]> Git Repo - J-linux.git/blob - tools/perf/util/header.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
28
29 #include "dso.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "util/evsel_fprintf.h"
33 #include "header.h"
34 #include "memswap.h"
35 #include "trace-event.h"
36 #include "session.h"
37 #include "symbol.h"
38 #include "debug.h"
39 #include "cpumap.h"
40 #include "pmu.h"
41 #include "pmus.h"
42 #include "vdso.h"
43 #include "strbuf.h"
44 #include "build-id.h"
45 #include "data.h"
46 #include <api/fs/fs.h>
47 #include "asm/bug.h"
48 #include "tool.h"
49 #include "time-utils.h"
50 #include "units.h"
51 #include "util/util.h" // perf_exe()
52 #include "cputopo.h"
53 #include "bpf-event.h"
54 #include "bpf-utils.h"
55 #include "clockid.h"
56
57 #include <linux/ctype.h>
58 #include <internal/lib.h>
59
60 #ifdef HAVE_LIBTRACEEVENT
61 #include <event-parse.h>
62 #endif
63
64 /*
65  * magic2 = "PERFILE2"
66  * must be a numerical value to let the endianness
67  * determine the memory layout. That way we are able
68  * to detect endianness when reading the perf.data file
69  * back.
70  *
71  * we check for legacy (PERFFILE) format.
72  */
73 static const char *__perf_magic1 = "PERFFILE";
74 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
76
77 #define PERF_MAGIC      __perf_magic2
78
79 const char perf_version_string[] = PERF_VERSION;
80
81 struct perf_file_attr {
82         struct perf_event_attr  attr;
83         struct perf_file_section        ids;
84 };
85
86 void perf_header__set_feat(struct perf_header *header, int feat)
87 {
88         __set_bit(feat, header->adds_features);
89 }
90
91 void perf_header__clear_feat(struct perf_header *header, int feat)
92 {
93         __clear_bit(feat, header->adds_features);
94 }
95
96 bool perf_header__has_feat(const struct perf_header *header, int feat)
97 {
98         return test_bit(feat, header->adds_features);
99 }
100
101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
102 {
103         ssize_t ret = writen(ff->fd, buf, size);
104
105         if (ret != (ssize_t)size)
106                 return ret < 0 ? (int)ret : -1;
107         return 0;
108 }
109
110 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
111 {
112         /* struct perf_event_header::size is u16 */
113         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
114         size_t new_size = ff->size;
115         void *addr;
116
117         if (size + ff->offset > max_size)
118                 return -E2BIG;
119
120         while (size > (new_size - ff->offset))
121                 new_size <<= 1;
122         new_size = min(max_size, new_size);
123
124         if (ff->size < new_size) {
125                 addr = realloc(ff->buf, new_size);
126                 if (!addr)
127                         return -ENOMEM;
128                 ff->buf = addr;
129                 ff->size = new_size;
130         }
131
132         memcpy(ff->buf + ff->offset, buf, size);
133         ff->offset += size;
134
135         return 0;
136 }
137
138 /* Return: 0 if succeeded, -ERR if failed. */
139 int do_write(struct feat_fd *ff, const void *buf, size_t size)
140 {
141         if (!ff->buf)
142                 return __do_write_fd(ff, buf, size);
143         return __do_write_buf(ff, buf, size);
144 }
145
146 /* Return: 0 if succeeded, -ERR if failed. */
147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
148 {
149         u64 *p = (u64 *) set;
150         int i, ret;
151
152         ret = do_write(ff, &size, sizeof(size));
153         if (ret < 0)
154                 return ret;
155
156         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
157                 ret = do_write(ff, p + i, sizeof(*p));
158                 if (ret < 0)
159                         return ret;
160         }
161
162         return 0;
163 }
164
165 /* Return: 0 if succeeded, -ERR if failed. */
166 int write_padded(struct feat_fd *ff, const void *bf,
167                  size_t count, size_t count_aligned)
168 {
169         static const char zero_buf[NAME_ALIGN];
170         int err = do_write(ff, bf, count);
171
172         if (!err)
173                 err = do_write(ff, zero_buf, count_aligned - count);
174
175         return err;
176 }
177
178 #define string_size(str)                                                \
179         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
180
181 /* Return: 0 if succeeded, -ERR if failed. */
182 static int do_write_string(struct feat_fd *ff, const char *str)
183 {
184         u32 len, olen;
185         int ret;
186
187         olen = strlen(str) + 1;
188         len = PERF_ALIGN(olen, NAME_ALIGN);
189
190         /* write len, incl. \0 */
191         ret = do_write(ff, &len, sizeof(len));
192         if (ret < 0)
193                 return ret;
194
195         return write_padded(ff, str, olen, len);
196 }
197
198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
199 {
200         ssize_t ret = readn(ff->fd, addr, size);
201
202         if (ret != size)
203                 return ret < 0 ? (int)ret : -1;
204         return 0;
205 }
206
207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
208 {
209         if (size > (ssize_t)ff->size - ff->offset)
210                 return -1;
211
212         memcpy(addr, ff->buf + ff->offset, size);
213         ff->offset += size;
214
215         return 0;
216
217 }
218
219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
220 {
221         if (!ff->buf)
222                 return __do_read_fd(ff, addr, size);
223         return __do_read_buf(ff, addr, size);
224 }
225
226 static int do_read_u32(struct feat_fd *ff, u32 *addr)
227 {
228         int ret;
229
230         ret = __do_read(ff, addr, sizeof(*addr));
231         if (ret)
232                 return ret;
233
234         if (ff->ph->needs_swap)
235                 *addr = bswap_32(*addr);
236         return 0;
237 }
238
239 static int do_read_u64(struct feat_fd *ff, u64 *addr)
240 {
241         int ret;
242
243         ret = __do_read(ff, addr, sizeof(*addr));
244         if (ret)
245                 return ret;
246
247         if (ff->ph->needs_swap)
248                 *addr = bswap_64(*addr);
249         return 0;
250 }
251
252 static char *do_read_string(struct feat_fd *ff)
253 {
254         u32 len;
255         char *buf;
256
257         if (do_read_u32(ff, &len))
258                 return NULL;
259
260         buf = malloc(len);
261         if (!buf)
262                 return NULL;
263
264         if (!__do_read(ff, buf, len)) {
265                 /*
266                  * strings are padded by zeroes
267                  * thus the actual strlen of buf
268                  * may be less than len
269                  */
270                 return buf;
271         }
272
273         free(buf);
274         return NULL;
275 }
276
277 /* Return: 0 if succeeded, -ERR if failed. */
278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
279 {
280         unsigned long *set;
281         u64 size, *p;
282         int i, ret;
283
284         ret = do_read_u64(ff, &size);
285         if (ret)
286                 return ret;
287
288         set = bitmap_zalloc(size);
289         if (!set)
290                 return -ENOMEM;
291
292         p = (u64 *) set;
293
294         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
295                 ret = do_read_u64(ff, p + i);
296                 if (ret < 0) {
297                         free(set);
298                         return ret;
299                 }
300         }
301
302         *pset  = set;
303         *psize = size;
304         return 0;
305 }
306
307 #ifdef HAVE_LIBTRACEEVENT
308 static int write_tracing_data(struct feat_fd *ff,
309                               struct evlist *evlist)
310 {
311         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
312                 return -1;
313
314         return read_tracing_data(ff->fd, &evlist->core.entries);
315 }
316 #endif
317
318 static int write_build_id(struct feat_fd *ff,
319                           struct evlist *evlist __maybe_unused)
320 {
321         struct perf_session *session;
322         int err;
323
324         session = container_of(ff->ph, struct perf_session, header);
325
326         if (!perf_session__read_build_ids(session, true))
327                 return -1;
328
329         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
330                 return -1;
331
332         err = perf_session__write_buildid_table(session, ff);
333         if (err < 0) {
334                 pr_debug("failed to write buildid table\n");
335                 return err;
336         }
337         perf_session__cache_build_ids(session);
338
339         return 0;
340 }
341
342 static int write_hostname(struct feat_fd *ff,
343                           struct evlist *evlist __maybe_unused)
344 {
345         struct utsname uts;
346         int ret;
347
348         ret = uname(&uts);
349         if (ret < 0)
350                 return -1;
351
352         return do_write_string(ff, uts.nodename);
353 }
354
355 static int write_osrelease(struct feat_fd *ff,
356                            struct evlist *evlist __maybe_unused)
357 {
358         struct utsname uts;
359         int ret;
360
361         ret = uname(&uts);
362         if (ret < 0)
363                 return -1;
364
365         return do_write_string(ff, uts.release);
366 }
367
368 static int write_arch(struct feat_fd *ff,
369                       struct evlist *evlist __maybe_unused)
370 {
371         struct utsname uts;
372         int ret;
373
374         ret = uname(&uts);
375         if (ret < 0)
376                 return -1;
377
378         return do_write_string(ff, uts.machine);
379 }
380
381 static int write_version(struct feat_fd *ff,
382                          struct evlist *evlist __maybe_unused)
383 {
384         return do_write_string(ff, perf_version_string);
385 }
386
387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388 {
389         FILE *file;
390         char *buf = NULL;
391         char *s, *p;
392         const char *search = cpuinfo_proc;
393         size_t len = 0;
394         int ret = -1;
395
396         if (!search)
397                 return -1;
398
399         file = fopen("/proc/cpuinfo", "r");
400         if (!file)
401                 return -1;
402
403         while (getline(&buf, &len, file) > 0) {
404                 ret = strncmp(buf, search, strlen(search));
405                 if (!ret)
406                         break;
407         }
408
409         if (ret) {
410                 ret = -1;
411                 goto done;
412         }
413
414         s = buf;
415
416         p = strchr(buf, ':');
417         if (p && *(p+1) == ' ' && *(p+2))
418                 s = p + 2;
419         p = strchr(s, '\n');
420         if (p)
421                 *p = '\0';
422
423         /* squash extra space characters (branding string) */
424         p = s;
425         while (*p) {
426                 if (isspace(*p)) {
427                         char *r = p + 1;
428                         char *q = skip_spaces(r);
429                         *p = ' ';
430                         if (q != (p+1))
431                                 while ((*r++ = *q++));
432                 }
433                 p++;
434         }
435         ret = do_write_string(ff, s);
436 done:
437         free(buf);
438         fclose(file);
439         return ret;
440 }
441
442 static int write_cpudesc(struct feat_fd *ff,
443                        struct evlist *evlist __maybe_unused)
444 {
445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446 #define CPUINFO_PROC    { "cpu", }
447 #elif defined(__s390__)
448 #define CPUINFO_PROC    { "vendor_id", }
449 #elif defined(__sh__)
450 #define CPUINFO_PROC    { "cpu type", }
451 #elif defined(__alpha__) || defined(__mips__)
452 #define CPUINFO_PROC    { "cpu model", }
453 #elif defined(__arm__)
454 #define CPUINFO_PROC    { "model name", "Processor", }
455 #elif defined(__arc__)
456 #define CPUINFO_PROC    { "Processor", }
457 #elif defined(__xtensa__)
458 #define CPUINFO_PROC    { "core ID", }
459 #elif defined(__loongarch__)
460 #define CPUINFO_PROC    { "Model Name", }
461 #else
462 #define CPUINFO_PROC    { "model name", }
463 #endif
464         const char *cpuinfo_procs[] = CPUINFO_PROC;
465 #undef CPUINFO_PROC
466         unsigned int i;
467
468         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
469                 int ret;
470                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
471                 if (ret >= 0)
472                         return ret;
473         }
474         return -1;
475 }
476
477
478 static int write_nrcpus(struct feat_fd *ff,
479                         struct evlist *evlist __maybe_unused)
480 {
481         long nr;
482         u32 nrc, nra;
483         int ret;
484
485         nrc = cpu__max_present_cpu().cpu;
486
487         nr = sysconf(_SC_NPROCESSORS_ONLN);
488         if (nr < 0)
489                 return -1;
490
491         nra = (u32)(nr & UINT_MAX);
492
493         ret = do_write(ff, &nrc, sizeof(nrc));
494         if (ret < 0)
495                 return ret;
496
497         return do_write(ff, &nra, sizeof(nra));
498 }
499
500 static int write_event_desc(struct feat_fd *ff,
501                             struct evlist *evlist)
502 {
503         struct evsel *evsel;
504         u32 nre, nri, sz;
505         int ret;
506
507         nre = evlist->core.nr_entries;
508
509         /*
510          * write number of events
511          */
512         ret = do_write(ff, &nre, sizeof(nre));
513         if (ret < 0)
514                 return ret;
515
516         /*
517          * size of perf_event_attr struct
518          */
519         sz = (u32)sizeof(evsel->core.attr);
520         ret = do_write(ff, &sz, sizeof(sz));
521         if (ret < 0)
522                 return ret;
523
524         evlist__for_each_entry(evlist, evsel) {
525                 ret = do_write(ff, &evsel->core.attr, sz);
526                 if (ret < 0)
527                         return ret;
528                 /*
529                  * write number of unique id per event
530                  * there is one id per instance of an event
531                  *
532                  * copy into an nri to be independent of the
533                  * type of ids,
534                  */
535                 nri = evsel->core.ids;
536                 ret = do_write(ff, &nri, sizeof(nri));
537                 if (ret < 0)
538                         return ret;
539
540                 /*
541                  * write event string as passed on cmdline
542                  */
543                 ret = do_write_string(ff, evsel__name(evsel));
544                 if (ret < 0)
545                         return ret;
546                 /*
547                  * write unique ids for this event
548                  */
549                 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
550                 if (ret < 0)
551                         return ret;
552         }
553         return 0;
554 }
555
556 static int write_cmdline(struct feat_fd *ff,
557                          struct evlist *evlist __maybe_unused)
558 {
559         char pbuf[MAXPATHLEN], *buf;
560         int i, ret, n;
561
562         /* actual path to perf binary */
563         buf = perf_exe(pbuf, MAXPATHLEN);
564
565         /* account for binary path */
566         n = perf_env.nr_cmdline + 1;
567
568         ret = do_write(ff, &n, sizeof(n));
569         if (ret < 0)
570                 return ret;
571
572         ret = do_write_string(ff, buf);
573         if (ret < 0)
574                 return ret;
575
576         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
577                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
578                 if (ret < 0)
579                         return ret;
580         }
581         return 0;
582 }
583
584
585 static int write_cpu_topology(struct feat_fd *ff,
586                               struct evlist *evlist __maybe_unused)
587 {
588         struct cpu_topology *tp;
589         u32 i;
590         int ret, j;
591
592         tp = cpu_topology__new();
593         if (!tp)
594                 return -1;
595
596         ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
597         if (ret < 0)
598                 goto done;
599
600         for (i = 0; i < tp->package_cpus_lists; i++) {
601                 ret = do_write_string(ff, tp->package_cpus_list[i]);
602                 if (ret < 0)
603                         goto done;
604         }
605         ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
606         if (ret < 0)
607                 goto done;
608
609         for (i = 0; i < tp->core_cpus_lists; i++) {
610                 ret = do_write_string(ff, tp->core_cpus_list[i]);
611                 if (ret < 0)
612                         break;
613         }
614
615         ret = perf_env__read_cpu_topology_map(&perf_env);
616         if (ret < 0)
617                 goto done;
618
619         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
620                 ret = do_write(ff, &perf_env.cpu[j].core_id,
621                                sizeof(perf_env.cpu[j].core_id));
622                 if (ret < 0)
623                         return ret;
624                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
625                                sizeof(perf_env.cpu[j].socket_id));
626                 if (ret < 0)
627                         return ret;
628         }
629
630         if (!tp->die_cpus_lists)
631                 goto done;
632
633         ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
634         if (ret < 0)
635                 goto done;
636
637         for (i = 0; i < tp->die_cpus_lists; i++) {
638                 ret = do_write_string(ff, tp->die_cpus_list[i]);
639                 if (ret < 0)
640                         goto done;
641         }
642
643         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
644                 ret = do_write(ff, &perf_env.cpu[j].die_id,
645                                sizeof(perf_env.cpu[j].die_id));
646                 if (ret < 0)
647                         return ret;
648         }
649
650 done:
651         cpu_topology__delete(tp);
652         return ret;
653 }
654
655
656
657 static int write_total_mem(struct feat_fd *ff,
658                            struct evlist *evlist __maybe_unused)
659 {
660         char *buf = NULL;
661         FILE *fp;
662         size_t len = 0;
663         int ret = -1, n;
664         uint64_t mem;
665
666         fp = fopen("/proc/meminfo", "r");
667         if (!fp)
668                 return -1;
669
670         while (getline(&buf, &len, fp) > 0) {
671                 ret = strncmp(buf, "MemTotal:", 9);
672                 if (!ret)
673                         break;
674         }
675         if (!ret) {
676                 n = sscanf(buf, "%*s %"PRIu64, &mem);
677                 if (n == 1)
678                         ret = do_write(ff, &mem, sizeof(mem));
679         } else
680                 ret = -1;
681         free(buf);
682         fclose(fp);
683         return ret;
684 }
685
686 static int write_numa_topology(struct feat_fd *ff,
687                                struct evlist *evlist __maybe_unused)
688 {
689         struct numa_topology *tp;
690         int ret = -1;
691         u32 i;
692
693         tp = numa_topology__new();
694         if (!tp)
695                 return -ENOMEM;
696
697         ret = do_write(ff, &tp->nr, sizeof(u32));
698         if (ret < 0)
699                 goto err;
700
701         for (i = 0; i < tp->nr; i++) {
702                 struct numa_topology_node *n = &tp->nodes[i];
703
704                 ret = do_write(ff, &n->node, sizeof(u32));
705                 if (ret < 0)
706                         goto err;
707
708                 ret = do_write(ff, &n->mem_total, sizeof(u64));
709                 if (ret)
710                         goto err;
711
712                 ret = do_write(ff, &n->mem_free, sizeof(u64));
713                 if (ret)
714                         goto err;
715
716                 ret = do_write_string(ff, n->cpus);
717                 if (ret < 0)
718                         goto err;
719         }
720
721         ret = 0;
722
723 err:
724         numa_topology__delete(tp);
725         return ret;
726 }
727
728 /*
729  * File format:
730  *
731  * struct pmu_mappings {
732  *      u32     pmu_num;
733  *      struct pmu_map {
734  *              u32     type;
735  *              char    name[];
736  *      }[pmu_num];
737  * };
738  */
739
740 static int write_pmu_mappings(struct feat_fd *ff,
741                               struct evlist *evlist __maybe_unused)
742 {
743         struct perf_pmu *pmu = NULL;
744         u32 pmu_num = 0;
745         int ret;
746
747         /*
748          * Do a first pass to count number of pmu to avoid lseek so this
749          * works in pipe mode as well.
750          */
751         while ((pmu = perf_pmus__scan(pmu)))
752                 pmu_num++;
753
754         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755         if (ret < 0)
756                 return ret;
757
758         while ((pmu = perf_pmus__scan(pmu))) {
759                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
760                 if (ret < 0)
761                         return ret;
762
763                 ret = do_write_string(ff, pmu->name);
764                 if (ret < 0)
765                         return ret;
766         }
767
768         return 0;
769 }
770
771 /*
772  * File format:
773  *
774  * struct group_descs {
775  *      u32     nr_groups;
776  *      struct group_desc {
777  *              char    name[];
778  *              u32     leader_idx;
779  *              u32     nr_members;
780  *      }[nr_groups];
781  * };
782  */
783 static int write_group_desc(struct feat_fd *ff,
784                             struct evlist *evlist)
785 {
786         u32 nr_groups = evlist__nr_groups(evlist);
787         struct evsel *evsel;
788         int ret;
789
790         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
791         if (ret < 0)
792                 return ret;
793
794         evlist__for_each_entry(evlist, evsel) {
795                 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
796                         const char *name = evsel->group_name ?: "{anon_group}";
797                         u32 leader_idx = evsel->core.idx;
798                         u32 nr_members = evsel->core.nr_members;
799
800                         ret = do_write_string(ff, name);
801                         if (ret < 0)
802                                 return ret;
803
804                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
805                         if (ret < 0)
806                                 return ret;
807
808                         ret = do_write(ff, &nr_members, sizeof(nr_members));
809                         if (ret < 0)
810                                 return ret;
811                 }
812         }
813         return 0;
814 }
815
816 /*
817  * Return the CPU id as a raw string.
818  *
819  * Each architecture should provide a more precise id string that
820  * can be use to match the architecture's "mapfile".
821  */
822 char * __weak get_cpuid_str(struct perf_cpu cpu __maybe_unused)
823 {
824         return NULL;
825 }
826
827 char *get_cpuid_allow_env_override(struct perf_cpu cpu)
828 {
829         char *cpuid;
830         static bool printed;
831
832         cpuid = getenv("PERF_CPUID");
833         if (cpuid)
834                 cpuid = strdup(cpuid);
835         if (!cpuid)
836                 cpuid = get_cpuid_str(cpu);
837         if (!cpuid)
838                 return NULL;
839
840         if (!printed) {
841                 pr_debug("Using CPUID %s\n", cpuid);
842                 printed = true;
843         }
844         return cpuid;
845 }
846
847 /* Return zero when the cpuid from the mapfile.csv matches the
848  * cpuid string generated on this platform.
849  * Otherwise return non-zero.
850  */
851 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
852 {
853         regex_t re;
854         regmatch_t pmatch[1];
855         int match;
856
857         if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
858                 /* Warn unable to generate match particular string. */
859                 pr_info("Invalid regular expression %s\n", mapcpuid);
860                 return 1;
861         }
862
863         match = !regexec(&re, cpuid, 1, pmatch, 0);
864         regfree(&re);
865         if (match) {
866                 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
867
868                 /* Verify the entire string matched. */
869                 if (match_len == strlen(cpuid))
870                         return 0;
871         }
872         return 1;
873 }
874
875 /*
876  * default get_cpuid(): nothing gets recorded
877  * actual implementation must be in arch/$(SRCARCH)/util/header.c
878  */
879 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused,
880                      struct perf_cpu cpu __maybe_unused)
881 {
882         return ENOSYS; /* Not implemented */
883 }
884
885 static int write_cpuid(struct feat_fd *ff, struct evlist *evlist)
886 {
887         struct perf_cpu cpu = perf_cpu_map__min(evlist->core.all_cpus);
888         char buffer[64];
889         int ret;
890
891         ret = get_cpuid(buffer, sizeof(buffer), cpu);
892         if (ret)
893                 return -1;
894
895         return do_write_string(ff, buffer);
896 }
897
898 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
899                               struct evlist *evlist __maybe_unused)
900 {
901         return 0;
902 }
903
904 static int write_auxtrace(struct feat_fd *ff,
905                           struct evlist *evlist __maybe_unused)
906 {
907         struct perf_session *session;
908         int err;
909
910         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
911                 return -1;
912
913         session = container_of(ff->ph, struct perf_session, header);
914
915         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
916         if (err < 0)
917                 pr_err("Failed to write auxtrace index\n");
918         return err;
919 }
920
921 static int write_clockid(struct feat_fd *ff,
922                          struct evlist *evlist __maybe_unused)
923 {
924         return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
925                         sizeof(ff->ph->env.clock.clockid_res_ns));
926 }
927
928 static int write_clock_data(struct feat_fd *ff,
929                             struct evlist *evlist __maybe_unused)
930 {
931         u64 *data64;
932         u32 data32;
933         int ret;
934
935         /* version */
936         data32 = 1;
937
938         ret = do_write(ff, &data32, sizeof(data32));
939         if (ret < 0)
940                 return ret;
941
942         /* clockid */
943         data32 = ff->ph->env.clock.clockid;
944
945         ret = do_write(ff, &data32, sizeof(data32));
946         if (ret < 0)
947                 return ret;
948
949         /* TOD ref time */
950         data64 = &ff->ph->env.clock.tod_ns;
951
952         ret = do_write(ff, data64, sizeof(*data64));
953         if (ret < 0)
954                 return ret;
955
956         /* clockid ref time */
957         data64 = &ff->ph->env.clock.clockid_ns;
958
959         return do_write(ff, data64, sizeof(*data64));
960 }
961
962 static int write_hybrid_topology(struct feat_fd *ff,
963                                  struct evlist *evlist __maybe_unused)
964 {
965         struct hybrid_topology *tp;
966         int ret;
967         u32 i;
968
969         tp = hybrid_topology__new();
970         if (!tp)
971                 return -ENOENT;
972
973         ret = do_write(ff, &tp->nr, sizeof(u32));
974         if (ret < 0)
975                 goto err;
976
977         for (i = 0; i < tp->nr; i++) {
978                 struct hybrid_topology_node *n = &tp->nodes[i];
979
980                 ret = do_write_string(ff, n->pmu_name);
981                 if (ret < 0)
982                         goto err;
983
984                 ret = do_write_string(ff, n->cpus);
985                 if (ret < 0)
986                         goto err;
987         }
988
989         ret = 0;
990
991 err:
992         hybrid_topology__delete(tp);
993         return ret;
994 }
995
996 static int write_dir_format(struct feat_fd *ff,
997                             struct evlist *evlist __maybe_unused)
998 {
999         struct perf_session *session;
1000         struct perf_data *data;
1001
1002         session = container_of(ff->ph, struct perf_session, header);
1003         data = session->data;
1004
1005         if (WARN_ON(!perf_data__is_dir(data)))
1006                 return -1;
1007
1008         return do_write(ff, &data->dir.version, sizeof(data->dir.version));
1009 }
1010
1011 #ifdef HAVE_LIBBPF_SUPPORT
1012 static int write_bpf_prog_info(struct feat_fd *ff,
1013                                struct evlist *evlist __maybe_unused)
1014 {
1015         struct perf_env *env = &ff->ph->env;
1016         struct rb_root *root;
1017         struct rb_node *next;
1018         int ret;
1019
1020         down_read(&env->bpf_progs.lock);
1021
1022         ret = do_write(ff, &env->bpf_progs.infos_cnt,
1023                        sizeof(env->bpf_progs.infos_cnt));
1024         if (ret < 0)
1025                 goto out;
1026
1027         root = &env->bpf_progs.infos;
1028         next = rb_first(root);
1029         while (next) {
1030                 struct bpf_prog_info_node *node;
1031                 size_t len;
1032
1033                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1034                 next = rb_next(&node->rb_node);
1035                 len = sizeof(struct perf_bpil) +
1036                         node->info_linear->data_len;
1037
1038                 /* before writing to file, translate address to offset */
1039                 bpil_addr_to_offs(node->info_linear);
1040                 ret = do_write(ff, node->info_linear, len);
1041                 /*
1042                  * translate back to address even when do_write() fails,
1043                  * so that this function never changes the data.
1044                  */
1045                 bpil_offs_to_addr(node->info_linear);
1046                 if (ret < 0)
1047                         goto out;
1048         }
1049 out:
1050         up_read(&env->bpf_progs.lock);
1051         return ret;
1052 }
1053
1054 static int write_bpf_btf(struct feat_fd *ff,
1055                          struct evlist *evlist __maybe_unused)
1056 {
1057         struct perf_env *env = &ff->ph->env;
1058         struct rb_root *root;
1059         struct rb_node *next;
1060         int ret;
1061
1062         down_read(&env->bpf_progs.lock);
1063
1064         ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1065                        sizeof(env->bpf_progs.btfs_cnt));
1066
1067         if (ret < 0)
1068                 goto out;
1069
1070         root = &env->bpf_progs.btfs;
1071         next = rb_first(root);
1072         while (next) {
1073                 struct btf_node *node;
1074
1075                 node = rb_entry(next, struct btf_node, rb_node);
1076                 next = rb_next(&node->rb_node);
1077                 ret = do_write(ff, &node->id,
1078                                sizeof(u32) * 2 + node->data_size);
1079                 if (ret < 0)
1080                         goto out;
1081         }
1082 out:
1083         up_read(&env->bpf_progs.lock);
1084         return ret;
1085 }
1086 #endif // HAVE_LIBBPF_SUPPORT
1087
1088 static int cpu_cache_level__sort(const void *a, const void *b)
1089 {
1090         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1091         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1092
1093         return cache_a->level - cache_b->level;
1094 }
1095
1096 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1097 {
1098         if (a->level != b->level)
1099                 return false;
1100
1101         if (a->line_size != b->line_size)
1102                 return false;
1103
1104         if (a->sets != b->sets)
1105                 return false;
1106
1107         if (a->ways != b->ways)
1108                 return false;
1109
1110         if (strcmp(a->type, b->type))
1111                 return false;
1112
1113         if (strcmp(a->size, b->size))
1114                 return false;
1115
1116         if (strcmp(a->map, b->map))
1117                 return false;
1118
1119         return true;
1120 }
1121
1122 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1123 {
1124         char path[PATH_MAX], file[PATH_MAX];
1125         struct stat st;
1126         size_t len;
1127
1128         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1129         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1130
1131         if (stat(file, &st))
1132                 return 1;
1133
1134         scnprintf(file, PATH_MAX, "%s/level", path);
1135         if (sysfs__read_int(file, (int *) &cache->level))
1136                 return -1;
1137
1138         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1139         if (sysfs__read_int(file, (int *) &cache->line_size))
1140                 return -1;
1141
1142         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1143         if (sysfs__read_int(file, (int *) &cache->sets))
1144                 return -1;
1145
1146         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1147         if (sysfs__read_int(file, (int *) &cache->ways))
1148                 return -1;
1149
1150         scnprintf(file, PATH_MAX, "%s/type", path);
1151         if (sysfs__read_str(file, &cache->type, &len))
1152                 return -1;
1153
1154         cache->type[len] = 0;
1155         cache->type = strim(cache->type);
1156
1157         scnprintf(file, PATH_MAX, "%s/size", path);
1158         if (sysfs__read_str(file, &cache->size, &len)) {
1159                 zfree(&cache->type);
1160                 return -1;
1161         }
1162
1163         cache->size[len] = 0;
1164         cache->size = strim(cache->size);
1165
1166         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1167         if (sysfs__read_str(file, &cache->map, &len)) {
1168                 zfree(&cache->size);
1169                 zfree(&cache->type);
1170                 return -1;
1171         }
1172
1173         cache->map[len] = 0;
1174         cache->map = strim(cache->map);
1175         return 0;
1176 }
1177
1178 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1179 {
1180         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1181 }
1182
1183 /*
1184  * Build caches levels for a particular CPU from the data in
1185  * /sys/devices/system/cpu/cpu<cpu>/cache/
1186  * The cache level data is stored in caches[] from index at
1187  * *cntp.
1188  */
1189 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1190 {
1191         u16 level;
1192
1193         for (level = 0; level < MAX_CACHE_LVL; level++) {
1194                 struct cpu_cache_level c;
1195                 int err;
1196                 u32 i;
1197
1198                 err = cpu_cache_level__read(&c, cpu, level);
1199                 if (err < 0)
1200                         return err;
1201
1202                 if (err == 1)
1203                         break;
1204
1205                 for (i = 0; i < *cntp; i++) {
1206                         if (cpu_cache_level__cmp(&c, &caches[i]))
1207                                 break;
1208                 }
1209
1210                 if (i == *cntp) {
1211                         caches[*cntp] = c;
1212                         *cntp = *cntp + 1;
1213                 } else
1214                         cpu_cache_level__free(&c);
1215         }
1216
1217         return 0;
1218 }
1219
1220 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1221 {
1222         u32 nr, cpu, cnt = 0;
1223
1224         nr = cpu__max_cpu().cpu;
1225
1226         for (cpu = 0; cpu < nr; cpu++) {
1227                 int ret = build_caches_for_cpu(cpu, caches, &cnt);
1228
1229                 if (ret)
1230                         return ret;
1231         }
1232         *cntp = cnt;
1233         return 0;
1234 }
1235
1236 static int write_cache(struct feat_fd *ff,
1237                        struct evlist *evlist __maybe_unused)
1238 {
1239         u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1240         struct cpu_cache_level caches[max_caches];
1241         u32 cnt = 0, i, version = 1;
1242         int ret;
1243
1244         ret = build_caches(caches, &cnt);
1245         if (ret)
1246                 goto out;
1247
1248         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1249
1250         ret = do_write(ff, &version, sizeof(u32));
1251         if (ret < 0)
1252                 goto out;
1253
1254         ret = do_write(ff, &cnt, sizeof(u32));
1255         if (ret < 0)
1256                 goto out;
1257
1258         for (i = 0; i < cnt; i++) {
1259                 struct cpu_cache_level *c = &caches[i];
1260
1261                 #define _W(v)                                   \
1262                         ret = do_write(ff, &c->v, sizeof(u32)); \
1263                         if (ret < 0)                            \
1264                                 goto out;
1265
1266                 _W(level)
1267                 _W(line_size)
1268                 _W(sets)
1269                 _W(ways)
1270                 #undef _W
1271
1272                 #define _W(v)                                           \
1273                         ret = do_write_string(ff, (const char *) c->v); \
1274                         if (ret < 0)                                    \
1275                                 goto out;
1276
1277                 _W(type)
1278                 _W(size)
1279                 _W(map)
1280                 #undef _W
1281         }
1282
1283 out:
1284         for (i = 0; i < cnt; i++)
1285                 cpu_cache_level__free(&caches[i]);
1286         return ret;
1287 }
1288
1289 static int write_stat(struct feat_fd *ff __maybe_unused,
1290                       struct evlist *evlist __maybe_unused)
1291 {
1292         return 0;
1293 }
1294
1295 static int write_sample_time(struct feat_fd *ff,
1296                              struct evlist *evlist)
1297 {
1298         int ret;
1299
1300         ret = do_write(ff, &evlist->first_sample_time,
1301                        sizeof(evlist->first_sample_time));
1302         if (ret < 0)
1303                 return ret;
1304
1305         return do_write(ff, &evlist->last_sample_time,
1306                         sizeof(evlist->last_sample_time));
1307 }
1308
1309
1310 static int memory_node__read(struct memory_node *n, unsigned long idx)
1311 {
1312         unsigned int phys, size = 0;
1313         char path[PATH_MAX];
1314         struct dirent *ent;
1315         DIR *dir;
1316
1317 #define for_each_memory(mem, dir)                                       \
1318         while ((ent = readdir(dir)))                                    \
1319                 if (strcmp(ent->d_name, ".") &&                         \
1320                     strcmp(ent->d_name, "..") &&                        \
1321                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1322
1323         scnprintf(path, PATH_MAX,
1324                   "%s/devices/system/node/node%lu",
1325                   sysfs__mountpoint(), idx);
1326
1327         dir = opendir(path);
1328         if (!dir) {
1329                 pr_warning("failed: can't open memory sysfs data\n");
1330                 return -1;
1331         }
1332
1333         for_each_memory(phys, dir) {
1334                 size = max(phys, size);
1335         }
1336
1337         size++;
1338
1339         n->set = bitmap_zalloc(size);
1340         if (!n->set) {
1341                 closedir(dir);
1342                 return -ENOMEM;
1343         }
1344
1345         n->node = idx;
1346         n->size = size;
1347
1348         rewinddir(dir);
1349
1350         for_each_memory(phys, dir) {
1351                 __set_bit(phys, n->set);
1352         }
1353
1354         closedir(dir);
1355         return 0;
1356 }
1357
1358 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1359 {
1360         for (u64 i = 0; i < cnt; i++)
1361                 bitmap_free(nodesp[i].set);
1362
1363         free(nodesp);
1364 }
1365
1366 static int memory_node__sort(const void *a, const void *b)
1367 {
1368         const struct memory_node *na = a;
1369         const struct memory_node *nb = b;
1370
1371         return na->node - nb->node;
1372 }
1373
1374 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1375 {
1376         char path[PATH_MAX];
1377         struct dirent *ent;
1378         DIR *dir;
1379         int ret = 0;
1380         size_t cnt = 0, size = 0;
1381         struct memory_node *nodes = NULL;
1382
1383         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1384                   sysfs__mountpoint());
1385
1386         dir = opendir(path);
1387         if (!dir) {
1388                 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1389                           __func__, path);
1390                 return -1;
1391         }
1392
1393         while (!ret && (ent = readdir(dir))) {
1394                 unsigned int idx;
1395                 int r;
1396
1397                 if (!strcmp(ent->d_name, ".") ||
1398                     !strcmp(ent->d_name, ".."))
1399                         continue;
1400
1401                 r = sscanf(ent->d_name, "node%u", &idx);
1402                 if (r != 1)
1403                         continue;
1404
1405                 if (cnt >= size) {
1406                         struct memory_node *new_nodes =
1407                                 reallocarray(nodes, cnt + 4, sizeof(*nodes));
1408
1409                         if (!new_nodes) {
1410                                 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1411                                 ret = -ENOMEM;
1412                                 goto out;
1413                         }
1414                         nodes = new_nodes;
1415                         size += 4;
1416                 }
1417                 ret = memory_node__read(&nodes[cnt], idx);
1418                 if (!ret)
1419                         cnt += 1;
1420         }
1421 out:
1422         closedir(dir);
1423         if (!ret) {
1424                 *cntp = cnt;
1425                 *nodesp = nodes;
1426                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1427         } else
1428                 memory_node__delete_nodes(nodes, cnt);
1429
1430         return ret;
1431 }
1432
1433 /*
1434  * The MEM_TOPOLOGY holds physical memory map for every
1435  * node in system. The format of data is as follows:
1436  *
1437  *  0 - version          | for future changes
1438  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1439  * 16 - count            | number of nodes
1440  *
1441  * For each node we store map of physical indexes for
1442  * each node:
1443  *
1444  * 32 - node id          | node index
1445  * 40 - size             | size of bitmap
1446  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1447  */
1448 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1449                               struct evlist *evlist __maybe_unused)
1450 {
1451         struct memory_node *nodes = NULL;
1452         u64 bsize, version = 1, i, nr = 0;
1453         int ret;
1454
1455         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1456                               (unsigned long long *) &bsize);
1457         if (ret)
1458                 return ret;
1459
1460         ret = build_mem_topology(&nodes, &nr);
1461         if (ret)
1462                 return ret;
1463
1464         ret = do_write(ff, &version, sizeof(version));
1465         if (ret < 0)
1466                 goto out;
1467
1468         ret = do_write(ff, &bsize, sizeof(bsize));
1469         if (ret < 0)
1470                 goto out;
1471
1472         ret = do_write(ff, &nr, sizeof(nr));
1473         if (ret < 0)
1474                 goto out;
1475
1476         for (i = 0; i < nr; i++) {
1477                 struct memory_node *n = &nodes[i];
1478
1479                 #define _W(v)                                           \
1480                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1481                         if (ret < 0)                                    \
1482                                 goto out;
1483
1484                 _W(node)
1485                 _W(size)
1486
1487                 #undef _W
1488
1489                 ret = do_write_bitmap(ff, n->set, n->size);
1490                 if (ret < 0)
1491                         goto out;
1492         }
1493
1494 out:
1495         memory_node__delete_nodes(nodes, nr);
1496         return ret;
1497 }
1498
1499 static int write_compressed(struct feat_fd *ff __maybe_unused,
1500                             struct evlist *evlist __maybe_unused)
1501 {
1502         int ret;
1503
1504         ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1505         if (ret)
1506                 return ret;
1507
1508         ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1509         if (ret)
1510                 return ret;
1511
1512         ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1513         if (ret)
1514                 return ret;
1515
1516         ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1517         if (ret)
1518                 return ret;
1519
1520         return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1521 }
1522
1523 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1524                             bool write_pmu)
1525 {
1526         struct perf_pmu_caps *caps = NULL;
1527         int ret;
1528
1529         ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1530         if (ret < 0)
1531                 return ret;
1532
1533         list_for_each_entry(caps, &pmu->caps, list) {
1534                 ret = do_write_string(ff, caps->name);
1535                 if (ret < 0)
1536                         return ret;
1537
1538                 ret = do_write_string(ff, caps->value);
1539                 if (ret < 0)
1540                         return ret;
1541         }
1542
1543         if (write_pmu) {
1544                 ret = do_write_string(ff, pmu->name);
1545                 if (ret < 0)
1546                         return ret;
1547         }
1548
1549         return ret;
1550 }
1551
1552 static int write_cpu_pmu_caps(struct feat_fd *ff,
1553                               struct evlist *evlist __maybe_unused)
1554 {
1555         struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1556         int ret;
1557
1558         if (!cpu_pmu)
1559                 return -ENOENT;
1560
1561         ret = perf_pmu__caps_parse(cpu_pmu);
1562         if (ret < 0)
1563                 return ret;
1564
1565         return __write_pmu_caps(ff, cpu_pmu, false);
1566 }
1567
1568 static int write_pmu_caps(struct feat_fd *ff,
1569                           struct evlist *evlist __maybe_unused)
1570 {
1571         struct perf_pmu *pmu = NULL;
1572         int nr_pmu = 0;
1573         int ret;
1574
1575         while ((pmu = perf_pmus__scan(pmu))) {
1576                 if (!strcmp(pmu->name, "cpu")) {
1577                         /*
1578                          * The "cpu" PMU is special and covered by
1579                          * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1580                          * counted/written here for ARM, s390 and Intel hybrid.
1581                          */
1582                         continue;
1583                 }
1584                 if (perf_pmu__caps_parse(pmu) <= 0)
1585                         continue;
1586                 nr_pmu++;
1587         }
1588
1589         ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1590         if (ret < 0)
1591                 return ret;
1592
1593         if (!nr_pmu)
1594                 return 0;
1595
1596         /*
1597          * Note older perf tools assume core PMUs come first, this is a property
1598          * of perf_pmus__scan.
1599          */
1600         pmu = NULL;
1601         while ((pmu = perf_pmus__scan(pmu))) {
1602                 if (!strcmp(pmu->name, "cpu")) {
1603                         /* Skip as above. */
1604                         continue;
1605                 }
1606                 if (perf_pmu__caps_parse(pmu) <= 0)
1607                         continue;
1608                 ret = __write_pmu_caps(ff, pmu, true);
1609                 if (ret < 0)
1610                         return ret;
1611         }
1612         return 0;
1613 }
1614
1615 static void print_hostname(struct feat_fd *ff, FILE *fp)
1616 {
1617         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1618 }
1619
1620 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1621 {
1622         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1623 }
1624
1625 static void print_arch(struct feat_fd *ff, FILE *fp)
1626 {
1627         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1628 }
1629
1630 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1631 {
1632         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1633 }
1634
1635 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1636 {
1637         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1638         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1639 }
1640
1641 static void print_version(struct feat_fd *ff, FILE *fp)
1642 {
1643         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1644 }
1645
1646 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1647 {
1648         int nr, i;
1649
1650         nr = ff->ph->env.nr_cmdline;
1651
1652         fprintf(fp, "# cmdline : ");
1653
1654         for (i = 0; i < nr; i++) {
1655                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1656                 if (!argv_i) {
1657                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1658                 } else {
1659                         char *mem = argv_i;
1660                         do {
1661                                 char *quote = strchr(argv_i, '\'');
1662                                 if (!quote)
1663                                         break;
1664                                 *quote++ = '\0';
1665                                 fprintf(fp, "%s\\\'", argv_i);
1666                                 argv_i = quote;
1667                         } while (1);
1668                         fprintf(fp, "%s ", argv_i);
1669                         free(mem);
1670                 }
1671         }
1672         fputc('\n', fp);
1673 }
1674
1675 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1676 {
1677         struct perf_header *ph = ff->ph;
1678         int cpu_nr = ph->env.nr_cpus_avail;
1679         int nr, i;
1680         char *str;
1681
1682         nr = ph->env.nr_sibling_cores;
1683         str = ph->env.sibling_cores;
1684
1685         for (i = 0; i < nr; i++) {
1686                 fprintf(fp, "# sibling sockets : %s\n", str);
1687                 str += strlen(str) + 1;
1688         }
1689
1690         if (ph->env.nr_sibling_dies) {
1691                 nr = ph->env.nr_sibling_dies;
1692                 str = ph->env.sibling_dies;
1693
1694                 for (i = 0; i < nr; i++) {
1695                         fprintf(fp, "# sibling dies    : %s\n", str);
1696                         str += strlen(str) + 1;
1697                 }
1698         }
1699
1700         nr = ph->env.nr_sibling_threads;
1701         str = ph->env.sibling_threads;
1702
1703         for (i = 0; i < nr; i++) {
1704                 fprintf(fp, "# sibling threads : %s\n", str);
1705                 str += strlen(str) + 1;
1706         }
1707
1708         if (ph->env.nr_sibling_dies) {
1709                 if (ph->env.cpu != NULL) {
1710                         for (i = 0; i < cpu_nr; i++)
1711                                 fprintf(fp, "# CPU %d: Core ID %d, "
1712                                             "Die ID %d, Socket ID %d\n",
1713                                             i, ph->env.cpu[i].core_id,
1714                                             ph->env.cpu[i].die_id,
1715                                             ph->env.cpu[i].socket_id);
1716                 } else
1717                         fprintf(fp, "# Core ID, Die ID and Socket ID "
1718                                     "information is not available\n");
1719         } else {
1720                 if (ph->env.cpu != NULL) {
1721                         for (i = 0; i < cpu_nr; i++)
1722                                 fprintf(fp, "# CPU %d: Core ID %d, "
1723                                             "Socket ID %d\n",
1724                                             i, ph->env.cpu[i].core_id,
1725                                             ph->env.cpu[i].socket_id);
1726                 } else
1727                         fprintf(fp, "# Core ID and Socket ID "
1728                                     "information is not available\n");
1729         }
1730 }
1731
1732 static void print_clockid(struct feat_fd *ff, FILE *fp)
1733 {
1734         fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1735                 ff->ph->env.clock.clockid_res_ns * 1000);
1736 }
1737
1738 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1739 {
1740         struct timespec clockid_ns;
1741         char tstr[64], date[64];
1742         struct timeval tod_ns;
1743         clockid_t clockid;
1744         struct tm ltime;
1745         u64 ref;
1746
1747         if (!ff->ph->env.clock.enabled) {
1748                 fprintf(fp, "# reference time disabled\n");
1749                 return;
1750         }
1751
1752         /* Compute TOD time. */
1753         ref = ff->ph->env.clock.tod_ns;
1754         tod_ns.tv_sec = ref / NSEC_PER_SEC;
1755         ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1756         tod_ns.tv_usec = ref / NSEC_PER_USEC;
1757
1758         /* Compute clockid time. */
1759         ref = ff->ph->env.clock.clockid_ns;
1760         clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1761         ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1762         clockid_ns.tv_nsec = ref;
1763
1764         clockid = ff->ph->env.clock.clockid;
1765
1766         if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1767                 snprintf(tstr, sizeof(tstr), "<error>");
1768         else {
1769                 strftime(date, sizeof(date), "%F %T", &ltime);
1770                 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1771                           date, (int) tod_ns.tv_usec);
1772         }
1773
1774         fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1775         fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1776                     tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1777                     (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1778                     clockid_name(clockid));
1779 }
1780
1781 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1782 {
1783         int i;
1784         struct hybrid_node *n;
1785
1786         fprintf(fp, "# hybrid cpu system:\n");
1787         for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1788                 n = &ff->ph->env.hybrid_nodes[i];
1789                 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1790         }
1791 }
1792
1793 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1794 {
1795         struct perf_session *session;
1796         struct perf_data *data;
1797
1798         session = container_of(ff->ph, struct perf_session, header);
1799         data = session->data;
1800
1801         fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1802 }
1803
1804 #ifdef HAVE_LIBBPF_SUPPORT
1805 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1806 {
1807         struct perf_env *env = &ff->ph->env;
1808         struct rb_root *root;
1809         struct rb_node *next;
1810
1811         down_read(&env->bpf_progs.lock);
1812
1813         root = &env->bpf_progs.infos;
1814         next = rb_first(root);
1815
1816         while (next) {
1817                 struct bpf_prog_info_node *node;
1818
1819                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1820                 next = rb_next(&node->rb_node);
1821
1822                 __bpf_event__print_bpf_prog_info(&node->info_linear->info,
1823                                                  env, fp);
1824         }
1825
1826         up_read(&env->bpf_progs.lock);
1827 }
1828
1829 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1830 {
1831         struct perf_env *env = &ff->ph->env;
1832         struct rb_root *root;
1833         struct rb_node *next;
1834
1835         down_read(&env->bpf_progs.lock);
1836
1837         root = &env->bpf_progs.btfs;
1838         next = rb_first(root);
1839
1840         while (next) {
1841                 struct btf_node *node;
1842
1843                 node = rb_entry(next, struct btf_node, rb_node);
1844                 next = rb_next(&node->rb_node);
1845                 fprintf(fp, "# btf info of id %u\n", node->id);
1846         }
1847
1848         up_read(&env->bpf_progs.lock);
1849 }
1850 #endif // HAVE_LIBBPF_SUPPORT
1851
1852 static void free_event_desc(struct evsel *events)
1853 {
1854         struct evsel *evsel;
1855
1856         if (!events)
1857                 return;
1858
1859         for (evsel = events; evsel->core.attr.size; evsel++) {
1860                 zfree(&evsel->name);
1861                 zfree(&evsel->core.id);
1862         }
1863
1864         free(events);
1865 }
1866
1867 static bool perf_attr_check(struct perf_event_attr *attr)
1868 {
1869         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1870                 pr_warning("Reserved bits are set unexpectedly. "
1871                            "Please update perf tool.\n");
1872                 return false;
1873         }
1874
1875         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1876                 pr_warning("Unknown sample type (0x%llx) is detected. "
1877                            "Please update perf tool.\n",
1878                            attr->sample_type);
1879                 return false;
1880         }
1881
1882         if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1883                 pr_warning("Unknown read format (0x%llx) is detected. "
1884                            "Please update perf tool.\n",
1885                            attr->read_format);
1886                 return false;
1887         }
1888
1889         if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1890             (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1891                 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1892                            "Please update perf tool.\n",
1893                            attr->branch_sample_type);
1894
1895                 return false;
1896         }
1897
1898         return true;
1899 }
1900
1901 static struct evsel *read_event_desc(struct feat_fd *ff)
1902 {
1903         struct evsel *evsel, *events = NULL;
1904         u64 *id;
1905         void *buf = NULL;
1906         u32 nre, sz, nr, i, j;
1907         size_t msz;
1908
1909         /* number of events */
1910         if (do_read_u32(ff, &nre))
1911                 goto error;
1912
1913         if (do_read_u32(ff, &sz))
1914                 goto error;
1915
1916         /* buffer to hold on file attr struct */
1917         buf = malloc(sz);
1918         if (!buf)
1919                 goto error;
1920
1921         /* the last event terminates with evsel->core.attr.size == 0: */
1922         events = calloc(nre + 1, sizeof(*events));
1923         if (!events)
1924                 goto error;
1925
1926         msz = sizeof(evsel->core.attr);
1927         if (sz < msz)
1928                 msz = sz;
1929
1930         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1931                 evsel->core.idx = i;
1932
1933                 /*
1934                  * must read entire on-file attr struct to
1935                  * sync up with layout.
1936                  */
1937                 if (__do_read(ff, buf, sz))
1938                         goto error;
1939
1940                 if (ff->ph->needs_swap)
1941                         perf_event__attr_swap(buf);
1942
1943                 memcpy(&evsel->core.attr, buf, msz);
1944
1945                 if (!perf_attr_check(&evsel->core.attr))
1946                         goto error;
1947
1948                 if (do_read_u32(ff, &nr))
1949                         goto error;
1950
1951                 if (ff->ph->needs_swap)
1952                         evsel->needs_swap = true;
1953
1954                 evsel->name = do_read_string(ff);
1955                 if (!evsel->name)
1956                         goto error;
1957
1958                 if (!nr)
1959                         continue;
1960
1961                 id = calloc(nr, sizeof(*id));
1962                 if (!id)
1963                         goto error;
1964                 evsel->core.ids = nr;
1965                 evsel->core.id = id;
1966
1967                 for (j = 0 ; j < nr; j++) {
1968                         if (do_read_u64(ff, id))
1969                                 goto error;
1970                         id++;
1971                 }
1972         }
1973 out:
1974         free(buf);
1975         return events;
1976 error:
1977         free_event_desc(events);
1978         events = NULL;
1979         goto out;
1980 }
1981
1982 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1983                                 void *priv __maybe_unused)
1984 {
1985         return fprintf(fp, ", %s = %s", name, val);
1986 }
1987
1988 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1989 {
1990         struct evsel *evsel, *events;
1991         u32 j;
1992         u64 *id;
1993
1994         if (ff->events)
1995                 events = ff->events;
1996         else
1997                 events = read_event_desc(ff);
1998
1999         if (!events) {
2000                 fprintf(fp, "# event desc: not available or unable to read\n");
2001                 return;
2002         }
2003
2004         for (evsel = events; evsel->core.attr.size; evsel++) {
2005                 fprintf(fp, "# event : name = %s, ", evsel->name);
2006
2007                 if (evsel->core.ids) {
2008                         fprintf(fp, ", id = {");
2009                         for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2010                                 if (j)
2011                                         fputc(',', fp);
2012                                 fprintf(fp, " %"PRIu64, *id);
2013                         }
2014                         fprintf(fp, " }");
2015                 }
2016
2017                 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2018
2019                 fputc('\n', fp);
2020         }
2021
2022         free_event_desc(events);
2023         ff->events = NULL;
2024 }
2025
2026 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2027 {
2028         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2029 }
2030
2031 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2032 {
2033         int i;
2034         struct numa_node *n;
2035
2036         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2037                 n = &ff->ph->env.numa_nodes[i];
2038
2039                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2040                             " free = %"PRIu64" kB\n",
2041                         n->node, n->mem_total, n->mem_free);
2042
2043                 fprintf(fp, "# node%u cpu list : ", n->node);
2044                 cpu_map__fprintf(n->map, fp);
2045         }
2046 }
2047
2048 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2049 {
2050         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2051 }
2052
2053 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2054 {
2055         fprintf(fp, "# contains samples with branch stack\n");
2056 }
2057
2058 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2059 {
2060         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2061 }
2062
2063 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2064 {
2065         fprintf(fp, "# contains stat data\n");
2066 }
2067
2068 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2069 {
2070         int i;
2071
2072         fprintf(fp, "# CPU cache info:\n");
2073         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2074                 fprintf(fp, "#  ");
2075                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2076         }
2077 }
2078
2079 static void print_compressed(struct feat_fd *ff, FILE *fp)
2080 {
2081         fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2082                 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2083                 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2084 }
2085
2086 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2087 {
2088         const char *delimiter = "";
2089         int i;
2090
2091         if (!nr_caps) {
2092                 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2093                 return;
2094         }
2095
2096         fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2097         for (i = 0; i < nr_caps; i++) {
2098                 fprintf(fp, "%s%s", delimiter, caps[i]);
2099                 delimiter = ", ";
2100         }
2101
2102         fprintf(fp, "\n");
2103 }
2104
2105 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2106 {
2107         __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2108                          ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2109 }
2110
2111 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2112 {
2113         struct pmu_caps *pmu_caps;
2114
2115         for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2116                 pmu_caps = &ff->ph->env.pmu_caps[i];
2117                 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2118                                  pmu_caps->pmu_name);
2119         }
2120
2121         if (strcmp(perf_env__arch(&ff->ph->env), "x86") == 0 &&
2122             perf_env__has_pmu_mapping(&ff->ph->env, "ibs_op")) {
2123                 char *max_precise = perf_env__find_pmu_cap(&ff->ph->env, "cpu", "max_precise");
2124
2125                 if (max_precise != NULL && atoi(max_precise) == 0)
2126                         fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n");
2127         }
2128 }
2129
2130 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2131 {
2132         const char *delimiter = "# pmu mappings: ";
2133         char *str, *tmp;
2134         u32 pmu_num;
2135         u32 type;
2136
2137         pmu_num = ff->ph->env.nr_pmu_mappings;
2138         if (!pmu_num) {
2139                 fprintf(fp, "# pmu mappings: not available\n");
2140                 return;
2141         }
2142
2143         str = ff->ph->env.pmu_mappings;
2144
2145         while (pmu_num) {
2146                 type = strtoul(str, &tmp, 0);
2147                 if (*tmp != ':')
2148                         goto error;
2149
2150                 str = tmp + 1;
2151                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2152
2153                 delimiter = ", ";
2154                 str += strlen(str) + 1;
2155                 pmu_num--;
2156         }
2157
2158         fprintf(fp, "\n");
2159
2160         if (!pmu_num)
2161                 return;
2162 error:
2163         fprintf(fp, "# pmu mappings: unable to read\n");
2164 }
2165
2166 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2167 {
2168         struct perf_session *session;
2169         struct evsel *evsel;
2170         u32 nr = 0;
2171
2172         session = container_of(ff->ph, struct perf_session, header);
2173
2174         evlist__for_each_entry(session->evlist, evsel) {
2175                 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2176                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2177
2178                         nr = evsel->core.nr_members - 1;
2179                 } else if (nr) {
2180                         fprintf(fp, ",%s", evsel__name(evsel));
2181
2182                         if (--nr == 0)
2183                                 fprintf(fp, "}\n");
2184                 }
2185         }
2186 }
2187
2188 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2189 {
2190         struct perf_session *session;
2191         char time_buf[32];
2192         double d;
2193
2194         session = container_of(ff->ph, struct perf_session, header);
2195
2196         timestamp__scnprintf_usec(session->evlist->first_sample_time,
2197                                   time_buf, sizeof(time_buf));
2198         fprintf(fp, "# time of first sample : %s\n", time_buf);
2199
2200         timestamp__scnprintf_usec(session->evlist->last_sample_time,
2201                                   time_buf, sizeof(time_buf));
2202         fprintf(fp, "# time of last sample : %s\n", time_buf);
2203
2204         d = (double)(session->evlist->last_sample_time -
2205                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2206
2207         fprintf(fp, "# sample duration : %10.3f ms\n", d);
2208 }
2209
2210 static void memory_node__fprintf(struct memory_node *n,
2211                                  unsigned long long bsize, FILE *fp)
2212 {
2213         char buf_map[100], buf_size[50];
2214         unsigned long long size;
2215
2216         size = bsize * bitmap_weight(n->set, n->size);
2217         unit_number__scnprintf(buf_size, 50, size);
2218
2219         bitmap_scnprintf(n->set, n->size, buf_map, 100);
2220         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2221 }
2222
2223 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2224 {
2225         struct memory_node *nodes;
2226         int i, nr;
2227
2228         nodes = ff->ph->env.memory_nodes;
2229         nr    = ff->ph->env.nr_memory_nodes;
2230
2231         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2232                 nr, ff->ph->env.memory_bsize);
2233
2234         for (i = 0; i < nr; i++) {
2235                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2236         }
2237 }
2238
2239 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2240                                     char *filename,
2241                                     struct perf_session *session)
2242 {
2243         int err = -1;
2244         struct machine *machine;
2245         u16 cpumode;
2246         struct dso *dso;
2247         enum dso_space_type dso_space;
2248
2249         machine = perf_session__findnew_machine(session, bev->pid);
2250         if (!machine)
2251                 goto out;
2252
2253         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2254
2255         switch (cpumode) {
2256         case PERF_RECORD_MISC_KERNEL:
2257                 dso_space = DSO_SPACE__KERNEL;
2258                 break;
2259         case PERF_RECORD_MISC_GUEST_KERNEL:
2260                 dso_space = DSO_SPACE__KERNEL_GUEST;
2261                 break;
2262         case PERF_RECORD_MISC_USER:
2263         case PERF_RECORD_MISC_GUEST_USER:
2264                 dso_space = DSO_SPACE__USER;
2265                 break;
2266         default:
2267                 goto out;
2268         }
2269
2270         dso = machine__findnew_dso(machine, filename);
2271         if (dso != NULL) {
2272                 char sbuild_id[SBUILD_ID_SIZE];
2273                 struct build_id bid;
2274                 size_t size = BUILD_ID_SIZE;
2275
2276                 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2277                         size = bev->size;
2278
2279                 build_id__init(&bid, bev->data, size);
2280                 dso__set_build_id(dso, &bid);
2281                 dso__set_header_build_id(dso, true);
2282
2283                 if (dso_space != DSO_SPACE__USER) {
2284                         struct kmod_path m = { .name = NULL, };
2285
2286                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
2287                                 dso__set_module_info(dso, &m, machine);
2288
2289                         dso__set_kernel(dso, dso_space);
2290                         free(m.name);
2291                 }
2292
2293                 build_id__sprintf(dso__bid(dso), sbuild_id);
2294                 pr_debug("build id event received for %s: %s [%zu]\n",
2295                          dso__long_name(dso), sbuild_id, size);
2296                 dso__put(dso);
2297         }
2298
2299         err = 0;
2300 out:
2301         return err;
2302 }
2303
2304 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2305                                                  int input, u64 offset, u64 size)
2306 {
2307         struct perf_session *session = container_of(header, struct perf_session, header);
2308         struct {
2309                 struct perf_event_header   header;
2310                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2311                 char                       filename[0];
2312         } old_bev;
2313         struct perf_record_header_build_id bev;
2314         char filename[PATH_MAX];
2315         u64 limit = offset + size;
2316
2317         while (offset < limit) {
2318                 ssize_t len;
2319
2320                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2321                         return -1;
2322
2323                 if (header->needs_swap)
2324                         perf_event_header__bswap(&old_bev.header);
2325
2326                 len = old_bev.header.size - sizeof(old_bev);
2327                 if (readn(input, filename, len) != len)
2328                         return -1;
2329
2330                 bev.header = old_bev.header;
2331
2332                 /*
2333                  * As the pid is the missing value, we need to fill
2334                  * it properly. The header.misc value give us nice hint.
2335                  */
2336                 bev.pid = HOST_KERNEL_ID;
2337                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2338                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2339                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
2340
2341                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2342                 __event_process_build_id(&bev, filename, session);
2343
2344                 offset += bev.header.size;
2345         }
2346
2347         return 0;
2348 }
2349
2350 static int perf_header__read_build_ids(struct perf_header *header,
2351                                        int input, u64 offset, u64 size)
2352 {
2353         struct perf_session *session = container_of(header, struct perf_session, header);
2354         struct perf_record_header_build_id bev;
2355         char filename[PATH_MAX];
2356         u64 limit = offset + size, orig_offset = offset;
2357         int err = -1;
2358
2359         while (offset < limit) {
2360                 ssize_t len;
2361
2362                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2363                         goto out;
2364
2365                 if (header->needs_swap)
2366                         perf_event_header__bswap(&bev.header);
2367
2368                 len = bev.header.size - sizeof(bev);
2369                 if (readn(input, filename, len) != len)
2370                         goto out;
2371                 /*
2372                  * The a1645ce1 changeset:
2373                  *
2374                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
2375                  *
2376                  * Added a field to struct perf_record_header_build_id that broke the file
2377                  * format.
2378                  *
2379                  * Since the kernel build-id is the first entry, process the
2380                  * table using the old format if the well known
2381                  * '[kernel.kallsyms]' string for the kernel build-id has the
2382                  * first 4 characters chopped off (where the pid_t sits).
2383                  */
2384                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2385                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2386                                 return -1;
2387                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2388                 }
2389
2390                 __event_process_build_id(&bev, filename, session);
2391
2392                 offset += bev.header.size;
2393         }
2394         err = 0;
2395 out:
2396         return err;
2397 }
2398
2399 /* Macro for features that simply need to read and store a string. */
2400 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2401 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2402 {\
2403         free(ff->ph->env.__feat_env);                \
2404         ff->ph->env.__feat_env = do_read_string(ff); \
2405         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2406 }
2407
2408 FEAT_PROCESS_STR_FUN(hostname, hostname);
2409 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2410 FEAT_PROCESS_STR_FUN(version, version);
2411 FEAT_PROCESS_STR_FUN(arch, arch);
2412 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2413 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2414
2415 #ifdef HAVE_LIBTRACEEVENT
2416 static int process_tracing_data(struct feat_fd *ff, void *data)
2417 {
2418         ssize_t ret = trace_report(ff->fd, data, false);
2419
2420         return ret < 0 ? -1 : 0;
2421 }
2422 #endif
2423
2424 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2425 {
2426         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2427                 pr_debug("Failed to read buildids, continuing...\n");
2428         return 0;
2429 }
2430
2431 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2432 {
2433         int ret;
2434         u32 nr_cpus_avail, nr_cpus_online;
2435
2436         ret = do_read_u32(ff, &nr_cpus_avail);
2437         if (ret)
2438                 return ret;
2439
2440         ret = do_read_u32(ff, &nr_cpus_online);
2441         if (ret)
2442                 return ret;
2443         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2444         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2445         return 0;
2446 }
2447
2448 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2449 {
2450         u64 total_mem;
2451         int ret;
2452
2453         ret = do_read_u64(ff, &total_mem);
2454         if (ret)
2455                 return -1;
2456         ff->ph->env.total_mem = (unsigned long long)total_mem;
2457         return 0;
2458 }
2459
2460 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2461 {
2462         struct evsel *evsel;
2463
2464         evlist__for_each_entry(evlist, evsel) {
2465                 if (evsel->core.idx == idx)
2466                         return evsel;
2467         }
2468
2469         return NULL;
2470 }
2471
2472 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2473 {
2474         struct evsel *evsel;
2475
2476         if (!event->name)
2477                 return;
2478
2479         evsel = evlist__find_by_index(evlist, event->core.idx);
2480         if (!evsel)
2481                 return;
2482
2483         if (evsel->name)
2484                 return;
2485
2486         evsel->name = strdup(event->name);
2487 }
2488
2489 static int
2490 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2491 {
2492         struct perf_session *session;
2493         struct evsel *evsel, *events = read_event_desc(ff);
2494
2495         if (!events)
2496                 return 0;
2497
2498         session = container_of(ff->ph, struct perf_session, header);
2499
2500         if (session->data->is_pipe) {
2501                 /* Save events for reading later by print_event_desc,
2502                  * since they can't be read again in pipe mode. */
2503                 ff->events = events;
2504         }
2505
2506         for (evsel = events; evsel->core.attr.size; evsel++)
2507                 evlist__set_event_name(session->evlist, evsel);
2508
2509         if (!session->data->is_pipe)
2510                 free_event_desc(events);
2511
2512         return 0;
2513 }
2514
2515 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2516 {
2517         char *str, *cmdline = NULL, **argv = NULL;
2518         u32 nr, i, len = 0;
2519
2520         if (do_read_u32(ff, &nr))
2521                 return -1;
2522
2523         ff->ph->env.nr_cmdline = nr;
2524
2525         cmdline = zalloc(ff->size + nr + 1);
2526         if (!cmdline)
2527                 return -1;
2528
2529         argv = zalloc(sizeof(char *) * (nr + 1));
2530         if (!argv)
2531                 goto error;
2532
2533         for (i = 0; i < nr; i++) {
2534                 str = do_read_string(ff);
2535                 if (!str)
2536                         goto error;
2537
2538                 argv[i] = cmdline + len;
2539                 memcpy(argv[i], str, strlen(str) + 1);
2540                 len += strlen(str) + 1;
2541                 free(str);
2542         }
2543         ff->ph->env.cmdline = cmdline;
2544         ff->ph->env.cmdline_argv = (const char **) argv;
2545         return 0;
2546
2547 error:
2548         free(argv);
2549         free(cmdline);
2550         return -1;
2551 }
2552
2553 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2554 {
2555         u32 nr, i;
2556         char *str = NULL;
2557         struct strbuf sb;
2558         int cpu_nr = ff->ph->env.nr_cpus_avail;
2559         u64 size = 0;
2560         struct perf_header *ph = ff->ph;
2561         bool do_core_id_test = true;
2562
2563         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2564         if (!ph->env.cpu)
2565                 return -1;
2566
2567         if (do_read_u32(ff, &nr))
2568                 goto free_cpu;
2569
2570         ph->env.nr_sibling_cores = nr;
2571         size += sizeof(u32);
2572         if (strbuf_init(&sb, 128) < 0)
2573                 goto free_cpu;
2574
2575         for (i = 0; i < nr; i++) {
2576                 str = do_read_string(ff);
2577                 if (!str)
2578                         goto error;
2579
2580                 /* include a NULL character at the end */
2581                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2582                         goto error;
2583                 size += string_size(str);
2584                 zfree(&str);
2585         }
2586         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2587
2588         if (do_read_u32(ff, &nr))
2589                 return -1;
2590
2591         ph->env.nr_sibling_threads = nr;
2592         size += sizeof(u32);
2593
2594         for (i = 0; i < nr; i++) {
2595                 str = do_read_string(ff);
2596                 if (!str)
2597                         goto error;
2598
2599                 /* include a NULL character at the end */
2600                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2601                         goto error;
2602                 size += string_size(str);
2603                 zfree(&str);
2604         }
2605         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2606
2607         /*
2608          * The header may be from old perf,
2609          * which doesn't include core id and socket id information.
2610          */
2611         if (ff->size <= size) {
2612                 zfree(&ph->env.cpu);
2613                 return 0;
2614         }
2615
2616         /* On s390 the socket_id number is not related to the numbers of cpus.
2617          * The socket_id number might be higher than the numbers of cpus.
2618          * This depends on the configuration.
2619          * AArch64 is the same.
2620          */
2621         if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2622                           || !strncmp(ph->env.arch, "aarch64", 7)))
2623                 do_core_id_test = false;
2624
2625         for (i = 0; i < (u32)cpu_nr; i++) {
2626                 if (do_read_u32(ff, &nr))
2627                         goto free_cpu;
2628
2629                 ph->env.cpu[i].core_id = nr;
2630                 size += sizeof(u32);
2631
2632                 if (do_read_u32(ff, &nr))
2633                         goto free_cpu;
2634
2635                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2636                         pr_debug("socket_id number is too big."
2637                                  "You may need to upgrade the perf tool.\n");
2638                         goto free_cpu;
2639                 }
2640
2641                 ph->env.cpu[i].socket_id = nr;
2642                 size += sizeof(u32);
2643         }
2644
2645         /*
2646          * The header may be from old perf,
2647          * which doesn't include die information.
2648          */
2649         if (ff->size <= size)
2650                 return 0;
2651
2652         if (do_read_u32(ff, &nr))
2653                 return -1;
2654
2655         ph->env.nr_sibling_dies = nr;
2656         size += sizeof(u32);
2657
2658         for (i = 0; i < nr; i++) {
2659                 str = do_read_string(ff);
2660                 if (!str)
2661                         goto error;
2662
2663                 /* include a NULL character at the end */
2664                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2665                         goto error;
2666                 size += string_size(str);
2667                 zfree(&str);
2668         }
2669         ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2670
2671         for (i = 0; i < (u32)cpu_nr; i++) {
2672                 if (do_read_u32(ff, &nr))
2673                         goto free_cpu;
2674
2675                 ph->env.cpu[i].die_id = nr;
2676         }
2677
2678         return 0;
2679
2680 error:
2681         strbuf_release(&sb);
2682         zfree(&str);
2683 free_cpu:
2684         zfree(&ph->env.cpu);
2685         return -1;
2686 }
2687
2688 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2689 {
2690         struct numa_node *nodes, *n;
2691         u32 nr, i;
2692         char *str;
2693
2694         /* nr nodes */
2695         if (do_read_u32(ff, &nr))
2696                 return -1;
2697
2698         nodes = zalloc(sizeof(*nodes) * nr);
2699         if (!nodes)
2700                 return -ENOMEM;
2701
2702         for (i = 0; i < nr; i++) {
2703                 n = &nodes[i];
2704
2705                 /* node number */
2706                 if (do_read_u32(ff, &n->node))
2707                         goto error;
2708
2709                 if (do_read_u64(ff, &n->mem_total))
2710                         goto error;
2711
2712                 if (do_read_u64(ff, &n->mem_free))
2713                         goto error;
2714
2715                 str = do_read_string(ff);
2716                 if (!str)
2717                         goto error;
2718
2719                 n->map = perf_cpu_map__new(str);
2720                 free(str);
2721                 if (!n->map)
2722                         goto error;
2723         }
2724         ff->ph->env.nr_numa_nodes = nr;
2725         ff->ph->env.numa_nodes = nodes;
2726         return 0;
2727
2728 error:
2729         free(nodes);
2730         return -1;
2731 }
2732
2733 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2734 {
2735         char *name;
2736         u32 pmu_num;
2737         u32 type;
2738         struct strbuf sb;
2739
2740         if (do_read_u32(ff, &pmu_num))
2741                 return -1;
2742
2743         if (!pmu_num) {
2744                 pr_debug("pmu mappings not available\n");
2745                 return 0;
2746         }
2747
2748         ff->ph->env.nr_pmu_mappings = pmu_num;
2749         if (strbuf_init(&sb, 128) < 0)
2750                 return -1;
2751
2752         while (pmu_num) {
2753                 if (do_read_u32(ff, &type))
2754                         goto error;
2755
2756                 name = do_read_string(ff);
2757                 if (!name)
2758                         goto error;
2759
2760                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2761                         goto error;
2762                 /* include a NULL character at the end */
2763                 if (strbuf_add(&sb, "", 1) < 0)
2764                         goto error;
2765
2766                 if (!strcmp(name, "msr"))
2767                         ff->ph->env.msr_pmu_type = type;
2768
2769                 free(name);
2770                 pmu_num--;
2771         }
2772         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2773         return 0;
2774
2775 error:
2776         strbuf_release(&sb);
2777         return -1;
2778 }
2779
2780 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2781 {
2782         size_t ret = -1;
2783         u32 i, nr, nr_groups;
2784         struct perf_session *session;
2785         struct evsel *evsel, *leader = NULL;
2786         struct group_desc {
2787                 char *name;
2788                 u32 leader_idx;
2789                 u32 nr_members;
2790         } *desc;
2791
2792         if (do_read_u32(ff, &nr_groups))
2793                 return -1;
2794
2795         ff->ph->env.nr_groups = nr_groups;
2796         if (!nr_groups) {
2797                 pr_debug("group desc not available\n");
2798                 return 0;
2799         }
2800
2801         desc = calloc(nr_groups, sizeof(*desc));
2802         if (!desc)
2803                 return -1;
2804
2805         for (i = 0; i < nr_groups; i++) {
2806                 desc[i].name = do_read_string(ff);
2807                 if (!desc[i].name)
2808                         goto out_free;
2809
2810                 if (do_read_u32(ff, &desc[i].leader_idx))
2811                         goto out_free;
2812
2813                 if (do_read_u32(ff, &desc[i].nr_members))
2814                         goto out_free;
2815         }
2816
2817         /*
2818          * Rebuild group relationship based on the group_desc
2819          */
2820         session = container_of(ff->ph, struct perf_session, header);
2821
2822         i = nr = 0;
2823         evlist__for_each_entry(session->evlist, evsel) {
2824                 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2825                         evsel__set_leader(evsel, evsel);
2826                         /* {anon_group} is a dummy name */
2827                         if (strcmp(desc[i].name, "{anon_group}")) {
2828                                 evsel->group_name = desc[i].name;
2829                                 desc[i].name = NULL;
2830                         }
2831                         evsel->core.nr_members = desc[i].nr_members;
2832
2833                         if (i >= nr_groups || nr > 0) {
2834                                 pr_debug("invalid group desc\n");
2835                                 goto out_free;
2836                         }
2837
2838                         leader = evsel;
2839                         nr = evsel->core.nr_members - 1;
2840                         i++;
2841                 } else if (nr) {
2842                         /* This is a group member */
2843                         evsel__set_leader(evsel, leader);
2844
2845                         nr--;
2846                 }
2847         }
2848
2849         if (i != nr_groups || nr != 0) {
2850                 pr_debug("invalid group desc\n");
2851                 goto out_free;
2852         }
2853
2854         ret = 0;
2855 out_free:
2856         for (i = 0; i < nr_groups; i++)
2857                 zfree(&desc[i].name);
2858         free(desc);
2859
2860         return ret;
2861 }
2862
2863 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2864 {
2865         struct perf_session *session;
2866         int err;
2867
2868         session = container_of(ff->ph, struct perf_session, header);
2869
2870         err = auxtrace_index__process(ff->fd, ff->size, session,
2871                                       ff->ph->needs_swap);
2872         if (err < 0)
2873                 pr_err("Failed to process auxtrace index\n");
2874         return err;
2875 }
2876
2877 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2878 {
2879         struct cpu_cache_level *caches;
2880         u32 cnt, i, version;
2881
2882         if (do_read_u32(ff, &version))
2883                 return -1;
2884
2885         if (version != 1)
2886                 return -1;
2887
2888         if (do_read_u32(ff, &cnt))
2889                 return -1;
2890
2891         caches = zalloc(sizeof(*caches) * cnt);
2892         if (!caches)
2893                 return -1;
2894
2895         for (i = 0; i < cnt; i++) {
2896                 struct cpu_cache_level *c = &caches[i];
2897
2898                 #define _R(v)                                           \
2899                         if (do_read_u32(ff, &c->v))                     \
2900                                 goto out_free_caches;                   \
2901
2902                 _R(level)
2903                 _R(line_size)
2904                 _R(sets)
2905                 _R(ways)
2906                 #undef _R
2907
2908                 #define _R(v)                                   \
2909                         c->v = do_read_string(ff);              \
2910                         if (!c->v)                              \
2911                                 goto out_free_caches;           \
2912
2913                 _R(type)
2914                 _R(size)
2915                 _R(map)
2916                 #undef _R
2917         }
2918
2919         ff->ph->env.caches = caches;
2920         ff->ph->env.caches_cnt = cnt;
2921         return 0;
2922 out_free_caches:
2923         for (i = 0; i < cnt; i++) {
2924                 free(caches[i].type);
2925                 free(caches[i].size);
2926                 free(caches[i].map);
2927         }
2928         free(caches);
2929         return -1;
2930 }
2931
2932 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2933 {
2934         struct perf_session *session;
2935         u64 first_sample_time, last_sample_time;
2936         int ret;
2937
2938         session = container_of(ff->ph, struct perf_session, header);
2939
2940         ret = do_read_u64(ff, &first_sample_time);
2941         if (ret)
2942                 return -1;
2943
2944         ret = do_read_u64(ff, &last_sample_time);
2945         if (ret)
2946                 return -1;
2947
2948         session->evlist->first_sample_time = first_sample_time;
2949         session->evlist->last_sample_time = last_sample_time;
2950         return 0;
2951 }
2952
2953 static int process_mem_topology(struct feat_fd *ff,
2954                                 void *data __maybe_unused)
2955 {
2956         struct memory_node *nodes;
2957         u64 version, i, nr, bsize;
2958         int ret = -1;
2959
2960         if (do_read_u64(ff, &version))
2961                 return -1;
2962
2963         if (version != 1)
2964                 return -1;
2965
2966         if (do_read_u64(ff, &bsize))
2967                 return -1;
2968
2969         if (do_read_u64(ff, &nr))
2970                 return -1;
2971
2972         nodes = zalloc(sizeof(*nodes) * nr);
2973         if (!nodes)
2974                 return -1;
2975
2976         for (i = 0; i < nr; i++) {
2977                 struct memory_node n;
2978
2979                 #define _R(v)                           \
2980                         if (do_read_u64(ff, &n.v))      \
2981                                 goto out;               \
2982
2983                 _R(node)
2984                 _R(size)
2985
2986                 #undef _R
2987
2988                 if (do_read_bitmap(ff, &n.set, &n.size))
2989                         goto out;
2990
2991                 nodes[i] = n;
2992         }
2993
2994         ff->ph->env.memory_bsize    = bsize;
2995         ff->ph->env.memory_nodes    = nodes;
2996         ff->ph->env.nr_memory_nodes = nr;
2997         ret = 0;
2998
2999 out:
3000         if (ret)
3001                 free(nodes);
3002         return ret;
3003 }
3004
3005 static int process_clockid(struct feat_fd *ff,
3006                            void *data __maybe_unused)
3007 {
3008         if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3009                 return -1;
3010
3011         return 0;
3012 }
3013
3014 static int process_clock_data(struct feat_fd *ff,
3015                               void *_data __maybe_unused)
3016 {
3017         u32 data32;
3018         u64 data64;
3019
3020         /* version */
3021         if (do_read_u32(ff, &data32))
3022                 return -1;
3023
3024         if (data32 != 1)
3025                 return -1;
3026
3027         /* clockid */
3028         if (do_read_u32(ff, &data32))
3029                 return -1;
3030
3031         ff->ph->env.clock.clockid = data32;
3032
3033         /* TOD ref time */
3034         if (do_read_u64(ff, &data64))
3035                 return -1;
3036
3037         ff->ph->env.clock.tod_ns = data64;
3038
3039         /* clockid ref time */
3040         if (do_read_u64(ff, &data64))
3041                 return -1;
3042
3043         ff->ph->env.clock.clockid_ns = data64;
3044         ff->ph->env.clock.enabled = true;
3045         return 0;
3046 }
3047
3048 static int process_hybrid_topology(struct feat_fd *ff,
3049                                    void *data __maybe_unused)
3050 {
3051         struct hybrid_node *nodes, *n;
3052         u32 nr, i;
3053
3054         /* nr nodes */
3055         if (do_read_u32(ff, &nr))
3056                 return -1;
3057
3058         nodes = zalloc(sizeof(*nodes) * nr);
3059         if (!nodes)
3060                 return -ENOMEM;
3061
3062         for (i = 0; i < nr; i++) {
3063                 n = &nodes[i];
3064
3065                 n->pmu_name = do_read_string(ff);
3066                 if (!n->pmu_name)
3067                         goto error;
3068
3069                 n->cpus = do_read_string(ff);
3070                 if (!n->cpus)
3071                         goto error;
3072         }
3073
3074         ff->ph->env.nr_hybrid_nodes = nr;
3075         ff->ph->env.hybrid_nodes = nodes;
3076         return 0;
3077
3078 error:
3079         for (i = 0; i < nr; i++) {
3080                 free(nodes[i].pmu_name);
3081                 free(nodes[i].cpus);
3082         }
3083
3084         free(nodes);
3085         return -1;
3086 }
3087
3088 static int process_dir_format(struct feat_fd *ff,
3089                               void *_data __maybe_unused)
3090 {
3091         struct perf_session *session;
3092         struct perf_data *data;
3093
3094         session = container_of(ff->ph, struct perf_session, header);
3095         data = session->data;
3096
3097         if (WARN_ON(!perf_data__is_dir(data)))
3098                 return -1;
3099
3100         return do_read_u64(ff, &data->dir.version);
3101 }
3102
3103 #ifdef HAVE_LIBBPF_SUPPORT
3104 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3105 {
3106         struct bpf_prog_info_node *info_node;
3107         struct perf_env *env = &ff->ph->env;
3108         struct perf_bpil *info_linear;
3109         u32 count, i;
3110         int err = -1;
3111
3112         if (ff->ph->needs_swap) {
3113                 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3114                 return 0;
3115         }
3116
3117         if (do_read_u32(ff, &count))
3118                 return -1;
3119
3120         down_write(&env->bpf_progs.lock);
3121
3122         for (i = 0; i < count; ++i) {
3123                 u32 info_len, data_len;
3124
3125                 info_linear = NULL;
3126                 info_node = NULL;
3127                 if (do_read_u32(ff, &info_len))
3128                         goto out;
3129                 if (do_read_u32(ff, &data_len))
3130                         goto out;
3131
3132                 if (info_len > sizeof(struct bpf_prog_info)) {
3133                         pr_warning("detected invalid bpf_prog_info\n");
3134                         goto out;
3135                 }
3136
3137                 info_linear = malloc(sizeof(struct perf_bpil) +
3138                                      data_len);
3139                 if (!info_linear)
3140                         goto out;
3141                 info_linear->info_len = sizeof(struct bpf_prog_info);
3142                 info_linear->data_len = data_len;
3143                 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3144                         goto out;
3145                 if (__do_read(ff, &info_linear->info, info_len))
3146                         goto out;
3147                 if (info_len < sizeof(struct bpf_prog_info))
3148                         memset(((void *)(&info_linear->info)) + info_len, 0,
3149                                sizeof(struct bpf_prog_info) - info_len);
3150
3151                 if (__do_read(ff, info_linear->data, data_len))
3152                         goto out;
3153
3154                 info_node = malloc(sizeof(struct bpf_prog_info_node));
3155                 if (!info_node)
3156                         goto out;
3157
3158                 /* after reading from file, translate offset to address */
3159                 bpil_offs_to_addr(info_linear);
3160                 info_node->info_linear = info_linear;
3161                 __perf_env__insert_bpf_prog_info(env, info_node);
3162         }
3163
3164         up_write(&env->bpf_progs.lock);
3165         return 0;
3166 out:
3167         free(info_linear);
3168         free(info_node);
3169         up_write(&env->bpf_progs.lock);
3170         return err;
3171 }
3172
3173 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3174 {
3175         struct perf_env *env = &ff->ph->env;
3176         struct btf_node *node = NULL;
3177         u32 count, i;
3178         int err = -1;
3179
3180         if (ff->ph->needs_swap) {
3181                 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3182                 return 0;
3183         }
3184
3185         if (do_read_u32(ff, &count))
3186                 return -1;
3187
3188         down_write(&env->bpf_progs.lock);
3189
3190         for (i = 0; i < count; ++i) {
3191                 u32 id, data_size;
3192
3193                 if (do_read_u32(ff, &id))
3194                         goto out;
3195                 if (do_read_u32(ff, &data_size))
3196                         goto out;
3197
3198                 node = malloc(sizeof(struct btf_node) + data_size);
3199                 if (!node)
3200                         goto out;
3201
3202                 node->id = id;
3203                 node->data_size = data_size;
3204
3205                 if (__do_read(ff, node->data, data_size))
3206                         goto out;
3207
3208                 __perf_env__insert_btf(env, node);
3209                 node = NULL;
3210         }
3211
3212         err = 0;
3213 out:
3214         up_write(&env->bpf_progs.lock);
3215         free(node);
3216         return err;
3217 }
3218 #endif // HAVE_LIBBPF_SUPPORT
3219
3220 static int process_compressed(struct feat_fd *ff,
3221                               void *data __maybe_unused)
3222 {
3223         if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3224                 return -1;
3225
3226         if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3227                 return -1;
3228
3229         if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3230                 return -1;
3231
3232         if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3233                 return -1;
3234
3235         if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3236                 return -1;
3237
3238         return 0;
3239 }
3240
3241 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3242                               char ***caps, unsigned int *max_branches,
3243                               unsigned int *br_cntr_nr,
3244                               unsigned int *br_cntr_width)
3245 {
3246         char *name, *value, *ptr;
3247         u32 nr_pmu_caps, i;
3248
3249         *nr_caps = 0;
3250         *caps = NULL;
3251
3252         if (do_read_u32(ff, &nr_pmu_caps))
3253                 return -1;
3254
3255         if (!nr_pmu_caps)
3256                 return 0;
3257
3258         *caps = zalloc(sizeof(char *) * nr_pmu_caps);
3259         if (!*caps)
3260                 return -1;
3261
3262         for (i = 0; i < nr_pmu_caps; i++) {
3263                 name = do_read_string(ff);
3264                 if (!name)
3265                         goto error;
3266
3267                 value = do_read_string(ff);
3268                 if (!value)
3269                         goto free_name;
3270
3271                 if (asprintf(&ptr, "%s=%s", name, value) < 0)
3272                         goto free_value;
3273
3274                 (*caps)[i] = ptr;
3275
3276                 if (!strcmp(name, "branches"))
3277                         *max_branches = atoi(value);
3278
3279                 if (!strcmp(name, "branch_counter_nr"))
3280                         *br_cntr_nr = atoi(value);
3281
3282                 if (!strcmp(name, "branch_counter_width"))
3283                         *br_cntr_width = atoi(value);
3284
3285                 free(value);
3286                 free(name);
3287         }
3288         *nr_caps = nr_pmu_caps;
3289         return 0;
3290
3291 free_value:
3292         free(value);
3293 free_name:
3294         free(name);
3295 error:
3296         for (; i > 0; i--)
3297                 free((*caps)[i - 1]);
3298         free(*caps);
3299         *caps = NULL;
3300         *nr_caps = 0;
3301         return -1;
3302 }
3303
3304 static int process_cpu_pmu_caps(struct feat_fd *ff,
3305                                 void *data __maybe_unused)
3306 {
3307         int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3308                                      &ff->ph->env.cpu_pmu_caps,
3309                                      &ff->ph->env.max_branches,
3310                                      &ff->ph->env.br_cntr_nr,
3311                                      &ff->ph->env.br_cntr_width);
3312
3313         if (!ret && !ff->ph->env.cpu_pmu_caps)
3314                 pr_debug("cpu pmu capabilities not available\n");
3315         return ret;
3316 }
3317
3318 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3319 {
3320         struct pmu_caps *pmu_caps;
3321         u32 nr_pmu, i;
3322         int ret;
3323         int j;
3324
3325         if (do_read_u32(ff, &nr_pmu))
3326                 return -1;
3327
3328         if (!nr_pmu) {
3329                 pr_debug("pmu capabilities not available\n");
3330                 return 0;
3331         }
3332
3333         pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3334         if (!pmu_caps)
3335                 return -ENOMEM;
3336
3337         for (i = 0; i < nr_pmu; i++) {
3338                 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3339                                          &pmu_caps[i].caps,
3340                                          &pmu_caps[i].max_branches,
3341                                          &pmu_caps[i].br_cntr_nr,
3342                                          &pmu_caps[i].br_cntr_width);
3343                 if (ret)
3344                         goto err;
3345
3346                 pmu_caps[i].pmu_name = do_read_string(ff);
3347                 if (!pmu_caps[i].pmu_name) {
3348                         ret = -1;
3349                         goto err;
3350                 }
3351                 if (!pmu_caps[i].nr_caps) {
3352                         pr_debug("%s pmu capabilities not available\n",
3353                                  pmu_caps[i].pmu_name);
3354                 }
3355         }
3356
3357         ff->ph->env.nr_pmus_with_caps = nr_pmu;
3358         ff->ph->env.pmu_caps = pmu_caps;
3359         return 0;
3360
3361 err:
3362         for (i = 0; i < nr_pmu; i++) {
3363                 for (j = 0; j < pmu_caps[i].nr_caps; j++)
3364                         free(pmu_caps[i].caps[j]);
3365                 free(pmu_caps[i].caps);
3366                 free(pmu_caps[i].pmu_name);
3367         }
3368
3369         free(pmu_caps);
3370         return ret;
3371 }
3372
3373 #define FEAT_OPR(n, func, __full_only) \
3374         [HEADER_##n] = {                                        \
3375                 .name       = __stringify(n),                   \
3376                 .write      = write_##func,                     \
3377                 .print      = print_##func,                     \
3378                 .full_only  = __full_only,                      \
3379                 .process    = process_##func,                   \
3380                 .synthesize = true                              \
3381         }
3382
3383 #define FEAT_OPN(n, func, __full_only) \
3384         [HEADER_##n] = {                                        \
3385                 .name       = __stringify(n),                   \
3386                 .write      = write_##func,                     \
3387                 .print      = print_##func,                     \
3388                 .full_only  = __full_only,                      \
3389                 .process    = process_##func                    \
3390         }
3391
3392 /* feature_ops not implemented: */
3393 #define print_tracing_data      NULL
3394 #define print_build_id          NULL
3395
3396 #define process_branch_stack    NULL
3397 #define process_stat            NULL
3398
3399 // Only used in util/synthetic-events.c
3400 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3401
3402 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3403 #ifdef HAVE_LIBTRACEEVENT
3404         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
3405 #endif
3406         FEAT_OPN(BUILD_ID,      build_id,       false),
3407         FEAT_OPR(HOSTNAME,      hostname,       false),
3408         FEAT_OPR(OSRELEASE,     osrelease,      false),
3409         FEAT_OPR(VERSION,       version,        false),
3410         FEAT_OPR(ARCH,          arch,           false),
3411         FEAT_OPR(NRCPUS,        nrcpus,         false),
3412         FEAT_OPR(CPUDESC,       cpudesc,        false),
3413         FEAT_OPR(CPUID,         cpuid,          false),
3414         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
3415         FEAT_OPR(EVENT_DESC,    event_desc,     false),
3416         FEAT_OPR(CMDLINE,       cmdline,        false),
3417         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
3418         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
3419         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
3420         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
3421         FEAT_OPR(GROUP_DESC,    group_desc,     false),
3422         FEAT_OPN(AUXTRACE,      auxtrace,       false),
3423         FEAT_OPN(STAT,          stat,           false),
3424         FEAT_OPN(CACHE,         cache,          true),
3425         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
3426         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
3427         FEAT_OPR(CLOCKID,       clockid,        false),
3428         FEAT_OPN(DIR_FORMAT,    dir_format,     false),
3429 #ifdef HAVE_LIBBPF_SUPPORT
3430         FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3431         FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3432 #endif
3433         FEAT_OPR(COMPRESSED,    compressed,     false),
3434         FEAT_OPR(CPU_PMU_CAPS,  cpu_pmu_caps,   false),
3435         FEAT_OPR(CLOCK_DATA,    clock_data,     false),
3436         FEAT_OPN(HYBRID_TOPOLOGY,       hybrid_topology,        true),
3437         FEAT_OPR(PMU_CAPS,      pmu_caps,       false),
3438 };
3439
3440 struct header_print_data {
3441         FILE *fp;
3442         bool full; /* extended list of headers */
3443 };
3444
3445 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3446                                            struct perf_header *ph,
3447                                            int feat, int fd, void *data)
3448 {
3449         struct header_print_data *hd = data;
3450         struct feat_fd ff;
3451
3452         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3453                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3454                                 "%d, continuing...\n", section->offset, feat);
3455                 return 0;
3456         }
3457         if (feat >= HEADER_LAST_FEATURE) {
3458                 pr_warning("unknown feature %d\n", feat);
3459                 return 0;
3460         }
3461         if (!feat_ops[feat].print)
3462                 return 0;
3463
3464         ff = (struct  feat_fd) {
3465                 .fd = fd,
3466                 .ph = ph,
3467         };
3468
3469         if (!feat_ops[feat].full_only || hd->full)
3470                 feat_ops[feat].print(&ff, hd->fp);
3471         else
3472                 fprintf(hd->fp, "# %s info available, use -I to display\n",
3473                         feat_ops[feat].name);
3474
3475         return 0;
3476 }
3477
3478 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3479 {
3480         struct header_print_data hd;
3481         struct perf_header *header = &session->header;
3482         int fd = perf_data__fd(session->data);
3483         struct stat st;
3484         time_t stctime;
3485         int ret, bit;
3486
3487         hd.fp = fp;
3488         hd.full = full;
3489
3490         ret = fstat(fd, &st);
3491         if (ret == -1)
3492                 return -1;
3493
3494         stctime = st.st_mtime;
3495         fprintf(fp, "# captured on    : %s", ctime(&stctime));
3496
3497         fprintf(fp, "# header version : %u\n", header->version);
3498         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3499         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3500         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3501
3502         perf_header__process_sections(header, fd, &hd,
3503                                       perf_file_section__fprintf_info);
3504
3505         if (session->data->is_pipe)
3506                 return 0;
3507
3508         fprintf(fp, "# missing features: ");
3509         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3510                 if (bit)
3511                         fprintf(fp, "%s ", feat_ops[bit].name);
3512         }
3513
3514         fprintf(fp, "\n");
3515         return 0;
3516 }
3517
3518 struct header_fw {
3519         struct feat_writer      fw;
3520         struct feat_fd          *ff;
3521 };
3522
3523 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3524 {
3525         struct header_fw *h = container_of(fw, struct header_fw, fw);
3526
3527         return do_write(h->ff, buf, sz);
3528 }
3529
3530 static int do_write_feat(struct feat_fd *ff, int type,
3531                          struct perf_file_section **p,
3532                          struct evlist *evlist,
3533                          struct feat_copier *fc)
3534 {
3535         int err;
3536         int ret = 0;
3537
3538         if (perf_header__has_feat(ff->ph, type)) {
3539                 if (!feat_ops[type].write)
3540                         return -1;
3541
3542                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3543                         return -1;
3544
3545                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3546
3547                 /*
3548                  * Hook to let perf inject copy features sections from the input
3549                  * file.
3550                  */
3551                 if (fc && fc->copy) {
3552                         struct header_fw h = {
3553                                 .fw.write = feat_writer_cb,
3554                                 .ff = ff,
3555                         };
3556
3557                         /* ->copy() returns 0 if the feature was not copied */
3558                         err = fc->copy(fc, type, &h.fw);
3559                 } else {
3560                         err = 0;
3561                 }
3562                 if (!err)
3563                         err = feat_ops[type].write(ff, evlist);
3564                 if (err < 0) {
3565                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
3566
3567                         /* undo anything written */
3568                         lseek(ff->fd, (*p)->offset, SEEK_SET);
3569
3570                         return -1;
3571                 }
3572                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3573                 (*p)++;
3574         }
3575         return ret;
3576 }
3577
3578 static int perf_header__adds_write(struct perf_header *header,
3579                                    struct evlist *evlist, int fd,
3580                                    struct feat_copier *fc)
3581 {
3582         int nr_sections;
3583         struct feat_fd ff = {
3584                 .fd  = fd,
3585                 .ph = header,
3586         };
3587         struct perf_file_section *feat_sec, *p;
3588         int sec_size;
3589         u64 sec_start;
3590         int feat;
3591         int err;
3592
3593         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3594         if (!nr_sections)
3595                 return 0;
3596
3597         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3598         if (feat_sec == NULL)
3599                 return -ENOMEM;
3600
3601         sec_size = sizeof(*feat_sec) * nr_sections;
3602
3603         sec_start = header->feat_offset;
3604         lseek(fd, sec_start + sec_size, SEEK_SET);
3605
3606         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3607                 if (do_write_feat(&ff, feat, &p, evlist, fc))
3608                         perf_header__clear_feat(header, feat);
3609         }
3610
3611         lseek(fd, sec_start, SEEK_SET);
3612         /*
3613          * may write more than needed due to dropped feature, but
3614          * this is okay, reader will skip the missing entries
3615          */
3616         err = do_write(&ff, feat_sec, sec_size);
3617         if (err < 0)
3618                 pr_debug("failed to write feature section\n");
3619         free(ff.buf); /* TODO: added to silence clang-tidy. */
3620         free(feat_sec);
3621         return err;
3622 }
3623
3624 int perf_header__write_pipe(int fd)
3625 {
3626         struct perf_pipe_file_header f_header;
3627         struct feat_fd ff = {
3628                 .fd = fd,
3629         };
3630         int err;
3631
3632         f_header = (struct perf_pipe_file_header){
3633                 .magic     = PERF_MAGIC,
3634                 .size      = sizeof(f_header),
3635         };
3636
3637         err = do_write(&ff, &f_header, sizeof(f_header));
3638         if (err < 0) {
3639                 pr_debug("failed to write perf pipe header\n");
3640                 return err;
3641         }
3642         free(ff.buf);
3643         return 0;
3644 }
3645
3646 static int perf_session__do_write_header(struct perf_session *session,
3647                                          struct evlist *evlist,
3648                                          int fd, bool at_exit,
3649                                          struct feat_copier *fc,
3650                                          bool write_attrs_after_data)
3651 {
3652         struct perf_file_header f_header;
3653         struct perf_header *header = &session->header;
3654         struct evsel *evsel;
3655         struct feat_fd ff = {
3656                 .fd = fd,
3657         };
3658         u64 attr_offset = sizeof(f_header), attr_size = 0;
3659         int err;
3660
3661         if (write_attrs_after_data && at_exit) {
3662                 /*
3663                  * Write features at the end of the file first so that
3664                  * attributes may come after them.
3665                  */
3666                 if (!header->data_offset && header->data_size) {
3667                         pr_err("File contains data but offset unknown\n");
3668                         err = -1;
3669                         goto err_out;
3670                 }
3671                 header->feat_offset = header->data_offset + header->data_size;
3672                 err = perf_header__adds_write(header, evlist, fd, fc);
3673                 if (err < 0)
3674                         goto err_out;
3675                 attr_offset = lseek(fd, 0, SEEK_CUR);
3676         } else {
3677                 lseek(fd, attr_offset, SEEK_SET);
3678         }
3679
3680         evlist__for_each_entry(session->evlist, evsel) {
3681                 evsel->id_offset = attr_offset;
3682                 /* Avoid writing at the end of the file until the session is exiting. */
3683                 if (!write_attrs_after_data || at_exit) {
3684                         err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3685                         if (err < 0) {
3686                                 pr_debug("failed to write perf header\n");
3687                                 goto err_out;
3688                         }
3689                 }
3690                 attr_offset += evsel->core.ids * sizeof(u64);
3691         }
3692
3693         evlist__for_each_entry(evlist, evsel) {
3694                 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3695                         /*
3696                          * We are likely in "perf inject" and have read
3697                          * from an older file. Update attr size so that
3698                          * reader gets the right offset to the ids.
3699                          */
3700                         evsel->core.attr.size = sizeof(evsel->core.attr);
3701                 }
3702                 /* Avoid writing at the end of the file until the session is exiting. */
3703                 if (!write_attrs_after_data || at_exit) {
3704                         struct perf_file_attr f_attr = {
3705                                 .attr = evsel->core.attr,
3706                                 .ids  = {
3707                                         .offset = evsel->id_offset,
3708                                         .size   = evsel->core.ids * sizeof(u64),
3709                                 }
3710                         };
3711                         err = do_write(&ff, &f_attr, sizeof(f_attr));
3712                         if (err < 0) {
3713                                 pr_debug("failed to write perf header attribute\n");
3714                                 goto err_out;
3715                         }
3716                 }
3717                 attr_size += sizeof(struct perf_file_attr);
3718         }
3719
3720         if (!header->data_offset) {
3721                 if (write_attrs_after_data)
3722                         header->data_offset = sizeof(f_header);
3723                 else
3724                         header->data_offset = attr_offset + attr_size;
3725         }
3726         header->feat_offset = header->data_offset + header->data_size;
3727
3728         if (!write_attrs_after_data && at_exit) {
3729                 /* Write features now feat_offset is known. */
3730                 err = perf_header__adds_write(header, evlist, fd, fc);
3731                 if (err < 0)
3732                         goto err_out;
3733         }
3734
3735         f_header = (struct perf_file_header){
3736                 .magic     = PERF_MAGIC,
3737                 .size      = sizeof(f_header),
3738                 .attr_size = sizeof(struct perf_file_attr),
3739                 .attrs = {
3740                         .offset = attr_offset,
3741                         .size   = attr_size,
3742                 },
3743                 .data = {
3744                         .offset = header->data_offset,
3745                         .size   = header->data_size,
3746                 },
3747                 /* event_types is ignored, store zeros */
3748         };
3749
3750         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3751
3752         lseek(fd, 0, SEEK_SET);
3753         err = do_write(&ff, &f_header, sizeof(f_header));
3754         if (err < 0) {
3755                 pr_debug("failed to write perf header\n");
3756                 goto err_out;
3757         } else {
3758                 lseek(fd, 0, SEEK_END);
3759                 err = 0;
3760         }
3761 err_out:
3762         free(ff.buf);
3763         return err;
3764 }
3765
3766 int perf_session__write_header(struct perf_session *session,
3767                                struct evlist *evlist,
3768                                int fd, bool at_exit)
3769 {
3770         return perf_session__do_write_header(session, evlist, fd, at_exit, /*fc=*/NULL,
3771                                              /*write_attrs_after_data=*/false);
3772 }
3773
3774 size_t perf_session__data_offset(const struct evlist *evlist)
3775 {
3776         struct evsel *evsel;
3777         size_t data_offset;
3778
3779         data_offset = sizeof(struct perf_file_header);
3780         evlist__for_each_entry(evlist, evsel) {
3781                 data_offset += evsel->core.ids * sizeof(u64);
3782         }
3783         data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3784
3785         return data_offset;
3786 }
3787
3788 int perf_session__inject_header(struct perf_session *session,
3789                                 struct evlist *evlist,
3790                                 int fd,
3791                                 struct feat_copier *fc,
3792                                 bool write_attrs_after_data)
3793 {
3794         return perf_session__do_write_header(session, evlist, fd, true, fc,
3795                                              write_attrs_after_data);
3796 }
3797
3798 static int perf_header__getbuffer64(struct perf_header *header,
3799                                     int fd, void *buf, size_t size)
3800 {
3801         if (readn(fd, buf, size) <= 0)
3802                 return -1;
3803
3804         if (header->needs_swap)
3805                 mem_bswap_64(buf, size);
3806
3807         return 0;
3808 }
3809
3810 int perf_header__process_sections(struct perf_header *header, int fd,
3811                                   void *data,
3812                                   int (*process)(struct perf_file_section *section,
3813                                                  struct perf_header *ph,
3814                                                  int feat, int fd, void *data))
3815 {
3816         struct perf_file_section *feat_sec, *sec;
3817         int nr_sections;
3818         int sec_size;
3819         int feat;
3820         int err;
3821
3822         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3823         if (!nr_sections)
3824                 return 0;
3825
3826         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3827         if (!feat_sec)
3828                 return -1;
3829
3830         sec_size = sizeof(*feat_sec) * nr_sections;
3831
3832         lseek(fd, header->feat_offset, SEEK_SET);
3833
3834         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3835         if (err < 0)
3836                 goto out_free;
3837
3838         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3839                 err = process(sec++, header, feat, fd, data);
3840                 if (err < 0)
3841                         goto out_free;
3842         }
3843         err = 0;
3844 out_free:
3845         free(feat_sec);
3846         return err;
3847 }
3848
3849 static const int attr_file_abi_sizes[] = {
3850         [0] = PERF_ATTR_SIZE_VER0,
3851         [1] = PERF_ATTR_SIZE_VER1,
3852         [2] = PERF_ATTR_SIZE_VER2,
3853         [3] = PERF_ATTR_SIZE_VER3,
3854         [4] = PERF_ATTR_SIZE_VER4,
3855         0,
3856 };
3857
3858 /*
3859  * In the legacy file format, the magic number is not used to encode endianness.
3860  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3861  * on ABI revisions, we need to try all combinations for all endianness to
3862  * detect the endianness.
3863  */
3864 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3865 {
3866         uint64_t ref_size, attr_size;
3867         int i;
3868
3869         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3870                 ref_size = attr_file_abi_sizes[i]
3871                          + sizeof(struct perf_file_section);
3872                 if (hdr_sz != ref_size) {
3873                         attr_size = bswap_64(hdr_sz);
3874                         if (attr_size != ref_size)
3875                                 continue;
3876
3877                         ph->needs_swap = true;
3878                 }
3879                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3880                          i,
3881                          ph->needs_swap);
3882                 return 0;
3883         }
3884         /* could not determine endianness */
3885         return -1;
3886 }
3887
3888 #define PERF_PIPE_HDR_VER0      16
3889
3890 static const size_t attr_pipe_abi_sizes[] = {
3891         [0] = PERF_PIPE_HDR_VER0,
3892         0,
3893 };
3894
3895 /*
3896  * In the legacy pipe format, there is an implicit assumption that endianness
3897  * between host recording the samples, and host parsing the samples is the
3898  * same. This is not always the case given that the pipe output may always be
3899  * redirected into a file and analyzed on a different machine with possibly a
3900  * different endianness and perf_event ABI revisions in the perf tool itself.
3901  */
3902 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3903 {
3904         u64 attr_size;
3905         int i;
3906
3907         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3908                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3909                         attr_size = bswap_64(hdr_sz);
3910                         if (attr_size != hdr_sz)
3911                                 continue;
3912
3913                         ph->needs_swap = true;
3914                 }
3915                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3916                 return 0;
3917         }
3918         return -1;
3919 }
3920
3921 bool is_perf_magic(u64 magic)
3922 {
3923         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3924                 || magic == __perf_magic2
3925                 || magic == __perf_magic2_sw)
3926                 return true;
3927
3928         return false;
3929 }
3930
3931 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3932                               bool is_pipe, struct perf_header *ph)
3933 {
3934         int ret;
3935
3936         /* check for legacy format */
3937         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3938         if (ret == 0) {
3939                 ph->version = PERF_HEADER_VERSION_1;
3940                 pr_debug("legacy perf.data format\n");
3941                 if (is_pipe)
3942                         return try_all_pipe_abis(hdr_sz, ph);
3943
3944                 return try_all_file_abis(hdr_sz, ph);
3945         }
3946         /*
3947          * the new magic number serves two purposes:
3948          * - unique number to identify actual perf.data files
3949          * - encode endianness of file
3950          */
3951         ph->version = PERF_HEADER_VERSION_2;
3952
3953         /* check magic number with one endianness */
3954         if (magic == __perf_magic2)
3955                 return 0;
3956
3957         /* check magic number with opposite endianness */
3958         if (magic != __perf_magic2_sw)
3959                 return -1;
3960
3961         ph->needs_swap = true;
3962
3963         return 0;
3964 }
3965
3966 int perf_file_header__read(struct perf_file_header *header,
3967                            struct perf_header *ph, int fd)
3968 {
3969         ssize_t ret;
3970
3971         lseek(fd, 0, SEEK_SET);
3972
3973         ret = readn(fd, header, sizeof(*header));
3974         if (ret <= 0)
3975                 return -1;
3976
3977         if (check_magic_endian(header->magic,
3978                                header->attr_size, false, ph) < 0) {
3979                 pr_debug("magic/endian check failed\n");
3980                 return -1;
3981         }
3982
3983         if (ph->needs_swap) {
3984                 mem_bswap_64(header, offsetof(struct perf_file_header,
3985                              adds_features));
3986         }
3987
3988         if (header->size > header->attrs.offset) {
3989                 pr_err("Perf file header corrupt: header overlaps attrs\n");
3990                 return -1;
3991         }
3992
3993         if (header->size > header->data.offset) {
3994                 pr_err("Perf file header corrupt: header overlaps data\n");
3995                 return -1;
3996         }
3997
3998         if ((header->attrs.offset <= header->data.offset &&
3999              header->attrs.offset + header->attrs.size > header->data.offset) ||
4000             (header->attrs.offset > header->data.offset &&
4001              header->data.offset + header->data.size > header->attrs.offset)) {
4002                 pr_err("Perf file header corrupt: Attributes and data overlap\n");
4003                 return -1;
4004         }
4005
4006         if (header->size != sizeof(*header)) {
4007                 /* Support the previous format */
4008                 if (header->size == offsetof(typeof(*header), adds_features))
4009                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4010                 else
4011                         return -1;
4012         } else if (ph->needs_swap) {
4013                 /*
4014                  * feature bitmap is declared as an array of unsigned longs --
4015                  * not good since its size can differ between the host that
4016                  * generated the data file and the host analyzing the file.
4017                  *
4018                  * We need to handle endianness, but we don't know the size of
4019                  * the unsigned long where the file was generated. Take a best
4020                  * guess at determining it: try 64-bit swap first (ie., file
4021                  * created on a 64-bit host), and check if the hostname feature
4022                  * bit is set (this feature bit is forced on as of fbe96f2).
4023                  * If the bit is not, undo the 64-bit swap and try a 32-bit
4024                  * swap. If the hostname bit is still not set (e.g., older data
4025                  * file), punt and fallback to the original behavior --
4026                  * clearing all feature bits and setting buildid.
4027                  */
4028                 mem_bswap_64(&header->adds_features,
4029                             BITS_TO_U64(HEADER_FEAT_BITS));
4030
4031                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4032                         /* unswap as u64 */
4033                         mem_bswap_64(&header->adds_features,
4034                                     BITS_TO_U64(HEADER_FEAT_BITS));
4035
4036                         /* unswap as u32 */
4037                         mem_bswap_32(&header->adds_features,
4038                                     BITS_TO_U32(HEADER_FEAT_BITS));
4039                 }
4040
4041                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4042                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4043                         __set_bit(HEADER_BUILD_ID, header->adds_features);
4044                 }
4045         }
4046
4047         memcpy(&ph->adds_features, &header->adds_features,
4048                sizeof(ph->adds_features));
4049
4050         ph->data_offset  = header->data.offset;
4051         ph->data_size    = header->data.size;
4052         ph->feat_offset  = header->data.offset + header->data.size;
4053         return 0;
4054 }
4055
4056 static int perf_file_section__process(struct perf_file_section *section,
4057                                       struct perf_header *ph,
4058                                       int feat, int fd, void *data)
4059 {
4060         struct feat_fd fdd = {
4061                 .fd     = fd,
4062                 .ph     = ph,
4063                 .size   = section->size,
4064                 .offset = section->offset,
4065         };
4066
4067         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4068                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4069                           "%d, continuing...\n", section->offset, feat);
4070                 return 0;
4071         }
4072
4073         if (feat >= HEADER_LAST_FEATURE) {
4074                 pr_debug("unknown feature %d, continuing...\n", feat);
4075                 return 0;
4076         }
4077
4078         if (!feat_ops[feat].process)
4079                 return 0;
4080
4081         return feat_ops[feat].process(&fdd, data);
4082 }
4083
4084 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4085                                        struct perf_header *ph,
4086                                        struct perf_data *data)
4087 {
4088         ssize_t ret;
4089
4090         ret = perf_data__read(data, header, sizeof(*header));
4091         if (ret <= 0)
4092                 return -1;
4093
4094         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4095                 pr_debug("endian/magic failed\n");
4096                 return -1;
4097         }
4098
4099         if (ph->needs_swap)
4100                 header->size = bswap_64(header->size);
4101
4102         return 0;
4103 }
4104
4105 static int perf_header__read_pipe(struct perf_session *session)
4106 {
4107         struct perf_header *header = &session->header;
4108         struct perf_pipe_file_header f_header;
4109
4110         if (perf_file_header__read_pipe(&f_header, header, session->data) < 0) {
4111                 pr_debug("incompatible file format\n");
4112                 return -EINVAL;
4113         }
4114
4115         return f_header.size == sizeof(f_header) ? 0 : -1;
4116 }
4117
4118 static int read_attr(int fd, struct perf_header *ph,
4119                      struct perf_file_attr *f_attr)
4120 {
4121         struct perf_event_attr *attr = &f_attr->attr;
4122         size_t sz, left;
4123         size_t our_sz = sizeof(f_attr->attr);
4124         ssize_t ret;
4125
4126         memset(f_attr, 0, sizeof(*f_attr));
4127
4128         /* read minimal guaranteed structure */
4129         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4130         if (ret <= 0) {
4131                 pr_debug("cannot read %d bytes of header attr\n",
4132                          PERF_ATTR_SIZE_VER0);
4133                 return -1;
4134         }
4135
4136         /* on file perf_event_attr size */
4137         sz = attr->size;
4138
4139         if (ph->needs_swap)
4140                 sz = bswap_32(sz);
4141
4142         if (sz == 0) {
4143                 /* assume ABI0 */
4144                 sz =  PERF_ATTR_SIZE_VER0;
4145         } else if (sz > our_sz) {
4146                 pr_debug("file uses a more recent and unsupported ABI"
4147                          " (%zu bytes extra)\n", sz - our_sz);
4148                 return -1;
4149         }
4150         /* what we have not yet read and that we know about */
4151         left = sz - PERF_ATTR_SIZE_VER0;
4152         if (left) {
4153                 void *ptr = attr;
4154                 ptr += PERF_ATTR_SIZE_VER0;
4155
4156                 ret = readn(fd, ptr, left);
4157         }
4158         /* read perf_file_section, ids are read in caller */
4159         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4160
4161         return ret <= 0 ? -1 : 0;
4162 }
4163
4164 #ifdef HAVE_LIBTRACEEVENT
4165 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4166 {
4167         struct tep_event *event;
4168         char bf[128];
4169
4170         /* already prepared */
4171         if (evsel->tp_format)
4172                 return 0;
4173
4174         if (pevent == NULL) {
4175                 pr_debug("broken or missing trace data\n");
4176                 return -1;
4177         }
4178
4179         event = tep_find_event(pevent, evsel->core.attr.config);
4180         if (event == NULL) {
4181                 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4182                 return -1;
4183         }
4184
4185         if (!evsel->name) {
4186                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4187                 evsel->name = strdup(bf);
4188                 if (evsel->name == NULL)
4189                         return -1;
4190         }
4191
4192         evsel->tp_format = event;
4193         return 0;
4194 }
4195
4196 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4197 {
4198         struct evsel *pos;
4199
4200         evlist__for_each_entry(evlist, pos) {
4201                 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4202                     evsel__prepare_tracepoint_event(pos, pevent))
4203                         return -1;
4204         }
4205
4206         return 0;
4207 }
4208 #endif
4209
4210 int perf_session__read_header(struct perf_session *session)
4211 {
4212         struct perf_data *data = session->data;
4213         struct perf_header *header = &session->header;
4214         struct perf_file_header f_header;
4215         struct perf_file_attr   f_attr;
4216         u64                     f_id;
4217         int nr_attrs, nr_ids, i, j, err;
4218         int fd = perf_data__fd(data);
4219
4220         session->evlist = evlist__new();
4221         if (session->evlist == NULL)
4222                 return -ENOMEM;
4223
4224         session->evlist->env = &header->env;
4225         session->machines.host.env = &header->env;
4226
4227         /*
4228          * We can read 'pipe' data event from regular file,
4229          * check for the pipe header regardless of source.
4230          */
4231         err = perf_header__read_pipe(session);
4232         if (!err || perf_data__is_pipe(data)) {
4233                 data->is_pipe = true;
4234                 return err;
4235         }
4236
4237         if (perf_file_header__read(&f_header, header, fd) < 0)
4238                 return -EINVAL;
4239
4240         if (header->needs_swap && data->in_place_update) {
4241                 pr_err("In-place update not supported when byte-swapping is required\n");
4242                 return -EINVAL;
4243         }
4244
4245         /*
4246          * Sanity check that perf.data was written cleanly; data size is
4247          * initialized to 0 and updated only if the on_exit function is run.
4248          * If data size is still 0 then the file contains only partial
4249          * information.  Just warn user and process it as much as it can.
4250          */
4251         if (f_header.data.size == 0) {
4252                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4253                            "Was the 'perf record' command properly terminated?\n",
4254                            data->file.path);
4255         }
4256
4257         if (f_header.attr_size == 0) {
4258                 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4259                        "Was the 'perf record' command properly terminated?\n",
4260                        data->file.path);
4261                 return -EINVAL;
4262         }
4263
4264         nr_attrs = f_header.attrs.size / f_header.attr_size;
4265         lseek(fd, f_header.attrs.offset, SEEK_SET);
4266
4267         for (i = 0; i < nr_attrs; i++) {
4268                 struct evsel *evsel;
4269                 off_t tmp;
4270
4271                 if (read_attr(fd, header, &f_attr) < 0)
4272                         goto out_errno;
4273
4274                 if (header->needs_swap) {
4275                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
4276                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4277                         perf_event__attr_swap(&f_attr.attr);
4278                 }
4279
4280                 tmp = lseek(fd, 0, SEEK_CUR);
4281                 evsel = evsel__new(&f_attr.attr);
4282
4283                 if (evsel == NULL)
4284                         goto out_delete_evlist;
4285
4286                 evsel->needs_swap = header->needs_swap;
4287                 /*
4288                  * Do it before so that if perf_evsel__alloc_id fails, this
4289                  * entry gets purged too at evlist__delete().
4290                  */
4291                 evlist__add(session->evlist, evsel);
4292
4293                 nr_ids = f_attr.ids.size / sizeof(u64);
4294                 /*
4295                  * We don't have the cpu and thread maps on the header, so
4296                  * for allocating the perf_sample_id table we fake 1 cpu and
4297                  * hattr->ids threads.
4298                  */
4299                 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4300                         goto out_delete_evlist;
4301
4302                 lseek(fd, f_attr.ids.offset, SEEK_SET);
4303
4304                 for (j = 0; j < nr_ids; j++) {
4305                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4306                                 goto out_errno;
4307
4308                         perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4309                 }
4310
4311                 lseek(fd, tmp, SEEK_SET);
4312         }
4313
4314 #ifdef HAVE_LIBTRACEEVENT
4315         perf_header__process_sections(header, fd, &session->tevent,
4316                                       perf_file_section__process);
4317
4318         if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4319                 goto out_delete_evlist;
4320 #else
4321         perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4322 #endif
4323
4324         return 0;
4325 out_errno:
4326         return -errno;
4327
4328 out_delete_evlist:
4329         evlist__delete(session->evlist);
4330         session->evlist = NULL;
4331         return -ENOMEM;
4332 }
4333
4334 int perf_event__process_feature(struct perf_session *session,
4335                                 union perf_event *event)
4336 {
4337         const struct perf_tool *tool = session->tool;
4338         struct feat_fd ff = { .fd = 0 };
4339         struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4340         int type = fe->header.type;
4341         u64 feat = fe->feat_id;
4342         int ret = 0;
4343
4344         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4345                 pr_warning("invalid record type %d in pipe-mode\n", type);
4346                 return 0;
4347         }
4348         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4349                 pr_warning("invalid record type %d in pipe-mode\n", type);
4350                 return -1;
4351         }
4352
4353         if (!feat_ops[feat].process)
4354                 return 0;
4355
4356         ff.buf  = (void *)fe->data;
4357         ff.size = event->header.size - sizeof(*fe);
4358         ff.ph = &session->header;
4359
4360         if (feat_ops[feat].process(&ff, NULL)) {
4361                 ret = -1;
4362                 goto out;
4363         }
4364
4365         if (!feat_ops[feat].print || !tool->show_feat_hdr)
4366                 goto out;
4367
4368         if (!feat_ops[feat].full_only ||
4369             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4370                 feat_ops[feat].print(&ff, stdout);
4371         } else {
4372                 fprintf(stdout, "# %s info available, use -I to display\n",
4373                         feat_ops[feat].name);
4374         }
4375 out:
4376         free_event_desc(ff.events);
4377         return ret;
4378 }
4379
4380 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4381 {
4382         struct perf_record_event_update *ev = &event->event_update;
4383         struct perf_cpu_map *map;
4384         size_t ret;
4385
4386         ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4387
4388         switch (ev->type) {
4389         case PERF_EVENT_UPDATE__SCALE:
4390                 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4391                 break;
4392         case PERF_EVENT_UPDATE__UNIT:
4393                 ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4394                 break;
4395         case PERF_EVENT_UPDATE__NAME:
4396                 ret += fprintf(fp, "... name:  %s\n", ev->name);
4397                 break;
4398         case PERF_EVENT_UPDATE__CPUS:
4399                 ret += fprintf(fp, "... ");
4400
4401                 map = cpu_map__new_data(&ev->cpus.cpus);
4402                 if (map) {
4403                         ret += cpu_map__fprintf(map, fp);
4404                         perf_cpu_map__put(map);
4405                 } else
4406                         ret += fprintf(fp, "failed to get cpus\n");
4407                 break;
4408         default:
4409                 ret += fprintf(fp, "... unknown type\n");
4410                 break;
4411         }
4412
4413         return ret;
4414 }
4415
4416 int perf_event__process_attr(const struct perf_tool *tool __maybe_unused,
4417                              union perf_event *event,
4418                              struct evlist **pevlist)
4419 {
4420         u32 i, n_ids;
4421         u64 *ids;
4422         struct evsel *evsel;
4423         struct evlist *evlist = *pevlist;
4424
4425         if (evlist == NULL) {
4426                 *pevlist = evlist = evlist__new();
4427                 if (evlist == NULL)
4428                         return -ENOMEM;
4429         }
4430
4431         evsel = evsel__new(&event->attr.attr);
4432         if (evsel == NULL)
4433                 return -ENOMEM;
4434
4435         evlist__add(evlist, evsel);
4436
4437         n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4438         n_ids = n_ids / sizeof(u64);
4439         /*
4440          * We don't have the cpu and thread maps on the header, so
4441          * for allocating the perf_sample_id table we fake 1 cpu and
4442          * hattr->ids threads.
4443          */
4444         if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4445                 return -ENOMEM;
4446
4447         ids = perf_record_header_attr_id(event);
4448         for (i = 0; i < n_ids; i++) {
4449                 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4450         }
4451
4452         return 0;
4453 }
4454
4455 int perf_event__process_event_update(const struct perf_tool *tool __maybe_unused,
4456                                      union perf_event *event,
4457                                      struct evlist **pevlist)
4458 {
4459         struct perf_record_event_update *ev = &event->event_update;
4460         struct evlist *evlist;
4461         struct evsel *evsel;
4462         struct perf_cpu_map *map;
4463
4464         if (dump_trace)
4465                 perf_event__fprintf_event_update(event, stdout);
4466
4467         if (!pevlist || *pevlist == NULL)
4468                 return -EINVAL;
4469
4470         evlist = *pevlist;
4471
4472         evsel = evlist__id2evsel(evlist, ev->id);
4473         if (evsel == NULL)
4474                 return -EINVAL;
4475
4476         switch (ev->type) {
4477         case PERF_EVENT_UPDATE__UNIT:
4478                 free((char *)evsel->unit);
4479                 evsel->unit = strdup(ev->unit);
4480                 break;
4481         case PERF_EVENT_UPDATE__NAME:
4482                 free(evsel->name);
4483                 evsel->name = strdup(ev->name);
4484                 break;
4485         case PERF_EVENT_UPDATE__SCALE:
4486                 evsel->scale = ev->scale.scale;
4487                 break;
4488         case PERF_EVENT_UPDATE__CPUS:
4489                 map = cpu_map__new_data(&ev->cpus.cpus);
4490                 if (map) {
4491                         perf_cpu_map__put(evsel->core.own_cpus);
4492                         evsel->core.own_cpus = map;
4493                 } else
4494                         pr_err("failed to get event_update cpus\n");
4495         default:
4496                 break;
4497         }
4498
4499         return 0;
4500 }
4501
4502 #ifdef HAVE_LIBTRACEEVENT
4503 int perf_event__process_tracing_data(struct perf_session *session,
4504                                      union perf_event *event)
4505 {
4506         ssize_t size_read, padding, size = event->tracing_data.size;
4507         int fd = perf_data__fd(session->data);
4508         char buf[BUFSIZ];
4509
4510         /*
4511          * The pipe fd is already in proper place and in any case
4512          * we can't move it, and we'd screw the case where we read
4513          * 'pipe' data from regular file. The trace_report reads
4514          * data from 'fd' so we need to set it directly behind the
4515          * event, where the tracing data starts.
4516          */
4517         if (!perf_data__is_pipe(session->data)) {
4518                 off_t offset = lseek(fd, 0, SEEK_CUR);
4519
4520                 /* setup for reading amidst mmap */
4521                 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4522                       SEEK_SET);
4523         }
4524
4525         size_read = trace_report(fd, &session->tevent, session->trace_event_repipe);
4526         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4527
4528         if (readn(fd, buf, padding) < 0) {
4529                 pr_err("%s: reading input file", __func__);
4530                 return -1;
4531         }
4532         if (session->trace_event_repipe) {
4533                 int retw = write(STDOUT_FILENO, buf, padding);
4534                 if (retw <= 0 || retw != padding) {
4535                         pr_err("%s: repiping tracing data padding", __func__);
4536                         return -1;
4537                 }
4538         }
4539
4540         if (size_read + padding != size) {
4541                 pr_err("%s: tracing data size mismatch", __func__);
4542                 return -1;
4543         }
4544
4545         evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4546
4547         return size_read + padding;
4548 }
4549 #endif
4550
4551 int perf_event__process_build_id(struct perf_session *session,
4552                                  union perf_event *event)
4553 {
4554         __event_process_build_id(&event->build_id,
4555                                  event->build_id.filename,
4556                                  session);
4557         return 0;
4558 }
This page took 0.283075 seconds and 4 git commands to generate.