]> Git Repo - J-linux.git/blob - security/integrity/ima/ima_crypto.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / security / integrity / ima / ima_crypto.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2005,2006,2007,2008 IBM Corporation
4  *
5  * Authors:
6  * Mimi Zohar <[email protected]>
7  * Kylene Hall <[email protected]>
8  *
9  * File: ima_crypto.c
10  *      Calculates md5/sha1 file hash, template hash, boot-aggreate hash
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/moduleparam.h>
15 #include <linux/ratelimit.h>
16 #include <linux/file.h>
17 #include <linux/crypto.h>
18 #include <linux/scatterlist.h>
19 #include <linux/err.h>
20 #include <linux/slab.h>
21 #include <crypto/hash.h>
22
23 #include "ima.h"
24
25 /* minimum file size for ahash use */
26 static unsigned long ima_ahash_minsize;
27 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
28 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
29
30 /* default is 0 - 1 page. */
31 static int ima_maxorder;
32 static unsigned int ima_bufsize = PAGE_SIZE;
33
34 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
35 {
36         unsigned long long size;
37         int order;
38
39         size = memparse(val, NULL);
40         order = get_order(size);
41         if (order > MAX_PAGE_ORDER)
42                 return -EINVAL;
43         ima_maxorder = order;
44         ima_bufsize = PAGE_SIZE << order;
45         return 0;
46 }
47
48 static const struct kernel_param_ops param_ops_bufsize = {
49         .set = param_set_bufsize,
50         .get = param_get_uint,
51 };
52 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
53
54 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
55 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
56
57 static struct crypto_shash *ima_shash_tfm;
58 static struct crypto_ahash *ima_ahash_tfm;
59
60 int ima_sha1_idx __ro_after_init;
61 int ima_hash_algo_idx __ro_after_init;
62 /*
63  * Additional number of slots reserved, as needed, for SHA1
64  * and IMA default algo.
65  */
66 int ima_extra_slots __ro_after_init;
67
68 struct ima_algo_desc *ima_algo_array __ro_after_init;
69
70 static int __init ima_init_ima_crypto(void)
71 {
72         long rc;
73
74         ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
75         if (IS_ERR(ima_shash_tfm)) {
76                 rc = PTR_ERR(ima_shash_tfm);
77                 pr_err("Can not allocate %s (reason: %ld)\n",
78                        hash_algo_name[ima_hash_algo], rc);
79                 return rc;
80         }
81         pr_info("Allocated hash algorithm: %s\n",
82                 hash_algo_name[ima_hash_algo]);
83         return 0;
84 }
85
86 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
87 {
88         struct crypto_shash *tfm = ima_shash_tfm;
89         int rc, i;
90
91         if (algo < 0 || algo >= HASH_ALGO__LAST)
92                 algo = ima_hash_algo;
93
94         if (algo == ima_hash_algo)
95                 return tfm;
96
97         for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++)
98                 if (ima_algo_array[i].tfm && ima_algo_array[i].algo == algo)
99                         return ima_algo_array[i].tfm;
100
101         tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
102         if (IS_ERR(tfm)) {
103                 rc = PTR_ERR(tfm);
104                 pr_err("Can not allocate %s (reason: %d)\n",
105                        hash_algo_name[algo], rc);
106         }
107         return tfm;
108 }
109
110 int __init ima_init_crypto(void)
111 {
112         enum hash_algo algo;
113         long rc;
114         int i;
115
116         rc = ima_init_ima_crypto();
117         if (rc)
118                 return rc;
119
120         ima_sha1_idx = -1;
121         ima_hash_algo_idx = -1;
122
123         for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {
124                 algo = ima_tpm_chip->allocated_banks[i].crypto_id;
125                 if (algo == HASH_ALGO_SHA1)
126                         ima_sha1_idx = i;
127
128                 if (algo == ima_hash_algo)
129                         ima_hash_algo_idx = i;
130         }
131
132         if (ima_sha1_idx < 0) {
133                 ima_sha1_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;
134                 if (ima_hash_algo == HASH_ALGO_SHA1)
135                         ima_hash_algo_idx = ima_sha1_idx;
136         }
137
138         if (ima_hash_algo_idx < 0)
139                 ima_hash_algo_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;
140
141         ima_algo_array = kcalloc(NR_BANKS(ima_tpm_chip) + ima_extra_slots,
142                                  sizeof(*ima_algo_array), GFP_KERNEL);
143         if (!ima_algo_array) {
144                 rc = -ENOMEM;
145                 goto out;
146         }
147
148         for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {
149                 algo = ima_tpm_chip->allocated_banks[i].crypto_id;
150                 ima_algo_array[i].algo = algo;
151
152                 /* unknown TPM algorithm */
153                 if (algo == HASH_ALGO__LAST)
154                         continue;
155
156                 if (algo == ima_hash_algo) {
157                         ima_algo_array[i].tfm = ima_shash_tfm;
158                         continue;
159                 }
160
161                 ima_algo_array[i].tfm = ima_alloc_tfm(algo);
162                 if (IS_ERR(ima_algo_array[i].tfm)) {
163                         if (algo == HASH_ALGO_SHA1) {
164                                 rc = PTR_ERR(ima_algo_array[i].tfm);
165                                 ima_algo_array[i].tfm = NULL;
166                                 goto out_array;
167                         }
168
169                         ima_algo_array[i].tfm = NULL;
170                 }
171         }
172
173         if (ima_sha1_idx >= NR_BANKS(ima_tpm_chip)) {
174                 if (ima_hash_algo == HASH_ALGO_SHA1) {
175                         ima_algo_array[ima_sha1_idx].tfm = ima_shash_tfm;
176                 } else {
177                         ima_algo_array[ima_sha1_idx].tfm =
178                                                 ima_alloc_tfm(HASH_ALGO_SHA1);
179                         if (IS_ERR(ima_algo_array[ima_sha1_idx].tfm)) {
180                                 rc = PTR_ERR(ima_algo_array[ima_sha1_idx].tfm);
181                                 goto out_array;
182                         }
183                 }
184
185                 ima_algo_array[ima_sha1_idx].algo = HASH_ALGO_SHA1;
186         }
187
188         if (ima_hash_algo_idx >= NR_BANKS(ima_tpm_chip) &&
189             ima_hash_algo_idx != ima_sha1_idx) {
190                 ima_algo_array[ima_hash_algo_idx].tfm = ima_shash_tfm;
191                 ima_algo_array[ima_hash_algo_idx].algo = ima_hash_algo;
192         }
193
194         return 0;
195 out_array:
196         for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) {
197                 if (!ima_algo_array[i].tfm ||
198                     ima_algo_array[i].tfm == ima_shash_tfm)
199                         continue;
200
201                 crypto_free_shash(ima_algo_array[i].tfm);
202         }
203         kfree(ima_algo_array);
204 out:
205         crypto_free_shash(ima_shash_tfm);
206         return rc;
207 }
208
209 static void ima_free_tfm(struct crypto_shash *tfm)
210 {
211         int i;
212
213         if (tfm == ima_shash_tfm)
214                 return;
215
216         for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++)
217                 if (ima_algo_array[i].tfm == tfm)
218                         return;
219
220         crypto_free_shash(tfm);
221 }
222
223 /**
224  * ima_alloc_pages() - Allocate contiguous pages.
225  * @max_size:       Maximum amount of memory to allocate.
226  * @allocated_size: Returned size of actual allocation.
227  * @last_warn:      Should the min_size allocation warn or not.
228  *
229  * Tries to do opportunistic allocation for memory first trying to allocate
230  * max_size amount of memory and then splitting that until zero order is
231  * reached. Allocation is tried without generating allocation warnings unless
232  * last_warn is set. Last_warn set affects only last allocation of zero order.
233  *
234  * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
235  *
236  * Return pointer to allocated memory, or NULL on failure.
237  */
238 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
239                              int last_warn)
240 {
241         void *ptr;
242         int order = ima_maxorder;
243         gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
244
245         if (order)
246                 order = min(get_order(max_size), order);
247
248         for (; order; order--) {
249                 ptr = (void *)__get_free_pages(gfp_mask, order);
250                 if (ptr) {
251                         *allocated_size = PAGE_SIZE << order;
252                         return ptr;
253                 }
254         }
255
256         /* order is zero - one page */
257
258         gfp_mask = GFP_KERNEL;
259
260         if (!last_warn)
261                 gfp_mask |= __GFP_NOWARN;
262
263         ptr = (void *)__get_free_pages(gfp_mask, 0);
264         if (ptr) {
265                 *allocated_size = PAGE_SIZE;
266                 return ptr;
267         }
268
269         *allocated_size = 0;
270         return NULL;
271 }
272
273 /**
274  * ima_free_pages() - Free pages allocated by ima_alloc_pages().
275  * @ptr:  Pointer to allocated pages.
276  * @size: Size of allocated buffer.
277  */
278 static void ima_free_pages(void *ptr, size_t size)
279 {
280         if (!ptr)
281                 return;
282         free_pages((unsigned long)ptr, get_order(size));
283 }
284
285 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
286 {
287         struct crypto_ahash *tfm = ima_ahash_tfm;
288         int rc;
289
290         if (algo < 0 || algo >= HASH_ALGO__LAST)
291                 algo = ima_hash_algo;
292
293         if (algo != ima_hash_algo || !tfm) {
294                 tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
295                 if (!IS_ERR(tfm)) {
296                         if (algo == ima_hash_algo)
297                                 ima_ahash_tfm = tfm;
298                 } else {
299                         rc = PTR_ERR(tfm);
300                         pr_err("Can not allocate %s (reason: %d)\n",
301                                hash_algo_name[algo], rc);
302                 }
303         }
304         return tfm;
305 }
306
307 static void ima_free_atfm(struct crypto_ahash *tfm)
308 {
309         if (tfm != ima_ahash_tfm)
310                 crypto_free_ahash(tfm);
311 }
312
313 static inline int ahash_wait(int err, struct crypto_wait *wait)
314 {
315
316         err = crypto_wait_req(err, wait);
317
318         if (err)
319                 pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
320
321         return err;
322 }
323
324 static int ima_calc_file_hash_atfm(struct file *file,
325                                    struct ima_digest_data *hash,
326                                    struct crypto_ahash *tfm)
327 {
328         loff_t i_size, offset;
329         char *rbuf[2] = { NULL, };
330         int rc, rbuf_len, active = 0, ahash_rc = 0;
331         struct ahash_request *req;
332         struct scatterlist sg[1];
333         struct crypto_wait wait;
334         size_t rbuf_size[2];
335
336         hash->length = crypto_ahash_digestsize(tfm);
337
338         req = ahash_request_alloc(tfm, GFP_KERNEL);
339         if (!req)
340                 return -ENOMEM;
341
342         crypto_init_wait(&wait);
343         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
344                                    CRYPTO_TFM_REQ_MAY_SLEEP,
345                                    crypto_req_done, &wait);
346
347         rc = ahash_wait(crypto_ahash_init(req), &wait);
348         if (rc)
349                 goto out1;
350
351         i_size = i_size_read(file_inode(file));
352
353         if (i_size == 0)
354                 goto out2;
355
356         /*
357          * Try to allocate maximum size of memory.
358          * Fail if even a single page cannot be allocated.
359          */
360         rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
361         if (!rbuf[0]) {
362                 rc = -ENOMEM;
363                 goto out1;
364         }
365
366         /* Only allocate one buffer if that is enough. */
367         if (i_size > rbuf_size[0]) {
368                 /*
369                  * Try to allocate secondary buffer. If that fails fallback to
370                  * using single buffering. Use previous memory allocation size
371                  * as baseline for possible allocation size.
372                  */
373                 rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
374                                           &rbuf_size[1], 0);
375         }
376
377         for (offset = 0; offset < i_size; offset += rbuf_len) {
378                 if (!rbuf[1] && offset) {
379                         /* Not using two buffers, and it is not the first
380                          * read/request, wait for the completion of the
381                          * previous ahash_update() request.
382                          */
383                         rc = ahash_wait(ahash_rc, &wait);
384                         if (rc)
385                                 goto out3;
386                 }
387                 /* read buffer */
388                 rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
389                 rc = integrity_kernel_read(file, offset, rbuf[active],
390                                            rbuf_len);
391                 if (rc != rbuf_len) {
392                         if (rc >= 0)
393                                 rc = -EINVAL;
394                         /*
395                          * Forward current rc, do not overwrite with return value
396                          * from ahash_wait()
397                          */
398                         ahash_wait(ahash_rc, &wait);
399                         goto out3;
400                 }
401
402                 if (rbuf[1] && offset) {
403                         /* Using two buffers, and it is not the first
404                          * read/request, wait for the completion of the
405                          * previous ahash_update() request.
406                          */
407                         rc = ahash_wait(ahash_rc, &wait);
408                         if (rc)
409                                 goto out3;
410                 }
411
412                 sg_init_one(&sg[0], rbuf[active], rbuf_len);
413                 ahash_request_set_crypt(req, sg, NULL, rbuf_len);
414
415                 ahash_rc = crypto_ahash_update(req);
416
417                 if (rbuf[1])
418                         active = !active; /* swap buffers, if we use two */
419         }
420         /* wait for the last update request to complete */
421         rc = ahash_wait(ahash_rc, &wait);
422 out3:
423         ima_free_pages(rbuf[0], rbuf_size[0]);
424         ima_free_pages(rbuf[1], rbuf_size[1]);
425 out2:
426         if (!rc) {
427                 ahash_request_set_crypt(req, NULL, hash->digest, 0);
428                 rc = ahash_wait(crypto_ahash_final(req), &wait);
429         }
430 out1:
431         ahash_request_free(req);
432         return rc;
433 }
434
435 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
436 {
437         struct crypto_ahash *tfm;
438         int rc;
439
440         tfm = ima_alloc_atfm(hash->algo);
441         if (IS_ERR(tfm))
442                 return PTR_ERR(tfm);
443
444         rc = ima_calc_file_hash_atfm(file, hash, tfm);
445
446         ima_free_atfm(tfm);
447
448         return rc;
449 }
450
451 static int ima_calc_file_hash_tfm(struct file *file,
452                                   struct ima_digest_data *hash,
453                                   struct crypto_shash *tfm)
454 {
455         loff_t i_size, offset = 0;
456         char *rbuf;
457         int rc;
458         SHASH_DESC_ON_STACK(shash, tfm);
459
460         shash->tfm = tfm;
461
462         hash->length = crypto_shash_digestsize(tfm);
463
464         rc = crypto_shash_init(shash);
465         if (rc != 0)
466                 return rc;
467
468         i_size = i_size_read(file_inode(file));
469
470         if (i_size == 0)
471                 goto out;
472
473         rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
474         if (!rbuf)
475                 return -ENOMEM;
476
477         while (offset < i_size) {
478                 int rbuf_len;
479
480                 rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
481                 if (rbuf_len < 0) {
482                         rc = rbuf_len;
483                         break;
484                 }
485                 if (rbuf_len == 0) {    /* unexpected EOF */
486                         rc = -EINVAL;
487                         break;
488                 }
489                 offset += rbuf_len;
490
491                 rc = crypto_shash_update(shash, rbuf, rbuf_len);
492                 if (rc)
493                         break;
494         }
495         kfree(rbuf);
496 out:
497         if (!rc)
498                 rc = crypto_shash_final(shash, hash->digest);
499         return rc;
500 }
501
502 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
503 {
504         struct crypto_shash *tfm;
505         int rc;
506
507         tfm = ima_alloc_tfm(hash->algo);
508         if (IS_ERR(tfm))
509                 return PTR_ERR(tfm);
510
511         rc = ima_calc_file_hash_tfm(file, hash, tfm);
512
513         ima_free_tfm(tfm);
514
515         return rc;
516 }
517
518 /*
519  * ima_calc_file_hash - calculate file hash
520  *
521  * Asynchronous hash (ahash) allows using HW acceleration for calculating
522  * a hash. ahash performance varies for different data sizes on different
523  * crypto accelerators. shash performance might be better for smaller files.
524  * The 'ima.ahash_minsize' module parameter allows specifying the best
525  * minimum file size for using ahash on the system.
526  *
527  * If the ima.ahash_minsize parameter is not specified, this function uses
528  * shash for the hash calculation.  If ahash fails, it falls back to using
529  * shash.
530  */
531 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
532 {
533         loff_t i_size;
534         int rc;
535         struct file *f = file;
536         bool new_file_instance = false;
537
538         /*
539          * For consistency, fail file's opened with the O_DIRECT flag on
540          * filesystems mounted with/without DAX option.
541          */
542         if (file->f_flags & O_DIRECT) {
543                 hash->length = hash_digest_size[ima_hash_algo];
544                 hash->algo = ima_hash_algo;
545                 return -EINVAL;
546         }
547
548         /* Open a new file instance in O_RDONLY if we cannot read */
549         if (!(file->f_mode & FMODE_READ)) {
550                 int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
551                                 O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
552                 flags |= O_RDONLY;
553                 f = dentry_open(&file->f_path, flags, file->f_cred);
554                 if (IS_ERR(f))
555                         return PTR_ERR(f);
556
557                 new_file_instance = true;
558         }
559
560         i_size = i_size_read(file_inode(f));
561
562         if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
563                 rc = ima_calc_file_ahash(f, hash);
564                 if (!rc)
565                         goto out;
566         }
567
568         rc = ima_calc_file_shash(f, hash);
569 out:
570         if (new_file_instance)
571                 fput(f);
572         return rc;
573 }
574
575 /*
576  * Calculate the hash of template data
577  */
578 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
579                                          struct ima_template_entry *entry,
580                                          int tfm_idx)
581 {
582         SHASH_DESC_ON_STACK(shash, ima_algo_array[tfm_idx].tfm);
583         struct ima_template_desc *td = entry->template_desc;
584         int num_fields = entry->template_desc->num_fields;
585         int rc, i;
586
587         shash->tfm = ima_algo_array[tfm_idx].tfm;
588
589         rc = crypto_shash_init(shash);
590         if (rc != 0)
591                 return rc;
592
593         for (i = 0; i < num_fields; i++) {
594                 u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
595                 u8 *data_to_hash = field_data[i].data;
596                 u32 datalen = field_data[i].len;
597                 u32 datalen_to_hash = !ima_canonical_fmt ?
598                                 datalen : (__force u32)cpu_to_le32(datalen);
599
600                 if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
601                         rc = crypto_shash_update(shash,
602                                                 (const u8 *) &datalen_to_hash,
603                                                 sizeof(datalen_to_hash));
604                         if (rc)
605                                 break;
606                 } else if (strcmp(td->fields[i]->field_id, "n") == 0) {
607                         memcpy(buffer, data_to_hash, datalen);
608                         data_to_hash = buffer;
609                         datalen = IMA_EVENT_NAME_LEN_MAX + 1;
610                 }
611                 rc = crypto_shash_update(shash, data_to_hash, datalen);
612                 if (rc)
613                         break;
614         }
615
616         if (!rc)
617                 rc = crypto_shash_final(shash, entry->digests[tfm_idx].digest);
618
619         return rc;
620 }
621
622 int ima_calc_field_array_hash(struct ima_field_data *field_data,
623                               struct ima_template_entry *entry)
624 {
625         u16 alg_id;
626         int rc, i;
627
628         rc = ima_calc_field_array_hash_tfm(field_data, entry, ima_sha1_idx);
629         if (rc)
630                 return rc;
631
632         entry->digests[ima_sha1_idx].alg_id = TPM_ALG_SHA1;
633
634         for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) {
635                 if (i == ima_sha1_idx)
636                         continue;
637
638                 if (i < NR_BANKS(ima_tpm_chip)) {
639                         alg_id = ima_tpm_chip->allocated_banks[i].alg_id;
640                         entry->digests[i].alg_id = alg_id;
641                 }
642
643                 /* for unmapped TPM algorithms digest is still a padded SHA1 */
644                 if (!ima_algo_array[i].tfm) {
645                         memcpy(entry->digests[i].digest,
646                                entry->digests[ima_sha1_idx].digest,
647                                TPM_DIGEST_SIZE);
648                         continue;
649                 }
650
651                 rc = ima_calc_field_array_hash_tfm(field_data, entry, i);
652                 if (rc)
653                         return rc;
654         }
655         return rc;
656 }
657
658 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
659                                   struct ima_digest_data *hash,
660                                   struct crypto_ahash *tfm)
661 {
662         struct ahash_request *req;
663         struct scatterlist sg;
664         struct crypto_wait wait;
665         int rc, ahash_rc = 0;
666
667         hash->length = crypto_ahash_digestsize(tfm);
668
669         req = ahash_request_alloc(tfm, GFP_KERNEL);
670         if (!req)
671                 return -ENOMEM;
672
673         crypto_init_wait(&wait);
674         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
675                                    CRYPTO_TFM_REQ_MAY_SLEEP,
676                                    crypto_req_done, &wait);
677
678         rc = ahash_wait(crypto_ahash_init(req), &wait);
679         if (rc)
680                 goto out;
681
682         sg_init_one(&sg, buf, len);
683         ahash_request_set_crypt(req, &sg, NULL, len);
684
685         ahash_rc = crypto_ahash_update(req);
686
687         /* wait for the update request to complete */
688         rc = ahash_wait(ahash_rc, &wait);
689         if (!rc) {
690                 ahash_request_set_crypt(req, NULL, hash->digest, 0);
691                 rc = ahash_wait(crypto_ahash_final(req), &wait);
692         }
693 out:
694         ahash_request_free(req);
695         return rc;
696 }
697
698 static int calc_buffer_ahash(const void *buf, loff_t len,
699                              struct ima_digest_data *hash)
700 {
701         struct crypto_ahash *tfm;
702         int rc;
703
704         tfm = ima_alloc_atfm(hash->algo);
705         if (IS_ERR(tfm))
706                 return PTR_ERR(tfm);
707
708         rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
709
710         ima_free_atfm(tfm);
711
712         return rc;
713 }
714
715 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
716                                 struct ima_digest_data *hash,
717                                 struct crypto_shash *tfm)
718 {
719         SHASH_DESC_ON_STACK(shash, tfm);
720         unsigned int len;
721         int rc;
722
723         shash->tfm = tfm;
724
725         hash->length = crypto_shash_digestsize(tfm);
726
727         rc = crypto_shash_init(shash);
728         if (rc != 0)
729                 return rc;
730
731         while (size) {
732                 len = size < PAGE_SIZE ? size : PAGE_SIZE;
733                 rc = crypto_shash_update(shash, buf, len);
734                 if (rc)
735                         break;
736                 buf += len;
737                 size -= len;
738         }
739
740         if (!rc)
741                 rc = crypto_shash_final(shash, hash->digest);
742         return rc;
743 }
744
745 static int calc_buffer_shash(const void *buf, loff_t len,
746                              struct ima_digest_data *hash)
747 {
748         struct crypto_shash *tfm;
749         int rc;
750
751         tfm = ima_alloc_tfm(hash->algo);
752         if (IS_ERR(tfm))
753                 return PTR_ERR(tfm);
754
755         rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
756
757         ima_free_tfm(tfm);
758         return rc;
759 }
760
761 int ima_calc_buffer_hash(const void *buf, loff_t len,
762                          struct ima_digest_data *hash)
763 {
764         int rc;
765
766         if (ima_ahash_minsize && len >= ima_ahash_minsize) {
767                 rc = calc_buffer_ahash(buf, len, hash);
768                 if (!rc)
769                         return 0;
770         }
771
772         return calc_buffer_shash(buf, len, hash);
773 }
774
775 static void ima_pcrread(u32 idx, struct tpm_digest *d)
776 {
777         if (!ima_tpm_chip)
778                 return;
779
780         if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0)
781                 pr_err("Error Communicating to TPM chip\n");
782 }
783
784 /*
785  * The boot_aggregate is a cumulative hash over TPM registers 0 - 7.  With
786  * TPM 1.2 the boot_aggregate was based on reading the SHA1 PCRs, but with
787  * TPM 2.0 hash agility, TPM chips could support multiple TPM PCR banks,
788  * allowing firmware to configure and enable different banks.
789  *
790  * Knowing which TPM bank is read to calculate the boot_aggregate digest
791  * needs to be conveyed to a verifier.  For this reason, use the same
792  * hash algorithm for reading the TPM PCRs as for calculating the boot
793  * aggregate digest as stored in the measurement list.
794  */
795 static int ima_calc_boot_aggregate_tfm(char *digest, u16 alg_id,
796                                        struct crypto_shash *tfm)
797 {
798         struct tpm_digest d = { .alg_id = alg_id, .digest = {0} };
799         int rc;
800         u32 i;
801         SHASH_DESC_ON_STACK(shash, tfm);
802
803         shash->tfm = tfm;
804
805         pr_devel("calculating the boot-aggregate based on TPM bank: %04x\n",
806                  d.alg_id);
807
808         rc = crypto_shash_init(shash);
809         if (rc != 0)
810                 return rc;
811
812         /* cumulative digest over TPM registers 0-7 */
813         for (i = TPM_PCR0; i < TPM_PCR8; i++) {
814                 ima_pcrread(i, &d);
815                 /* now accumulate with current aggregate */
816                 rc = crypto_shash_update(shash, d.digest,
817                                          crypto_shash_digestsize(tfm));
818                 if (rc != 0)
819                         return rc;
820         }
821         /*
822          * Extend cumulative digest over TPM registers 8-9, which contain
823          * measurement for the kernel command line (reg. 8) and image (reg. 9)
824          * in a typical PCR allocation. Registers 8-9 are only included in
825          * non-SHA1 boot_aggregate digests to avoid ambiguity.
826          */
827         if (alg_id != TPM_ALG_SHA1) {
828                 for (i = TPM_PCR8; i < TPM_PCR10; i++) {
829                         ima_pcrread(i, &d);
830                         rc = crypto_shash_update(shash, d.digest,
831                                                 crypto_shash_digestsize(tfm));
832                 }
833         }
834         if (!rc)
835                 crypto_shash_final(shash, digest);
836         return rc;
837 }
838
839 int ima_calc_boot_aggregate(struct ima_digest_data *hash)
840 {
841         struct crypto_shash *tfm;
842         u16 crypto_id, alg_id;
843         int rc, i, bank_idx = -1;
844
845         for (i = 0; i < ima_tpm_chip->nr_allocated_banks; i++) {
846                 crypto_id = ima_tpm_chip->allocated_banks[i].crypto_id;
847                 if (crypto_id == hash->algo) {
848                         bank_idx = i;
849                         break;
850                 }
851
852                 if (crypto_id == HASH_ALGO_SHA256)
853                         bank_idx = i;
854
855                 if (bank_idx == -1 && crypto_id == HASH_ALGO_SHA1)
856                         bank_idx = i;
857         }
858
859         if (bank_idx == -1) {
860                 pr_err("No suitable TPM algorithm for boot aggregate\n");
861                 return 0;
862         }
863
864         hash->algo = ima_tpm_chip->allocated_banks[bank_idx].crypto_id;
865
866         tfm = ima_alloc_tfm(hash->algo);
867         if (IS_ERR(tfm))
868                 return PTR_ERR(tfm);
869
870         hash->length = crypto_shash_digestsize(tfm);
871         alg_id = ima_tpm_chip->allocated_banks[bank_idx].alg_id;
872         rc = ima_calc_boot_aggregate_tfm(hash->digest, alg_id, tfm);
873
874         ima_free_tfm(tfm);
875
876         return rc;
877 }
This page took 0.076637 seconds and 4 git commands to generate.