]> Git Repo - J-linux.git/blob - tools/perf/bench/numa.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / tools / perf / bench / numa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7
8 #include <inttypes.h>
9
10 #include <subcmd/parse-options.h>
11 #include "../util/cloexec.h"
12
13 #include "bench.h"
14
15 #include <errno.h>
16 #include <sched.h>
17 #include <stdio.h>
18 #include <assert.h>
19 #include <debug.h>
20 #include <malloc.h>
21 #include <signal.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <unistd.h>
25 #include <sys/mman.h>
26 #include <sys/time.h>
27 #include <sys/resource.h>
28 #include <sys/wait.h>
29 #include <sys/prctl.h>
30 #include <sys/stat.h>
31 #include <sys/types.h>
32 #include <linux/kernel.h>
33 #include <linux/time64.h>
34 #include <linux/numa.h>
35 #include <linux/zalloc.h>
36
37 #include "../util/header.h"
38 #include "../util/mutex.h"
39 #include <api/fs/fs.h>
40 #include <numa.h>
41 #include <numaif.h>
42
43 #ifndef RUSAGE_THREAD
44 # define RUSAGE_THREAD 1
45 #endif
46
47 /*
48  * Regular printout to the terminal, suppressed if -q is specified:
49  */
50 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
51
52 /*
53  * Debug printf:
54  */
55 #undef dprintf
56 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
57
58 struct thread_data {
59         int                     curr_cpu;
60         cpu_set_t               *bind_cpumask;
61         int                     bind_node;
62         u8                      *process_data;
63         int                     process_nr;
64         int                     thread_nr;
65         int                     task_nr;
66         unsigned int            loops_done;
67         u64                     val;
68         u64                     runtime_ns;
69         u64                     system_time_ns;
70         u64                     user_time_ns;
71         double                  speed_gbs;
72         struct mutex            *process_lock;
73 };
74
75 /* Parameters set by options: */
76
77 struct params {
78         /* Startup synchronization: */
79         bool                    serialize_startup;
80
81         /* Task hierarchy: */
82         int                     nr_proc;
83         int                     nr_threads;
84
85         /* Working set sizes: */
86         const char              *mb_global_str;
87         const char              *mb_proc_str;
88         const char              *mb_proc_locked_str;
89         const char              *mb_thread_str;
90
91         double                  mb_global;
92         double                  mb_proc;
93         double                  mb_proc_locked;
94         double                  mb_thread;
95
96         /* Access patterns to the working set: */
97         bool                    data_reads;
98         bool                    data_writes;
99         bool                    data_backwards;
100         bool                    data_zero_memset;
101         bool                    data_rand_walk;
102         u32                     nr_loops;
103         u32                     nr_secs;
104         u32                     sleep_usecs;
105
106         /* Working set initialization: */
107         bool                    init_zero;
108         bool                    init_random;
109         bool                    init_cpu0;
110
111         /* Misc options: */
112         int                     show_details;
113         int                     run_all;
114         int                     thp;
115
116         long                    bytes_global;
117         long                    bytes_process;
118         long                    bytes_process_locked;
119         long                    bytes_thread;
120
121         int                     nr_tasks;
122
123         bool                    show_convergence;
124         bool                    measure_convergence;
125
126         int                     perturb_secs;
127         int                     nr_cpus;
128         int                     nr_nodes;
129
130         /* Affinity options -C and -N: */
131         char                    *cpu_list_str;
132         char                    *node_list_str;
133 };
134
135
136 /* Global, read-writable area, accessible to all processes and threads: */
137
138 struct global_info {
139         u8                      *data;
140
141         struct mutex            startup_mutex;
142         struct cond             startup_cond;
143         int                     nr_tasks_started;
144
145         struct mutex            start_work_mutex;
146         struct cond             start_work_cond;
147         int                     nr_tasks_working;
148         bool                    start_work;
149
150         struct mutex            stop_work_mutex;
151         u64                     bytes_done;
152
153         struct thread_data      *threads;
154
155         /* Convergence latency measurement: */
156         bool                    all_converged;
157         bool                    stop_work;
158
159         int                     print_once;
160
161         struct params           p;
162 };
163
164 static struct global_info       *g = NULL;
165
166 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
167 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
168
169 struct params p0;
170
171 static const struct option options[] = {
172         OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
173         OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
174
175         OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
176         OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
177         OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
178         OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
179
180         OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run (default: unlimited)"),
181         OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run (default: 5 secs)"),
182         OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
183
184         OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via reads (can be mixed with -W)"),
185         OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
186         OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
187         OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
188         OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
189
190
191         OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
192         OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
193         OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
194         OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
195
196         OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
197         OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
198         OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
199         OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
200                     "convergence is reached when each process (all its threads) is running on a single NUMA node."),
201         OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
202         OPT_BOOLEAN('q', "quiet"        , &quiet,
203                     "quiet mode (do not show any warnings or messages)"),
204         OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
205
206         /* Special option string parsing callbacks: */
207         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
208                         "bind the first N tasks to these specific cpus (the rest is unbound)",
209                         parse_cpus_opt),
210         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
211                         "bind the first N tasks to these specific memory nodes (the rest is unbound)",
212                         parse_nodes_opt),
213         OPT_END()
214 };
215
216 static const char * const bench_numa_usage[] = {
217         "perf bench numa <options>",
218         NULL
219 };
220
221 static const char * const numa_usage[] = {
222         "perf bench numa mem [<options>]",
223         NULL
224 };
225
226 /*
227  * To get number of numa nodes present.
228  */
229 static int nr_numa_nodes(void)
230 {
231         int i, nr_nodes = 0;
232
233         for (i = 0; i < g->p.nr_nodes; i++) {
234                 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
235                         nr_nodes++;
236         }
237
238         return nr_nodes;
239 }
240
241 /*
242  * To check if given numa node is present.
243  */
244 static int is_node_present(int node)
245 {
246         return numa_bitmask_isbitset(numa_nodes_ptr, node);
247 }
248
249 /*
250  * To check given numa node has cpus.
251  */
252 static bool node_has_cpus(int node)
253 {
254         struct bitmask *cpumask = numa_allocate_cpumask();
255         bool ret = false; /* fall back to nocpus */
256         int cpu;
257
258         BUG_ON(!cpumask);
259         if (!numa_node_to_cpus(node, cpumask)) {
260                 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
261                         if (numa_bitmask_isbitset(cpumask, cpu)) {
262                                 ret = true;
263                                 break;
264                         }
265                 }
266         }
267         numa_free_cpumask(cpumask);
268
269         return ret;
270 }
271
272 static cpu_set_t *bind_to_cpu(int target_cpu)
273 {
274         int nrcpus = numa_num_possible_cpus();
275         cpu_set_t *orig_mask, *mask;
276         size_t size;
277
278         orig_mask = CPU_ALLOC(nrcpus);
279         BUG_ON(!orig_mask);
280         size = CPU_ALLOC_SIZE(nrcpus);
281         CPU_ZERO_S(size, orig_mask);
282
283         if (sched_getaffinity(0, size, orig_mask))
284                 goto err_out;
285
286         mask = CPU_ALLOC(nrcpus);
287         if (!mask)
288                 goto err_out;
289
290         CPU_ZERO_S(size, mask);
291
292         if (target_cpu == -1) {
293                 int cpu;
294
295                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
296                         CPU_SET_S(cpu, size, mask);
297         } else {
298                 if (target_cpu < 0 || target_cpu >= g->p.nr_cpus)
299                         goto err;
300
301                 CPU_SET_S(target_cpu, size, mask);
302         }
303
304         if (sched_setaffinity(0, size, mask))
305                 goto err;
306
307         return orig_mask;
308
309 err:
310         CPU_FREE(mask);
311 err_out:
312         CPU_FREE(orig_mask);
313
314         /* BUG_ON due to failure in allocation of orig_mask/mask */
315         BUG_ON(-1);
316         return NULL;
317 }
318
319 static cpu_set_t *bind_to_node(int target_node)
320 {
321         int nrcpus = numa_num_possible_cpus();
322         size_t size;
323         cpu_set_t *orig_mask, *mask;
324         int cpu;
325
326         orig_mask = CPU_ALLOC(nrcpus);
327         BUG_ON(!orig_mask);
328         size = CPU_ALLOC_SIZE(nrcpus);
329         CPU_ZERO_S(size, orig_mask);
330
331         if (sched_getaffinity(0, size, orig_mask))
332                 goto err_out;
333
334         mask = CPU_ALLOC(nrcpus);
335         if (!mask)
336                 goto err_out;
337
338         CPU_ZERO_S(size, mask);
339
340         if (target_node == NUMA_NO_NODE) {
341                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
342                         CPU_SET_S(cpu, size, mask);
343         } else {
344                 struct bitmask *cpumask = numa_allocate_cpumask();
345
346                 if (!cpumask)
347                         goto err;
348
349                 if (!numa_node_to_cpus(target_node, cpumask)) {
350                         for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
351                                 if (numa_bitmask_isbitset(cpumask, cpu))
352                                         CPU_SET_S(cpu, size, mask);
353                         }
354                 }
355                 numa_free_cpumask(cpumask);
356         }
357
358         if (sched_setaffinity(0, size, mask))
359                 goto err;
360
361         return orig_mask;
362
363 err:
364         CPU_FREE(mask);
365 err_out:
366         CPU_FREE(orig_mask);
367
368         /* BUG_ON due to failure in allocation of orig_mask/mask */
369         BUG_ON(-1);
370         return NULL;
371 }
372
373 static void bind_to_cpumask(cpu_set_t *mask)
374 {
375         int ret;
376         size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus());
377
378         ret = sched_setaffinity(0, size, mask);
379         if (ret) {
380                 CPU_FREE(mask);
381                 BUG_ON(ret);
382         }
383 }
384
385 static void mempol_restore(void)
386 {
387         int ret;
388
389         ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
390
391         BUG_ON(ret);
392 }
393
394 static void bind_to_memnode(int node)
395 {
396         struct bitmask *node_mask;
397         int ret;
398
399         if (node == NUMA_NO_NODE)
400                 return;
401
402         node_mask = numa_allocate_nodemask();
403         BUG_ON(!node_mask);
404
405         numa_bitmask_clearall(node_mask);
406         numa_bitmask_setbit(node_mask, node);
407
408         ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
409         dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
410
411         numa_bitmask_free(node_mask);
412         BUG_ON(ret);
413 }
414
415 #define HPSIZE (2*1024*1024)
416
417 #define set_taskname(fmt...)                            \
418 do {                                                    \
419         char name[20];                                  \
420                                                         \
421         snprintf(name, 20, fmt);                        \
422         prctl(PR_SET_NAME, name);                       \
423 } while (0)
424
425 static u8 *alloc_data(ssize_t bytes0, int map_flags,
426                       int init_zero, int init_cpu0, int thp, int init_random)
427 {
428         cpu_set_t *orig_mask = NULL;
429         ssize_t bytes;
430         u8 *buf;
431         int ret;
432
433         if (!bytes0)
434                 return NULL;
435
436         /* Allocate and initialize all memory on CPU#0: */
437         if (init_cpu0) {
438                 int node = numa_node_of_cpu(0);
439
440                 orig_mask = bind_to_node(node);
441                 bind_to_memnode(node);
442         }
443
444         bytes = bytes0 + HPSIZE;
445
446         buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
447         BUG_ON(buf == (void *)-1);
448
449         if (map_flags == MAP_PRIVATE) {
450                 if (thp > 0) {
451                         ret = madvise(buf, bytes, MADV_HUGEPAGE);
452                         if (ret && !g->print_once) {
453                                 g->print_once = 1;
454                                 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
455                         }
456                 }
457                 if (thp < 0) {
458                         ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
459                         if (ret && !g->print_once) {
460                                 g->print_once = 1;
461                                 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
462                         }
463                 }
464         }
465
466         if (init_zero) {
467                 bzero(buf, bytes);
468         } else {
469                 /* Initialize random contents, different in each word: */
470                 if (init_random) {
471                         u64 *wbuf = (void *)buf;
472                         long off = rand();
473                         long i;
474
475                         for (i = 0; i < bytes/8; i++)
476                                 wbuf[i] = i + off;
477                 }
478         }
479
480         /* Align to 2MB boundary: */
481         buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
482
483         /* Restore affinity: */
484         if (init_cpu0) {
485                 bind_to_cpumask(orig_mask);
486                 CPU_FREE(orig_mask);
487                 mempol_restore();
488         }
489
490         return buf;
491 }
492
493 static void free_data(void *data, ssize_t bytes)
494 {
495         int ret;
496
497         if (!data)
498                 return;
499
500         ret = munmap(data, bytes);
501         BUG_ON(ret);
502 }
503
504 /*
505  * Create a shared memory buffer that can be shared between processes, zeroed:
506  */
507 static void * zalloc_shared_data(ssize_t bytes)
508 {
509         return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
510 }
511
512 /*
513  * Create a shared memory buffer that can be shared between processes:
514  */
515 static void * setup_shared_data(ssize_t bytes)
516 {
517         return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
518 }
519
520 /*
521  * Allocate process-local memory - this will either be shared between
522  * threads of this process, or only be accessed by this thread:
523  */
524 static void * setup_private_data(ssize_t bytes)
525 {
526         return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
527 }
528
529 static int parse_cpu_list(const char *arg)
530 {
531         p0.cpu_list_str = strdup(arg);
532
533         dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
534
535         return 0;
536 }
537
538 /*
539  * Check whether a CPU is online
540  *
541  * Returns:
542  *     1 -> if CPU is online
543  *     0 -> if CPU is offline
544  *    -1 -> error case
545  */
546 static int is_cpu_online(unsigned int cpu)
547 {
548         char *str;
549         size_t strlen;
550         char buf[256];
551         int status = -1;
552         struct stat statbuf;
553
554         snprintf(buf, sizeof(buf),
555                 "/sys/devices/system/cpu/cpu%d", cpu);
556         if (stat(buf, &statbuf) != 0)
557                 return 0;
558
559         /*
560          * Check if /sys/devices/system/cpu/cpux/online file
561          * exists. Some cases cpu0 won't have online file since
562          * it is not expected to be turned off generally.
563          * In kernels without CONFIG_HOTPLUG_CPU, this
564          * file won't exist
565          */
566         snprintf(buf, sizeof(buf),
567                 "/sys/devices/system/cpu/cpu%d/online", cpu);
568         if (stat(buf, &statbuf) != 0)
569                 return 1;
570
571         /*
572          * Read online file using sysfs__read_str.
573          * If read or open fails, return -1.
574          * If read succeeds, return value from file
575          * which gets stored in "str"
576          */
577         snprintf(buf, sizeof(buf),
578                 "devices/system/cpu/cpu%d/online", cpu);
579
580         if (sysfs__read_str(buf, &str, &strlen) < 0)
581                 return status;
582
583         status = atoi(str);
584
585         free(str);
586         return status;
587 }
588
589 static int parse_setup_cpu_list(void)
590 {
591         struct thread_data *td;
592         char *str0, *str;
593         int t;
594
595         if (!g->p.cpu_list_str)
596                 return 0;
597
598         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
599
600         str0 = str = strdup(g->p.cpu_list_str);
601         t = 0;
602
603         BUG_ON(!str);
604
605         tprintf("# binding tasks to CPUs:\n");
606         tprintf("#  ");
607
608         while (true) {
609                 int bind_cpu, bind_cpu_0, bind_cpu_1;
610                 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
611                 int bind_len;
612                 int step;
613                 int mul;
614
615                 tok = strsep(&str, ",");
616                 if (!tok)
617                         break;
618
619                 tok_end = strstr(tok, "-");
620
621                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
622                 if (!tok_end) {
623                         /* Single CPU specified: */
624                         bind_cpu_0 = bind_cpu_1 = atol(tok);
625                 } else {
626                         /* CPU range specified (for example: "5-11"): */
627                         bind_cpu_0 = atol(tok);
628                         bind_cpu_1 = atol(tok_end + 1);
629                 }
630
631                 step = 1;
632                 tok_step = strstr(tok, "#");
633                 if (tok_step) {
634                         step = atol(tok_step + 1);
635                         BUG_ON(step <= 0 || step >= g->p.nr_cpus);
636                 }
637
638                 /*
639                  * Mask length.
640                  * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
641                  * where the _4 means the next 4 CPUs are allowed.
642                  */
643                 bind_len = 1;
644                 tok_len = strstr(tok, "_");
645                 if (tok_len) {
646                         bind_len = atol(tok_len + 1);
647                         BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
648                 }
649
650                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
651                 mul = 1;
652                 tok_mul = strstr(tok, "x");
653                 if (tok_mul) {
654                         mul = atol(tok_mul + 1);
655                         BUG_ON(mul <= 0);
656                 }
657
658                 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
659
660                 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
661                         printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
662                         return -1;
663                 }
664
665                 if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) {
666                         printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n");
667                         return -1;
668                 }
669
670                 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
671                 BUG_ON(bind_cpu_0 > bind_cpu_1);
672
673                 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
674                         size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus);
675                         int i;
676
677                         for (i = 0; i < mul; i++) {
678                                 int cpu;
679
680                                 if (t >= g->p.nr_tasks) {
681                                         printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
682                                         goto out;
683                                 }
684                                 td = g->threads + t;
685
686                                 if (t)
687                                         tprintf(",");
688                                 if (bind_len > 1) {
689                                         tprintf("%2d/%d", bind_cpu, bind_len);
690                                 } else {
691                                         tprintf("%2d", bind_cpu);
692                                 }
693
694                                 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
695                                 BUG_ON(!td->bind_cpumask);
696                                 CPU_ZERO_S(size, td->bind_cpumask);
697                                 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
698                                         if (cpu < 0 || cpu >= g->p.nr_cpus) {
699                                                 CPU_FREE(td->bind_cpumask);
700                                                 BUG_ON(-1);
701                                         }
702                                         CPU_SET_S(cpu, size, td->bind_cpumask);
703                                 }
704                                 t++;
705                         }
706                 }
707         }
708 out:
709
710         tprintf("\n");
711
712         if (t < g->p.nr_tasks)
713                 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
714
715         free(str0);
716         return 0;
717 }
718
719 static int parse_cpus_opt(const struct option *opt __maybe_unused,
720                           const char *arg, int unset __maybe_unused)
721 {
722         if (!arg)
723                 return -1;
724
725         return parse_cpu_list(arg);
726 }
727
728 static int parse_node_list(const char *arg)
729 {
730         p0.node_list_str = strdup(arg);
731
732         dprintf("got NODE list: {%s}\n", p0.node_list_str);
733
734         return 0;
735 }
736
737 static int parse_setup_node_list(void)
738 {
739         struct thread_data *td;
740         char *str0, *str;
741         int t;
742
743         if (!g->p.node_list_str)
744                 return 0;
745
746         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
747
748         str0 = str = strdup(g->p.node_list_str);
749         t = 0;
750
751         BUG_ON(!str);
752
753         tprintf("# binding tasks to NODEs:\n");
754         tprintf("# ");
755
756         while (true) {
757                 int bind_node, bind_node_0, bind_node_1;
758                 char *tok, *tok_end, *tok_step, *tok_mul;
759                 int step;
760                 int mul;
761
762                 tok = strsep(&str, ",");
763                 if (!tok)
764                         break;
765
766                 tok_end = strstr(tok, "-");
767
768                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
769                 if (!tok_end) {
770                         /* Single NODE specified: */
771                         bind_node_0 = bind_node_1 = atol(tok);
772                 } else {
773                         /* NODE range specified (for example: "5-11"): */
774                         bind_node_0 = atol(tok);
775                         bind_node_1 = atol(tok_end + 1);
776                 }
777
778                 step = 1;
779                 tok_step = strstr(tok, "#");
780                 if (tok_step) {
781                         step = atol(tok_step + 1);
782                         BUG_ON(step <= 0 || step >= g->p.nr_nodes);
783                 }
784
785                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
786                 mul = 1;
787                 tok_mul = strstr(tok, "x");
788                 if (tok_mul) {
789                         mul = atol(tok_mul + 1);
790                         BUG_ON(mul <= 0);
791                 }
792
793                 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
794
795                 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
796                         printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
797                         return -1;
798                 }
799
800                 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
801                 BUG_ON(bind_node_0 > bind_node_1);
802
803                 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
804                         int i;
805
806                         for (i = 0; i < mul; i++) {
807                                 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
808                                         printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
809                                         goto out;
810                                 }
811                                 td = g->threads + t;
812
813                                 if (!t)
814                                         tprintf(" %2d", bind_node);
815                                 else
816                                         tprintf(",%2d", bind_node);
817
818                                 td->bind_node = bind_node;
819                                 t++;
820                         }
821                 }
822         }
823 out:
824
825         tprintf("\n");
826
827         if (t < g->p.nr_tasks)
828                 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
829
830         free(str0);
831         return 0;
832 }
833
834 static int parse_nodes_opt(const struct option *opt __maybe_unused,
835                           const char *arg, int unset __maybe_unused)
836 {
837         if (!arg)
838                 return -1;
839
840         return parse_node_list(arg);
841 }
842
843 static inline uint32_t lfsr_32(uint32_t lfsr)
844 {
845         const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
846         return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
847 }
848
849 /*
850  * Make sure there's real data dependency to RAM (when read
851  * accesses are enabled), so the compiler, the CPU and the
852  * kernel (KSM, zero page, etc.) cannot optimize away RAM
853  * accesses:
854  */
855 static inline u64 access_data(u64 *data, u64 val)
856 {
857         if (g->p.data_reads)
858                 val += *data;
859         if (g->p.data_writes)
860                 *data = val + 1;
861         return val;
862 }
863
864 /*
865  * The worker process does two types of work, a forwards going
866  * loop and a backwards going loop.
867  *
868  * We do this so that on multiprocessor systems we do not create
869  * a 'train' of processing, with highly synchronized processes,
870  * skewing the whole benchmark.
871  */
872 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
873 {
874         long words = bytes/sizeof(u64);
875         u64 *data = (void *)__data;
876         long chunk_0, chunk_1;
877         u64 *d0, *d, *d1;
878         long off;
879         long i;
880
881         BUG_ON(!data && words);
882         BUG_ON(data && !words);
883
884         if (!data)
885                 return val;
886
887         /* Very simple memset() work variant: */
888         if (g->p.data_zero_memset && !g->p.data_rand_walk) {
889                 bzero(data, bytes);
890                 return val;
891         }
892
893         /* Spread out by PID/TID nr and by loop nr: */
894         chunk_0 = words/nr_max;
895         chunk_1 = words/g->p.nr_loops;
896         off = nr*chunk_0 + loop*chunk_1;
897
898         while (off >= words)
899                 off -= words;
900
901         if (g->p.data_rand_walk) {
902                 u32 lfsr = nr + loop + val;
903                 long j;
904
905                 for (i = 0; i < words/1024; i++) {
906                         long start, end;
907
908                         lfsr = lfsr_32(lfsr);
909
910                         start = lfsr % words;
911                         end = min(start + 1024, words-1);
912
913                         if (g->p.data_zero_memset) {
914                                 bzero(data + start, (end-start) * sizeof(u64));
915                         } else {
916                                 for (j = start; j < end; j++)
917                                         val = access_data(data + j, val);
918                         }
919                 }
920         } else if (!g->p.data_backwards || (nr + loop) & 1) {
921                 /* Process data forwards: */
922
923                 d0 = data + off;
924                 d  = data + off + 1;
925                 d1 = data + words;
926
927                 for (;;) {
928                         if (unlikely(d >= d1))
929                                 d = data;
930                         if (unlikely(d == d0))
931                                 break;
932
933                         val = access_data(d, val);
934
935                         d++;
936                 }
937         } else {
938                 /* Process data backwards: */
939
940                 d0 = data + off;
941                 d  = data + off - 1;
942                 d1 = data + words;
943
944                 for (;;) {
945                         if (unlikely(d < data))
946                                 d = data + words-1;
947                         if (unlikely(d == d0))
948                                 break;
949
950                         val = access_data(d, val);
951
952                         d--;
953                 }
954         }
955
956         return val;
957 }
958
959 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
960 {
961         unsigned int cpu;
962
963         cpu = sched_getcpu();
964
965         g->threads[task_nr].curr_cpu = cpu;
966         prctl(0, bytes_worked);
967 }
968
969 /*
970  * Count the number of nodes a process's threads
971  * are spread out on.
972  *
973  * A count of 1 means that the process is compressed
974  * to a single node. A count of g->p.nr_nodes means it's
975  * spread out on the whole system.
976  */
977 static int count_process_nodes(int process_nr)
978 {
979         char *node_present;
980         int nodes;
981         int n, t;
982
983         node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
984         BUG_ON(!node_present);
985         for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
986                 node_present[nodes] = 0;
987
988         for (t = 0; t < g->p.nr_threads; t++) {
989                 struct thread_data *td;
990                 int task_nr;
991                 int node;
992
993                 task_nr = process_nr*g->p.nr_threads + t;
994                 td = g->threads + task_nr;
995
996                 node = numa_node_of_cpu(td->curr_cpu);
997                 if (node < 0) /* curr_cpu was likely still -1 */ {
998                         free(node_present);
999                         return 0;
1000                 }
1001
1002                 node_present[node] = 1;
1003         }
1004
1005         nodes = 0;
1006
1007         for (n = 0; n < g->p.nr_nodes; n++)
1008                 nodes += node_present[n];
1009
1010         free(node_present);
1011         return nodes;
1012 }
1013
1014 /*
1015  * Count the number of distinct process-threads a node contains.
1016  *
1017  * A count of 1 means that the node contains only a single
1018  * process. If all nodes on the system contain at most one
1019  * process then we are well-converged.
1020  */
1021 static int count_node_processes(int node)
1022 {
1023         int processes = 0;
1024         int t, p;
1025
1026         for (p = 0; p < g->p.nr_proc; p++) {
1027                 for (t = 0; t < g->p.nr_threads; t++) {
1028                         struct thread_data *td;
1029                         int task_nr;
1030                         int n;
1031
1032                         task_nr = p*g->p.nr_threads + t;
1033                         td = g->threads + task_nr;
1034
1035                         n = numa_node_of_cpu(td->curr_cpu);
1036                         if (n == node) {
1037                                 processes++;
1038                                 break;
1039                         }
1040                 }
1041         }
1042
1043         return processes;
1044 }
1045
1046 static void calc_convergence_compression(int *strong)
1047 {
1048         unsigned int nodes_min, nodes_max;
1049         int p;
1050
1051         nodes_min = -1;
1052         nodes_max =  0;
1053
1054         for (p = 0; p < g->p.nr_proc; p++) {
1055                 unsigned int nodes = count_process_nodes(p);
1056
1057                 if (!nodes) {
1058                         *strong = 0;
1059                         return;
1060                 }
1061
1062                 nodes_min = min(nodes, nodes_min);
1063                 nodes_max = max(nodes, nodes_max);
1064         }
1065
1066         /* Strong convergence: all threads compress on a single node: */
1067         if (nodes_min == 1 && nodes_max == 1) {
1068                 *strong = 1;
1069         } else {
1070                 *strong = 0;
1071                 tprintf(" {%d-%d}", nodes_min, nodes_max);
1072         }
1073 }
1074
1075 static void calc_convergence(double runtime_ns_max, double *convergence)
1076 {
1077         unsigned int loops_done_min, loops_done_max;
1078         int process_groups;
1079         int *nodes;
1080         int distance;
1081         int nr_min;
1082         int nr_max;
1083         int strong;
1084         int sum;
1085         int nr;
1086         int node;
1087         int cpu;
1088         int t;
1089
1090         if (!g->p.show_convergence && !g->p.measure_convergence)
1091                 return;
1092
1093         nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1094         BUG_ON(!nodes);
1095         for (node = 0; node < g->p.nr_nodes; node++)
1096                 nodes[node] = 0;
1097
1098         loops_done_min = -1;
1099         loops_done_max = 0;
1100
1101         for (t = 0; t < g->p.nr_tasks; t++) {
1102                 struct thread_data *td = g->threads + t;
1103                 unsigned int loops_done;
1104
1105                 cpu = td->curr_cpu;
1106
1107                 /* Not all threads have written it yet: */
1108                 if (cpu < 0)
1109                         continue;
1110
1111                 node = numa_node_of_cpu(cpu);
1112
1113                 nodes[node]++;
1114
1115                 loops_done = td->loops_done;
1116                 loops_done_min = min(loops_done, loops_done_min);
1117                 loops_done_max = max(loops_done, loops_done_max);
1118         }
1119
1120         nr_max = 0;
1121         nr_min = g->p.nr_tasks;
1122         sum = 0;
1123
1124         for (node = 0; node < g->p.nr_nodes; node++) {
1125                 if (!is_node_present(node))
1126                         continue;
1127                 nr = nodes[node];
1128                 nr_min = min(nr, nr_min);
1129                 nr_max = max(nr, nr_max);
1130                 sum += nr;
1131         }
1132         BUG_ON(nr_min > nr_max);
1133
1134         BUG_ON(sum > g->p.nr_tasks);
1135
1136         if (0 && (sum < g->p.nr_tasks)) {
1137                 free(nodes);
1138                 return;
1139         }
1140
1141         /*
1142          * Count the number of distinct process groups present
1143          * on nodes - when we are converged this will decrease
1144          * to g->p.nr_proc:
1145          */
1146         process_groups = 0;
1147
1148         for (node = 0; node < g->p.nr_nodes; node++) {
1149                 int processes;
1150
1151                 if (!is_node_present(node))
1152                         continue;
1153                 processes = count_node_processes(node);
1154                 nr = nodes[node];
1155                 tprintf(" %2d/%-2d", nr, processes);
1156
1157                 process_groups += processes;
1158         }
1159
1160         distance = nr_max - nr_min;
1161
1162         tprintf(" [%2d/%-2d]", distance, process_groups);
1163
1164         tprintf(" l:%3d-%-3d (%3d)",
1165                 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1166
1167         if (loops_done_min && loops_done_max) {
1168                 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1169
1170                 tprintf(" [%4.1f%%]", skew * 100.0);
1171         }
1172
1173         calc_convergence_compression(&strong);
1174
1175         if (strong && process_groups == g->p.nr_proc) {
1176                 if (!*convergence) {
1177                         *convergence = runtime_ns_max;
1178                         tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1179                         if (g->p.measure_convergence) {
1180                                 g->all_converged = true;
1181                                 g->stop_work = true;
1182                         }
1183                 }
1184         } else {
1185                 if (*convergence) {
1186                         tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1187                         *convergence = 0;
1188                 }
1189                 tprintf("\n");
1190         }
1191
1192         free(nodes);
1193 }
1194
1195 static void show_summary(double runtime_ns_max, int l, double *convergence)
1196 {
1197         tprintf("\r #  %5.1f%%  [%.1f mins]",
1198                 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1199
1200         calc_convergence(runtime_ns_max, convergence);
1201
1202         if (g->p.show_details >= 0)
1203                 fflush(stdout);
1204 }
1205
1206 static void *worker_thread(void *__tdata)
1207 {
1208         struct thread_data *td = __tdata;
1209         struct timeval start0, start, stop, diff;
1210         int process_nr = td->process_nr;
1211         int thread_nr = td->thread_nr;
1212         unsigned long last_perturbance;
1213         int task_nr = td->task_nr;
1214         int details = g->p.show_details;
1215         int first_task, last_task;
1216         double convergence = 0;
1217         u64 val = td->val;
1218         double runtime_ns_max;
1219         u8 *global_data;
1220         u8 *process_data;
1221         u8 *thread_data;
1222         u64 bytes_done, secs;
1223         long work_done;
1224         u32 l;
1225         struct rusage rusage;
1226
1227         bind_to_cpumask(td->bind_cpumask);
1228         bind_to_memnode(td->bind_node);
1229
1230         set_taskname("thread %d/%d", process_nr, thread_nr);
1231
1232         global_data = g->data;
1233         process_data = td->process_data;
1234         thread_data = setup_private_data(g->p.bytes_thread);
1235
1236         bytes_done = 0;
1237
1238         last_task = 0;
1239         if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1240                 last_task = 1;
1241
1242         first_task = 0;
1243         if (process_nr == 0 && thread_nr == 0)
1244                 first_task = 1;
1245
1246         if (details >= 2) {
1247                 printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1248                         process_nr, thread_nr, global_data, process_data, thread_data);
1249         }
1250
1251         if (g->p.serialize_startup) {
1252                 mutex_lock(&g->startup_mutex);
1253                 g->nr_tasks_started++;
1254                 /* The last thread wakes the main process. */
1255                 if (g->nr_tasks_started == g->p.nr_tasks)
1256                         cond_signal(&g->startup_cond);
1257
1258                 mutex_unlock(&g->startup_mutex);
1259
1260                 /* Here we will wait for the main process to start us all at once: */
1261                 mutex_lock(&g->start_work_mutex);
1262                 g->start_work = false;
1263                 g->nr_tasks_working++;
1264                 while (!g->start_work)
1265                         cond_wait(&g->start_work_cond, &g->start_work_mutex);
1266
1267                 mutex_unlock(&g->start_work_mutex);
1268         }
1269
1270         gettimeofday(&start0, NULL);
1271
1272         start = stop = start0;
1273         last_perturbance = start.tv_sec;
1274
1275         for (l = 0; l < g->p.nr_loops; l++) {
1276                 start = stop;
1277
1278                 if (g->stop_work)
1279                         break;
1280
1281                 val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1282                 val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1283                 val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1284
1285                 if (g->p.sleep_usecs) {
1286                         mutex_lock(td->process_lock);
1287                         usleep(g->p.sleep_usecs);
1288                         mutex_unlock(td->process_lock);
1289                 }
1290                 /*
1291                  * Amount of work to be done under a process-global lock:
1292                  */
1293                 if (g->p.bytes_process_locked) {
1294                         mutex_lock(td->process_lock);
1295                         val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1296                         mutex_unlock(td->process_lock);
1297                 }
1298
1299                 work_done = g->p.bytes_global + g->p.bytes_process +
1300                             g->p.bytes_process_locked + g->p.bytes_thread;
1301
1302                 update_curr_cpu(task_nr, work_done);
1303                 bytes_done += work_done;
1304
1305                 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1306                         continue;
1307
1308                 td->loops_done = l;
1309
1310                 gettimeofday(&stop, NULL);
1311
1312                 /* Check whether our max runtime timed out: */
1313                 if (g->p.nr_secs) {
1314                         timersub(&stop, &start0, &diff);
1315                         if ((u32)diff.tv_sec >= g->p.nr_secs) {
1316                                 g->stop_work = true;
1317                                 break;
1318                         }
1319                 }
1320
1321                 /* Update the summary at most once per second: */
1322                 if (start.tv_sec == stop.tv_sec)
1323                         continue;
1324
1325                 /*
1326                  * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1327                  * by migrating to CPU#0:
1328                  */
1329                 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1330                         cpu_set_t *orig_mask;
1331                         int target_cpu;
1332                         int this_cpu;
1333
1334                         last_perturbance = stop.tv_sec;
1335
1336                         /*
1337                          * Depending on where we are running, move into
1338                          * the other half of the system, to create some
1339                          * real disturbance:
1340                          */
1341                         this_cpu = g->threads[task_nr].curr_cpu;
1342                         if (this_cpu < g->p.nr_cpus/2)
1343                                 target_cpu = g->p.nr_cpus-1;
1344                         else
1345                                 target_cpu = 0;
1346
1347                         orig_mask = bind_to_cpu(target_cpu);
1348
1349                         /* Here we are running on the target CPU already */
1350                         if (details >= 1)
1351                                 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1352
1353                         bind_to_cpumask(orig_mask);
1354                         CPU_FREE(orig_mask);
1355                 }
1356
1357                 if (details >= 3) {
1358                         timersub(&stop, &start, &diff);
1359                         runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1360                         runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1361
1362                         if (details >= 0) {
1363                                 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1364                                         process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1365                         }
1366                         fflush(stdout);
1367                 }
1368                 if (!last_task)
1369                         continue;
1370
1371                 timersub(&stop, &start0, &diff);
1372                 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1373                 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1374
1375                 show_summary(runtime_ns_max, l, &convergence);
1376         }
1377
1378         gettimeofday(&stop, NULL);
1379         timersub(&stop, &start0, &diff);
1380         td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1381         td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1382         secs = td->runtime_ns / NSEC_PER_SEC;
1383         td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1384
1385         getrusage(RUSAGE_THREAD, &rusage);
1386         td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1387         td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1388         td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1389         td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1390
1391         free_data(thread_data, g->p.bytes_thread);
1392
1393         mutex_lock(&g->stop_work_mutex);
1394         g->bytes_done += bytes_done;
1395         mutex_unlock(&g->stop_work_mutex);
1396
1397         return NULL;
1398 }
1399
1400 /*
1401  * A worker process starts a couple of threads:
1402  */
1403 static void worker_process(int process_nr)
1404 {
1405         struct mutex process_lock;
1406         struct thread_data *td;
1407         pthread_t *pthreads;
1408         u8 *process_data;
1409         int task_nr;
1410         int ret;
1411         int t;
1412
1413         mutex_init(&process_lock);
1414         set_taskname("process %d", process_nr);
1415
1416         /*
1417          * Pick up the memory policy and the CPU binding of our first thread,
1418          * so that we initialize memory accordingly:
1419          */
1420         task_nr = process_nr*g->p.nr_threads;
1421         td = g->threads + task_nr;
1422
1423         bind_to_memnode(td->bind_node);
1424         bind_to_cpumask(td->bind_cpumask);
1425
1426         pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1427         process_data = setup_private_data(g->p.bytes_process);
1428
1429         if (g->p.show_details >= 3) {
1430                 printf(" # process %2d global mem: %p, process mem: %p\n",
1431                         process_nr, g->data, process_data);
1432         }
1433
1434         for (t = 0; t < g->p.nr_threads; t++) {
1435                 task_nr = process_nr*g->p.nr_threads + t;
1436                 td = g->threads + task_nr;
1437
1438                 td->process_data = process_data;
1439                 td->process_nr   = process_nr;
1440                 td->thread_nr    = t;
1441                 td->task_nr      = task_nr;
1442                 td->val          = rand();
1443                 td->curr_cpu     = -1;
1444                 td->process_lock = &process_lock;
1445
1446                 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1447                 BUG_ON(ret);
1448         }
1449
1450         for (t = 0; t < g->p.nr_threads; t++) {
1451                 ret = pthread_join(pthreads[t], NULL);
1452                 BUG_ON(ret);
1453         }
1454
1455         free_data(process_data, g->p.bytes_process);
1456         free(pthreads);
1457 }
1458
1459 static void print_summary(void)
1460 {
1461         if (g->p.show_details < 0)
1462                 return;
1463
1464         printf("\n ###\n");
1465         printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1466                 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1467         printf(" #      %5dx %5ldMB global  shared mem operations\n",
1468                         g->p.nr_loops, g->p.bytes_global/1024/1024);
1469         printf(" #      %5dx %5ldMB process shared mem operations\n",
1470                         g->p.nr_loops, g->p.bytes_process/1024/1024);
1471         printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1472                         g->p.nr_loops, g->p.bytes_thread/1024/1024);
1473
1474         printf(" ###\n");
1475
1476         printf("\n ###\n"); fflush(stdout);
1477 }
1478
1479 static void init_thread_data(void)
1480 {
1481         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1482         int t;
1483
1484         g->threads = zalloc_shared_data(size);
1485
1486         for (t = 0; t < g->p.nr_tasks; t++) {
1487                 struct thread_data *td = g->threads + t;
1488                 size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus);
1489                 int cpu;
1490
1491                 /* Allow all nodes by default: */
1492                 td->bind_node = NUMA_NO_NODE;
1493
1494                 /* Allow all CPUs by default: */
1495                 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
1496                 BUG_ON(!td->bind_cpumask);
1497                 CPU_ZERO_S(cpuset_size, td->bind_cpumask);
1498                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1499                         CPU_SET_S(cpu, cpuset_size, td->bind_cpumask);
1500         }
1501 }
1502
1503 static void deinit_thread_data(void)
1504 {
1505         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1506         int t;
1507
1508         /* Free the bind_cpumask allocated for thread_data */
1509         for (t = 0; t < g->p.nr_tasks; t++) {
1510                 struct thread_data *td = g->threads + t;
1511                 CPU_FREE(td->bind_cpumask);
1512         }
1513
1514         free_data(g->threads, size);
1515 }
1516
1517 static int init(void)
1518 {
1519         g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1520
1521         /* Copy over options: */
1522         g->p = p0;
1523
1524         g->p.nr_cpus = numa_num_configured_cpus();
1525
1526         g->p.nr_nodes = numa_max_node() + 1;
1527
1528         /* char array in count_process_nodes(): */
1529         BUG_ON(g->p.nr_nodes < 0);
1530
1531         if (quiet && !g->p.show_details)
1532                 g->p.show_details = -1;
1533
1534         /* Some memory should be specified: */
1535         if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1536                 return -1;
1537
1538         if (g->p.mb_global_str) {
1539                 g->p.mb_global = atof(g->p.mb_global_str);
1540                 BUG_ON(g->p.mb_global < 0);
1541         }
1542
1543         if (g->p.mb_proc_str) {
1544                 g->p.mb_proc = atof(g->p.mb_proc_str);
1545                 BUG_ON(g->p.mb_proc < 0);
1546         }
1547
1548         if (g->p.mb_proc_locked_str) {
1549                 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1550                 BUG_ON(g->p.mb_proc_locked < 0);
1551                 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1552         }
1553
1554         if (g->p.mb_thread_str) {
1555                 g->p.mb_thread = atof(g->p.mb_thread_str);
1556                 BUG_ON(g->p.mb_thread < 0);
1557         }
1558
1559         BUG_ON(g->p.nr_threads <= 0);
1560         BUG_ON(g->p.nr_proc <= 0);
1561
1562         g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1563
1564         g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1565         g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1566         g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1567         g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1568
1569         g->data = setup_shared_data(g->p.bytes_global);
1570
1571         /* Startup serialization: */
1572         mutex_init_pshared(&g->start_work_mutex);
1573         cond_init_pshared(&g->start_work_cond);
1574         mutex_init_pshared(&g->startup_mutex);
1575         cond_init_pshared(&g->startup_cond);
1576         mutex_init_pshared(&g->stop_work_mutex);
1577
1578         init_thread_data();
1579
1580         tprintf("#\n");
1581         if (parse_setup_cpu_list() || parse_setup_node_list())
1582                 return -1;
1583         tprintf("#\n");
1584
1585         print_summary();
1586
1587         return 0;
1588 }
1589
1590 static void deinit(void)
1591 {
1592         free_data(g->data, g->p.bytes_global);
1593         g->data = NULL;
1594
1595         deinit_thread_data();
1596
1597         free_data(g, sizeof(*g));
1598         g = NULL;
1599 }
1600
1601 /*
1602  * Print a short or long result, depending on the verbosity setting:
1603  */
1604 static void print_res(const char *name, double val,
1605                       const char *txt_unit, const char *txt_short, const char *txt_long)
1606 {
1607         if (!name)
1608                 name = "main,";
1609
1610         if (!quiet)
1611                 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1612         else
1613                 printf(" %14.3f %s\n", val, txt_long);
1614 }
1615
1616 static int __bench_numa(const char *name)
1617 {
1618         struct timeval start, stop, diff;
1619         u64 runtime_ns_min, runtime_ns_sum;
1620         pid_t *pids, pid, wpid;
1621         double delta_runtime;
1622         double runtime_avg;
1623         double runtime_sec_max;
1624         double runtime_sec_min;
1625         int wait_stat;
1626         double bytes;
1627         int i, t, p;
1628
1629         if (init())
1630                 return -1;
1631
1632         pids = zalloc(g->p.nr_proc * sizeof(*pids));
1633         pid = -1;
1634
1635         if (g->p.serialize_startup) {
1636                 tprintf(" #\n");
1637                 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1638         }
1639
1640         gettimeofday(&start, NULL);
1641
1642         for (i = 0; i < g->p.nr_proc; i++) {
1643                 pid = fork();
1644                 dprintf(" # process %2d: PID %d\n", i, pid);
1645
1646                 BUG_ON(pid < 0);
1647                 if (!pid) {
1648                         /* Child process: */
1649                         worker_process(i);
1650
1651                         exit(0);
1652                 }
1653                 pids[i] = pid;
1654
1655         }
1656
1657         if (g->p.serialize_startup) {
1658                 bool threads_ready = false;
1659                 double startup_sec;
1660
1661                 /*
1662                  * Wait for all the threads to start up. The last thread will
1663                  * signal this process.
1664                  */
1665                 mutex_lock(&g->startup_mutex);
1666                 while (g->nr_tasks_started != g->p.nr_tasks)
1667                         cond_wait(&g->startup_cond, &g->startup_mutex);
1668
1669                 mutex_unlock(&g->startup_mutex);
1670
1671                 /* Wait for all threads to be at the start_work_cond. */
1672                 while (!threads_ready) {
1673                         mutex_lock(&g->start_work_mutex);
1674                         threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1675                         mutex_unlock(&g->start_work_mutex);
1676                         if (!threads_ready)
1677                                 usleep(1);
1678                 }
1679
1680                 gettimeofday(&stop, NULL);
1681
1682                 timersub(&stop, &start, &diff);
1683
1684                 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1685                 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1686                 startup_sec /= NSEC_PER_SEC;
1687
1688                 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1689                 tprintf(" #\n");
1690
1691                 start = stop;
1692                 /* Start all threads running. */
1693                 mutex_lock(&g->start_work_mutex);
1694                 g->start_work = true;
1695                 mutex_unlock(&g->start_work_mutex);
1696                 cond_broadcast(&g->start_work_cond);
1697         } else {
1698                 gettimeofday(&start, NULL);
1699         }
1700
1701         /* Parent process: */
1702
1703
1704         for (i = 0; i < g->p.nr_proc; i++) {
1705                 wpid = waitpid(pids[i], &wait_stat, 0);
1706                 BUG_ON(wpid < 0);
1707                 BUG_ON(!WIFEXITED(wait_stat));
1708
1709         }
1710
1711         runtime_ns_sum = 0;
1712         runtime_ns_min = -1LL;
1713
1714         for (t = 0; t < g->p.nr_tasks; t++) {
1715                 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1716
1717                 runtime_ns_sum += thread_runtime_ns;
1718                 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1719         }
1720
1721         gettimeofday(&stop, NULL);
1722         timersub(&stop, &start, &diff);
1723
1724         BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1725
1726         tprintf("\n ###\n");
1727         tprintf("\n");
1728
1729         runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1730         runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1731         runtime_sec_max /= NSEC_PER_SEC;
1732
1733         runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1734
1735         bytes = g->bytes_done;
1736         runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1737
1738         if (g->p.measure_convergence) {
1739                 print_res(name, runtime_sec_max,
1740                         "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1741         }
1742
1743         print_res(name, runtime_sec_max,
1744                 "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1745
1746         print_res(name, runtime_sec_min,
1747                 "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1748
1749         print_res(name, runtime_avg,
1750                 "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1751
1752         delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1753         print_res(name, delta_runtime / runtime_sec_max * 100.0,
1754                 "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1755
1756         print_res(name, bytes / g->p.nr_tasks / 1e9,
1757                 "GB,", "data/thread",           "GB data processed, per thread");
1758
1759         print_res(name, bytes / 1e9,
1760                 "GB,", "data-total",            "GB data processed, total");
1761
1762         print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1763                 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1764
1765         print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1766                 "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1767
1768         print_res(name, bytes / runtime_sec_max / 1e9,
1769                 "GB/sec,", "total-speed",       "GB/sec total speed");
1770
1771         if (g->p.show_details >= 2) {
1772                 char tname[14 + 2 * 11 + 1];
1773                 struct thread_data *td;
1774                 for (p = 0; p < g->p.nr_proc; p++) {
1775                         for (t = 0; t < g->p.nr_threads; t++) {
1776                                 memset(tname, 0, sizeof(tname));
1777                                 td = g->threads + p*g->p.nr_threads + t;
1778                                 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1779                                 print_res(tname, td->speed_gbs,
1780                                         "GB/sec",       "thread-speed", "GB/sec/thread speed");
1781                                 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1782                                         "secs", "thread-system-time", "system CPU time/thread");
1783                                 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1784                                         "secs", "thread-user-time", "user CPU time/thread");
1785                         }
1786                 }
1787         }
1788
1789         free(pids);
1790
1791         deinit();
1792
1793         return 0;
1794 }
1795
1796 #define MAX_ARGS 50
1797
1798 static int command_size(const char **argv)
1799 {
1800         int size = 0;
1801
1802         while (*argv) {
1803                 size++;
1804                 argv++;
1805         }
1806
1807         BUG_ON(size >= MAX_ARGS);
1808
1809         return size;
1810 }
1811
1812 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1813 {
1814         int i;
1815
1816         printf("\n # Running %s \"perf bench numa", name);
1817
1818         for (i = 0; i < argc; i++)
1819                 printf(" %s", argv[i]);
1820
1821         printf("\"\n");
1822
1823         memset(p, 0, sizeof(*p));
1824
1825         /* Initialize nonzero defaults: */
1826
1827         p->serialize_startup            = 1;
1828         p->data_reads                   = true;
1829         p->data_writes                  = true;
1830         p->data_backwards               = true;
1831         p->data_rand_walk               = true;
1832         p->nr_loops                     = -1;
1833         p->init_random                  = true;
1834         p->mb_global_str                = "1";
1835         p->nr_proc                      = 1;
1836         p->nr_threads                   = 1;
1837         p->nr_secs                      = 5;
1838         p->run_all                      = argc == 1;
1839 }
1840
1841 static int run_bench_numa(const char *name, const char **argv)
1842 {
1843         int argc = command_size(argv);
1844
1845         init_params(&p0, name, argc, argv);
1846         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1847         if (argc)
1848                 goto err;
1849
1850         if (__bench_numa(name))
1851                 goto err;
1852
1853         return 0;
1854
1855 err:
1856         return -1;
1857 }
1858
1859 #define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1860 #define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1861
1862 #define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1863 #define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1864
1865 #define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1866 #define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1867
1868 /*
1869  * The built-in test-suite executed by "perf bench numa -a".
1870  *
1871  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1872  */
1873 static const char *tests[][MAX_ARGS] = {
1874    /* Basic single-stream NUMA bandwidth measurements: */
1875    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1876                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1877    { "RAM-bw-local-NOTHP,",
1878                           "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1879                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1880    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1881                           "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1882
1883    /* 2-stream NUMA bandwidth measurements: */
1884    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1885                            "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1886    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1887                            "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1888
1889    /* Cross-stream NUMA bandwidth measurement: */
1890    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1891                            "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1892
1893    /* Convergence latency measurements: */
1894    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1895    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1896    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1897    { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1898    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1899    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1900    { " 4x4-convergence-NOTHP,",
1901                           "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1902    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1903    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1904    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1905    { " 8x4-convergence-NOTHP,",
1906                           "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1907    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1908    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1909    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1910    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1911    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1912
1913    /* Various NUMA process/thread layout bandwidth measurements: */
1914    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1915    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1916    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1917    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1918    { " 8x1-bw-process-NOTHP,",
1919                           "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1920    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1921
1922    { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1923    { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1924    { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1925    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1926
1927    { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1928    { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1929    { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1930    { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1931    { " 4x8-bw-process-NOTHP,",
1932                           "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1933    { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1934    { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1935
1936    { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1937    { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1938
1939    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1940    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1941    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1942    { "numa01-bw-thread-NOTHP,",
1943                           "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1944 };
1945
1946 static int bench_all(void)
1947 {
1948         int nr = ARRAY_SIZE(tests);
1949         int ret;
1950         int i;
1951
1952         ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1953         BUG_ON(ret < 0);
1954
1955         for (i = 0; i < nr; i++) {
1956                 run_bench_numa(tests[i][0], tests[i] + 1);
1957         }
1958
1959         printf("\n");
1960
1961         return 0;
1962 }
1963
1964 int bench_numa(int argc, const char **argv)
1965 {
1966         init_params(&p0, "main,", argc, argv);
1967         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1968         if (argc)
1969                 goto err;
1970
1971         if (p0.run_all)
1972                 return bench_all();
1973
1974         if (__bench_numa(NULL))
1975                 goto err;
1976
1977         return 0;
1978
1979 err:
1980         usage_with_options(numa_usage, options);
1981         return -1;
1982 }
This page took 0.144433 seconds and 4 git commands to generate.