]> Git Repo - J-linux.git/blob - sound/core/pcm_lib.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / sound / core / pcm_lib.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Digital Audio (PCM) abstract layer
4  *  Copyright (c) by Jaroslav Kysela <[email protected]>
5  *                   Abramo Bagnara <[email protected]>
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10 #include <linux/time.h>
11 #include <linux/math64.h>
12 #include <linux/export.h>
13 #include <sound/core.h>
14 #include <sound/control.h>
15 #include <sound/tlv.h>
16 #include <sound/info.h>
17 #include <sound/pcm.h>
18 #include <sound/pcm_params.h>
19 #include <sound/timer.h>
20
21 #include "pcm_local.h"
22
23 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
24 #define CREATE_TRACE_POINTS
25 #include "pcm_trace.h"
26 #else
27 #define trace_hwptr(substream, pos, in_interrupt)
28 #define trace_xrun(substream)
29 #define trace_hw_ptr_error(substream, reason)
30 #define trace_applptr(substream, prev, curr)
31 #endif
32
33 static int fill_silence_frames(struct snd_pcm_substream *substream,
34                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36
37 static inline void update_silence_vars(struct snd_pcm_runtime *runtime,
38                                        snd_pcm_uframes_t ptr,
39                                        snd_pcm_uframes_t new_ptr)
40 {
41         snd_pcm_sframes_t delta;
42
43         delta = new_ptr - ptr;
44         if (delta == 0)
45                 return;
46         if (delta < 0)
47                 delta += runtime->boundary;
48         if ((snd_pcm_uframes_t)delta < runtime->silence_filled)
49                 runtime->silence_filled -= delta;
50         else
51                 runtime->silence_filled = 0;
52         runtime->silence_start = new_ptr;
53 }
54
55 /*
56  * fill ring buffer with silence
57  * runtime->silence_start: starting pointer to silence area
58  * runtime->silence_filled: size filled with silence
59  * runtime->silence_threshold: threshold from application
60  * runtime->silence_size: maximal size from application
61  *
62  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
63  */
64 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
65 {
66         struct snd_pcm_runtime *runtime = substream->runtime;
67         snd_pcm_uframes_t frames, ofs, transfer;
68         int err;
69
70         if (runtime->silence_size < runtime->boundary) {
71                 snd_pcm_sframes_t noise_dist;
72                 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
73                 update_silence_vars(runtime, runtime->silence_start, appl_ptr);
74                 /* initialization outside pointer updates */
75                 if (new_hw_ptr == ULONG_MAX)
76                         new_hw_ptr = runtime->status->hw_ptr;
77                 /* get hw_avail with the boundary crossing */
78                 noise_dist = appl_ptr - new_hw_ptr;
79                 if (noise_dist < 0)
80                         noise_dist += runtime->boundary;
81                 /* total noise distance */
82                 noise_dist += runtime->silence_filled;
83                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
84                         return;
85                 frames = runtime->silence_threshold - noise_dist;
86                 if (frames > runtime->silence_size)
87                         frames = runtime->silence_size;
88         } else {
89                 /*
90                  * This filling mode aims at free-running mode (used for example by dmix),
91                  * which doesn't update the application pointer.
92                  */
93                 snd_pcm_uframes_t hw_ptr = runtime->status->hw_ptr;
94                 if (new_hw_ptr == ULONG_MAX) {
95                         /*
96                          * Initialization, fill the whole unused buffer with silence.
97                          *
98                          * Usually, this is entered while stopped, before data is queued,
99                          * so both pointers are expected to be zero.
100                          */
101                         snd_pcm_sframes_t avail = runtime->control->appl_ptr - hw_ptr;
102                         if (avail < 0)
103                                 avail += runtime->boundary;
104                         /*
105                          * In free-running mode, appl_ptr will be zero even while running,
106                          * so we end up with a huge number. There is no useful way to
107                          * handle this, so we just clear the whole buffer.
108                          */
109                         runtime->silence_filled = avail > runtime->buffer_size ? 0 : avail;
110                         runtime->silence_start = hw_ptr;
111                 } else {
112                         /* Silence the just played area immediately */
113                         update_silence_vars(runtime, hw_ptr, new_hw_ptr);
114                 }
115                 /*
116                  * In this mode, silence_filled actually includes the valid
117                  * sample data from the user.
118                  */
119                 frames = runtime->buffer_size - runtime->silence_filled;
120         }
121         if (snd_BUG_ON(frames > runtime->buffer_size))
122                 return;
123         if (frames == 0)
124                 return;
125         ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
126         do {
127                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
128                 err = fill_silence_frames(substream, ofs, transfer);
129                 snd_BUG_ON(err < 0);
130                 runtime->silence_filled += transfer;
131                 frames -= transfer;
132                 ofs = 0;
133         } while (frames > 0);
134         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
135 }
136
137 #ifdef CONFIG_SND_DEBUG
138 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
139                            char *name, size_t len)
140 {
141         snprintf(name, len, "pcmC%dD%d%c:%d",
142                  substream->pcm->card->number,
143                  substream->pcm->device,
144                  substream->stream ? 'c' : 'p',
145                  substream->number);
146 }
147 EXPORT_SYMBOL(snd_pcm_debug_name);
148 #endif
149
150 #define XRUN_DEBUG_BASIC        (1<<0)
151 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
152 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
153
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156 #define xrun_debug(substream, mask) \
157                         ((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask)     0
160 #endif
161
162 #define dump_stack_on_xrun(substream) do {                      \
163                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
164                         dump_stack();                           \
165         } while (0)
166
167 /* call with stream lock held */
168 void __snd_pcm_xrun(struct snd_pcm_substream *substream)
169 {
170         struct snd_pcm_runtime *runtime = substream->runtime;
171
172         trace_xrun(substream);
173         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
174                 struct timespec64 tstamp;
175
176                 snd_pcm_gettime(runtime, &tstamp);
177                 runtime->status->tstamp.tv_sec = tstamp.tv_sec;
178                 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
179         }
180         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
181         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
182                 char name[16];
183                 snd_pcm_debug_name(substream, name, sizeof(name));
184                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
185                 dump_stack_on_xrun(substream);
186         }
187 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
188         substream->xrun_counter++;
189 #endif
190 }
191
192 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
193 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
194         do {                                                            \
195                 trace_hw_ptr_error(substream, reason);  \
196                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
197                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
198                                            (in_interrupt) ? 'Q' : 'P', ##args); \
199                         dump_stack_on_xrun(substream);                  \
200                 }                                                       \
201         } while (0)
202
203 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
204
205 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
206
207 #endif
208
209 int snd_pcm_update_state(struct snd_pcm_substream *substream,
210                          struct snd_pcm_runtime *runtime)
211 {
212         snd_pcm_uframes_t avail;
213
214         avail = snd_pcm_avail(substream);
215         if (avail > runtime->avail_max)
216                 runtime->avail_max = avail;
217         if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
218                 if (avail >= runtime->buffer_size) {
219                         snd_pcm_drain_done(substream);
220                         return -EPIPE;
221                 }
222         } else {
223                 if (avail >= runtime->stop_threshold) {
224                         __snd_pcm_xrun(substream);
225                         return -EPIPE;
226                 }
227         }
228         if (runtime->twake) {
229                 if (avail >= runtime->twake)
230                         wake_up(&runtime->tsleep);
231         } else if (avail >= runtime->control->avail_min)
232                 wake_up(&runtime->sleep);
233         return 0;
234 }
235
236 static void update_audio_tstamp(struct snd_pcm_substream *substream,
237                                 struct timespec64 *curr_tstamp,
238                                 struct timespec64 *audio_tstamp)
239 {
240         struct snd_pcm_runtime *runtime = substream->runtime;
241         u64 audio_frames, audio_nsecs;
242         struct timespec64 driver_tstamp;
243
244         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
245                 return;
246
247         if (!(substream->ops->get_time_info) ||
248                 (runtime->audio_tstamp_report.actual_type ==
249                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
250
251                 /*
252                  * provide audio timestamp derived from pointer position
253                  * add delay only if requested
254                  */
255
256                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
257
258                 if (runtime->audio_tstamp_config.report_delay) {
259                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
260                                 audio_frames -=  runtime->delay;
261                         else
262                                 audio_frames +=  runtime->delay;
263                 }
264                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
265                                 runtime->rate);
266                 *audio_tstamp = ns_to_timespec64(audio_nsecs);
267         }
268
269         if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
270             runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
271                 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
272                 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
273                 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
274                 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
275         }
276
277
278         /*
279          * re-take a driver timestamp to let apps detect if the reference tstamp
280          * read by low-level hardware was provided with a delay
281          */
282         snd_pcm_gettime(substream->runtime, &driver_tstamp);
283         runtime->driver_tstamp = driver_tstamp;
284 }
285
286 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
287                                   unsigned int in_interrupt)
288 {
289         struct snd_pcm_runtime *runtime = substream->runtime;
290         snd_pcm_uframes_t pos;
291         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
292         snd_pcm_sframes_t hdelta, delta;
293         unsigned long jdelta;
294         unsigned long curr_jiffies;
295         struct timespec64 curr_tstamp;
296         struct timespec64 audio_tstamp;
297         int crossed_boundary = 0;
298
299         old_hw_ptr = runtime->status->hw_ptr;
300
301         /*
302          * group pointer, time and jiffies reads to allow for more
303          * accurate correlations/corrections.
304          * The values are stored at the end of this routine after
305          * corrections for hw_ptr position
306          */
307         pos = substream->ops->pointer(substream);
308         curr_jiffies = jiffies;
309         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
310                 if ((substream->ops->get_time_info) &&
311                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
312                         substream->ops->get_time_info(substream, &curr_tstamp,
313                                                 &audio_tstamp,
314                                                 &runtime->audio_tstamp_config,
315                                                 &runtime->audio_tstamp_report);
316
317                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
318                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
319                                 snd_pcm_gettime(runtime, &curr_tstamp);
320                 } else
321                         snd_pcm_gettime(runtime, &curr_tstamp);
322         }
323
324         if (pos == SNDRV_PCM_POS_XRUN) {
325                 __snd_pcm_xrun(substream);
326                 return -EPIPE;
327         }
328         if (pos >= runtime->buffer_size) {
329                 if (printk_ratelimit()) {
330                         char name[16];
331                         snd_pcm_debug_name(substream, name, sizeof(name));
332                         pcm_err(substream->pcm,
333                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
334                                 name, pos, runtime->buffer_size,
335                                 runtime->period_size);
336                 }
337                 pos = 0;
338         }
339         pos -= pos % runtime->min_align;
340         trace_hwptr(substream, pos, in_interrupt);
341         hw_base = runtime->hw_ptr_base;
342         new_hw_ptr = hw_base + pos;
343         if (in_interrupt) {
344                 /* we know that one period was processed */
345                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
346                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
347                 if (delta > new_hw_ptr) {
348                         /* check for double acknowledged interrupts */
349                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
350                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
351                                 hw_base += runtime->buffer_size;
352                                 if (hw_base >= runtime->boundary) {
353                                         hw_base = 0;
354                                         crossed_boundary++;
355                                 }
356                                 new_hw_ptr = hw_base + pos;
357                                 goto __delta;
358                         }
359                 }
360         }
361         /* new_hw_ptr might be lower than old_hw_ptr in case when */
362         /* pointer crosses the end of the ring buffer */
363         if (new_hw_ptr < old_hw_ptr) {
364                 hw_base += runtime->buffer_size;
365                 if (hw_base >= runtime->boundary) {
366                         hw_base = 0;
367                         crossed_boundary++;
368                 }
369                 new_hw_ptr = hw_base + pos;
370         }
371       __delta:
372         delta = new_hw_ptr - old_hw_ptr;
373         if (delta < 0)
374                 delta += runtime->boundary;
375
376         if (runtime->no_period_wakeup) {
377                 snd_pcm_sframes_t xrun_threshold;
378                 /*
379                  * Without regular period interrupts, we have to check
380                  * the elapsed time to detect xruns.
381                  */
382                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
383                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
384                         goto no_delta_check;
385                 hdelta = jdelta - delta * HZ / runtime->rate;
386                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
387                 while (hdelta > xrun_threshold) {
388                         delta += runtime->buffer_size;
389                         hw_base += runtime->buffer_size;
390                         if (hw_base >= runtime->boundary) {
391                                 hw_base = 0;
392                                 crossed_boundary++;
393                         }
394                         new_hw_ptr = hw_base + pos;
395                         hdelta -= runtime->hw_ptr_buffer_jiffies;
396                 }
397                 goto no_delta_check;
398         }
399
400         /* something must be really wrong */
401         if (delta >= runtime->buffer_size + runtime->period_size) {
402                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
403                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
404                              substream->stream, (long)pos,
405                              (long)new_hw_ptr, (long)old_hw_ptr);
406                 return 0;
407         }
408
409         /* Do jiffies check only in xrun_debug mode */
410         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
411                 goto no_jiffies_check;
412
413         /* Skip the jiffies check for hardwares with BATCH flag.
414          * Such hardware usually just increases the position at each IRQ,
415          * thus it can't give any strange position.
416          */
417         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
418                 goto no_jiffies_check;
419         hdelta = delta;
420         if (hdelta < runtime->delay)
421                 goto no_jiffies_check;
422         hdelta -= runtime->delay;
423         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
424         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
425                 delta = jdelta /
426                         (((runtime->period_size * HZ) / runtime->rate)
427                                                                 + HZ/100);
428                 /* move new_hw_ptr according jiffies not pos variable */
429                 new_hw_ptr = old_hw_ptr;
430                 hw_base = delta;
431                 /* use loop to avoid checks for delta overflows */
432                 /* the delta value is small or zero in most cases */
433                 while (delta > 0) {
434                         new_hw_ptr += runtime->period_size;
435                         if (new_hw_ptr >= runtime->boundary) {
436                                 new_hw_ptr -= runtime->boundary;
437                                 crossed_boundary--;
438                         }
439                         delta--;
440                 }
441                 /* align hw_base to buffer_size */
442                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
443                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
444                              (long)pos, (long)hdelta,
445                              (long)runtime->period_size, jdelta,
446                              ((hdelta * HZ) / runtime->rate), hw_base,
447                              (unsigned long)old_hw_ptr,
448                              (unsigned long)new_hw_ptr);
449                 /* reset values to proper state */
450                 delta = 0;
451                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
452         }
453  no_jiffies_check:
454         if (delta > runtime->period_size + runtime->period_size / 2) {
455                 hw_ptr_error(substream, in_interrupt,
456                              "Lost interrupts?",
457                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
458                              substream->stream, (long)delta,
459                              (long)new_hw_ptr,
460                              (long)old_hw_ptr);
461         }
462
463  no_delta_check:
464         if (runtime->status->hw_ptr == new_hw_ptr) {
465                 runtime->hw_ptr_jiffies = curr_jiffies;
466                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
467                 return 0;
468         }
469
470         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
471             runtime->silence_size > 0)
472                 snd_pcm_playback_silence(substream, new_hw_ptr);
473
474         if (in_interrupt) {
475                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
476                 if (delta < 0)
477                         delta += runtime->boundary;
478                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
479                 runtime->hw_ptr_interrupt += delta;
480                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
481                         runtime->hw_ptr_interrupt -= runtime->boundary;
482         }
483         runtime->hw_ptr_base = hw_base;
484         runtime->status->hw_ptr = new_hw_ptr;
485         runtime->hw_ptr_jiffies = curr_jiffies;
486         if (crossed_boundary) {
487                 snd_BUG_ON(crossed_boundary != 1);
488                 runtime->hw_ptr_wrap += runtime->boundary;
489         }
490
491         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
492
493         return snd_pcm_update_state(substream, runtime);
494 }
495
496 /* CAUTION: call it with irq disabled */
497 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
498 {
499         return snd_pcm_update_hw_ptr0(substream, 0);
500 }
501
502 /**
503  * snd_pcm_set_ops - set the PCM operators
504  * @pcm: the pcm instance
505  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
506  * @ops: the operator table
507  *
508  * Sets the given PCM operators to the pcm instance.
509  */
510 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
511                      const struct snd_pcm_ops *ops)
512 {
513         struct snd_pcm_str *stream = &pcm->streams[direction];
514         struct snd_pcm_substream *substream;
515         
516         for (substream = stream->substream; substream != NULL; substream = substream->next)
517                 substream->ops = ops;
518 }
519 EXPORT_SYMBOL(snd_pcm_set_ops);
520
521 /**
522  * snd_pcm_set_sync_per_card - set the PCM sync id with card number
523  * @substream: the pcm substream
524  * @params: modified hardware parameters
525  * @id: identifier (max 12 bytes)
526  * @len: identifier length (max 12 bytes)
527  *
528  * Sets the PCM sync identifier for the card with zero padding.
529  *
530  * User space or any user should use this 16-byte identifier for a comparison only
531  * to check if two IDs are similar or different. Special case is the identifier
532  * containing only zeros. Interpretation for this combination is - empty (not set).
533  * The contents of the identifier should not be interpreted in any other way.
534  *
535  * The synchronization ID must be unique per clock source (usually one sound card,
536  * but multiple soundcard may use one PCM word clock source which means that they
537  * are fully synchronized).
538  *
539  * This routine composes this ID using card number in first four bytes and
540  * 12-byte additional ID. When other ID composition is used (e.g. for multiple
541  * sound cards), make sure that the composition does not clash with this
542  * composition scheme.
543  */
544 void snd_pcm_set_sync_per_card(struct snd_pcm_substream *substream,
545                                struct snd_pcm_hw_params *params,
546                                const unsigned char *id, unsigned int len)
547 {
548         *(__u32 *)params->sync = cpu_to_le32(substream->pcm->card->number);
549         len = min(12, len);
550         memcpy(params->sync + 4, id, len);
551         memset(params->sync + 4 + len, 0, 12 - len);
552 }
553 EXPORT_SYMBOL_GPL(snd_pcm_set_sync_per_card);
554
555 /*
556  *  Standard ioctl routine
557  */
558
559 static inline unsigned int div32(unsigned int a, unsigned int b, 
560                                  unsigned int *r)
561 {
562         if (b == 0) {
563                 *r = 0;
564                 return UINT_MAX;
565         }
566         *r = a % b;
567         return a / b;
568 }
569
570 static inline unsigned int div_down(unsigned int a, unsigned int b)
571 {
572         if (b == 0)
573                 return UINT_MAX;
574         return a / b;
575 }
576
577 static inline unsigned int div_up(unsigned int a, unsigned int b)
578 {
579         unsigned int r;
580         unsigned int q;
581         if (b == 0)
582                 return UINT_MAX;
583         q = div32(a, b, &r);
584         if (r)
585                 ++q;
586         return q;
587 }
588
589 static inline unsigned int mul(unsigned int a, unsigned int b)
590 {
591         if (a == 0)
592                 return 0;
593         if (div_down(UINT_MAX, a) < b)
594                 return UINT_MAX;
595         return a * b;
596 }
597
598 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
599                                     unsigned int c, unsigned int *r)
600 {
601         u_int64_t n = (u_int64_t) a * b;
602         if (c == 0) {
603                 *r = 0;
604                 return UINT_MAX;
605         }
606         n = div_u64_rem(n, c, r);
607         if (n >= UINT_MAX) {
608                 *r = 0;
609                 return UINT_MAX;
610         }
611         return n;
612 }
613
614 /**
615  * snd_interval_refine - refine the interval value of configurator
616  * @i: the interval value to refine
617  * @v: the interval value to refer to
618  *
619  * Refines the interval value with the reference value.
620  * The interval is changed to the range satisfying both intervals.
621  * The interval status (min, max, integer, etc.) are evaluated.
622  *
623  * Return: Positive if the value is changed, zero if it's not changed, or a
624  * negative error code.
625  */
626 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
627 {
628         int changed = 0;
629         if (snd_BUG_ON(snd_interval_empty(i)))
630                 return -EINVAL;
631         if (i->min < v->min) {
632                 i->min = v->min;
633                 i->openmin = v->openmin;
634                 changed = 1;
635         } else if (i->min == v->min && !i->openmin && v->openmin) {
636                 i->openmin = 1;
637                 changed = 1;
638         }
639         if (i->max > v->max) {
640                 i->max = v->max;
641                 i->openmax = v->openmax;
642                 changed = 1;
643         } else if (i->max == v->max && !i->openmax && v->openmax) {
644                 i->openmax = 1;
645                 changed = 1;
646         }
647         if (!i->integer && v->integer) {
648                 i->integer = 1;
649                 changed = 1;
650         }
651         if (i->integer) {
652                 if (i->openmin) {
653                         i->min++;
654                         i->openmin = 0;
655                 }
656                 if (i->openmax) {
657                         i->max--;
658                         i->openmax = 0;
659                 }
660         } else if (!i->openmin && !i->openmax && i->min == i->max)
661                 i->integer = 1;
662         if (snd_interval_checkempty(i)) {
663                 snd_interval_none(i);
664                 return -EINVAL;
665         }
666         return changed;
667 }
668 EXPORT_SYMBOL(snd_interval_refine);
669
670 static int snd_interval_refine_first(struct snd_interval *i)
671 {
672         const unsigned int last_max = i->max;
673
674         if (snd_BUG_ON(snd_interval_empty(i)))
675                 return -EINVAL;
676         if (snd_interval_single(i))
677                 return 0;
678         i->max = i->min;
679         if (i->openmin)
680                 i->max++;
681         /* only exclude max value if also excluded before refine */
682         i->openmax = (i->openmax && i->max >= last_max);
683         return 1;
684 }
685
686 static int snd_interval_refine_last(struct snd_interval *i)
687 {
688         const unsigned int last_min = i->min;
689
690         if (snd_BUG_ON(snd_interval_empty(i)))
691                 return -EINVAL;
692         if (snd_interval_single(i))
693                 return 0;
694         i->min = i->max;
695         if (i->openmax)
696                 i->min--;
697         /* only exclude min value if also excluded before refine */
698         i->openmin = (i->openmin && i->min <= last_min);
699         return 1;
700 }
701
702 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
703 {
704         if (a->empty || b->empty) {
705                 snd_interval_none(c);
706                 return;
707         }
708         c->empty = 0;
709         c->min = mul(a->min, b->min);
710         c->openmin = (a->openmin || b->openmin);
711         c->max = mul(a->max,  b->max);
712         c->openmax = (a->openmax || b->openmax);
713         c->integer = (a->integer && b->integer);
714 }
715
716 /**
717  * snd_interval_div - refine the interval value with division
718  * @a: dividend
719  * @b: divisor
720  * @c: quotient
721  *
722  * c = a / b
723  *
724  * Returns non-zero if the value is changed, zero if not changed.
725  */
726 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
727 {
728         unsigned int r;
729         if (a->empty || b->empty) {
730                 snd_interval_none(c);
731                 return;
732         }
733         c->empty = 0;
734         c->min = div32(a->min, b->max, &r);
735         c->openmin = (r || a->openmin || b->openmax);
736         if (b->min > 0) {
737                 c->max = div32(a->max, b->min, &r);
738                 if (r) {
739                         c->max++;
740                         c->openmax = 1;
741                 } else
742                         c->openmax = (a->openmax || b->openmin);
743         } else {
744                 c->max = UINT_MAX;
745                 c->openmax = 0;
746         }
747         c->integer = 0;
748 }
749
750 /**
751  * snd_interval_muldivk - refine the interval value
752  * @a: dividend 1
753  * @b: dividend 2
754  * @k: divisor (as integer)
755  * @c: result
756   *
757  * c = a * b / k
758  *
759  * Returns non-zero if the value is changed, zero if not changed.
760  */
761 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
762                       unsigned int k, struct snd_interval *c)
763 {
764         unsigned int r;
765         if (a->empty || b->empty) {
766                 snd_interval_none(c);
767                 return;
768         }
769         c->empty = 0;
770         c->min = muldiv32(a->min, b->min, k, &r);
771         c->openmin = (r || a->openmin || b->openmin);
772         c->max = muldiv32(a->max, b->max, k, &r);
773         if (r) {
774                 c->max++;
775                 c->openmax = 1;
776         } else
777                 c->openmax = (a->openmax || b->openmax);
778         c->integer = 0;
779 }
780
781 /**
782  * snd_interval_mulkdiv - refine the interval value
783  * @a: dividend 1
784  * @k: dividend 2 (as integer)
785  * @b: divisor
786  * @c: result
787  *
788  * c = a * k / b
789  *
790  * Returns non-zero if the value is changed, zero if not changed.
791  */
792 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
793                       const struct snd_interval *b, struct snd_interval *c)
794 {
795         unsigned int r;
796         if (a->empty || b->empty) {
797                 snd_interval_none(c);
798                 return;
799         }
800         c->empty = 0;
801         c->min = muldiv32(a->min, k, b->max, &r);
802         c->openmin = (r || a->openmin || b->openmax);
803         if (b->min > 0) {
804                 c->max = muldiv32(a->max, k, b->min, &r);
805                 if (r) {
806                         c->max++;
807                         c->openmax = 1;
808                 } else
809                         c->openmax = (a->openmax || b->openmin);
810         } else {
811                 c->max = UINT_MAX;
812                 c->openmax = 0;
813         }
814         c->integer = 0;
815 }
816
817 /* ---- */
818
819
820 /**
821  * snd_interval_ratnum - refine the interval value
822  * @i: interval to refine
823  * @rats_count: number of ratnum_t 
824  * @rats: ratnum_t array
825  * @nump: pointer to store the resultant numerator
826  * @denp: pointer to store the resultant denominator
827  *
828  * Return: Positive if the value is changed, zero if it's not changed, or a
829  * negative error code.
830  */
831 int snd_interval_ratnum(struct snd_interval *i,
832                         unsigned int rats_count, const struct snd_ratnum *rats,
833                         unsigned int *nump, unsigned int *denp)
834 {
835         unsigned int best_num, best_den;
836         int best_diff;
837         unsigned int k;
838         struct snd_interval t;
839         int err;
840         unsigned int result_num, result_den;
841         int result_diff;
842
843         best_num = best_den = best_diff = 0;
844         for (k = 0; k < rats_count; ++k) {
845                 unsigned int num = rats[k].num;
846                 unsigned int den;
847                 unsigned int q = i->min;
848                 int diff;
849                 if (q == 0)
850                         q = 1;
851                 den = div_up(num, q);
852                 if (den < rats[k].den_min)
853                         continue;
854                 if (den > rats[k].den_max)
855                         den = rats[k].den_max;
856                 else {
857                         unsigned int r;
858                         r = (den - rats[k].den_min) % rats[k].den_step;
859                         if (r != 0)
860                                 den -= r;
861                 }
862                 diff = num - q * den;
863                 if (diff < 0)
864                         diff = -diff;
865                 if (best_num == 0 ||
866                     diff * best_den < best_diff * den) {
867                         best_diff = diff;
868                         best_den = den;
869                         best_num = num;
870                 }
871         }
872         if (best_den == 0) {
873                 i->empty = 1;
874                 return -EINVAL;
875         }
876         t.min = div_down(best_num, best_den);
877         t.openmin = !!(best_num % best_den);
878         
879         result_num = best_num;
880         result_diff = best_diff;
881         result_den = best_den;
882         best_num = best_den = best_diff = 0;
883         for (k = 0; k < rats_count; ++k) {
884                 unsigned int num = rats[k].num;
885                 unsigned int den;
886                 unsigned int q = i->max;
887                 int diff;
888                 if (q == 0) {
889                         i->empty = 1;
890                         return -EINVAL;
891                 }
892                 den = div_down(num, q);
893                 if (den > rats[k].den_max)
894                         continue;
895                 if (den < rats[k].den_min)
896                         den = rats[k].den_min;
897                 else {
898                         unsigned int r;
899                         r = (den - rats[k].den_min) % rats[k].den_step;
900                         if (r != 0)
901                                 den += rats[k].den_step - r;
902                 }
903                 diff = q * den - num;
904                 if (diff < 0)
905                         diff = -diff;
906                 if (best_num == 0 ||
907                     diff * best_den < best_diff * den) {
908                         best_diff = diff;
909                         best_den = den;
910                         best_num = num;
911                 }
912         }
913         if (best_den == 0) {
914                 i->empty = 1;
915                 return -EINVAL;
916         }
917         t.max = div_up(best_num, best_den);
918         t.openmax = !!(best_num % best_den);
919         t.integer = 0;
920         err = snd_interval_refine(i, &t);
921         if (err < 0)
922                 return err;
923
924         if (snd_interval_single(i)) {
925                 if (best_diff * result_den < result_diff * best_den) {
926                         result_num = best_num;
927                         result_den = best_den;
928                 }
929                 if (nump)
930                         *nump = result_num;
931                 if (denp)
932                         *denp = result_den;
933         }
934         return err;
935 }
936 EXPORT_SYMBOL(snd_interval_ratnum);
937
938 /**
939  * snd_interval_ratden - refine the interval value
940  * @i: interval to refine
941  * @rats_count: number of struct ratden
942  * @rats: struct ratden array
943  * @nump: pointer to store the resultant numerator
944  * @denp: pointer to store the resultant denominator
945  *
946  * Return: Positive if the value is changed, zero if it's not changed, or a
947  * negative error code.
948  */
949 static int snd_interval_ratden(struct snd_interval *i,
950                                unsigned int rats_count,
951                                const struct snd_ratden *rats,
952                                unsigned int *nump, unsigned int *denp)
953 {
954         unsigned int best_num, best_diff, best_den;
955         unsigned int k;
956         struct snd_interval t;
957         int err;
958
959         best_num = best_den = best_diff = 0;
960         for (k = 0; k < rats_count; ++k) {
961                 unsigned int num;
962                 unsigned int den = rats[k].den;
963                 unsigned int q = i->min;
964                 int diff;
965                 num = mul(q, den);
966                 if (num > rats[k].num_max)
967                         continue;
968                 if (num < rats[k].num_min)
969                         num = rats[k].num_max;
970                 else {
971                         unsigned int r;
972                         r = (num - rats[k].num_min) % rats[k].num_step;
973                         if (r != 0)
974                                 num += rats[k].num_step - r;
975                 }
976                 diff = num - q * den;
977                 if (best_num == 0 ||
978                     diff * best_den < best_diff * den) {
979                         best_diff = diff;
980                         best_den = den;
981                         best_num = num;
982                 }
983         }
984         if (best_den == 0) {
985                 i->empty = 1;
986                 return -EINVAL;
987         }
988         t.min = div_down(best_num, best_den);
989         t.openmin = !!(best_num % best_den);
990         
991         best_num = best_den = best_diff = 0;
992         for (k = 0; k < rats_count; ++k) {
993                 unsigned int num;
994                 unsigned int den = rats[k].den;
995                 unsigned int q = i->max;
996                 int diff;
997                 num = mul(q, den);
998                 if (num < rats[k].num_min)
999                         continue;
1000                 if (num > rats[k].num_max)
1001                         num = rats[k].num_max;
1002                 else {
1003                         unsigned int r;
1004                         r = (num - rats[k].num_min) % rats[k].num_step;
1005                         if (r != 0)
1006                                 num -= r;
1007                 }
1008                 diff = q * den - num;
1009                 if (best_num == 0 ||
1010                     diff * best_den < best_diff * den) {
1011                         best_diff = diff;
1012                         best_den = den;
1013                         best_num = num;
1014                 }
1015         }
1016         if (best_den == 0) {
1017                 i->empty = 1;
1018                 return -EINVAL;
1019         }
1020         t.max = div_up(best_num, best_den);
1021         t.openmax = !!(best_num % best_den);
1022         t.integer = 0;
1023         err = snd_interval_refine(i, &t);
1024         if (err < 0)
1025                 return err;
1026
1027         if (snd_interval_single(i)) {
1028                 if (nump)
1029                         *nump = best_num;
1030                 if (denp)
1031                         *denp = best_den;
1032         }
1033         return err;
1034 }
1035
1036 /**
1037  * snd_interval_list - refine the interval value from the list
1038  * @i: the interval value to refine
1039  * @count: the number of elements in the list
1040  * @list: the value list
1041  * @mask: the bit-mask to evaluate
1042  *
1043  * Refines the interval value from the list.
1044  * When mask is non-zero, only the elements corresponding to bit 1 are
1045  * evaluated.
1046  *
1047  * Return: Positive if the value is changed, zero if it's not changed, or a
1048  * negative error code.
1049  */
1050 int snd_interval_list(struct snd_interval *i, unsigned int count,
1051                       const unsigned int *list, unsigned int mask)
1052 {
1053         unsigned int k;
1054         struct snd_interval list_range;
1055
1056         if (!count) {
1057                 i->empty = 1;
1058                 return -EINVAL;
1059         }
1060         snd_interval_any(&list_range);
1061         list_range.min = UINT_MAX;
1062         list_range.max = 0;
1063         for (k = 0; k < count; k++) {
1064                 if (mask && !(mask & (1 << k)))
1065                         continue;
1066                 if (!snd_interval_test(i, list[k]))
1067                         continue;
1068                 list_range.min = min(list_range.min, list[k]);
1069                 list_range.max = max(list_range.max, list[k]);
1070         }
1071         return snd_interval_refine(i, &list_range);
1072 }
1073 EXPORT_SYMBOL(snd_interval_list);
1074
1075 /**
1076  * snd_interval_ranges - refine the interval value from the list of ranges
1077  * @i: the interval value to refine
1078  * @count: the number of elements in the list of ranges
1079  * @ranges: the ranges list
1080  * @mask: the bit-mask to evaluate
1081  *
1082  * Refines the interval value from the list of ranges.
1083  * When mask is non-zero, only the elements corresponding to bit 1 are
1084  * evaluated.
1085  *
1086  * Return: Positive if the value is changed, zero if it's not changed, or a
1087  * negative error code.
1088  */
1089 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1090                         const struct snd_interval *ranges, unsigned int mask)
1091 {
1092         unsigned int k;
1093         struct snd_interval range_union;
1094         struct snd_interval range;
1095
1096         if (!count) {
1097                 snd_interval_none(i);
1098                 return -EINVAL;
1099         }
1100         snd_interval_any(&range_union);
1101         range_union.min = UINT_MAX;
1102         range_union.max = 0;
1103         for (k = 0; k < count; k++) {
1104                 if (mask && !(mask & (1 << k)))
1105                         continue;
1106                 snd_interval_copy(&range, &ranges[k]);
1107                 if (snd_interval_refine(&range, i) < 0)
1108                         continue;
1109                 if (snd_interval_empty(&range))
1110                         continue;
1111
1112                 if (range.min < range_union.min) {
1113                         range_union.min = range.min;
1114                         range_union.openmin = 1;
1115                 }
1116                 if (range.min == range_union.min && !range.openmin)
1117                         range_union.openmin = 0;
1118                 if (range.max > range_union.max) {
1119                         range_union.max = range.max;
1120                         range_union.openmax = 1;
1121                 }
1122                 if (range.max == range_union.max && !range.openmax)
1123                         range_union.openmax = 0;
1124         }
1125         return snd_interval_refine(i, &range_union);
1126 }
1127 EXPORT_SYMBOL(snd_interval_ranges);
1128
1129 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1130 {
1131         unsigned int n;
1132         int changed = 0;
1133         n = i->min % step;
1134         if (n != 0 || i->openmin) {
1135                 i->min += step - n;
1136                 i->openmin = 0;
1137                 changed = 1;
1138         }
1139         n = i->max % step;
1140         if (n != 0 || i->openmax) {
1141                 i->max -= n;
1142                 i->openmax = 0;
1143                 changed = 1;
1144         }
1145         if (snd_interval_checkempty(i)) {
1146                 i->empty = 1;
1147                 return -EINVAL;
1148         }
1149         return changed;
1150 }
1151
1152 /* Info constraints helpers */
1153
1154 /**
1155  * snd_pcm_hw_rule_add - add the hw-constraint rule
1156  * @runtime: the pcm runtime instance
1157  * @cond: condition bits
1158  * @var: the variable to evaluate
1159  * @func: the evaluation function
1160  * @private: the private data pointer passed to function
1161  * @dep: the dependent variables
1162  *
1163  * Return: Zero if successful, or a negative error code on failure.
1164  */
1165 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1166                         int var,
1167                         snd_pcm_hw_rule_func_t func, void *private,
1168                         int dep, ...)
1169 {
1170         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1171         struct snd_pcm_hw_rule *c;
1172         unsigned int k;
1173         va_list args;
1174         va_start(args, dep);
1175         if (constrs->rules_num >= constrs->rules_all) {
1176                 struct snd_pcm_hw_rule *new;
1177                 unsigned int new_rules = constrs->rules_all + 16;
1178                 new = krealloc_array(constrs->rules, new_rules,
1179                                      sizeof(*c), GFP_KERNEL);
1180                 if (!new) {
1181                         va_end(args);
1182                         return -ENOMEM;
1183                 }
1184                 constrs->rules = new;
1185                 constrs->rules_all = new_rules;
1186         }
1187         c = &constrs->rules[constrs->rules_num];
1188         c->cond = cond;
1189         c->func = func;
1190         c->var = var;
1191         c->private = private;
1192         k = 0;
1193         while (1) {
1194                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1195                         va_end(args);
1196                         return -EINVAL;
1197                 }
1198                 c->deps[k++] = dep;
1199                 if (dep < 0)
1200                         break;
1201                 dep = va_arg(args, int);
1202         }
1203         constrs->rules_num++;
1204         va_end(args);
1205         return 0;
1206 }
1207 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1208
1209 /**
1210  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1211  * @runtime: PCM runtime instance
1212  * @var: hw_params variable to apply the mask
1213  * @mask: the bitmap mask
1214  *
1215  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1216  *
1217  * Return: Zero if successful, or a negative error code on failure.
1218  */
1219 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1220                                u_int32_t mask)
1221 {
1222         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223         struct snd_mask *maskp = constrs_mask(constrs, var);
1224         *maskp->bits &= mask;
1225         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1226         if (*maskp->bits == 0)
1227                 return -EINVAL;
1228         return 0;
1229 }
1230
1231 /**
1232  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1233  * @runtime: PCM runtime instance
1234  * @var: hw_params variable to apply the mask
1235  * @mask: the 64bit bitmap mask
1236  *
1237  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1238  *
1239  * Return: Zero if successful, or a negative error code on failure.
1240  */
1241 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1242                                  u_int64_t mask)
1243 {
1244         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1245         struct snd_mask *maskp = constrs_mask(constrs, var);
1246         maskp->bits[0] &= (u_int32_t)mask;
1247         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1248         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1249         if (! maskp->bits[0] && ! maskp->bits[1])
1250                 return -EINVAL;
1251         return 0;
1252 }
1253 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1254
1255 /**
1256  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1257  * @runtime: PCM runtime instance
1258  * @var: hw_params variable to apply the integer constraint
1259  *
1260  * Apply the constraint of integer to an interval parameter.
1261  *
1262  * Return: Positive if the value is changed, zero if it's not changed, or a
1263  * negative error code.
1264  */
1265 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1266 {
1267         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268         return snd_interval_setinteger(constrs_interval(constrs, var));
1269 }
1270 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1271
1272 /**
1273  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1274  * @runtime: PCM runtime instance
1275  * @var: hw_params variable to apply the range
1276  * @min: the minimal value
1277  * @max: the maximal value
1278  * 
1279  * Apply the min/max range constraint to an interval parameter.
1280  *
1281  * Return: Positive if the value is changed, zero if it's not changed, or a
1282  * negative error code.
1283  */
1284 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1285                                  unsigned int min, unsigned int max)
1286 {
1287         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1288         struct snd_interval t;
1289         t.min = min;
1290         t.max = max;
1291         t.openmin = t.openmax = 0;
1292         t.integer = 0;
1293         return snd_interval_refine(constrs_interval(constrs, var), &t);
1294 }
1295 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1296
1297 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1298                                 struct snd_pcm_hw_rule *rule)
1299 {
1300         struct snd_pcm_hw_constraint_list *list = rule->private;
1301         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1302 }               
1303
1304
1305 /**
1306  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1307  * @runtime: PCM runtime instance
1308  * @cond: condition bits
1309  * @var: hw_params variable to apply the list constraint
1310  * @l: list
1311  * 
1312  * Apply the list of constraints to an interval parameter.
1313  *
1314  * Return: Zero if successful, or a negative error code on failure.
1315  */
1316 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1317                                unsigned int cond,
1318                                snd_pcm_hw_param_t var,
1319                                const struct snd_pcm_hw_constraint_list *l)
1320 {
1321         return snd_pcm_hw_rule_add(runtime, cond, var,
1322                                    snd_pcm_hw_rule_list, (void *)l,
1323                                    var, -1);
1324 }
1325 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1326
1327 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1328                                   struct snd_pcm_hw_rule *rule)
1329 {
1330         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1331         return snd_interval_ranges(hw_param_interval(params, rule->var),
1332                                    r->count, r->ranges, r->mask);
1333 }
1334
1335
1336 /**
1337  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1338  * @runtime: PCM runtime instance
1339  * @cond: condition bits
1340  * @var: hw_params variable to apply the list of range constraints
1341  * @r: ranges
1342  *
1343  * Apply the list of range constraints to an interval parameter.
1344  *
1345  * Return: Zero if successful, or a negative error code on failure.
1346  */
1347 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1348                                  unsigned int cond,
1349                                  snd_pcm_hw_param_t var,
1350                                  const struct snd_pcm_hw_constraint_ranges *r)
1351 {
1352         return snd_pcm_hw_rule_add(runtime, cond, var,
1353                                    snd_pcm_hw_rule_ranges, (void *)r,
1354                                    var, -1);
1355 }
1356 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1357
1358 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1359                                    struct snd_pcm_hw_rule *rule)
1360 {
1361         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1362         unsigned int num = 0, den = 0;
1363         int err;
1364         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1365                                   r->nrats, r->rats, &num, &den);
1366         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1367                 params->rate_num = num;
1368                 params->rate_den = den;
1369         }
1370         return err;
1371 }
1372
1373 /**
1374  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1375  * @runtime: PCM runtime instance
1376  * @cond: condition bits
1377  * @var: hw_params variable to apply the ratnums constraint
1378  * @r: struct snd_ratnums constriants
1379  *
1380  * Return: Zero if successful, or a negative error code on failure.
1381  */
1382 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1383                                   unsigned int cond,
1384                                   snd_pcm_hw_param_t var,
1385                                   const struct snd_pcm_hw_constraint_ratnums *r)
1386 {
1387         return snd_pcm_hw_rule_add(runtime, cond, var,
1388                                    snd_pcm_hw_rule_ratnums, (void *)r,
1389                                    var, -1);
1390 }
1391 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1392
1393 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1394                                    struct snd_pcm_hw_rule *rule)
1395 {
1396         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1397         unsigned int num = 0, den = 0;
1398         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1399                                   r->nrats, r->rats, &num, &den);
1400         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1401                 params->rate_num = num;
1402                 params->rate_den = den;
1403         }
1404         return err;
1405 }
1406
1407 /**
1408  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1409  * @runtime: PCM runtime instance
1410  * @cond: condition bits
1411  * @var: hw_params variable to apply the ratdens constraint
1412  * @r: struct snd_ratdens constriants
1413  *
1414  * Return: Zero if successful, or a negative error code on failure.
1415  */
1416 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1417                                   unsigned int cond,
1418                                   snd_pcm_hw_param_t var,
1419                                   const struct snd_pcm_hw_constraint_ratdens *r)
1420 {
1421         return snd_pcm_hw_rule_add(runtime, cond, var,
1422                                    snd_pcm_hw_rule_ratdens, (void *)r,
1423                                    var, -1);
1424 }
1425 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1426
1427 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1428                                   struct snd_pcm_hw_rule *rule)
1429 {
1430         unsigned int l = (unsigned long) rule->private;
1431         int width = l & 0xffff;
1432         unsigned int msbits = l >> 16;
1433         const struct snd_interval *i =
1434                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1435
1436         if (!snd_interval_single(i))
1437                 return 0;
1438
1439         if ((snd_interval_value(i) == width) ||
1440             (width == 0 && snd_interval_value(i) > msbits))
1441                 params->msbits = min_not_zero(params->msbits, msbits);
1442
1443         return 0;
1444 }
1445
1446 /**
1447  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1448  * @runtime: PCM runtime instance
1449  * @cond: condition bits
1450  * @width: sample bits width
1451  * @msbits: msbits width
1452  *
1453  * This constraint will set the number of most significant bits (msbits) if a
1454  * sample format with the specified width has been select. If width is set to 0
1455  * the msbits will be set for any sample format with a width larger than the
1456  * specified msbits.
1457  *
1458  * Return: Zero if successful, or a negative error code on failure.
1459  */
1460 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1461                                  unsigned int cond,
1462                                  unsigned int width,
1463                                  unsigned int msbits)
1464 {
1465         unsigned long l = (msbits << 16) | width;
1466         return snd_pcm_hw_rule_add(runtime, cond, -1,
1467                                     snd_pcm_hw_rule_msbits,
1468                                     (void*) l,
1469                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1470 }
1471 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1472
1473 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1474                                 struct snd_pcm_hw_rule *rule)
1475 {
1476         unsigned long step = (unsigned long) rule->private;
1477         return snd_interval_step(hw_param_interval(params, rule->var), step);
1478 }
1479
1480 /**
1481  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1482  * @runtime: PCM runtime instance
1483  * @cond: condition bits
1484  * @var: hw_params variable to apply the step constraint
1485  * @step: step size
1486  *
1487  * Return: Zero if successful, or a negative error code on failure.
1488  */
1489 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1490                                unsigned int cond,
1491                                snd_pcm_hw_param_t var,
1492                                unsigned long step)
1493 {
1494         return snd_pcm_hw_rule_add(runtime, cond, var, 
1495                                    snd_pcm_hw_rule_step, (void *) step,
1496                                    var, -1);
1497 }
1498 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1499
1500 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1501 {
1502         static const unsigned int pow2_sizes[] = {
1503                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1504                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1505                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1506                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1507         };
1508         return snd_interval_list(hw_param_interval(params, rule->var),
1509                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1510 }               
1511
1512 /**
1513  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1514  * @runtime: PCM runtime instance
1515  * @cond: condition bits
1516  * @var: hw_params variable to apply the power-of-2 constraint
1517  *
1518  * Return: Zero if successful, or a negative error code on failure.
1519  */
1520 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1521                                unsigned int cond,
1522                                snd_pcm_hw_param_t var)
1523 {
1524         return snd_pcm_hw_rule_add(runtime, cond, var, 
1525                                    snd_pcm_hw_rule_pow2, NULL,
1526                                    var, -1);
1527 }
1528 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1529
1530 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1531                                            struct snd_pcm_hw_rule *rule)
1532 {
1533         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1534         struct snd_interval *rate;
1535
1536         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1537         return snd_interval_list(rate, 1, &base_rate, 0);
1538 }
1539
1540 /**
1541  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1542  * @runtime: PCM runtime instance
1543  * @base_rate: the rate at which the hardware does not resample
1544  *
1545  * Return: Zero if successful, or a negative error code on failure.
1546  */
1547 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1548                                unsigned int base_rate)
1549 {
1550         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1551                                    SNDRV_PCM_HW_PARAM_RATE,
1552                                    snd_pcm_hw_rule_noresample_func,
1553                                    (void *)(uintptr_t)base_rate,
1554                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1555 }
1556 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1557
1558 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1559                                   snd_pcm_hw_param_t var)
1560 {
1561         if (hw_is_mask(var)) {
1562                 snd_mask_any(hw_param_mask(params, var));
1563                 params->cmask |= 1 << var;
1564                 params->rmask |= 1 << var;
1565                 return;
1566         }
1567         if (hw_is_interval(var)) {
1568                 snd_interval_any(hw_param_interval(params, var));
1569                 params->cmask |= 1 << var;
1570                 params->rmask |= 1 << var;
1571                 return;
1572         }
1573         snd_BUG();
1574 }
1575
1576 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1577 {
1578         unsigned int k;
1579         memset(params, 0, sizeof(*params));
1580         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1581                 _snd_pcm_hw_param_any(params, k);
1582         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1583                 _snd_pcm_hw_param_any(params, k);
1584         params->info = ~0U;
1585 }
1586 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1587
1588 /**
1589  * snd_pcm_hw_param_value - return @params field @var value
1590  * @params: the hw_params instance
1591  * @var: parameter to retrieve
1592  * @dir: pointer to the direction (-1,0,1) or %NULL
1593  *
1594  * Return: The value for field @var if it's fixed in configuration space
1595  * defined by @params. -%EINVAL otherwise.
1596  */
1597 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1598                            snd_pcm_hw_param_t var, int *dir)
1599 {
1600         if (hw_is_mask(var)) {
1601                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1602                 if (!snd_mask_single(mask))
1603                         return -EINVAL;
1604                 if (dir)
1605                         *dir = 0;
1606                 return snd_mask_value(mask);
1607         }
1608         if (hw_is_interval(var)) {
1609                 const struct snd_interval *i = hw_param_interval_c(params, var);
1610                 if (!snd_interval_single(i))
1611                         return -EINVAL;
1612                 if (dir)
1613                         *dir = i->openmin;
1614                 return snd_interval_value(i);
1615         }
1616         return -EINVAL;
1617 }
1618 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1619
1620 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1621                                 snd_pcm_hw_param_t var)
1622 {
1623         if (hw_is_mask(var)) {
1624                 snd_mask_none(hw_param_mask(params, var));
1625                 params->cmask |= 1 << var;
1626                 params->rmask |= 1 << var;
1627         } else if (hw_is_interval(var)) {
1628                 snd_interval_none(hw_param_interval(params, var));
1629                 params->cmask |= 1 << var;
1630                 params->rmask |= 1 << var;
1631         } else {
1632                 snd_BUG();
1633         }
1634 }
1635 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1636
1637 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1638                                    snd_pcm_hw_param_t var)
1639 {
1640         int changed;
1641         if (hw_is_mask(var))
1642                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1643         else if (hw_is_interval(var))
1644                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1645         else
1646                 return -EINVAL;
1647         if (changed > 0) {
1648                 params->cmask |= 1 << var;
1649                 params->rmask |= 1 << var;
1650         }
1651         return changed;
1652 }
1653
1654
1655 /**
1656  * snd_pcm_hw_param_first - refine config space and return minimum value
1657  * @pcm: PCM instance
1658  * @params: the hw_params instance
1659  * @var: parameter to retrieve
1660  * @dir: pointer to the direction (-1,0,1) or %NULL
1661  *
1662  * Inside configuration space defined by @params remove from @var all
1663  * values > minimum. Reduce configuration space accordingly.
1664  *
1665  * Return: The minimum, or a negative error code on failure.
1666  */
1667 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1668                            struct snd_pcm_hw_params *params, 
1669                            snd_pcm_hw_param_t var, int *dir)
1670 {
1671         int changed = _snd_pcm_hw_param_first(params, var);
1672         if (changed < 0)
1673                 return changed;
1674         if (params->rmask) {
1675                 int err = snd_pcm_hw_refine(pcm, params);
1676                 if (err < 0)
1677                         return err;
1678         }
1679         return snd_pcm_hw_param_value(params, var, dir);
1680 }
1681 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1682
1683 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1684                                   snd_pcm_hw_param_t var)
1685 {
1686         int changed;
1687         if (hw_is_mask(var))
1688                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1689         else if (hw_is_interval(var))
1690                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1691         else
1692                 return -EINVAL;
1693         if (changed > 0) {
1694                 params->cmask |= 1 << var;
1695                 params->rmask |= 1 << var;
1696         }
1697         return changed;
1698 }
1699
1700
1701 /**
1702  * snd_pcm_hw_param_last - refine config space and return maximum value
1703  * @pcm: PCM instance
1704  * @params: the hw_params instance
1705  * @var: parameter to retrieve
1706  * @dir: pointer to the direction (-1,0,1) or %NULL
1707  *
1708  * Inside configuration space defined by @params remove from @var all
1709  * values < maximum. Reduce configuration space accordingly.
1710  *
1711  * Return: The maximum, or a negative error code on failure.
1712  */
1713 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1714                           struct snd_pcm_hw_params *params,
1715                           snd_pcm_hw_param_t var, int *dir)
1716 {
1717         int changed = _snd_pcm_hw_param_last(params, var);
1718         if (changed < 0)
1719                 return changed;
1720         if (params->rmask) {
1721                 int err = snd_pcm_hw_refine(pcm, params);
1722                 if (err < 0)
1723                         return err;
1724         }
1725         return snd_pcm_hw_param_value(params, var, dir);
1726 }
1727 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1728
1729 /**
1730  * snd_pcm_hw_params_bits - Get the number of bits per the sample.
1731  * @p: hardware parameters
1732  *
1733  * Return: The number of bits per sample based on the format,
1734  * subformat and msbits the specified hw params has.
1735  */
1736 int snd_pcm_hw_params_bits(const struct snd_pcm_hw_params *p)
1737 {
1738         snd_pcm_subformat_t subformat = params_subformat(p);
1739         snd_pcm_format_t format = params_format(p);
1740
1741         switch (format) {
1742         case SNDRV_PCM_FORMAT_S32_LE:
1743         case SNDRV_PCM_FORMAT_U32_LE:
1744         case SNDRV_PCM_FORMAT_S32_BE:
1745         case SNDRV_PCM_FORMAT_U32_BE:
1746                 switch (subformat) {
1747                 case SNDRV_PCM_SUBFORMAT_MSBITS_20:
1748                         return 20;
1749                 case SNDRV_PCM_SUBFORMAT_MSBITS_24:
1750                         return 24;
1751                 case SNDRV_PCM_SUBFORMAT_MSBITS_MAX:
1752                 case SNDRV_PCM_SUBFORMAT_STD:
1753                 default:
1754                         break;
1755                 }
1756                 fallthrough;
1757         default:
1758                 return snd_pcm_format_width(format);
1759         }
1760 }
1761 EXPORT_SYMBOL(snd_pcm_hw_params_bits);
1762
1763 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1764                                    void *arg)
1765 {
1766         struct snd_pcm_runtime *runtime = substream->runtime;
1767
1768         guard(pcm_stream_lock_irqsave)(substream);
1769         if (snd_pcm_running(substream) &&
1770             snd_pcm_update_hw_ptr(substream) >= 0)
1771                 runtime->status->hw_ptr %= runtime->buffer_size;
1772         else {
1773                 runtime->status->hw_ptr = 0;
1774                 runtime->hw_ptr_wrap = 0;
1775         }
1776         return 0;
1777 }
1778
1779 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1780                                           void *arg)
1781 {
1782         struct snd_pcm_channel_info *info = arg;
1783         struct snd_pcm_runtime *runtime = substream->runtime;
1784         int width;
1785         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1786                 info->offset = -1;
1787                 return 0;
1788         }
1789         width = snd_pcm_format_physical_width(runtime->format);
1790         if (width < 0)
1791                 return width;
1792         info->offset = 0;
1793         switch (runtime->access) {
1794         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1795         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1796                 info->first = info->channel * width;
1797                 info->step = runtime->channels * width;
1798                 break;
1799         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1800         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1801         {
1802                 size_t size = runtime->dma_bytes / runtime->channels;
1803                 info->first = info->channel * size * 8;
1804                 info->step = width;
1805                 break;
1806         }
1807         default:
1808                 snd_BUG();
1809                 break;
1810         }
1811         return 0;
1812 }
1813
1814 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1815                                        void *arg)
1816 {
1817         struct snd_pcm_hw_params *params = arg;
1818         snd_pcm_format_t format;
1819         int channels;
1820         ssize_t frame_size;
1821
1822         params->fifo_size = substream->runtime->hw.fifo_size;
1823         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1824                 format = params_format(params);
1825                 channels = params_channels(params);
1826                 frame_size = snd_pcm_format_size(format, channels);
1827                 if (frame_size > 0)
1828                         params->fifo_size /= frame_size;
1829         }
1830         return 0;
1831 }
1832
1833 static int snd_pcm_lib_ioctl_sync_id(struct snd_pcm_substream *substream,
1834                                      void *arg)
1835 {
1836         static const unsigned char id[12] = { 0xff, 0xff, 0xff, 0xff,
1837                                               0xff, 0xff, 0xff, 0xff,
1838                                               0xff, 0xff, 0xff, 0xff };
1839
1840         if (substream->runtime->std_sync_id)
1841                 snd_pcm_set_sync_per_card(substream, arg, id, sizeof(id));
1842         return 0;
1843 }
1844
1845 /**
1846  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1847  * @substream: the pcm substream instance
1848  * @cmd: ioctl command
1849  * @arg: ioctl argument
1850  *
1851  * Processes the generic ioctl commands for PCM.
1852  * Can be passed as the ioctl callback for PCM ops.
1853  *
1854  * Return: Zero if successful, or a negative error code on failure.
1855  */
1856 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1857                       unsigned int cmd, void *arg)
1858 {
1859         switch (cmd) {
1860         case SNDRV_PCM_IOCTL1_RESET:
1861                 return snd_pcm_lib_ioctl_reset(substream, arg);
1862         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1863                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1864         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1865                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1866         case SNDRV_PCM_IOCTL1_SYNC_ID:
1867                 return snd_pcm_lib_ioctl_sync_id(substream, arg);
1868         }
1869         return -ENXIO;
1870 }
1871 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1872
1873 /**
1874  * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1875  *                                              under acquired lock of PCM substream.
1876  * @substream: the instance of pcm substream.
1877  *
1878  * This function is called when the batch of audio data frames as the same size as the period of
1879  * buffer is already processed in audio data transmission.
1880  *
1881  * The call of function updates the status of runtime with the latest position of audio data
1882  * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1883  * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1884  * substream according to configured threshold.
1885  *
1886  * The function is intended to use for the case that PCM driver operates audio data frames under
1887  * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1888  * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1889  * since lock of PCM substream should be acquired in advance.
1890  *
1891  * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1892  * function:
1893  *
1894  * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1895  * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1896  * - .get_time_info - to retrieve audio time stamp if needed.
1897  *
1898  * Even if more than one periods have elapsed since the last call, you have to call this only once.
1899  */
1900 void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1901 {
1902         struct snd_pcm_runtime *runtime;
1903
1904         if (PCM_RUNTIME_CHECK(substream))
1905                 return;
1906         runtime = substream->runtime;
1907
1908         if (!snd_pcm_running(substream) ||
1909             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1910                 goto _end;
1911
1912 #ifdef CONFIG_SND_PCM_TIMER
1913         if (substream->timer_running)
1914                 snd_timer_interrupt(substream->timer, 1);
1915 #endif
1916  _end:
1917         snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
1918 }
1919 EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1920
1921 /**
1922  * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1923  *                            PCM substream.
1924  * @substream: the instance of PCM substream.
1925  *
1926  * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1927  * acquiring lock of PCM substream voluntarily.
1928  *
1929  * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1930  * the batch of audio data frames as the same size as the period of buffer is already processed in
1931  * audio data transmission.
1932  */
1933 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1934 {
1935         if (snd_BUG_ON(!substream))
1936                 return;
1937
1938         guard(pcm_stream_lock_irqsave)(substream);
1939         snd_pcm_period_elapsed_under_stream_lock(substream);
1940 }
1941 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1942
1943 /*
1944  * Wait until avail_min data becomes available
1945  * Returns a negative error code if any error occurs during operation.
1946  * The available space is stored on availp.  When err = 0 and avail = 0
1947  * on the capture stream, it indicates the stream is in DRAINING state.
1948  */
1949 static int wait_for_avail(struct snd_pcm_substream *substream,
1950                               snd_pcm_uframes_t *availp)
1951 {
1952         struct snd_pcm_runtime *runtime = substream->runtime;
1953         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1954         wait_queue_entry_t wait;
1955         int err = 0;
1956         snd_pcm_uframes_t avail = 0;
1957         long wait_time, tout;
1958
1959         init_waitqueue_entry(&wait, current);
1960         set_current_state(TASK_INTERRUPTIBLE);
1961         add_wait_queue(&runtime->tsleep, &wait);
1962
1963         if (runtime->no_period_wakeup)
1964                 wait_time = MAX_SCHEDULE_TIMEOUT;
1965         else {
1966                 /* use wait time from substream if available */
1967                 if (substream->wait_time) {
1968                         wait_time = substream->wait_time;
1969                 } else {
1970                         wait_time = 100;
1971
1972                         if (runtime->rate) {
1973                                 long t = runtime->buffer_size * 1100 / runtime->rate;
1974                                 wait_time = max(t, wait_time);
1975                         }
1976                 }
1977                 wait_time = msecs_to_jiffies(wait_time);
1978         }
1979
1980         for (;;) {
1981                 if (signal_pending(current)) {
1982                         err = -ERESTARTSYS;
1983                         break;
1984                 }
1985
1986                 /*
1987                  * We need to check if space became available already
1988                  * (and thus the wakeup happened already) first to close
1989                  * the race of space already having become available.
1990                  * This check must happen after been added to the waitqueue
1991                  * and having current state be INTERRUPTIBLE.
1992                  */
1993                 avail = snd_pcm_avail(substream);
1994                 if (avail >= runtime->twake)
1995                         break;
1996                 snd_pcm_stream_unlock_irq(substream);
1997
1998                 tout = schedule_timeout(wait_time);
1999
2000                 snd_pcm_stream_lock_irq(substream);
2001                 set_current_state(TASK_INTERRUPTIBLE);
2002                 switch (runtime->state) {
2003                 case SNDRV_PCM_STATE_SUSPENDED:
2004                         err = -ESTRPIPE;
2005                         goto _endloop;
2006                 case SNDRV_PCM_STATE_XRUN:
2007                         err = -EPIPE;
2008                         goto _endloop;
2009                 case SNDRV_PCM_STATE_DRAINING:
2010                         if (is_playback)
2011                                 err = -EPIPE;
2012                         else 
2013                                 avail = 0; /* indicate draining */
2014                         goto _endloop;
2015                 case SNDRV_PCM_STATE_OPEN:
2016                 case SNDRV_PCM_STATE_SETUP:
2017                 case SNDRV_PCM_STATE_DISCONNECTED:
2018                         err = -EBADFD;
2019                         goto _endloop;
2020                 case SNDRV_PCM_STATE_PAUSED:
2021                         continue;
2022                 }
2023                 if (!tout) {
2024                         pcm_dbg(substream->pcm,
2025                                 "%s timeout (DMA or IRQ trouble?)\n",
2026                                 is_playback ? "playback write" : "capture read");
2027                         err = -EIO;
2028                         break;
2029                 }
2030         }
2031  _endloop:
2032         set_current_state(TASK_RUNNING);
2033         remove_wait_queue(&runtime->tsleep, &wait);
2034         *availp = avail;
2035         return err;
2036 }
2037         
2038 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
2039                               int channel, unsigned long hwoff,
2040                               struct iov_iter *iter, unsigned long bytes);
2041
2042 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
2043                           snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f,
2044                           bool);
2045
2046 /* calculate the target DMA-buffer position to be written/read */
2047 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
2048                            int channel, unsigned long hwoff)
2049 {
2050         return runtime->dma_area + hwoff +
2051                 channel * (runtime->dma_bytes / runtime->channels);
2052 }
2053
2054 /* default copy ops for write; used for both interleaved and non- modes */
2055 static int default_write_copy(struct snd_pcm_substream *substream,
2056                               int channel, unsigned long hwoff,
2057                               struct iov_iter *iter, unsigned long bytes)
2058 {
2059         if (copy_from_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2060                            bytes, iter) != bytes)
2061                 return -EFAULT;
2062         return 0;
2063 }
2064
2065 /* fill silence instead of copy data; called as a transfer helper
2066  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
2067  * a NULL buffer is passed
2068  */
2069 static int fill_silence(struct snd_pcm_substream *substream, int channel,
2070                         unsigned long hwoff, struct iov_iter *iter,
2071                         unsigned long bytes)
2072 {
2073         struct snd_pcm_runtime *runtime = substream->runtime;
2074
2075         if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
2076                 return 0;
2077         if (substream->ops->fill_silence)
2078                 return substream->ops->fill_silence(substream, channel,
2079                                                     hwoff, bytes);
2080
2081         snd_pcm_format_set_silence(runtime->format,
2082                                    get_dma_ptr(runtime, channel, hwoff),
2083                                    bytes_to_samples(runtime, bytes));
2084         return 0;
2085 }
2086
2087 /* default copy ops for read; used for both interleaved and non- modes */
2088 static int default_read_copy(struct snd_pcm_substream *substream,
2089                              int channel, unsigned long hwoff,
2090                              struct iov_iter *iter, unsigned long bytes)
2091 {
2092         if (copy_to_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2093                          bytes, iter) != bytes)
2094                 return -EFAULT;
2095         return 0;
2096 }
2097
2098 /* call transfer with the filled iov_iter */
2099 static int do_transfer(struct snd_pcm_substream *substream, int c,
2100                        unsigned long hwoff, void *data, unsigned long bytes,
2101                        pcm_transfer_f transfer, bool in_kernel)
2102 {
2103         struct iov_iter iter;
2104         int err, type;
2105
2106         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
2107                 type = ITER_SOURCE;
2108         else
2109                 type = ITER_DEST;
2110
2111         if (in_kernel) {
2112                 struct kvec kvec = { data, bytes };
2113
2114                 iov_iter_kvec(&iter, type, &kvec, 1, bytes);
2115                 return transfer(substream, c, hwoff, &iter, bytes);
2116         }
2117
2118         err = import_ubuf(type, (__force void __user *)data, bytes, &iter);
2119         if (err)
2120                 return err;
2121         return transfer(substream, c, hwoff, &iter, bytes);
2122 }
2123
2124 /* call transfer function with the converted pointers and sizes;
2125  * for interleaved mode, it's one shot for all samples
2126  */
2127 static int interleaved_copy(struct snd_pcm_substream *substream,
2128                             snd_pcm_uframes_t hwoff, void *data,
2129                             snd_pcm_uframes_t off,
2130                             snd_pcm_uframes_t frames,
2131                             pcm_transfer_f transfer,
2132                             bool in_kernel)
2133 {
2134         struct snd_pcm_runtime *runtime = substream->runtime;
2135
2136         /* convert to bytes */
2137         hwoff = frames_to_bytes(runtime, hwoff);
2138         off = frames_to_bytes(runtime, off);
2139         frames = frames_to_bytes(runtime, frames);
2140
2141         return do_transfer(substream, 0, hwoff, data + off, frames, transfer,
2142                            in_kernel);
2143 }
2144
2145 /* call transfer function with the converted pointers and sizes for each
2146  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2147  */
2148 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2149                                snd_pcm_uframes_t hwoff, void *data,
2150                                snd_pcm_uframes_t off,
2151                                snd_pcm_uframes_t frames,
2152                                pcm_transfer_f transfer,
2153                                bool in_kernel)
2154 {
2155         struct snd_pcm_runtime *runtime = substream->runtime;
2156         int channels = runtime->channels;
2157         void **bufs = data;
2158         int c, err;
2159
2160         /* convert to bytes; note that it's not frames_to_bytes() here.
2161          * in non-interleaved mode, we copy for each channel, thus
2162          * each copy is n_samples bytes x channels = whole frames.
2163          */
2164         off = samples_to_bytes(runtime, off);
2165         frames = samples_to_bytes(runtime, frames);
2166         hwoff = samples_to_bytes(runtime, hwoff);
2167         for (c = 0; c < channels; ++c, ++bufs) {
2168                 if (!data || !*bufs)
2169                         err = fill_silence(substream, c, hwoff, NULL, frames);
2170                 else
2171                         err = do_transfer(substream, c, hwoff, *bufs + off,
2172                                           frames, transfer, in_kernel);
2173                 if (err < 0)
2174                         return err;
2175         }
2176         return 0;
2177 }
2178
2179 /* fill silence on the given buffer position;
2180  * called from snd_pcm_playback_silence()
2181  */
2182 static int fill_silence_frames(struct snd_pcm_substream *substream,
2183                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2184 {
2185         if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2186             substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2187                 return interleaved_copy(substream, off, NULL, 0, frames,
2188                                         fill_silence, true);
2189         else
2190                 return noninterleaved_copy(substream, off, NULL, 0, frames,
2191                                            fill_silence, true);
2192 }
2193
2194 /* sanity-check for read/write methods */
2195 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2196 {
2197         struct snd_pcm_runtime *runtime;
2198         if (PCM_RUNTIME_CHECK(substream))
2199                 return -ENXIO;
2200         runtime = substream->runtime;
2201         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2202                 return -EINVAL;
2203         if (runtime->state == SNDRV_PCM_STATE_OPEN)
2204                 return -EBADFD;
2205         return 0;
2206 }
2207
2208 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2209 {
2210         switch (runtime->state) {
2211         case SNDRV_PCM_STATE_PREPARED:
2212         case SNDRV_PCM_STATE_RUNNING:
2213         case SNDRV_PCM_STATE_PAUSED:
2214                 return 0;
2215         case SNDRV_PCM_STATE_XRUN:
2216                 return -EPIPE;
2217         case SNDRV_PCM_STATE_SUSPENDED:
2218                 return -ESTRPIPE;
2219         default:
2220                 return -EBADFD;
2221         }
2222 }
2223
2224 /* update to the given appl_ptr and call ack callback if needed;
2225  * when an error is returned, take back to the original value
2226  */
2227 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2228                            snd_pcm_uframes_t appl_ptr)
2229 {
2230         struct snd_pcm_runtime *runtime = substream->runtime;
2231         snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2232         snd_pcm_sframes_t diff;
2233         int ret;
2234
2235         if (old_appl_ptr == appl_ptr)
2236                 return 0;
2237
2238         if (appl_ptr >= runtime->boundary)
2239                 return -EINVAL;
2240         /*
2241          * check if a rewind is requested by the application
2242          */
2243         if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2244                 diff = appl_ptr - old_appl_ptr;
2245                 if (diff >= 0) {
2246                         if (diff > runtime->buffer_size)
2247                                 return -EINVAL;
2248                 } else {
2249                         if (runtime->boundary + diff > runtime->buffer_size)
2250                                 return -EINVAL;
2251                 }
2252         }
2253
2254         runtime->control->appl_ptr = appl_ptr;
2255         if (substream->ops->ack) {
2256                 ret = substream->ops->ack(substream);
2257                 if (ret < 0) {
2258                         runtime->control->appl_ptr = old_appl_ptr;
2259                         if (ret == -EPIPE)
2260                                 __snd_pcm_xrun(substream);
2261                         return ret;
2262                 }
2263         }
2264
2265         trace_applptr(substream, old_appl_ptr, appl_ptr);
2266
2267         return 0;
2268 }
2269
2270 /* the common loop for read/write data */
2271 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2272                                      void *data, bool interleaved,
2273                                      snd_pcm_uframes_t size, bool in_kernel)
2274 {
2275         struct snd_pcm_runtime *runtime = substream->runtime;
2276         snd_pcm_uframes_t xfer = 0;
2277         snd_pcm_uframes_t offset = 0;
2278         snd_pcm_uframes_t avail;
2279         pcm_copy_f writer;
2280         pcm_transfer_f transfer;
2281         bool nonblock;
2282         bool is_playback;
2283         int err;
2284
2285         err = pcm_sanity_check(substream);
2286         if (err < 0)
2287                 return err;
2288
2289         is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2290         if (interleaved) {
2291                 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2292                     runtime->channels > 1)
2293                         return -EINVAL;
2294                 writer = interleaved_copy;
2295         } else {
2296                 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2297                         return -EINVAL;
2298                 writer = noninterleaved_copy;
2299         }
2300
2301         if (!data) {
2302                 if (is_playback)
2303                         transfer = fill_silence;
2304                 else
2305                         return -EINVAL;
2306         } else {
2307                 if (substream->ops->copy)
2308                         transfer = substream->ops->copy;
2309                 else
2310                         transfer = is_playback ?
2311                                 default_write_copy : default_read_copy;
2312         }
2313
2314         if (size == 0)
2315                 return 0;
2316
2317         nonblock = !!(substream->f_flags & O_NONBLOCK);
2318
2319         snd_pcm_stream_lock_irq(substream);
2320         err = pcm_accessible_state(runtime);
2321         if (err < 0)
2322                 goto _end_unlock;
2323
2324         runtime->twake = runtime->control->avail_min ? : 1;
2325         if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2326                 snd_pcm_update_hw_ptr(substream);
2327
2328         /*
2329          * If size < start_threshold, wait indefinitely. Another
2330          * thread may start capture
2331          */
2332         if (!is_playback &&
2333             runtime->state == SNDRV_PCM_STATE_PREPARED &&
2334             size >= runtime->start_threshold) {
2335                 err = snd_pcm_start(substream);
2336                 if (err < 0)
2337                         goto _end_unlock;
2338         }
2339
2340         avail = snd_pcm_avail(substream);
2341
2342         while (size > 0) {
2343                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2344                 snd_pcm_uframes_t cont;
2345                 if (!avail) {
2346                         if (!is_playback &&
2347                             runtime->state == SNDRV_PCM_STATE_DRAINING) {
2348                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2349                                 goto _end_unlock;
2350                         }
2351                         if (nonblock) {
2352                                 err = -EAGAIN;
2353                                 goto _end_unlock;
2354                         }
2355                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2356                                         runtime->control->avail_min ? : 1);
2357                         err = wait_for_avail(substream, &avail);
2358                         if (err < 0)
2359                                 goto _end_unlock;
2360                         if (!avail)
2361                                 continue; /* draining */
2362                 }
2363                 frames = size > avail ? avail : size;
2364                 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2365                 appl_ofs = appl_ptr % runtime->buffer_size;
2366                 cont = runtime->buffer_size - appl_ofs;
2367                 if (frames > cont)
2368                         frames = cont;
2369                 if (snd_BUG_ON(!frames)) {
2370                         err = -EINVAL;
2371                         goto _end_unlock;
2372                 }
2373                 if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2374                         err = -EBUSY;
2375                         goto _end_unlock;
2376                 }
2377                 snd_pcm_stream_unlock_irq(substream);
2378                 if (!is_playback)
2379                         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2380                 err = writer(substream, appl_ofs, data, offset, frames,
2381                              transfer, in_kernel);
2382                 if (is_playback)
2383                         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2384                 snd_pcm_stream_lock_irq(substream);
2385                 atomic_dec(&runtime->buffer_accessing);
2386                 if (err < 0)
2387                         goto _end_unlock;
2388                 err = pcm_accessible_state(runtime);
2389                 if (err < 0)
2390                         goto _end_unlock;
2391                 appl_ptr += frames;
2392                 if (appl_ptr >= runtime->boundary)
2393                         appl_ptr -= runtime->boundary;
2394                 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2395                 if (err < 0)
2396                         goto _end_unlock;
2397
2398                 offset += frames;
2399                 size -= frames;
2400                 xfer += frames;
2401                 avail -= frames;
2402                 if (is_playback &&
2403                     runtime->state == SNDRV_PCM_STATE_PREPARED &&
2404                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2405                         err = snd_pcm_start(substream);
2406                         if (err < 0)
2407                                 goto _end_unlock;
2408                 }
2409         }
2410  _end_unlock:
2411         runtime->twake = 0;
2412         if (xfer > 0 && err >= 0)
2413                 snd_pcm_update_state(substream, runtime);
2414         snd_pcm_stream_unlock_irq(substream);
2415         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2416 }
2417 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2418
2419 /*
2420  * standard channel mapping helpers
2421  */
2422
2423 /* default channel maps for multi-channel playbacks, up to 8 channels */
2424 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2425         { .channels = 1,
2426           .map = { SNDRV_CHMAP_MONO } },
2427         { .channels = 2,
2428           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2429         { .channels = 4,
2430           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2431                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2432         { .channels = 6,
2433           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2434                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2435                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2436         { .channels = 8,
2437           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2438                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2439                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2440                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2441         { }
2442 };
2443 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2444
2445 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2446 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2447         { .channels = 1,
2448           .map = { SNDRV_CHMAP_MONO } },
2449         { .channels = 2,
2450           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2451         { .channels = 4,
2452           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2453                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2454         { .channels = 6,
2455           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2456                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2457                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2458         { .channels = 8,
2459           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2460                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2461                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2462                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2463         { }
2464 };
2465 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2466
2467 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2468 {
2469         if (ch > info->max_channels)
2470                 return false;
2471         return !info->channel_mask || (info->channel_mask & (1U << ch));
2472 }
2473
2474 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2475                               struct snd_ctl_elem_info *uinfo)
2476 {
2477         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2478
2479         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2480         uinfo->count = info->max_channels;
2481         uinfo->value.integer.min = 0;
2482         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2483         return 0;
2484 }
2485
2486 /* get callback for channel map ctl element
2487  * stores the channel position firstly matching with the current channels
2488  */
2489 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2490                              struct snd_ctl_elem_value *ucontrol)
2491 {
2492         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2493         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2494         struct snd_pcm_substream *substream;
2495         const struct snd_pcm_chmap_elem *map;
2496
2497         if (!info->chmap)
2498                 return -EINVAL;
2499         substream = snd_pcm_chmap_substream(info, idx);
2500         if (!substream)
2501                 return -ENODEV;
2502         memset(ucontrol->value.integer.value, 0,
2503                sizeof(long) * info->max_channels);
2504         if (!substream->runtime)
2505                 return 0; /* no channels set */
2506         for (map = info->chmap; map->channels; map++) {
2507                 int i;
2508                 if (map->channels == substream->runtime->channels &&
2509                     valid_chmap_channels(info, map->channels)) {
2510                         for (i = 0; i < map->channels; i++)
2511                                 ucontrol->value.integer.value[i] = map->map[i];
2512                         return 0;
2513                 }
2514         }
2515         return -EINVAL;
2516 }
2517
2518 /* tlv callback for channel map ctl element
2519  * expands the pre-defined channel maps in a form of TLV
2520  */
2521 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2522                              unsigned int size, unsigned int __user *tlv)
2523 {
2524         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2525         const struct snd_pcm_chmap_elem *map;
2526         unsigned int __user *dst;
2527         int c, count = 0;
2528
2529         if (!info->chmap)
2530                 return -EINVAL;
2531         if (size < 8)
2532                 return -ENOMEM;
2533         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2534                 return -EFAULT;
2535         size -= 8;
2536         dst = tlv + 2;
2537         for (map = info->chmap; map->channels; map++) {
2538                 int chs_bytes = map->channels * 4;
2539                 if (!valid_chmap_channels(info, map->channels))
2540                         continue;
2541                 if (size < 8)
2542                         return -ENOMEM;
2543                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2544                     put_user(chs_bytes, dst + 1))
2545                         return -EFAULT;
2546                 dst += 2;
2547                 size -= 8;
2548                 count += 8;
2549                 if (size < chs_bytes)
2550                         return -ENOMEM;
2551                 size -= chs_bytes;
2552                 count += chs_bytes;
2553                 for (c = 0; c < map->channels; c++) {
2554                         if (put_user(map->map[c], dst))
2555                                 return -EFAULT;
2556                         dst++;
2557                 }
2558         }
2559         if (put_user(count, tlv + 1))
2560                 return -EFAULT;
2561         return 0;
2562 }
2563
2564 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2565 {
2566         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2567         info->pcm->streams[info->stream].chmap_kctl = NULL;
2568         kfree(info);
2569 }
2570
2571 /**
2572  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2573  * @pcm: the assigned PCM instance
2574  * @stream: stream direction
2575  * @chmap: channel map elements (for query)
2576  * @max_channels: the max number of channels for the stream
2577  * @private_value: the value passed to each kcontrol's private_value field
2578  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2579  *
2580  * Create channel-mapping control elements assigned to the given PCM stream(s).
2581  * Return: Zero if successful, or a negative error value.
2582  */
2583 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2584                            const struct snd_pcm_chmap_elem *chmap,
2585                            int max_channels,
2586                            unsigned long private_value,
2587                            struct snd_pcm_chmap **info_ret)
2588 {
2589         struct snd_pcm_chmap *info;
2590         struct snd_kcontrol_new knew = {
2591                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2592                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2593                         SNDRV_CTL_ELEM_ACCESS_VOLATILE |
2594                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2595                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2596                 .info = pcm_chmap_ctl_info,
2597                 .get = pcm_chmap_ctl_get,
2598                 .tlv.c = pcm_chmap_ctl_tlv,
2599         };
2600         int err;
2601
2602         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2603                 return -EBUSY;
2604         info = kzalloc(sizeof(*info), GFP_KERNEL);
2605         if (!info)
2606                 return -ENOMEM;
2607         info->pcm = pcm;
2608         info->stream = stream;
2609         info->chmap = chmap;
2610         info->max_channels = max_channels;
2611         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2612                 knew.name = "Playback Channel Map";
2613         else
2614                 knew.name = "Capture Channel Map";
2615         knew.device = pcm->device;
2616         knew.count = pcm->streams[stream].substream_count;
2617         knew.private_value = private_value;
2618         info->kctl = snd_ctl_new1(&knew, info);
2619         if (!info->kctl) {
2620                 kfree(info);
2621                 return -ENOMEM;
2622         }
2623         info->kctl->private_free = pcm_chmap_ctl_private_free;
2624         err = snd_ctl_add(pcm->card, info->kctl);
2625         if (err < 0)
2626                 return err;
2627         pcm->streams[stream].chmap_kctl = info->kctl;
2628         if (info_ret)
2629                 *info_ret = info;
2630         return 0;
2631 }
2632 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
This page took 0.178061 seconds and 4 git commands to generate.