]> Git Repo - J-linux.git/blob - net/sunrpc/sched.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / net / sunrpc / sched.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <[email protected]>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <[email protected]>
11  */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
32
33 /*
34  * RPC slabs and memory pools
35  */
36 #define RPC_BUFFER_MAXSIZE      (2048)
37 #define RPC_BUFFER_POOLSIZE     (8)
38 #define RPC_TASK_POOLSIZE       (8)
39 static struct kmem_cache        *rpc_task_slabp __read_mostly;
40 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
41 static mempool_t        *rpc_task_mempool __read_mostly;
42 static mempool_t        *rpc_buffer_mempool __read_mostly;
43
44 static void                     rpc_async_schedule(struct work_struct *);
45 static void                      rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
47
48 /*
49  * RPC tasks sit here while waiting for conditions to improve.
50  */
51 static struct rpc_wait_queue delay_queue;
52
53 /*
54  * rpciod-related stuff
55  */
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59
60 gfp_t rpc_task_gfp_mask(void)
61 {
62         if (current->flags & PF_WQ_WORKER)
63                 return GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
64         return GFP_KERNEL;
65 }
66 EXPORT_SYMBOL_GPL(rpc_task_gfp_mask);
67
68 bool rpc_task_set_rpc_status(struct rpc_task *task, int rpc_status)
69 {
70         if (cmpxchg(&task->tk_rpc_status, 0, rpc_status) == 0)
71                 return true;
72         return false;
73 }
74
75 unsigned long
76 rpc_task_timeout(const struct rpc_task *task)
77 {
78         unsigned long timeout = READ_ONCE(task->tk_timeout);
79
80         if (timeout != 0) {
81                 unsigned long now = jiffies;
82                 if (time_before(now, timeout))
83                         return timeout - now;
84         }
85         return 0;
86 }
87 EXPORT_SYMBOL_GPL(rpc_task_timeout);
88
89 /*
90  * Disable the timer for a given RPC task. Should be called with
91  * queue->lock and bh_disabled in order to avoid races within
92  * rpc_run_timer().
93  */
94 static void
95 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
96 {
97         if (list_empty(&task->u.tk_wait.timer_list))
98                 return;
99         task->tk_timeout = 0;
100         list_del(&task->u.tk_wait.timer_list);
101         if (list_empty(&queue->timer_list.list))
102                 cancel_delayed_work(&queue->timer_list.dwork);
103 }
104
105 static void
106 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
107 {
108         unsigned long now = jiffies;
109         queue->timer_list.expires = expires;
110         if (time_before_eq(expires, now))
111                 expires = 0;
112         else
113                 expires -= now;
114         mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
115 }
116
117 /*
118  * Set up a timer for the current task.
119  */
120 static void
121 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
122                 unsigned long timeout)
123 {
124         task->tk_timeout = timeout;
125         if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
126                 rpc_set_queue_timer(queue, timeout);
127         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
128 }
129
130 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
131 {
132         if (queue->priority != priority) {
133                 queue->priority = priority;
134                 queue->nr = 1U << priority;
135         }
136 }
137
138 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
139 {
140         rpc_set_waitqueue_priority(queue, queue->maxpriority);
141 }
142
143 /*
144  * Add a request to a queue list
145  */
146 static void
147 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
148 {
149         struct rpc_task *t;
150
151         list_for_each_entry(t, q, u.tk_wait.list) {
152                 if (t->tk_owner == task->tk_owner) {
153                         list_add_tail(&task->u.tk_wait.links,
154                                         &t->u.tk_wait.links);
155                         /* Cache the queue head in task->u.tk_wait.list */
156                         task->u.tk_wait.list.next = q;
157                         task->u.tk_wait.list.prev = NULL;
158                         return;
159                 }
160         }
161         INIT_LIST_HEAD(&task->u.tk_wait.links);
162         list_add_tail(&task->u.tk_wait.list, q);
163 }
164
165 /*
166  * Remove request from a queue list
167  */
168 static void
169 __rpc_list_dequeue_task(struct rpc_task *task)
170 {
171         struct list_head *q;
172         struct rpc_task *t;
173
174         if (task->u.tk_wait.list.prev == NULL) {
175                 list_del(&task->u.tk_wait.links);
176                 return;
177         }
178         if (!list_empty(&task->u.tk_wait.links)) {
179                 t = list_first_entry(&task->u.tk_wait.links,
180                                 struct rpc_task,
181                                 u.tk_wait.links);
182                 /* Assume __rpc_list_enqueue_task() cached the queue head */
183                 q = t->u.tk_wait.list.next;
184                 list_add_tail(&t->u.tk_wait.list, q);
185                 list_del(&task->u.tk_wait.links);
186         }
187         list_del(&task->u.tk_wait.list);
188 }
189
190 /*
191  * Add new request to a priority queue.
192  */
193 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
194                 struct rpc_task *task,
195                 unsigned char queue_priority)
196 {
197         if (unlikely(queue_priority > queue->maxpriority))
198                 queue_priority = queue->maxpriority;
199         __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
200 }
201
202 /*
203  * Add new request to wait queue.
204  */
205 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
206                 struct rpc_task *task,
207                 unsigned char queue_priority)
208 {
209         INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
210         if (RPC_IS_PRIORITY(queue))
211                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
212         else
213                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
214         task->tk_waitqueue = queue;
215         queue->qlen++;
216         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
217         smp_wmb();
218         rpc_set_queued(task);
219 }
220
221 /*
222  * Remove request from a priority queue.
223  */
224 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
225 {
226         __rpc_list_dequeue_task(task);
227 }
228
229 /*
230  * Remove request from queue.
231  * Note: must be called with spin lock held.
232  */
233 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
234 {
235         __rpc_disable_timer(queue, task);
236         if (RPC_IS_PRIORITY(queue))
237                 __rpc_remove_wait_queue_priority(task);
238         else
239                 list_del(&task->u.tk_wait.list);
240         queue->qlen--;
241 }
242
243 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
244 {
245         int i;
246
247         spin_lock_init(&queue->lock);
248         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
249                 INIT_LIST_HEAD(&queue->tasks[i]);
250         queue->maxpriority = nr_queues - 1;
251         rpc_reset_waitqueue_priority(queue);
252         queue->qlen = 0;
253         queue->timer_list.expires = 0;
254         INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
255         INIT_LIST_HEAD(&queue->timer_list.list);
256         rpc_assign_waitqueue_name(queue, qname);
257 }
258
259 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
260 {
261         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
262 }
263 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
264
265 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
266 {
267         __rpc_init_priority_wait_queue(queue, qname, 1);
268 }
269 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
270
271 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
272 {
273         cancel_delayed_work_sync(&queue->timer_list.dwork);
274 }
275 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
276
277 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
278 {
279         schedule();
280         if (signal_pending_state(mode, current))
281                 return -ERESTARTSYS;
282         return 0;
283 }
284
285 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
286 static void rpc_task_set_debuginfo(struct rpc_task *task)
287 {
288         struct rpc_clnt *clnt = task->tk_client;
289
290         /* Might be a task carrying a reverse-direction operation */
291         if (!clnt) {
292                 static atomic_t rpc_pid;
293
294                 task->tk_pid = atomic_inc_return(&rpc_pid);
295                 return;
296         }
297
298         task->tk_pid = atomic_inc_return(&clnt->cl_pid);
299 }
300 #else
301 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
302 {
303 }
304 #endif
305
306 static void rpc_set_active(struct rpc_task *task)
307 {
308         rpc_task_set_debuginfo(task);
309         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
310         trace_rpc_task_begin(task, NULL);
311 }
312
313 /*
314  * Mark an RPC call as having completed by clearing the 'active' bit
315  * and then waking up all tasks that were sleeping.
316  */
317 static int rpc_complete_task(struct rpc_task *task)
318 {
319         void *m = &task->tk_runstate;
320         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
321         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
322         unsigned long flags;
323         int ret;
324
325         trace_rpc_task_complete(task, NULL);
326
327         spin_lock_irqsave(&wq->lock, flags);
328         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
329         ret = atomic_dec_and_test(&task->tk_count);
330         if (waitqueue_active(wq))
331                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
332         spin_unlock_irqrestore(&wq->lock, flags);
333         return ret;
334 }
335
336 /*
337  * Allow callers to wait for completion of an RPC call
338  *
339  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
340  * to enforce taking of the wq->lock and hence avoid races with
341  * rpc_complete_task().
342  */
343 int rpc_wait_for_completion_task(struct rpc_task *task)
344 {
345         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
346                         rpc_wait_bit_killable, TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
347 }
348 EXPORT_SYMBOL_GPL(rpc_wait_for_completion_task);
349
350 /*
351  * Make an RPC task runnable.
352  *
353  * Note: If the task is ASYNC, and is being made runnable after sitting on an
354  * rpc_wait_queue, this must be called with the queue spinlock held to protect
355  * the wait queue operation.
356  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
357  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
358  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
359  * the RPC_TASK_RUNNING flag.
360  */
361 static void rpc_make_runnable(struct workqueue_struct *wq,
362                 struct rpc_task *task)
363 {
364         bool need_wakeup = !rpc_test_and_set_running(task);
365
366         rpc_clear_queued(task);
367         if (!need_wakeup)
368                 return;
369         if (RPC_IS_ASYNC(task)) {
370                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
371                 queue_work(wq, &task->u.tk_work);
372         } else {
373                 smp_mb__after_atomic();
374                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
375         }
376 }
377
378 /*
379  * Prepare for sleeping on a wait queue.
380  * By always appending tasks to the list we ensure FIFO behavior.
381  * NB: An RPC task will only receive interrupt-driven events as long
382  * as it's on a wait queue.
383  */
384 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
385                 struct rpc_task *task,
386                 unsigned char queue_priority)
387 {
388         trace_rpc_task_sleep(task, q);
389
390         __rpc_add_wait_queue(q, task, queue_priority);
391 }
392
393 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
394                 struct rpc_task *task,
395                 unsigned char queue_priority)
396 {
397         if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
398                 return;
399         __rpc_do_sleep_on_priority(q, task, queue_priority);
400 }
401
402 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
403                 struct rpc_task *task, unsigned long timeout,
404                 unsigned char queue_priority)
405 {
406         if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
407                 return;
408         if (time_is_after_jiffies(timeout)) {
409                 __rpc_do_sleep_on_priority(q, task, queue_priority);
410                 __rpc_add_timer(q, task, timeout);
411         } else
412                 task->tk_status = -ETIMEDOUT;
413 }
414
415 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
416 {
417         if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
418                 task->tk_callback = action;
419 }
420
421 static bool rpc_sleep_check_activated(struct rpc_task *task)
422 {
423         /* We shouldn't ever put an inactive task to sleep */
424         if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
425                 task->tk_status = -EIO;
426                 rpc_put_task_async(task);
427                 return false;
428         }
429         return true;
430 }
431
432 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
433                                 rpc_action action, unsigned long timeout)
434 {
435         if (!rpc_sleep_check_activated(task))
436                 return;
437
438         rpc_set_tk_callback(task, action);
439
440         /*
441          * Protect the queue operations.
442          */
443         spin_lock(&q->lock);
444         __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
445         spin_unlock(&q->lock);
446 }
447 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
448
449 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
450                                 rpc_action action)
451 {
452         if (!rpc_sleep_check_activated(task))
453                 return;
454
455         rpc_set_tk_callback(task, action);
456
457         WARN_ON_ONCE(task->tk_timeout != 0);
458         /*
459          * Protect the queue operations.
460          */
461         spin_lock(&q->lock);
462         __rpc_sleep_on_priority(q, task, task->tk_priority);
463         spin_unlock(&q->lock);
464 }
465 EXPORT_SYMBOL_GPL(rpc_sleep_on);
466
467 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
468                 struct rpc_task *task, unsigned long timeout, int priority)
469 {
470         if (!rpc_sleep_check_activated(task))
471                 return;
472
473         priority -= RPC_PRIORITY_LOW;
474         /*
475          * Protect the queue operations.
476          */
477         spin_lock(&q->lock);
478         __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
479         spin_unlock(&q->lock);
480 }
481 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
482
483 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
484                 int priority)
485 {
486         if (!rpc_sleep_check_activated(task))
487                 return;
488
489         WARN_ON_ONCE(task->tk_timeout != 0);
490         priority -= RPC_PRIORITY_LOW;
491         /*
492          * Protect the queue operations.
493          */
494         spin_lock(&q->lock);
495         __rpc_sleep_on_priority(q, task, priority);
496         spin_unlock(&q->lock);
497 }
498 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
499
500 /**
501  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
502  * @wq: workqueue on which to run task
503  * @queue: wait queue
504  * @task: task to be woken up
505  *
506  * Caller must hold queue->lock, and have cleared the task queued flag.
507  */
508 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
509                 struct rpc_wait_queue *queue,
510                 struct rpc_task *task)
511 {
512         /* Has the task been executed yet? If not, we cannot wake it up! */
513         if (!RPC_IS_ACTIVATED(task)) {
514                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
515                 return;
516         }
517
518         trace_rpc_task_wakeup(task, queue);
519
520         __rpc_remove_wait_queue(queue, task);
521
522         rpc_make_runnable(wq, task);
523 }
524
525 /*
526  * Wake up a queued task while the queue lock is being held
527  */
528 static struct rpc_task *
529 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
530                 struct rpc_wait_queue *queue, struct rpc_task *task,
531                 bool (*action)(struct rpc_task *, void *), void *data)
532 {
533         if (RPC_IS_QUEUED(task)) {
534                 smp_rmb();
535                 if (task->tk_waitqueue == queue) {
536                         if (action == NULL || action(task, data)) {
537                                 __rpc_do_wake_up_task_on_wq(wq, queue, task);
538                                 return task;
539                         }
540                 }
541         }
542         return NULL;
543 }
544
545 /*
546  * Wake up a queued task while the queue lock is being held
547  */
548 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
549                                           struct rpc_task *task)
550 {
551         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
552                                                    task, NULL, NULL);
553 }
554
555 /*
556  * Wake up a task on a specific queue
557  */
558 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
559 {
560         if (!RPC_IS_QUEUED(task))
561                 return;
562         spin_lock(&queue->lock);
563         rpc_wake_up_task_queue_locked(queue, task);
564         spin_unlock(&queue->lock);
565 }
566 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
567
568 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
569 {
570         task->tk_status = *(int *)status;
571         return true;
572 }
573
574 static void
575 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
576                 struct rpc_task *task, int status)
577 {
578         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
579                         task, rpc_task_action_set_status, &status);
580 }
581
582 /**
583  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
584  * @queue: pointer to rpc_wait_queue
585  * @task: pointer to rpc_task
586  * @status: integer error value
587  *
588  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
589  * set to the value of @status.
590  */
591 void
592 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
593                 struct rpc_task *task, int status)
594 {
595         if (!RPC_IS_QUEUED(task))
596                 return;
597         spin_lock(&queue->lock);
598         rpc_wake_up_task_queue_set_status_locked(queue, task, status);
599         spin_unlock(&queue->lock);
600 }
601
602 /*
603  * Wake up the next task on a priority queue.
604  */
605 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
606 {
607         struct list_head *q;
608         struct rpc_task *task;
609
610         /*
611          * Service the privileged queue.
612          */
613         q = &queue->tasks[RPC_NR_PRIORITY - 1];
614         if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
615                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
616                 goto out;
617         }
618
619         /*
620          * Service a batch of tasks from a single owner.
621          */
622         q = &queue->tasks[queue->priority];
623         if (!list_empty(q) && queue->nr) {
624                 queue->nr--;
625                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
626                 goto out;
627         }
628
629         /*
630          * Service the next queue.
631          */
632         do {
633                 if (q == &queue->tasks[0])
634                         q = &queue->tasks[queue->maxpriority];
635                 else
636                         q = q - 1;
637                 if (!list_empty(q)) {
638                         task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
639                         goto new_queue;
640                 }
641         } while (q != &queue->tasks[queue->priority]);
642
643         rpc_reset_waitqueue_priority(queue);
644         return NULL;
645
646 new_queue:
647         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
648 out:
649         return task;
650 }
651
652 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
653 {
654         if (RPC_IS_PRIORITY(queue))
655                 return __rpc_find_next_queued_priority(queue);
656         if (!list_empty(&queue->tasks[0]))
657                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
658         return NULL;
659 }
660
661 /*
662  * Wake up the first task on the wait queue.
663  */
664 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
665                 struct rpc_wait_queue *queue,
666                 bool (*func)(struct rpc_task *, void *), void *data)
667 {
668         struct rpc_task *task = NULL;
669
670         spin_lock(&queue->lock);
671         task = __rpc_find_next_queued(queue);
672         if (task != NULL)
673                 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
674                                 task, func, data);
675         spin_unlock(&queue->lock);
676
677         return task;
678 }
679
680 /*
681  * Wake up the first task on the wait queue.
682  */
683 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
684                 bool (*func)(struct rpc_task *, void *), void *data)
685 {
686         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
687 }
688 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
689
690 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
691 {
692         return true;
693 }
694
695 /*
696  * Wake up the next task on the wait queue.
697 */
698 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
699 {
700         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
701 }
702 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
703
704 /**
705  * rpc_wake_up_locked - wake up all rpc_tasks
706  * @queue: rpc_wait_queue on which the tasks are sleeping
707  *
708  */
709 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
710 {
711         struct rpc_task *task;
712
713         for (;;) {
714                 task = __rpc_find_next_queued(queue);
715                 if (task == NULL)
716                         break;
717                 rpc_wake_up_task_queue_locked(queue, task);
718         }
719 }
720
721 /**
722  * rpc_wake_up - wake up all rpc_tasks
723  * @queue: rpc_wait_queue on which the tasks are sleeping
724  *
725  * Grabs queue->lock
726  */
727 void rpc_wake_up(struct rpc_wait_queue *queue)
728 {
729         spin_lock(&queue->lock);
730         rpc_wake_up_locked(queue);
731         spin_unlock(&queue->lock);
732 }
733 EXPORT_SYMBOL_GPL(rpc_wake_up);
734
735 /**
736  * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
737  * @queue: rpc_wait_queue on which the tasks are sleeping
738  * @status: status value to set
739  */
740 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
741 {
742         struct rpc_task *task;
743
744         for (;;) {
745                 task = __rpc_find_next_queued(queue);
746                 if (task == NULL)
747                         break;
748                 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
749         }
750 }
751
752 /**
753  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
754  * @queue: rpc_wait_queue on which the tasks are sleeping
755  * @status: status value to set
756  *
757  * Grabs queue->lock
758  */
759 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
760 {
761         spin_lock(&queue->lock);
762         rpc_wake_up_status_locked(queue, status);
763         spin_unlock(&queue->lock);
764 }
765 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
766
767 static void __rpc_queue_timer_fn(struct work_struct *work)
768 {
769         struct rpc_wait_queue *queue = container_of(work,
770                         struct rpc_wait_queue,
771                         timer_list.dwork.work);
772         struct rpc_task *task, *n;
773         unsigned long expires, now, timeo;
774
775         spin_lock(&queue->lock);
776         expires = now = jiffies;
777         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
778                 timeo = task->tk_timeout;
779                 if (time_after_eq(now, timeo)) {
780                         trace_rpc_task_timeout(task, task->tk_action);
781                         task->tk_status = -ETIMEDOUT;
782                         rpc_wake_up_task_queue_locked(queue, task);
783                         continue;
784                 }
785                 if (expires == now || time_after(expires, timeo))
786                         expires = timeo;
787         }
788         if (!list_empty(&queue->timer_list.list))
789                 rpc_set_queue_timer(queue, expires);
790         spin_unlock(&queue->lock);
791 }
792
793 static void __rpc_atrun(struct rpc_task *task)
794 {
795         if (task->tk_status == -ETIMEDOUT)
796                 task->tk_status = 0;
797 }
798
799 /*
800  * Run a task at a later time
801  */
802 void rpc_delay(struct rpc_task *task, unsigned long delay)
803 {
804         rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
805 }
806 EXPORT_SYMBOL_GPL(rpc_delay);
807
808 /*
809  * Helper to call task->tk_ops->rpc_call_prepare
810  */
811 void rpc_prepare_task(struct rpc_task *task)
812 {
813         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
814 }
815
816 static void
817 rpc_init_task_statistics(struct rpc_task *task)
818 {
819         /* Initialize retry counters */
820         task->tk_garb_retry = 2;
821         task->tk_cred_retry = 2;
822
823         /* starting timestamp */
824         task->tk_start = ktime_get();
825 }
826
827 static void
828 rpc_reset_task_statistics(struct rpc_task *task)
829 {
830         task->tk_timeouts = 0;
831         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
832         rpc_init_task_statistics(task);
833 }
834
835 /*
836  * Helper that calls task->tk_ops->rpc_call_done if it exists
837  */
838 void rpc_exit_task(struct rpc_task *task)
839 {
840         trace_rpc_task_end(task, task->tk_action);
841         task->tk_action = NULL;
842         if (task->tk_ops->rpc_count_stats)
843                 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
844         else if (task->tk_client)
845                 rpc_count_iostats(task, task->tk_client->cl_metrics);
846         if (task->tk_ops->rpc_call_done != NULL) {
847                 trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done);
848                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
849                 if (task->tk_action != NULL) {
850                         /* Always release the RPC slot and buffer memory */
851                         xprt_release(task);
852                         rpc_reset_task_statistics(task);
853                 }
854         }
855 }
856
857 void rpc_signal_task(struct rpc_task *task)
858 {
859         struct rpc_wait_queue *queue;
860
861         if (!RPC_IS_ACTIVATED(task))
862                 return;
863
864         if (!rpc_task_set_rpc_status(task, -ERESTARTSYS))
865                 return;
866         trace_rpc_task_signalled(task, task->tk_action);
867         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
868         smp_mb__after_atomic();
869         queue = READ_ONCE(task->tk_waitqueue);
870         if (queue)
871                 rpc_wake_up_queued_task(queue, task);
872 }
873
874 void rpc_task_try_cancel(struct rpc_task *task, int error)
875 {
876         struct rpc_wait_queue *queue;
877
878         if (!rpc_task_set_rpc_status(task, error))
879                 return;
880         queue = READ_ONCE(task->tk_waitqueue);
881         if (queue)
882                 rpc_wake_up_queued_task(queue, task);
883 }
884
885 void rpc_exit(struct rpc_task *task, int status)
886 {
887         task->tk_status = status;
888         task->tk_action = rpc_exit_task;
889         rpc_wake_up_queued_task(task->tk_waitqueue, task);
890 }
891 EXPORT_SYMBOL_GPL(rpc_exit);
892
893 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
894 {
895         if (ops->rpc_release != NULL)
896                 ops->rpc_release(calldata);
897 }
898
899 static bool xprt_needs_memalloc(struct rpc_xprt *xprt, struct rpc_task *tk)
900 {
901         if (!xprt)
902                 return false;
903         if (!atomic_read(&xprt->swapper))
904                 return false;
905         return test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == tk;
906 }
907
908 /*
909  * This is the RPC `scheduler' (or rather, the finite state machine).
910  */
911 static void __rpc_execute(struct rpc_task *task)
912 {
913         struct rpc_wait_queue *queue;
914         int task_is_async = RPC_IS_ASYNC(task);
915         int status = 0;
916         unsigned long pflags = current->flags;
917
918         WARN_ON_ONCE(RPC_IS_QUEUED(task));
919         if (RPC_IS_QUEUED(task))
920                 return;
921
922         for (;;) {
923                 void (*do_action)(struct rpc_task *);
924
925                 /*
926                  * Perform the next FSM step or a pending callback.
927                  *
928                  * tk_action may be NULL if the task has been killed.
929                  */
930                 do_action = task->tk_action;
931                 /* Tasks with an RPC error status should exit */
932                 if (do_action && do_action != rpc_exit_task &&
933                     (status = READ_ONCE(task->tk_rpc_status)) != 0) {
934                         task->tk_status = status;
935                         do_action = rpc_exit_task;
936                 }
937                 /* Callbacks override all actions */
938                 if (task->tk_callback) {
939                         do_action = task->tk_callback;
940                         task->tk_callback = NULL;
941                 }
942                 if (!do_action)
943                         break;
944                 if (RPC_IS_SWAPPER(task) ||
945                     xprt_needs_memalloc(task->tk_xprt, task))
946                         current->flags |= PF_MEMALLOC;
947
948                 trace_rpc_task_run_action(task, do_action);
949                 do_action(task);
950
951                 /*
952                  * Lockless check for whether task is sleeping or not.
953                  */
954                 if (!RPC_IS_QUEUED(task)) {
955                         cond_resched();
956                         continue;
957                 }
958
959                 /*
960                  * The queue->lock protects against races with
961                  * rpc_make_runnable().
962                  *
963                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
964                  * rpc_task, rpc_make_runnable() can assign it to a
965                  * different workqueue. We therefore cannot assume that the
966                  * rpc_task pointer may still be dereferenced.
967                  */
968                 queue = task->tk_waitqueue;
969                 spin_lock(&queue->lock);
970                 if (!RPC_IS_QUEUED(task)) {
971                         spin_unlock(&queue->lock);
972                         continue;
973                 }
974                 /* Wake up any task that has an exit status */
975                 if (READ_ONCE(task->tk_rpc_status) != 0) {
976                         rpc_wake_up_task_queue_locked(queue, task);
977                         spin_unlock(&queue->lock);
978                         continue;
979                 }
980                 rpc_clear_running(task);
981                 spin_unlock(&queue->lock);
982                 if (task_is_async)
983                         goto out;
984
985                 /* sync task: sleep here */
986                 trace_rpc_task_sync_sleep(task, task->tk_action);
987                 status = out_of_line_wait_on_bit(&task->tk_runstate,
988                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
989                                 TASK_KILLABLE|TASK_FREEZABLE);
990                 if (status < 0) {
991                         /*
992                          * When a sync task receives a signal, it exits with
993                          * -ERESTARTSYS. In order to catch any callbacks that
994                          * clean up after sleeping on some queue, we don't
995                          * break the loop here, but go around once more.
996                          */
997                         rpc_signal_task(task);
998                 }
999                 trace_rpc_task_sync_wake(task, task->tk_action);
1000         }
1001
1002         /* Release all resources associated with the task */
1003         rpc_release_task(task);
1004 out:
1005         current_restore_flags(pflags, PF_MEMALLOC);
1006 }
1007
1008 /*
1009  * User-visible entry point to the scheduler.
1010  *
1011  * This may be called recursively if e.g. an async NFS task updates
1012  * the attributes and finds that dirty pages must be flushed.
1013  * NOTE: Upon exit of this function the task is guaranteed to be
1014  *       released. In particular note that tk_release() will have
1015  *       been called, so your task memory may have been freed.
1016  */
1017 void rpc_execute(struct rpc_task *task)
1018 {
1019         bool is_async = RPC_IS_ASYNC(task);
1020
1021         rpc_set_active(task);
1022         rpc_make_runnable(rpciod_workqueue, task);
1023         if (!is_async) {
1024                 unsigned int pflags = memalloc_nofs_save();
1025                 __rpc_execute(task);
1026                 memalloc_nofs_restore(pflags);
1027         }
1028 }
1029
1030 static void rpc_async_schedule(struct work_struct *work)
1031 {
1032         unsigned int pflags = memalloc_nofs_save();
1033
1034         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
1035         memalloc_nofs_restore(pflags);
1036 }
1037
1038 /**
1039  * rpc_malloc - allocate RPC buffer resources
1040  * @task: RPC task
1041  *
1042  * A single memory region is allocated, which is split between the
1043  * RPC call and RPC reply that this task is being used for. When
1044  * this RPC is retired, the memory is released by calling rpc_free.
1045  *
1046  * To prevent rpciod from hanging, this allocator never sleeps,
1047  * returning -ENOMEM and suppressing warning if the request cannot
1048  * be serviced immediately. The caller can arrange to sleep in a
1049  * way that is safe for rpciod.
1050  *
1051  * Most requests are 'small' (under 2KiB) and can be serviced from a
1052  * mempool, ensuring that NFS reads and writes can always proceed,
1053  * and that there is good locality of reference for these buffers.
1054  */
1055 int rpc_malloc(struct rpc_task *task)
1056 {
1057         struct rpc_rqst *rqst = task->tk_rqstp;
1058         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1059         struct rpc_buffer *buf;
1060         gfp_t gfp = rpc_task_gfp_mask();
1061
1062         size += sizeof(struct rpc_buffer);
1063         if (size <= RPC_BUFFER_MAXSIZE) {
1064                 buf = kmem_cache_alloc(rpc_buffer_slabp, gfp);
1065                 /* Reach for the mempool if dynamic allocation fails */
1066                 if (!buf && RPC_IS_ASYNC(task))
1067                         buf = mempool_alloc(rpc_buffer_mempool, GFP_NOWAIT);
1068         } else
1069                 buf = kmalloc(size, gfp);
1070
1071         if (!buf)
1072                 return -ENOMEM;
1073
1074         buf->len = size;
1075         rqst->rq_buffer = buf->data;
1076         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1077         return 0;
1078 }
1079 EXPORT_SYMBOL_GPL(rpc_malloc);
1080
1081 /**
1082  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1083  * @task: RPC task
1084  *
1085  */
1086 void rpc_free(struct rpc_task *task)
1087 {
1088         void *buffer = task->tk_rqstp->rq_buffer;
1089         size_t size;
1090         struct rpc_buffer *buf;
1091
1092         buf = container_of(buffer, struct rpc_buffer, data);
1093         size = buf->len;
1094
1095         if (size <= RPC_BUFFER_MAXSIZE)
1096                 mempool_free(buf, rpc_buffer_mempool);
1097         else
1098                 kfree(buf);
1099 }
1100 EXPORT_SYMBOL_GPL(rpc_free);
1101
1102 /*
1103  * Creation and deletion of RPC task structures
1104  */
1105 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1106 {
1107         memset(task, 0, sizeof(*task));
1108         atomic_set(&task->tk_count, 1);
1109         task->tk_flags  = task_setup_data->flags;
1110         task->tk_ops = task_setup_data->callback_ops;
1111         task->tk_calldata = task_setup_data->callback_data;
1112         INIT_LIST_HEAD(&task->tk_task);
1113
1114         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1115         task->tk_owner = current->tgid;
1116
1117         /* Initialize workqueue for async tasks */
1118         task->tk_workqueue = task_setup_data->workqueue;
1119
1120         task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1121                         xprt_get(task_setup_data->rpc_xprt));
1122
1123         task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1124
1125         if (task->tk_ops->rpc_call_prepare != NULL)
1126                 task->tk_action = rpc_prepare_task;
1127
1128         rpc_init_task_statistics(task);
1129 }
1130
1131 static struct rpc_task *rpc_alloc_task(void)
1132 {
1133         struct rpc_task *task;
1134
1135         task = kmem_cache_alloc(rpc_task_slabp, rpc_task_gfp_mask());
1136         if (task)
1137                 return task;
1138         return mempool_alloc(rpc_task_mempool, GFP_NOWAIT);
1139 }
1140
1141 /*
1142  * Create a new task for the specified client.
1143  */
1144 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1145 {
1146         struct rpc_task *task = setup_data->task;
1147         unsigned short flags = 0;
1148
1149         if (task == NULL) {
1150                 task = rpc_alloc_task();
1151                 if (task == NULL) {
1152                         rpc_release_calldata(setup_data->callback_ops,
1153                                              setup_data->callback_data);
1154                         return ERR_PTR(-ENOMEM);
1155                 }
1156                 flags = RPC_TASK_DYNAMIC;
1157         }
1158
1159         rpc_init_task(task, setup_data);
1160         task->tk_flags |= flags;
1161         return task;
1162 }
1163
1164 /*
1165  * rpc_free_task - release rpc task and perform cleanups
1166  *
1167  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1168  * in order to work around a workqueue dependency issue.
1169  *
1170  * Tejun Heo states:
1171  * "Workqueue currently considers two work items to be the same if they're
1172  * on the same address and won't execute them concurrently - ie. it
1173  * makes a work item which is queued again while being executed wait
1174  * for the previous execution to complete.
1175  *
1176  * If a work function frees the work item, and then waits for an event
1177  * which should be performed by another work item and *that* work item
1178  * recycles the freed work item, it can create a false dependency loop.
1179  * There really is no reliable way to detect this short of verifying
1180  * every memory free."
1181  *
1182  */
1183 static void rpc_free_task(struct rpc_task *task)
1184 {
1185         unsigned short tk_flags = task->tk_flags;
1186
1187         put_rpccred(task->tk_op_cred);
1188         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1189
1190         if (tk_flags & RPC_TASK_DYNAMIC)
1191                 mempool_free(task, rpc_task_mempool);
1192 }
1193
1194 static void rpc_async_release(struct work_struct *work)
1195 {
1196         unsigned int pflags = memalloc_nofs_save();
1197
1198         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1199         memalloc_nofs_restore(pflags);
1200 }
1201
1202 static void rpc_release_resources_task(struct rpc_task *task)
1203 {
1204         xprt_release(task);
1205         if (task->tk_msg.rpc_cred) {
1206                 if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1207                         put_cred(task->tk_msg.rpc_cred);
1208                 task->tk_msg.rpc_cred = NULL;
1209         }
1210         rpc_task_release_client(task);
1211 }
1212
1213 static void rpc_final_put_task(struct rpc_task *task,
1214                 struct workqueue_struct *q)
1215 {
1216         if (q != NULL) {
1217                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1218                 queue_work(q, &task->u.tk_work);
1219         } else
1220                 rpc_free_task(task);
1221 }
1222
1223 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1224 {
1225         if (atomic_dec_and_test(&task->tk_count)) {
1226                 rpc_release_resources_task(task);
1227                 rpc_final_put_task(task, q);
1228         }
1229 }
1230
1231 void rpc_put_task(struct rpc_task *task)
1232 {
1233         rpc_do_put_task(task, NULL);
1234 }
1235 EXPORT_SYMBOL_GPL(rpc_put_task);
1236
1237 void rpc_put_task_async(struct rpc_task *task)
1238 {
1239         rpc_do_put_task(task, task->tk_workqueue);
1240 }
1241 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1242
1243 static void rpc_release_task(struct rpc_task *task)
1244 {
1245         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1246
1247         rpc_release_resources_task(task);
1248
1249         /*
1250          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1251          * so it should be safe to use task->tk_count as a test for whether
1252          * or not any other processes still hold references to our rpc_task.
1253          */
1254         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1255                 /* Wake up anyone who may be waiting for task completion */
1256                 if (!rpc_complete_task(task))
1257                         return;
1258         } else {
1259                 if (!atomic_dec_and_test(&task->tk_count))
1260                         return;
1261         }
1262         rpc_final_put_task(task, task->tk_workqueue);
1263 }
1264
1265 int rpciod_up(void)
1266 {
1267         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1268 }
1269
1270 void rpciod_down(void)
1271 {
1272         module_put(THIS_MODULE);
1273 }
1274
1275 /*
1276  * Start up the rpciod workqueue.
1277  */
1278 static int rpciod_start(void)
1279 {
1280         struct workqueue_struct *wq;
1281
1282         /*
1283          * Create the rpciod thread and wait for it to start.
1284          */
1285         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1286         if (!wq)
1287                 goto out_failed;
1288         rpciod_workqueue = wq;
1289         wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
1290         if (!wq)
1291                 goto free_rpciod;
1292         xprtiod_workqueue = wq;
1293         return 1;
1294 free_rpciod:
1295         wq = rpciod_workqueue;
1296         rpciod_workqueue = NULL;
1297         destroy_workqueue(wq);
1298 out_failed:
1299         return 0;
1300 }
1301
1302 static void rpciod_stop(void)
1303 {
1304         struct workqueue_struct *wq = NULL;
1305
1306         if (rpciod_workqueue == NULL)
1307                 return;
1308
1309         wq = rpciod_workqueue;
1310         rpciod_workqueue = NULL;
1311         destroy_workqueue(wq);
1312         wq = xprtiod_workqueue;
1313         xprtiod_workqueue = NULL;
1314         destroy_workqueue(wq);
1315 }
1316
1317 void
1318 rpc_destroy_mempool(void)
1319 {
1320         rpciod_stop();
1321         mempool_destroy(rpc_buffer_mempool);
1322         mempool_destroy(rpc_task_mempool);
1323         kmem_cache_destroy(rpc_task_slabp);
1324         kmem_cache_destroy(rpc_buffer_slabp);
1325         rpc_destroy_wait_queue(&delay_queue);
1326 }
1327
1328 int
1329 rpc_init_mempool(void)
1330 {
1331         /*
1332          * The following is not strictly a mempool initialisation,
1333          * but there is no harm in doing it here
1334          */
1335         rpc_init_wait_queue(&delay_queue, "delayq");
1336         if (!rpciod_start())
1337                 goto err_nomem;
1338
1339         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1340                                              sizeof(struct rpc_task),
1341                                              0, SLAB_HWCACHE_ALIGN,
1342                                              NULL);
1343         if (!rpc_task_slabp)
1344                 goto err_nomem;
1345         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1346                                              RPC_BUFFER_MAXSIZE,
1347                                              0, SLAB_HWCACHE_ALIGN,
1348                                              NULL);
1349         if (!rpc_buffer_slabp)
1350                 goto err_nomem;
1351         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1352                                                     rpc_task_slabp);
1353         if (!rpc_task_mempool)
1354                 goto err_nomem;
1355         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1356                                                       rpc_buffer_slabp);
1357         if (!rpc_buffer_mempool)
1358                 goto err_nomem;
1359         return 0;
1360 err_nomem:
1361         rpc_destroy_mempool();
1362         return -ENOMEM;
1363 }
This page took 0.102072 seconds and 4 git commands to generate.