
3337
3338         return machine__set_current_tid(pt->machine, cpu, pid, tid);
3339 }
3340
3341 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3342                                          union perf_event *event,
3343                                          struct perf_sample *sample)
3344 {
3345         if (!pt->per_cpu_mmaps)
3346                 return 0;
3347
3348         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3349                      sample->cpu, event->itrace_start.pid,
3350                      event->itrace_start.tid, sample->time,
3351                      perf_time_to_tsc(sample->time, &pt->tc));
3352
3353         return machine__set_current_tid(pt->machine, sample->cpu,
3354                                         event->itrace_start.pid,
3355                                         event->itrace_start.tid);
3356 }
3357
3358 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3359                                              union perf_event *event,
3360                                              struct perf_sample *sample)
3361 {
3362         u64 hw_id = event->aux_output_hw_id.hw_id;
3363         struct auxtrace_queue *queue;
3364         struct intel_pt_queue *ptq;
3365         struct evsel *evsel;
3366
3367         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3368         evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3369         if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3370                 pr_err("Bad AUX output hardware ID\n");
3371                 return -EINVAL;
3372         }
3373
3374         ptq = queue->priv;
3375
3376         ptq->pebs[hw_id].evsel = evsel;
3377         ptq->pebs[hw_id].id = sample->id;
3378
3379         return 0;
3380 }
3381
3382 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3383                              struct addr_location *al)
3384 {
3385         if (!al->map || addr < map__start(al->map) || addr >= map__end(al->map)) {
3386                 if (!thread__find_map(thread, cpumode, addr, al))
3387                         return -1;
3388         }
3389
3390         return 0;
3391 }
3392
3393 /* Invalidate all instruction cache entries that overlap the text poke */
3394 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3395 {
3396         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3397         u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3398         /* Assume text poke begins in a basic block no more than 4096 bytes */
3399         int cnt = 4096 + event->text_poke.new_len;
3400         struct thread *thread = pt->unknown_thread;
3401         struct addr_location al;
3402         struct machine *machine = pt->machine;
3403         struct intel_pt_cache_entry *e;
3404         u64 offset;
3405         int ret = 0;
3406
3407         addr_location__init(&al);
3408         if (!event->text_poke.new_len)
3409                 goto out;
3410
3411         for (; cnt; cnt--, addr--) {
3412                 struct dso *dso;
3413
3414                 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3415                         if (addr < event->text_poke.addr)
3416                                 goto out;
3417                         continue;
3418                 }
3419
3420                 dso = map__dso(al.map);
3421                 if (!dso || !dso__auxtrace_cache(dso))
3422                         continue;
3423
3424                 offset = map__map_ip(al.map, addr);
3425
3426                 e = intel_pt_cache_lookup(dso, machine, offset);
3427                 if (!e)
3428                         continue;
3429
3430                 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3431                         /*
3432                          * No overlap. Working backwards there cannot be another
3433                          * basic block that overlaps the text poke if there is a
3434                          * branch instruction before the text poke address.
3435                          */
3436                         if (e->branch != INTEL_PT_BR_NO_BRANCH)
3437                                 goto out;
3438                 } else {
3439                         intel_pt_cache_invalidate(dso, machine, offset);
3440                         intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3441                                      dso__long_name(dso), addr);
3442                 }
3443         }
3444 out:
3445         addr_location__exit(&al);
3446         return ret;
3447 }
3448
3449 static int intel_pt_process_event(struct perf_session *session,
3450                                   union perf_event *event,
3451                                   struct perf_sample *sample,
3452                                   const struct perf_tool *tool)
3453 {
3454         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3455                                            auxtrace);
3456         u64 timestamp;
3457         int err = 0;
3458
3459         if (dump_trace)
3460                 return 0;
3461
3462         if (!tool->ordered_events) {
3463                 pr_err("Intel Processor Trace requires ordered events\n");
3464                 return -EINVAL;
3465         }
3466
3467         if (sample->time && sample->time != (u64)-1)
3468                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3469         else
3470                 timestamp = 0;
3471
3472         if (timestamp || pt->timeless_decoding) {
3473                 err = intel_pt_update_queues(pt);
3474                 if (err)
3475                         return err;
3476         }
3477
3478         if (pt->timeless_decoding) {
3479                 if (pt->sampling_mode) {
3480                         if (sample->aux_sample.size)
3481                                 err = intel_pt_process_timeless_sample(pt,
3482                                                                        sample);
3483                 } else if (event->header.type == PERF_RECORD_EXIT) {
3484                         err = intel_pt_process_timeless_queues(pt,
3485                                                                event->fork.tid,
3486                                                                sample->time);
3487                 }
3488         } else if (timestamp) {
3489                 if (!pt->first_timestamp)
3490                         intel_pt_first_timestamp(pt, timestamp);
3491                 err = intel_pt_process_queues(pt, timestamp);
3492         }
3493         if (err)
3494                 return err;
3495
3496         if (event->header.type == PERF_RECORD_SAMPLE) {
3497                 if (pt->synth_opts.add_callchain && !sample->callchain)
3498                         intel_pt_add_callchain(pt, sample);
3499                 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3500                         intel_pt_add_br_stack(pt, sample);
3501         }
3502
3503         if (event->header.type == PERF_RECORD_AUX &&
3504             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3505             pt->synth_opts.errors) {
3506                 err = intel_pt_lost(pt, sample);
3507                 if (err)
3508                         return err;
3509         }
3510
3511 #ifdef HAVE_LIBTRACEEVENT
3512         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3513                 err = intel_pt_process_switch(pt, sample);
3514         else
3515 #endif
3516         if (event->header.type == PERF_RECORD_ITRACE_START)
3517                 err = intel_pt_process_itrace_start(pt, event, sample);
3518         else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3519                 err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3520         else if (event->header.type == PERF_RECORD_SWITCH ||
3521                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3522                 err = intel_pt_context_switch(pt, event, sample);
3523
3524         if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3525                 err = intel_pt_text_poke(pt, event);
3526
3527         if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3528                 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3529                              event->header.type, sample->cpu, sample->time, timestamp);
3530                 intel_pt_log_event(event);
3531         }
3532
3533         return err;
3534 }
3535
3536 static int intel_pt_flush(struct perf_session *session, const struct perf_tool *tool)
3537 {
3538         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3539                                            auxtrace);
3540         int ret;
3541
3542         if (dump_trace)
3543                 return 0;
3544
3545         if (!tool->ordered_events)
3546                 return -EINVAL;
3547
3548         ret = intel_pt_update_queues(pt);
3549         if (ret < 0)
3550                 return ret;
3551
3552         if (pt->timeless_decoding)
3553                 return intel_pt_process_timeless_queues(pt, -1,
3554                                                         MAX_TIMESTAMP - 1);
3555
3556         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3557 }
3558
3559 static void intel_pt_free_events(struct perf_session *session)
3560 {
3561         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3562                                            auxtrace);
3563         struct auxtrace_queues *queues = &pt->queues;
3564         unsigned int i;
3565
3566         for (i = 0; i < queues->nr_queues; i++) {
3567                 intel_pt_free_queue(queues->queue_array[i].priv);
3568                 queues->queue_array[i].priv = NULL;
3569         }
3570         intel_pt_log_disable();
3571         auxtrace_queues__free(queues);
3572 }
3573
3574 static void intel_pt_free(struct perf_session *session)
3575 {
3576         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3577                                            auxtrace);
3578
3579         auxtrace_heap__free(&pt->heap);
3580         intel_pt_free_events(session);
3581         session->auxtrace = NULL;
3582         intel_pt_free_vmcs_info(pt);
3583         thread__put(pt->unknown_thread);
3584         addr_filters__exit(&pt->filts);
3585         zfree(&pt->chain);
3586         zfree(&pt->filter);
3587         zfree(&pt->time_ranges);
3588         zfree(&pt->br_stack);
3589         free(pt);
3590 }
3591
3592 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3593                                        struct evsel *evsel)
3594 {
3595         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3596                                            auxtrace);
3597
3598         return evsel->core.attr.type == pt->pmu_type;
3599 }
3600
3601 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3602                                            union perf_event *event,
3603                                            const struct perf_tool *tool __maybe_unused)
3604 {
3605         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3606                                            auxtrace);
3607
3608         if (!pt->data_queued) {
3609                 struct auxtrace_buffer *buffer;
3610                 off_t data_offset;
3611                 int fd = perf_data__fd(session->data);
3612                 int err;
3613
3614                 if (perf_data__is_pipe(session->data)) {
3615                         data_offset = 0;
3616                 } else {
3617                         data_offset = lseek(fd, 0, SEEK_CUR);
3618                         if (data_offset == -1)
3619                                 return -errno;
3620                 }
3621
3622                 err = auxtrace_queues__add_event(&pt->queues, session, event,
3623                                                  data_offset, &buffer);
3624                 if (err)
3625                         return err;
3626
3627                 /* Dump here now we have copied a piped trace out of the pipe */
3628                 if (dump_trace) {
3629                         if (auxtrace_buffer__get_data(buffer, fd)) {
3630                                 intel_pt_dump_event(pt, buffer->data,
3631                                                     buffer->size);
3632                                 auxtrace_buffer__put_data(buffer);
3633                         }
3634                 }
3635         }
3636
3637         return 0;
3638 }
3639
3640 static int intel_pt_queue_data(struct perf_session *session,
3641                                struct perf_sample *sample,
3642                                union perf_event *event, u64 data_offset)
3643 {
3644         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3645                                            auxtrace);
3646         u64 timestamp;
3647
3648         if (event) {
3649                 return auxtrace_queues__add_event(&pt->queues, session, event,
3650                                                   data_offset, NULL);
3651         }
3652
3653         if (sample->time && sample->time != (u64)-1)
3654                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3655         else
3656                 timestamp = 0;
3657
3658         return auxtrace_queues__add_sample(&pt->queues, session, sample,
3659                                            data_offset, timestamp);
3660 }
3661
3662 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3663                                 struct perf_event_attr *attr, u64 id)
3664 {
3665         int err;
3666
3667         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3668                  name, id, (u64)attr->sample_type);
3669
3670         err = perf_session__deliver_synth_attr_event(session, attr, id);
3671         if (err)
3672                 pr_err("%s: failed to synthesize '%s' event type\n",
3673                        __func__, name);
3674
3675         return err;
3676 }
3677
3678 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3679                                     const char *name)
3680 {
3681         struct evsel *evsel;
3682
3683         evlist__for_each_entry(evlist, evsel) {
3684                 if (evsel->core.id && evsel->core.id[0] == id) {
3685                         if (evsel->name)
3686                                 zfree(&evsel->name);
3687                         evsel->name = strdup(name);
3688                         break;
3689                 }
3690         }
3691 }
3692
3693 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3694                                          struct evlist *evlist)
3695 {
3696         struct evsel *evsel;
3697
3698         evlist__for_each_entry(evlist, evsel) {
3699                 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3700                         return evsel;
3701         }
3702
3703         return NULL;
3704 }
3705
3706 static int intel_pt_synth_events(struct intel_pt *pt,
3707                                  struct perf_session *session)
3708 {
3709         struct evlist *evlist = session->evlist;
3710         struct evsel *evsel = intel_pt_evsel(pt, evlist);
3711         struct perf_event_attr attr;
3712         u64 id;
3713         int err;
3714
3715         if (!evsel) {
3716                 pr_debug("There are no selected events with Intel Processor Trace data\n");
3717                 return 0;
3718         }
3719
3720         memset(&attr, 0, sizeof(struct perf_event_attr));
3721         attr.size = sizeof(struct perf_event_attr);
3722         attr.type = PERF_TYPE_HARDWARE;
3723         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3724         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3725                             PERF_SAMPLE_PERIOD;
3726         if (pt->timeless_decoding)
3727                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3728         else
3729                 attr.sample_type |= PERF_SAMPLE_TIME;
3730         if (!pt->per_cpu_mmaps)
3731                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3732         attr.exclude_user = evsel->core.attr.exclude_user;
3733         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3734         attr.exclude_hv = evsel->core.attr.exclude_hv;
3735         attr.exclude_host = evsel->core.attr.exclude_host;
3736         attr.exclude_guest = evsel->core.attr.exclude_guest;
3737         attr.sample_id_all = evsel->core.attr.sample_id_all;
3738         attr.read_format = evsel->core.attr.read_format;
3739
3740         id = evsel->core.id[0] + 1000000000;
3741         if (!id)
3742                 id = 1;
3743
3744         if (pt->synth_opts.branches) {
3745                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3746                 attr.sample_period = 1;
3747                 attr.sample_type |= PERF_SAMPLE_ADDR;
3748                 err = intel_pt_synth_event(session, "branches", &attr, id);
3749                 if (err)
3750                         return err;
3751                 pt->sample_branches = true;
3752                 pt->branches_sample_type = attr.sample_type;
3753                 pt->branches_id = id;
3754                 id += 1;
3755                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3756         }
3757
3758         if (pt->synth_opts.callchain)
3759                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3760         if (pt->synth_opts.last_branch) {
3761                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3762                 /*
3763                  * We don't use the hardware index, but the sample generation
3764                  * code uses the new format branch_stack with this field,
3765                  * so the event attributes must indicate that it's present.
3766                  */
3767                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3768         }
3769
3770         if (pt->synth_opts.instructions) {
3771                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3772                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3773                         attr.sample_period =
3774                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3775                 else
3776                         attr.sample_period = pt->synth_opts.period;
3777                 err = intel_pt_synth_event(session, "instructions", &attr, id);
3778                 if (err)
3779                         return err;
3780                 pt->sample_instructions = true;
3781                 pt->instructions_sample_type = attr.sample_type;
3782                 pt->instructions_id = id;
3783                 id += 1;
3784         }
3785
3786         if (pt->synth_opts.cycles) {
3787                 attr.config = PERF_COUNT_HW_CPU_CYCLES;
3788                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3789                         attr.sample_period =
3790                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3791                 else
3792                         attr.sample_period = pt->synth_opts.period;
3793                 err = intel_pt_synth_event(session, "cycles", &attr, id);
3794                 if (err)
3795                         return err;
3796                 pt->sample_cycles = true;
3797                 pt->cycles_sample_type = attr.sample_type;
3798                 pt->cycles_id = id;
3799                 id += 1;
3800         }
3801
3802         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3803         attr.sample_period = 1;
3804
3805         if (pt->synth_opts.transactions) {
3806                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3807                 err = intel_pt_synth_event(session, "transactions", &attr, id);
3808                 if (err)
3809                         return err;
3810                 pt->sample_transactions = true;
3811                 pt->transactions_sample_type = attr.sample_type;
3812                 pt->transactions_id = id;
3813                 intel_pt_set_event_name(evlist, id, "transactions");
3814                 id += 1;
3815         }
3816
3817         attr.type = PERF_TYPE_SYNTH;
3818         attr.sample_type |= PERF_SAMPLE_RAW;
3819
3820         if (pt->synth_opts.ptwrites) {
3821                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3822                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3823                 if (err)
3824                         return err;
3825                 pt->sample_ptwrites = true;
3826                 pt->ptwrites_sample_type = attr.sample_type;
3827                 pt->ptwrites_id = id;
3828                 intel_pt_set_event_name(evlist, id, "ptwrite");
3829                 id += 1;
3830         }
3831
3832         if (pt->synth_opts.pwr_events) {
3833                 pt->sample_pwr_events = true;
3834                 pt->pwr_events_sample_type = attr.sample_type;
3835
3836                 attr.config = PERF_SYNTH_INTEL_CBR;
3837                 err = intel_pt_synth_event(session, "cbr", &attr, id);
3838                 if (err)
3839                         return err;
3840                 pt->cbr_id = id;
3841                 intel_pt_set_event_name(evlist, id, "cbr");
3842                 id += 1;
3843
3844                 attr.config = PERF_SYNTH_INTEL_PSB;
3845                 err = intel_pt_synth_event(session, "psb", &attr, id);
3846                 if (err)
3847                         return err;
3848                 pt->psb_id = id;
3849                 intel_pt_set_event_name(evlist, id, "psb");
3850                 id += 1;
3851         }
3852
3853         if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3854                 attr.config = PERF_SYNTH_INTEL_MWAIT;
3855                 err = intel_pt_synth_event(session, "mwait", &attr, id);
3856                 if (err)
3857                         return err;
3858                 pt->mwait_id = id;
3859                 intel_pt_set_event_name(evlist, id, "mwait");
3860                 id += 1;
3861
3862                 attr.config = PERF_SYNTH_INTEL_PWRE;
3863                 err = intel_pt_synth_event(session, "pwre", &attr, id);
3864                 if (err)
3865                         return err;
3866                 pt->pwre_id = id;
3867                 intel_pt_set_event_name(evlist, id, "pwre");
3868                 id += 1;
3869
3870                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3871                 err = intel_pt_synth_event(session, "exstop", &attr, id);
3872                 if (err)
3873                         return err;
3874                 pt->exstop_id = id;
3875                 intel_pt_set_event_name(evlist, id, "exstop");
3876                 id += 1;
3877
3878                 attr.config = PERF_SYNTH_INTEL_PWRX;
3879                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3880                 if (err)
3881                         return err;
3882                 pt->pwrx_id = id;
3883                 intel_pt_set_event_name(evlist, id, "pwrx");
3884                 id += 1;
3885         }
3886
3887         if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3888                 attr.config = PERF_SYNTH_INTEL_EVT;
3889                 err = intel_pt_synth_event(session, "evt", &attr, id);
3890                 if (err)
3891                         return err;
3892                 pt->evt_sample_type = attr.sample_type;
3893                 pt->evt_id = id;
3894                 intel_pt_set_event_name(evlist, id, "evt");
3895                 id += 1;
3896         }
3897
3898         if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3899                 attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3900                 err = intel_pt_synth_event(session, "iflag", &attr, id);
3901                 if (err)
3902                         return err;
3903                 pt->iflag_chg_sample_type = attr.sample_type;
3904                 pt->iflag_chg_id = id;
3905                 intel_pt_set_event_name(evlist, id, "iflag");
3906                 id += 1;
3907         }
3908
3909         return 0;
3910 }
3911
3912 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3913 {
3914         struct evsel *evsel;
3915
3916         if (!pt->synth_opts.other_events)
3917                 return;
3918
3919         evlist__for_each_entry(pt->session->evlist, evsel) {
3920                 if (evsel->core.attr.aux_output && evsel->core.id) {
3921                         if (pt->single_pebs) {
3922                                 pt->single_pebs = false;
3923                                 return;
3924                         }
3925                         pt->single_pebs = true;
3926                         pt->sample_pebs = true;
3927                         pt->pebs_evsel = evsel;
3928                 }
3929         }
3930 }
3931
3932 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3933 {
3934         struct evsel *evsel;
3935
3936         evlist__for_each_entry_reverse(evlist, evsel) {
3937                 const char *name = evsel__name(evsel);
3938
3939                 if (!strcmp(name, "sched:sched_switch"))
3940                         return evsel;
3941         }
3942
3943         return NULL;
3944 }
3945
3946 static bool intel_pt_find_switch(struct evlist *evlist)
3947 {
3948         struct evsel *evsel;
3949
3950         evlist__for_each_entry(evlist, evsel) {
3951                 if (evsel->core.attr.context_switch)
3952                         return true;
3953         }
3954
3955         return false;
3956 }
3957
3958 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3959 {
3960         struct intel_pt *pt = data;
3961
3962         if (!strcmp(var, "intel-pt.mispred-all"))
3963                 pt->mispred_all = perf_config_bool(var, value);
3964
3965         if (!strcmp(var, "intel-pt.max-loops"))
3966                 perf_config_int(&pt->max_loops, var, value);
3967
3968         return 0;
3969 }
3970
3971 /* Find least TSC which converts to ns or later */
3972 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3973 {
3974         u64 tsc, tm;
3975
3976         tsc = perf_time_to_tsc(ns, &pt->tc);
3977
3978         while (1) {
3979                 tm = tsc_to_perf_time(tsc, &pt->tc);
3980                 if (tm < ns)
3981                         break;
3982                 tsc -= 1;
3983         }
3984
3985         while (tm < ns)
3986                 tm = tsc_to_perf_time(++tsc, &pt->tc);
3987
3988         return tsc;
3989 }
3990
3991 /* Find greatest TSC which converts to ns or earlier */
3992 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3993 {
3994         u64 tsc, tm;
3995
3996         tsc = perf_time_to_tsc(ns, &pt->tc);
3997
3998         while (1) {
3999                 tm = tsc_to_perf_time(tsc, &pt->tc);
4000                 if (tm > ns)
4001                         break;
4002                 tsc += 1;
4003         }
4004
4005         while (tm > ns)
4006                 tm = tsc_to_perf_time(--tsc, &pt->tc);
4007
4008         return tsc;
4009 }
4010
4011 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
4012                                       struct itrace_synth_opts *opts)
4013 {
4014         struct perf_time_interval *p = opts->ptime_range;
4015         int n = opts->range_num;
4016         int i;
4017
4018         if (!n || !p || pt->timeless_decoding)
4019                 return 0;
4020
4021         pt->time_ranges = calloc(n, sizeof(struct range));
4022         if (!pt->time_ranges)
4023                 return -ENOMEM;
4024
4025         pt->range_cnt = n;
4026
4027         intel_pt_log("%s: %u range(s)\n", __func__, n);
4028
4029         for (i = 0; i < n; i++) {
4030                 struct range *r = &pt->time_ranges[i];
4031                 u64 ts = p[i].start;
4032                 u64 te = p[i].end;
4033
4034                 /*
4035                  * Take care to ensure the TSC range matches the perf-time range
4036                  * when converted back to perf-time.
4037                  */
4038                 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
4039                 r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
4040
4041                 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
4042                              i, ts, te);
4043                 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
4044                              i, r->start, r->end);
4045         }
4046
4047         return 0;
4048 }
4049
4050 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
4051 {
4052         struct intel_pt_vmcs_info *vmcs_info;
4053         u64 tsc_offset, vmcs;
4054         char *p = *args;
4055
4056         errno = 0;
4057
4058         p = skip_spaces(p);
4059         if (!*p)
4060                 return 1;
4061
4062         tsc_offset = strtoull(p, &p, 0);
4063         if (errno)
4064                 return -errno;
4065         p = skip_spaces(p);
4066         if (*p != ':') {
4067                 pt->dflt_tsc_offset = tsc_offset;
4068                 *args = p;
4069                 return 0;
4070         }
4071         p += 1;
4072         while (1) {
4073                 vmcs = strtoull(p, &p, 0);
4074                 if (errno)
4075                         return -errno;
4076                 if (!vmcs)
4077                         return -EINVAL;
4078                 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4079                 if (!vmcs_info)
4080                         return -ENOMEM;
4081                 p = skip_spaces(p);
4082                 if (*p != ',')
4083                         break;
4084                 p += 1;
4085         }
4086         *args = p;
4087         return 0;
4088 }
4089
4090 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4091 {
4092         char *args = pt->synth_opts.vm_tm_corr_args;
4093         int ret;
4094
4095         if (!args)
4096                 return 0;
4097
4098         do {
4099                 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4100         } while (!ret);
4101
4102         if (ret < 0) {
4103                 pr_err("Failed to parse VM Time Correlation options\n");
4104                 return ret;
4105         }
4106
4107         return 0;
4108 }
4109
4110 static const char * const intel_pt_info_fmts[] = {
4111         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
4112         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
4113         [INTEL_PT_TIME_MULT]            = "  Time Multiplier     %"PRIu64"\n",
4114         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
4115         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
4116         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
4117         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
4118         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
4119         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
4120         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
4121         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
4122         [INTEL_PT_MTC_FREQ_BITS]        = "  MTC freq bits       %#"PRIx64"\n",
4123         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
4124         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
4125         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
4126         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
4127         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
4128 };
4129
4130 static void intel_pt_print_info(__u64 *arr, int start, int finish)
4131 {
4132         int i;
4133
4134         if (!dump_trace)
4135                 return;
4136
4137         for (i = start; i <= finish; i++) {
4138                 const char *fmt = intel_pt_info_fmts[i];
4139
4140                 if (fmt)
4141                         fprintf(stdout, fmt, arr[i]);
4142         }
4143 }
4144
4145 static void intel_pt_print_info_str(const char *name, const char *str)
4146 {
4147         if (!dump_trace)
4148                 return;
4149
4150         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
4151 }
4152
4153 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4154 {
4155         return auxtrace_info->header.size >=
4156                 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4157 }
4158
4159 int intel_pt_process_auxtrace_info(union perf_event *event,
4160                                    struct perf_session *session)
4161 {
4162         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4163         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4164         struct intel_pt *pt;
4165         void *info_end;
4166         __u64 *info;
4167         int err;
4168
4169         if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4170                                         min_sz)
4171                 return -EINVAL;
4172
4173         pt = zalloc(sizeof(struct intel_pt));
4174         if (!pt)
4175                 return -ENOMEM;
4176
4177         pt->vmcs_info = RB_ROOT;
4178
4179         addr_filters__init(&pt->filts);
4180
4181         err = perf_config(intel_pt_perf_config, pt);
4182         if (err)
4183                 goto err_free;
4184
4185         err = auxtrace_queues__init(&pt->queues);
4186         if (err)
4187                 goto err_free;
4188
4189         if (session->itrace_synth_opts->set) {
4190                 pt->synth_opts = *session->itrace_synth_opts;
4191         } else {
4192                 struct itrace_synth_opts *opts = session->itrace_synth_opts;
4193
4194                 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4195                 if (!opts->default_no_sample && !opts->inject) {
4196                         pt->synth_opts.branches = false;
4197                         pt->synth_opts.callchain = true;
4198                         pt->synth_opts.add_callchain = true;
4199                 }
4200                 pt->synth_opts.thread_stack = opts->thread_stack;
4201         }
4202
4203         if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4204                 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4205
4206         pt->session = session;
4207         pt->machine = &session->machines.host; /* No kvm support */
4208         pt->auxtrace_type = auxtrace_info->type;
4209         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4210         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4211         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4212         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4213         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4214         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4215         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4216         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4217         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4218         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4219         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4220                             INTEL_PT_PER_CPU_MMAPS);
4221
4222         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4223                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4224                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4225                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4226                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4227                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4228                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4229                                     INTEL_PT_CYC_BIT);
4230         }
4231
4232         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4233                 pt->max_non_turbo_ratio =
4234                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4235                 intel_pt_print_info(&auxtrace_info->priv[0],
4236                                     INTEL_PT_MAX_NONTURBO_RATIO,
4237                                     INTEL_PT_MAX_NONTURBO_RATIO);
4238         }
4239
4240         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4241         info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4242
4243         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4244                 size_t len;
4245
4246                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4247                 intel_pt_print_info(&auxtrace_info->priv[0],
4248                                     INTEL_PT_FILTER_STR_LEN,
4249                                     INTEL_PT_FILTER_STR_LEN);
4250                 if (len) {
4251                         const char *filter = (const char *)info;
4252
4253                         len = roundup(len + 1, 8);
4254                         info += len >> 3;
4255                         if ((void *)info > info_end) {
4256                                 pr_err("%s: bad filter string length\n", __func__);
4257                                 err = -EINVAL;
4258                                 goto err_free_queues;
4259                         }
4260                         pt->filter = memdup(filter, len);
4261                         if (!pt->filter) {
4262                                 err = -ENOMEM;
4263                                 goto err_free_queues;
4264                         }
4265                         if (session->header.needs_swap)
4266                                 mem_bswap_64(pt->filter, len);
4267                         if (pt->filter[len - 1]) {
4268                                 pr_err("%s: filter string not null terminated\n", __func__);
4269                                 err = -EINVAL;
4270                                 goto err_free_queues;
4271                         }
4272                         err = addr_filters__parse_bare_filter(&pt->filts,
4273                                                               filter);
4274                         if (err)
4275                                 goto err_free_queues;
4276                 }
4277                 intel_pt_print_info_str("Filter string", pt->filter);
4278         }
4279
4280         if ((void *)info < info_end) {
4281                 pt->cap_event_trace = *info++;
4282                 if (dump_trace)
4283                         fprintf(stdout, "  Cap Event Trace     %d\n",
4284                                 pt->cap_event_trace);
4285         }
4286
4287         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4288         if (pt->timeless_decoding && !pt->tc.time_mult)
4289                 pt->tc.time_mult = 1;
4290         pt->have_tsc = intel_pt_have_tsc(pt);
4291         pt->sampling_mode = intel_pt_sampling_mode(pt);
4292         pt->est_tsc = !pt->timeless_decoding;
4293
4294         if (pt->synth_opts.vm_time_correlation) {
4295                 if (pt->timeless_decoding) {
4296                         pr_err("Intel PT has no time information for VM Time Correlation\n");
4297                         err = -EINVAL;
4298                         goto err_free_queues;
4299                 }
4300                 if (session->itrace_synth_opts->ptime_range) {
4301                         pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4302                         err = -EINVAL;
4303                         goto err_free_queues;
4304                 }
4305                 /* Currently TSC Offset is calculated using MTC packets */
4306                 if (!intel_pt_have_mtc(pt)) {
4307                         pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4308                         err = -EINVAL;
4309                         goto err_free_queues;
4310                 }
4311                 err = intel_pt_parse_vm_tm_corr_args(pt);
4312                 if (err)
4313                         goto err_free_queues;
4314         }
4315
4316         pt->unknown_thread = thread__new(999999999, 999999999);
4317         if (!pt->unknown_thread) {
4318                 err = -ENOMEM;
4319                 goto err_free_queues;
4320         }
4321
4322         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4323         if (err)
4324                 goto err_delete_thread;
4325         if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4326                 err = -ENOMEM;
4327                 goto err_delete_thread;
4328         }
4329
4330         pt->auxtrace.process_event = intel_pt_process_event;
4331         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4332         pt->auxtrace.queue_data = intel_pt_queue_data;
4333         pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4334         pt->auxtrace.flush_events = intel_pt_flush;
4335         pt->auxtrace.free_events = intel_pt_free_events;
4336         pt->auxtrace.free = intel_pt_free;
4337         pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4338         session->auxtrace = &pt->auxtrace;
4339
4340         if (dump_trace)
4341                 return 0;
4342
4343         if (pt->have_sched_switch == 1) {
4344                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4345                 if (!pt->switch_evsel) {
4346                         pr_err("%s: missing sched_switch event\n", __func__);
4347                         err = -EINVAL;
4348                         goto err_delete_thread;
4349                 }
4350         } else if (pt->have_sched_switch == 2 &&
4351                    !intel_pt_find_switch(session->evlist)) {
4352                 pr_err("%s: missing context_switch attribute flag\n", __func__);
4353                 err = -EINVAL;
4354                 goto err_delete_thread;
4355         }
4356
4357         if (pt->synth_opts.log) {
4358                 bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4359                 unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
4360
4361                 intel_pt_log_enable(log_on_error, log_on_error_size);
4362         }
4363
4364         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
4365         if (pt->tc.time_mult) {
4366                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4367
4368                 if (!pt->max_non_turbo_ratio)
4369                         pt->max_non_turbo_ratio =
4370                                         (tsc_freq + 50000000) / 100000000;
4371                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4372                 intel_pt_log("Maximum non-turbo ratio %u\n",
4373                              pt->max_non_turbo_ratio);
4374                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4375         }
4376
4377         err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4378         if (err)
4379                 goto err_delete_thread;
4380
4381         if (pt->synth_opts.calls)
4382                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4383                                        PERF_IP_FLAG_TRACE_END;
4384         if (pt->synth_opts.returns)
4385                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
4386                                        PERF_IP_FLAG_TRACE_BEGIN;
4387
4388         if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4389             !symbol_conf.use_callchain) {
4390                 symbol_conf.use_callchain = true;
4391                 if (callchain_register_param(&callchain_param) < 0) {
4392                         symbol_conf.use_callchain = false;
4393                         pt->synth_opts.callchain = false;
4394                         pt->synth_opts.add_callchain = false;
4395                 }
4396         }
4397
4398         if (pt->synth_opts.add_callchain) {
4399                 err = intel_pt_callchain_init(pt);
4400                 if (err)
4401                         goto err_delete_thread;
4402         }
4403
4404         if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4405                 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4406                 pt->br_stack_sz_plus = pt->br_stack_sz;
4407         }
4408
4409         if (pt->synth_opts.add_last_branch) {
4410                 err = intel_pt_br_stack_init(pt);
4411                 if (err)
4412                         goto err_delete_thread;
4413                 /*
4414                  * Additional branch stack size to cater for tracing from the
4415                  * actual sample ip to where the sample time is recorded.
4416                  * Measured at about 200 branches, but generously set to 1024.
4417                  * If kernel space is not being traced, then add just 1 for the
4418                  * branch to kernel space.
4419                  */
4420                 if (intel_pt_tracing_kernel(pt))
4421                         pt->br_stack_sz_plus += 1024;
4422                 else
4423                         pt->br_stack_sz_plus += 1;
4424         }
4425
4426         pt->use_thread_stack = pt->synth_opts.callchain ||
4427                                pt->synth_opts.add_callchain ||
4428                                pt->synth_opts.thread_stack ||
4429                                pt->synth_opts.last_branch ||
4430                                pt->synth_opts.add_last_branch;
4431
4432         pt->callstack = pt->synth_opts.callchain ||
4433                         pt->synth_opts.add_callchain ||
4434                         pt->synth_opts.thread_stack;
4435
4436         err = intel_pt_synth_events(pt, session);
4437         if (err)
4438                 goto err_delete_thread;
4439
4440         intel_pt_setup_pebs_events(pt);
4441
4442         if (perf_data__is_pipe(session->data)) {
4443                 pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n"
4444                            "         The output cannot relied upon.  In particular,\n"
4445                            "         timestamps and the order of events may be incorrect.\n");
4446         }
4447
4448         if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4449                 err = auxtrace_queue_data(session, true, true);
4450         else
4451                 err = auxtrace_queues__process_index(&pt->queues, session);
4452         if (err)
4453                 goto err_delete_thread;
4454
4455         if (pt->queues.populated)
4456                 pt->data_queued = true;
4457
4458         if (pt->timeless_decoding)
4459                 pr_debug2("Intel PT decoding without timestamps\n");
4460
4461         return 0;
4462
4463 err_delete_thread:
4464         zfree(&pt->chain);
4465         thread__zput(pt->unknown_thread);
4466 err_free_queues:
4467         intel_pt_log_disable();
4468         auxtrace_queues__free(&pt->queues);
4469         session->auxtrace = NULL;
4470 err_free:
4471         addr_filters__exit(&pt->filts);
4472         zfree(&pt->filter);
4473         zfree(&pt->time_ranges);
4474         free(pt);
4475         return err;
4476 }
This page took 0.286369 seconds and 4 git commands to generate.